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Optimization

Example

Example 1
Consider the function f (x) =

√
x where x ∈ [0,∞). What is the

maximum value of f (x)? What if x ∈ [0,4)?
Maximize f (n) = 1− n2 + 9

2n where n must take on integer value.
Let a,b and c be positive constant. Let

f (x) =

{ (
1− x

b

)
if 0 ≤ x ≤ b,

0 otherwise

and

X (x) =

{
1 if x > 0,
0 if x ≤ 0.

Maximize g(x) = axf (x)− cX (x).
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Optimization

Brief introduction to C. Optimization

Using explicit function

Maximize f (x , y) = x − y2 subject to x − y = 0.
Rewrite y = x , then f (x , x) = x − x2.
Differentiating, f

′
(x , x) = 1− 2x = 0, we have

(x∗, y∗) = (1/2,1/2) with f ∗(x∗, y∗) = 1/4.
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Optimization

Lagrange Multiplier

Introduction
Maximize f (x , y) subject to g(x , y) = 0.
Set up Lagrangian:

L(x , y) = f (x , y)− λg(x , y)

Perform unconstrained maximization on L(x , y)

Another way is to view it is that it is an unconstrained optimization
on f (x , y) with an additional penalty for violating the constraint
g(x , y) = 0.
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Optimization

Lagrangian Multiplier

Example

f (x , y) = x − y2 with x − y = 0.
L(x , y) = x − y2 − λ(x − y).
Differentiating, we have: 1− λ = 0; −2y∗ + λ = 0; x∗ − y∗ = 0.
Solving, x∗ = y∗ = 1/2.
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Optimization

LM with inequality constraints

Inequality constraints
Let say g(x , y) ≤ 0. Define L(x , y) = f (x , y)− λg(x , y) but now require
λ > 0. If L(x∗, y∗) is an unconstrained maximum and λ > 0, then the
maximum of f (x , y) subject to g(x , y) ≤ 0 occurs at (x∗, y∗).
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Optimization

Lagrangian Multiplier

Example

f (x , y) = 2x2 + y2 subject to x2 + y2 − 1 ≤ 0.
Define L(x , y) = 2x2 + y2 − λ(x2 + y2 − 1).
Differentiating, we have x(2− λ) = 0; y(1− λ) = 0; x2 + y2 = 1.
Solutions (a) λ = 1, x = 0, y = ±1; (b) λ = 2, x = ±1, y = 0;
Both points: (0,±1) and (±1,0) are extrema. Because
f (0,±1) = 1 while f (±1,0) = 2.
So (x∗, y∗) = (±1,0).
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Optimization

Some definitions

Definition
argmax is defined by the following equivalence:

x∗ ∈ argmaxx∈X f (x) ⇐⇒ f (x∗) = max
x∈X

f (x)

Note that we do not write x∗ = argmaxx∈X f (x) since argmax returns a
set of values.
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Making Decisions

Definition
A choice of behavior in a single-decision problem is called an action.
The set of alternative actions available will be denoted as A. This will
either be discrete set, e.g., {a1,a2, . . . , }, or a continuous set, .e.g., the
unit interval [0,1].

John C.S. Lui (CUHK) Advanced Topics in Network Analysis 12 / 26



Making Decisions

More...

Definition
A payoff is a function π : A→ R that associates a numerical value with
every action a ∈ A.

Definition
An action a∗ is an optimal action if

π(a∗) ≥ π(a) ∀a ∈ A.

or equivalently, a∗ ∈ argmaxa∈Aπ(a).
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Making Decisions

Definition
An affine transformation changes payoff π(a) into π

′
(a) as

π
′
(a) = απ(a) + β

where α, β are constants independent of a and α > 0.

Theorem
The optimal action is unchanged if payoffs are altered by an affine
transformation.

Proof
because α > 0, we have

argmaxa∈Aπ
′
(a) = argmaxa∈A [απ(a) + β]

= argmaxa∈Aπ(a).
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Making Decisions

Example
The Convent Fields Soup Company needs to determine the price p.
The demand function is:

Q(p) =

{
Q0

(
1− p

p0

)
if p < p0,

0 if p ≥ p0.

The payoff is π(p) = (p − c)Q(p) where c is the unit production cost.

Solving, we have p∗ = 1
2(p0 + c).

Now, let say we need to consider a fixed cost to build the factory,
the payoff function is π(p) = (p − c)Q(p)− B, where B is a
constant. What is p∗?
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Making Decisions

Uncertainty

Modeling uncertainty
If uncertainty exists, we compare the expected outcome for each
action.
Let X be the set of states with P(X = x).
Payoff for adopting action a is:

π(a) =
∑
x∈X

π(a|x)P(X = x)

An optimal action is

a∗ ∈ argmina∈A
∑
xinX

π(a|x)P(X = x).
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Making Decisions

Example
An investor has $1000 to invest in one year. The available actions
(1) put the money in the bank with 7% interest per year; (2) invest
in stock which returns $1500 if the stock market is good or returns
$600 if the stock market is bad.
P(Good) = P(Bad) = 0.5.
Expected payoff:

1 π(a1) = $1070;
2 π(a2) = 1500/2 + 600/2 = $1050.

So a∗1 and we should put the money in the bank.
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Modeling Rational Behavior

Definition
Let Ω = {ω1, ω2, . . .} be the set of possible outcomes.

We say ωi � ωj if an individual strictly prefers outcome ωi over ωj .
If the individual is indifferent: ωi ∼ ωj .
Either prefer or indifferent: ωi � ωj .

Definition
An individual will be called rational under certainty if his preference for
outcomes satisfy the following conditions:

(Completeness) Either ωi � ωj or ωj � ωi .
(Transitivity) If ωi � ωj and ωj � ωk , then ωi � ωk .
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Modeling Rational Behavior

Definition
A utility function is a function u : Ω→ IR such that

u(ωi) > u(ωj) ⇐⇒ ωi � ωj

u(ωi) = u(ωj) ⇐⇒ ωi ∼ ωj

The immediate consequence of this definition is an individual who is
rational under certainty should seek to maximize his utility.
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Modeling Rational Behavior

What happens when an action does not produce a definite outcome
and instead, we allow each outcome to occur with a known probability?

Definition
A simple lottery, λ, is a set of probabilities for the occurrence of every
ω ∈ Ω. The probability that outcome ω occurs is p(ω|λ). The set of all
possible lotteries is denoted as A.

Definition
A compound lottery is a linear combination of simple lotteries (from the
same set A). For example, qλ1 + (1− q)λ2 with 0 ≤ q ≤ 1 is a
compound lottery.
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Modeling Rational Behavior

Theorem
Expected Utility Theorem: If an individual is rational, then we can
define a utility function u : Ω→ IR and the individual will maximize the
payoff function π(a) (or the expected utility) given by

π(a) =
∑
ω∈Ω

p(w |λ(a))u(ω)

Definition
An individual whose utility function satisfies

E(u(w)) < u(E(w)), it is said to be risk averse,
E(u(w)) > u(E(w)), it is said to be risk prone,
E(u(w)) = u(E(w)), it is said to be risk neutral.
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Modeling Rational Behavior

Example
Someone flip a coin. If it is head (tail), you get $1 ($1M). Your utility
function can be:

u(x) = x ,
u(x) = x2,
u(x) = e−x .

Classify the above as risk averse, risk prone and risk neutral utility
function.

Homework
Consider an individual whose utility function of wealth, w , is given by
u(w) = 1− e−kw where k > 0. Assume that wealth is distributed by a
normal distribution N(µ, σ2). Show

Individual’s expected utility can be represented as a trade-off
between µ and σ2.
Classify the utility function.
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Modeling Rational Behavior

Up to now, we assume finding an optimal action a∗ from a given set A.
But the selection can be randomized. Does this allow one to achieve a
higher payoff?

Definition
We specify a general behavior β by giving a list of probabilities with which
each available action is chosen. We denote the probability that action a is
chosen by p(a) and

∑
a∈A p(a) = 1. The set of all randomizing behavior is

denoted by B. The payoff of using behavior β is

π(β) =
∑
a∈A

p(a)π(a).

An optimal behavior β∗ is one for which

π(β∗) ≥ π(β) ∀β ∈ B.

or β∗ ∈ argmax
β∈Bπ(β).

John C.S. Lui (CUHK) Advanced Topics in Network Analysis 24 / 26



Modeling Rational Behavior

Definition
The support of a behavior β is the set A(β) ⊆ A of all the actions for
which β specifies p(a) > 0.

Theorem
Let β∗ be an optimal behavior with support A∗. Then

π(a) = π(β∗) ∀a ∈ A∗.

The consequence of the above theorem is that if a randomized
behavior is optimal, then two or more actions are optimal as well. So
randomization is not necessary but it may be used to break a tie.

John C.S. Lui (CUHK) Advanced Topics in Network Analysis 25 / 26



Modeling Rational Behavior

Example
A firm may make one of the marketing actions {a1,a2,a3}. The profit
for each action depends on the state of the economy X = {x1, x2, x3}:

x1 x2 x3
a1 6 5 3
a2 3 5 4
a3 5 9 1

If P(X = x1) = 1/2, P(X = x2) = P(X = x3) = 1/4. What are the
optimal behaviors?

Answer
Because π(a1) = π(a3) = 5 and π(a2) = 3.75, optimal randomizing
behaviors have support A∗ = {a1,a3} with p(a1) = p and
p(a3) = 1− p (0 < p < 1). Using either a1 or a3 with probability 1 is
also an optimal behavior.
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