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Strategic Equivalence

Introduction

@ Consider two games v and p in characteristic function form.
Suppose the number of players is the same for both games. The
question: when can we say that v and i are essentially the same ?

@ For example, if we simply change the unit of payoff from one game
to the other, the game is the same and we are simply multiplying
the characteristic function by a positive constant.

@ Another modification is that each player P; received a fixed
amount ¢; independently on how he plays.

@ Since the player can do nothing to change the ¢;’s, they would play
as if these fixed amounts where not present.

v
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Strategic Equivalence

Combining the above modifications, we have:

Definition

Let v and i be the two games in characteristic function form with the
same number N of players. Then p is strategically equivalent to v if

there exist constants kK > 0, and ¢4, . . ., Cn, such that, for every
coalition S
1(S) )+ Z Gi- (1)
PeS

Note that v and p play symmetric roles, we can also express

v(8) = (1/k)u(S) + Y (~ci/k).

P/GS
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Strategic Equivalence

@ The game whose normal form appear in Table 1 has characteristic
function:

v(P)=1,v(0) =0,
v({P1, P2}) =1, v({P1, Ps}) = 4/3, v({ P2, P3}) = 3/4,
v({P1}) =1/4, v({P2}) = —1/3, v({P3}) =

@ Let k =2and ¢y, ¢, and c3 be -1, 0, -1 respectively, we have p,
which is strategically equivalent to v with

pP)=(2)1+(=1+0-1) =0, u(0) = (2)0 =

p({Pr, Po}) = (2)1 +(=1+0) =1,

u({Py, Pa}) = (2)(4/3) + (=1 1) = 2/3, u({P2, P3}) = 1/2,
p({P1}) = =1/2, p({P2}) = =2/3, u({Ps}) = -

In this example, p is zero-sum.
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Strategic Equivalence

Ifv and . are strategically equivalent, and v is inessential, then so is .
Thus ifv is essential, so is .

Proof
Assuming if v is inessential, compute

N N
S ov({PY) = Y (kn({P)+ )
i=1 1:1N \ \

= kY v({P})+> ¢ =kv(P)+ > ci = u(P).

i=1 i=1 i=1

This shows that p is inessential. By symmetry, if 1 is inessential, so is
v. This if v is essential, so is .
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Strategic Equivalence

Relationship between "Equivalence" and "Imputations”

Theorem

Letv and . be strategically equivalent N—person games. Then we
have

@ An N—tuple x is an imputation for v if and only if kx + ¢ is an
imputation for .

@ An imputation x dominates an imputation y through a coalition S
with respect to v if and only if kx + ¢ dominates ky + ¢ with
respect to . through the same coalition.

@ An N—tuple x is in the core of v if and only if kx + ¢ is in the core
of .
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Strategic Equivalence

@ Suppose that x is an imputation for v. Then, for1 < i < N,

p({Pi}) = kv({Pi}) + ¢i < kx; + ¢;,
which verifies individual rationality since kx; + ¢; is the i
component of kx + c.
@ For collective rationality, we have

N N N N
AL('P) = kl/(P) —I—ZC,' = kZXi—I—ZC,' = Z(kXi—I—C,').
i=1 i=1 i=1 i=1
Therefore, kx + ¢ is an imputation for .

@ The converse of this statement is true because of the symmetry of
v and p.

@ The other two statements of the theorem are proved in a similar
way.
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Strategic Equivalence

@ The previous theorem tells us that if we are studying a game in
characteristic function form, then we are simultaneously studying
all games which are strategically equivalent to it.

@ In case v and p are strategically equivalent, then we use the
phrase “v and ;. are the same up to strategic equivalence”.

@ Another implication is that we can replace a game by another one
whose characteristic function is particularly easy to work with.
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Strategic Equivalence

A characteristic function p is in (0, 1)—reduced form if both the
following hold:

@ n({P}) = 0O for every player P.
@ u(P)=1.

v

@ A gamein (0,1)—reduced form is obviously essential.

@ Conversely, it is also true that, up to strategic equivalence, every
essential game is in (0, 1)—reduced form.
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Strategic Equivalence

If v is an essential game, then v is strategically equivalent to a game p
in (0,1)—reduced form.

@ Define ’

k= N
v(P) = 2z v({Pi})

and for i < i < N, define

>0,

ci = —kv({Pi}).

@ Then p is defined by Equation (1).
@ ltis easy to verify that p is in (0, 1)—reduced form.
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Strategic Equivalence

Let us consider the game whose normal form is given in Table 1.
@ From the previous theorem, we have:

1 12

i e

nd

¢ =—(12/13)(1/4) = -3/13, co =4/13, c3 = 0.
@ Then u is given by:
u(P) =1, u(0) =0,
p(any one-player coalition) = 0,
w({Py,P2})=(12/18)(1) —3/13 +4/13 =1,
1({P1, Ps}) = p({P2, Ps}) = 1.
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Strategic Equivalence

Example: continue

For this game 1, we immediately observe three things:
@ All three two-person coalitions are equally good.

@ If a two-person coalition forms, the players will probably divide the
payoff equally (since the players have completely symmetric
roles).

@ There is no advantage to a two-player coalition in bringing in the
third party to form a grand coalition.
@ Conclusion:
o One of the two-player coalitions will form, the player will split the
payoff, the third player is left out in the cold.
e Prevailing imputations will be either (1/2,1/2,0), (1/2,0,1/2) or
(0,1/2,1/2).
e Our analysis cannot predict which coalitions will actually form.
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Strategic Equivalence

Example: continue

If we transform these conclusions back into terms of v, then
@ one of the two-player coalitions will form.

@ The prevailing imputation will be one of the three possibilities
which can be computed using the relationship between v and p
(will be shown later)

| A\

Another example
For the 3-player game G, the (0, 1)—reduced form y is
© u({P1, P}) = 3/8, u({Pr, P3}) = u({P2, Pa}) = 1/2.

@ In this game, the nice symmetry is lost and we can safely say that
the grand coalition is likely to form.

@ To make a guess about what the final imputation might be
hazardous since we discussed that the core is large.
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Strategic Equivalence

Suppose 1 and v are N—person games in (0, 1)—reduced form. If they
are strategically equivalent, then they are all equal.

Proof

By definition of strategic equivalence, there exist constant k > 0, and
Ci,...,Cp such that

for every coalition S.

To prove that v and p are equal, we need to show that kK = 1 and

¢; = 0 for all i. Since both characteristic functions are zero for all
one-player coalitions, we see that ¢; = 0, Vi. Since both characteristic
functions are 1 for the grand coalition, we see that k = 1.
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Strategic Equivalence
Classification of Small Games

Up to strategic equivalence, the number of games with two or three
players is limited, as shown by the following three theorems.

A two-player game in characteristic function form is either inessential
or strategically equivalent to v, where

v(the grand coalition) = 1, v(0) = 0,
v(either one-player coalition) = 0.
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Strategic Equivalence

Classification of Small Games: continue

In the case of constant-sum games with three players, we have

Every three-player constant-sum game in characteristic function form
is either inessential or strategically equivalent to v, where

v(the grand coalition) =1, v(0) =0,
v(any two-player coalition) = 1,
v(any one-player coalition) = 0.

Remark: It basically says that every essential constant-sum game with
three players is strategically equivalent to three-player, constant-sum,
essential game in (0,1)-reduced form (or we called THREE). For
example, the game given in Table 1 is strategically equivalent to
THREE.
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Strategic Equivalence

Classification of Small Games: continue

Up to strategic equivalence, the three-player games which are not
necessarily constant-sum form a three-parameter family. We have

Every three-player game in characteristic function form is either
inessential or there exist constants a, b, ¢ satisfying:

0<a<1,0<b<1,0<c<,
such that the game is strategically equivalent to v, where
v(the grand coalition) =1, v(0) = 0,
and

v(any one-player coalition) = 0,
v({P1, P2}) = a, v({P1,Ps}) = b, v({P2, P3}) = c.
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Two Solution Concepts
Two approaches to find solution

As a solution concept for cooperative game, core has a problem since
it is either a) empty, or b) there are so many imputations in the core

and we have no reasonable way to decide which ones are actually
likely to occur.

Two approaches are proposed, the are:
@ Stable sets of Imputations.
@ Shapley Values
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Two Solution Concepts Stable sets of imputations

Let X be a set of imputations for a game in characteristic function form.
Then we say that X is stable if the following two conditions hold:
@ (Internal Stability): No imputation in X dominates any other
imputation in X through any coalition.
@ (External Stability): In y is any imputation outside X, then it is
dominated through some coalition by some imputation inside X.

v

The idea of stable sets of imputations was introduced by von Neumann
and Morgenstern in 1944, and they argued that a stable set is a
solution of the game.
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Two Solution Concepts Stable sets of imputations

Comments on Stable Sets

@ Note that an imputation inside a stable set may be dominated by
some imputation outside. Of course, that outside imputation is, in
turn, dominated by some other imputations inside (via external
stability). So transitive property does not hold for imputation
dominance.

@ Since all imputations inside X are equal, one which actually
prevails would be chosen in some way, say, via pure chance,
custom,..etc. But there is a problem since there may be an
imputation outside X which dominates a given imputation inside.
And if a coalition is formed based on this outside imputation, X is
not stable anymore.

@ Someone argue that this chaotic series of formation and
dissolutions of coalitions of different stable sets is ok, since real
life often looks that way.
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Two Solution Concepts Stable sets of imputations

For the three-person game in Table 1, we have showed (via
(0,1)-reduced form), that it has a stable set. Let

X =1{(0,1/2,1/2),(1/2,0,1/2),(1/2,1/2,0)}.

We have the following result

The set X defined above is a stable set for THREE.
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Two Solution Concepts Stable sets of imputations

@ We denote the characteristic function for THREE by .
@ We first verify the internal stability.

o By symmetry it is enough to show that the imputation (0,1/2,1/2)
does not dominate (1/2,0, 1/2) through any coalition.

e The only possible coalition through which this domination could
occuris {Po}, but u({P=}) = 0 < 1/2, and this violates the
feasibility condition in the definition of dominance.

@ To verify about external stability, let y be an outside imputation:

o We must show that one of the members of X dominates it through
some coalition.

e Note that there are at least two values of i for which y; < 1/2. If this
were not true, we would have y; > 1/2 for two values of i.

e Since each y; is nonnegative, and ), y; = 1, this implies y is one of
the imputation in X. This contradicts the assumption that y ¢ X.

e By symmetry, we may assume that y; and y, are both less than
1/2, but then (1/2,1/2,0) dominates y through coalition {Py, Ps}.
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Two Solution Concepts Stable sets of imputations

@ Note that there are imputations outside X which dominate
members of X.

@ Consider, for example, (2/3,1/3,0) dominates (1/2,0,1/2) through
coalition {P4y, Po}.

@ On the other hand, (0, 1/2, 1/2) (a member of X) dominates (2/3,
1/3, 0) through { P>, Ps}.
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Two Solution Concepts Stable sets of imputations

Stable Set for any games € THREE

@ Since every essential constant-sum game with three players is
strategically equivalent to THREE, one can use X to obtain the
stable set for any such game.

@ Let v be the game whose normal form is shown in Table 1. Then

u(S) = kv(CS)+ > ¢,
PieS

for every coalition S, where k = 12/13, ¢; = —3/13, ¢ = 4/13
and ¢c; = 0.

o Thus »(S) = (1/K)u(S) + L pes(—Ci/k).

@ Replacing each imputation x in X by (1/k)x — (1/k)c, gives us a
stable set for v, namely

{(19/24,5/24,0),(19/24,-1/3,13/24),(1/4,5/24,13/24)}.
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Two Solution Concepts Shapley Values

Shapley Values

@ Proposed by L.S. Shapley in 1953, an interesting attempt to
define, in a fair way, an imputation which embodies what the
players’ final payoffs "should" be.

@ It takes into account a player’s contribution to the success of the
coalition she belongs to.

@ If the characteristic function of the game is v, and if S is the
coalition to which player P; belongs, then

6(P;,8) =v(S) —v(S —{Pi})

is a measure of the amount that P; has contributed to S by joining
it.
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Comment on §(P;, S)

@ Note that §(P;, S), by themselves, are not very revealing.

@ Consider the game of THREE:
o We have 6(P;, P) = 0 for any P;: no one contributed anything.
e If S is any two-player coalition, then §(P;, S) = 1 for each player in
S. That is, the sum of contributions is greater than v(S).

@ Notice that once the players have collectively agreed on an
imputation, it might as well be assumed that it is the grand
coalition which forms.

@ Why? Because the condition of collective rationality ensures that
the total of all payments (via the imputation) is v(P).

@ We concentrate on the process by which the grand coalition
comes into being: it starts with the first player, then the 2nd player,
...etc. Or the process is characterized by an ordered list of players.
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Two Solution Concepts Shapley Values

Example: four-person game

Suppose that its characteristic function is

v(P) =100, v(0) =0,
v({P1}) =0, v({P2}) = =10, v({Ps}) =10, v({Ps}) =0,
v({P1, P2}) = 25, v({P, P3}) = 30, v({Py, Ps}) =10,
v({P2, P3}) =10, v({P2, P4}) = 10, v({Ps, P4})
v({P1, P2, P3}) = 50, v({P1, P2, P4}) =
v({P1, Ps, Pa}) = 50, v({P2, P53, P4}) =

One ordering of the players through which the grand coalition could
form:
Ps3, P2, Py, Py.

The total number of ordering for the grand coalition to form: 4!. In
general, if there are N players, we have N! possibilities. Each ordering
occurs with probability 1/N!.
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Two Solution Concepts Shapley Values

Example: four-person game (continue)

@ Given that the grand coalition forms according to the given
ordering:

6(Py,{Ps3, Ps, P1}) = v({Ps, P2, P1}) —v({Ps, P}) = 50— 10 = 40.

This is a measure of the contribution of P; makes as she enters
the growing coalition.
@ The Shapley value, ¢;, is this:

o Make the same sort of calculation for each of the N! possible
orderings of the players

e Weight each one by the probability of 1/N! of that ordering to occur.

o Add the results.

@ We will show how to derive the Shapley value ¢;:

e so that the computation of ¢; is somewhat easier.
e show that ¢ = (¢4, ..., ¢n) is an imputation.
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Two Solution Concepts Shapley Values

Shapley value

@ Note that out of the N! ordering, there are many duplications.

@ Suppose P; occurs at position k. Denote the S be the set of k
players up to and including P; in this ordering. If we permute the
part of the ordering coming before P;, and permute the part
coming after P;, we obtain a new ordering in which P; again is in
the k" position. In any of these permuted ordering, we have

(Pi,8) = v(8) = v(S — {Pi}).

@ There are (k — 1)! permutations of the players coming before P;
and (N — k)! permutations of players coming after P;, the term
0(P;, S) occurs (k — 1)!/(N — k)! times.

@ Finally, the Shapley value for P;, or ¢;, is:

N!
P,'ES
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Two Solution Concepts Shapley Values

@ Consider the game whose normal form is given in Table 1 with the
given characteristic function.

@ To find ¢4, there are four coalition containing P;:

{P1},{P1, P2}, {P1,Ps},{P1, P2, Ps}.

So Eq (2) has four terms in this case.
@ We compute

6(P1,{P1})=1/4-0=1/4, 6(Py,{P1,P2}) =1—-(-1/3) =4/3,
6(P1,{P1,Ps}) =4/3—-0=4/3, 6(P1,{P1, P2, P3})=1-(3/4)=1/4.
@ Then
2001 1114 11114 01201 11
""" 32" 33 33 34 18
Similarly, o = 55, ¢3 = 33. S0 ¢ = (13, 36+ 35) is an imputation.
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Two Solution Concepts Shapley Values

Interpretation

@ Note that ¢ = (15, 55, 32) is an imputation.

@ Pis Shapley value is largest of the three, indicating that P is the
strongest.

@ Pjs Shapley value is very small.

@ Pjisin the middle.

@ A glance at the characteristic function supports this "value"
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Two Solution Concepts Shapley Values

More examples

@ The 3-player game G, we can compute the Shapley value and it is

(1/8,5/8,1/4).

This numbers seem to reasonably reflect the advantage that
player P> has in the game.

@ For the Used Car game, the Shapley values are:
dn = 433.333..., ¢4 = 83.333,... ¢y = 183.33....

Thus, Mitchel gets the car for $433.33, but has to pay Agnew
$83.33 as a bride for not bidding against him. And the Shapley
vector indicates that Nixon is in the most powerful position.
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Two Solution Concepts Shapley Values

Let v be a game in characteristic function form. Then the Shapley
vector for v is an imputations.

Proof:
@ We prove “individual rationality”’, we must show that ¢; > v({P;}).
@ By super-additivity, if P; € S,

0(P;i,S) = v(S) — v(S — {Pi}) > v({P;}). Thus,

4 > (Z (W= 1SDRIS1 ”!) V(P

@ The sum in this inequality is the sum of the probabilities of the
different orderings of the players, and it must equal 1, so

¢i > v({Pi}).
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Proof: continue

@ To prove “collective rationality’, consider

N N
Z«bi:ZZ “IS0S| =1y, )
i=1 i=1 PeS

@ In the double sum, fix our attention on the terms involving v(7),
where 7 is a fixed nonempty coalition which is not equal to P.

@ There are two kinds of terms involving v(7), those with positive
coefficient (when 7 = S):
(N = [7D'(7] - 1)!
N! ’
and those with a negative coefficient (when 7 = S — {P;}):
(N—1—|T)T]!
_ Ni
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Two Solution Concepts Shapley Values

Proof: continue

@ The first occurs |7 | times (one for each member of 7'), and the
second kind occurs N — | 7| times (once for each player outside
7).

@ The coefficient of the double sum is:

ITI(N—ITA\I)I!(ITI—U! _ (N—IT\)(N&J—IT\)!ITI! —
(NZ[TDNT] _ NJTDNTYE _
N! NI :

@ Therefore, the only term left in the double sum are those involving
the grand coalition, and those involving the empty coalition. Since
v(0) =0, we have

N
Y= =) = u(p)
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Two Solution Concepts Shapley Values

Shapley value for The Lake Wobegon Game
@ Continue
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