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Introduction

Introduction
Under cooperative games, players can coordinate their strategies
and share the payoff.
In particular, sets of players, called coalitions, can

make binding agreements about joint strategies,
pool their individual agreements and,
redistribute the total in a specified way.

Cooperative game theory applies both to zero-sum and
non-zero-sum games.
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Coalitions

Formal definition
A coalition is simply a subset of the set of players which forms in
order to coordinate strategies and to agree on how the total payoff
is to be divided among the members.
Let P be the set of players and there are N players in the system.
A coalition is denoted by an uppercase script letters: S, T ,U ,..etc.
Given a coalition S ⊆ P, the counter-coalition to S is
Sc = P − S = {P ∈ P : P 6⊆ S}.
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Coalitions

Continue
strategy payoff vectors
(1,1,1) (-2,1,2)
(1,1,2) (1,1,-1)
(1,2,1) (0,-1,2)
(1,2,2) (-1,2,0)
(2,1,1) (1,-1,1)
(2,1,2) (0,0,1)
(2,2,1) (1,0,0)
(2,2,2) (1,2,-2)

Table: Consider a 3−player game

In this game, P = {P1, P2, P3}. There are eight coalitions:

3 one-player coalitions: {P1}, {P2}, {P3}.
3 two-player coalitions: {P1, P2}, {P1, P3}, {P2, P3}.
Grand coalition: P itself and the empty coalition: ∅.

In general, in a game with N players, there are 2N coalitions.
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Coalitions

Characteristic Function
One simple way to view about cooperative game is a competition
(non-cooperative) between two “players”: coalition S and the
counter coalition Sc .
Consider an N−player game P = {P1, . . . , PN}, and Xi is the
strategy set for player Pi .
The system has an non-empty coalition S ⊆ P and Sc .
Pure joint strategies available to members of S (or Sc) are the
Cartesian product of those Xi ’s for which Pi ∈ S (Pi ∈ Sc).
We have a bi-matrix with rows (columns) correspond to the pure
joint strategies of players in S (Sc). An entry in the bi-matrix is a
pair of number, with the first (second) being the sum of the payoffs
to players in S (Sc)
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Coalitions

Example
Consider a coalition S = {P1, P3}, then Sc = {P2}.
Coalition S has four pure joint strategies:
{(1, 1), (1, 2), (2, 1), (2, 2)}. For Sc , the strategies are 1 and 2.
The bi-matrix is:

1 2
(1,1) (0,1) (2,-1)
(1,2) (0,1) (-1,2)
(2,1) (2,-1) (1,0)
(2,2) (1,0) (-1,2)

The maximum value for the coalition is called the characteristic
function of S and it is denoted as ν(S). In other words, members
of S are guaranteed to gain a total payoff of at least ν(S).
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Coalitions

Example: continue
Let us consider the previous game. For S, pure joint strategy (1,2)
is dominated by (1,1), pure joint strategy (2,2) is dominated by
(2,1). We have

1 2
(1,1) (0,1) (2,-1)
(2,1) (2,-1) (1,0)

We solve the above non-cooperative game, we have ν(S) = 4/3
and ν(Sc) = −1/3.
Computing in a similar way, we have ν({P1, P2}) = 1,
ν({P3}) = 0, ν({P2, P3}) = 3/4, ν({P1}) = 1/4.
The characteristic function for the grand coalition is simply the
largest total payoff which the set of all players can achieve, it is
easily seen that ν(P) = 1.
Finally, by definition, the characteristic function of empty coalition
is ν(∅) = 0.
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Coalitions

Interpretation of the cooperative game
By examining the characteristic function, we can speculate which
coalitions are likely to form.

Since P1 does better playing on his own than P2 or P3 playing on
their own, P2 and P3 would bid against each other to try to entice
P1 into a coalition.
In exchange, P1 would demand a larger share of the total payoff to
the coalition he joins and he would ask for more than 1/4 since he
get that much on his own.
On the other hand, if P1 demands too much, P2 and P3 might join
together, excluding P1 and gain a total of 3/4.
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Coalitions

The following theorem states that, “in union, there is strength.”

Theorem (Super-additivity)
Let S and T be disjoint coalitions, then ν(S ∪ T ) ≥ ν(S) + ν(T ).

Proof: Since each player uses the maximin solution method, a
coalition guarantees that each player gain at least as much as if they
do not form a coalition.
Using the previous example, we have

ν({P1, P3}) = 4/3 > ν({P1}) + ν({P3}) = 1/4 + 0 = 1/4.

Corollary
If S1, . . . ,Sk are pairwise disjoint coalitions, then

ν(∪k
i=1Si) ≥

k∑
i=1

ν(Si).
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Coalitions

Corollary

For any N−person game, ν(P) ≥
∑N

i=1 ν({Pi}).

Definition
A game in characteristic function form consists of a set
P = {P1, . . . , PN} of players, together with a function ν, defined for all
subsets of P, such that

ν(∅) = 0,

and such that the super-additivity holds, that is:

ν(S ∪ T ) ≥ ν(S) + ν(T ),

whenever S and T are disjoint coalitions of the players.
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Coalitions

Definition
An N−person game ν in characteristic function form is said to be
inessential if

ν(P) =
N∑

i=1

ν({Pi}).

In other words, in it is an inessential game, there is no point to form a
coalition.
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Coalitions

Theorem
Let S be any coalition of an inessential game, then
ν(S) =

∑
P∈S ν({P}).

Proof: Suppose not, then it must be ν(S) >
∑

P∈S ν({P}). By the
super-additivity property, we have

ν(P) ≥ ν(S) + ν(Sc) >

N∑
i=1

ν({Pi}),

which contradicts the definition of an inessential game.
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Coalitions

An inessential game does not make it unimportant. To illustrate:

Theorem
A two-person game which is zero-sum in its normal form is inessential
in its characteristic function form.

Proof: For a zero-sum game, we can use the minimax theorem so that
ν({P1}) and ν({P2}) are negative of each other, thus the sum is zero.
In addition, we have ν(P) = 0. Thus ν(P) = ν({P1}) + ν({P2}).
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Coalitions

Exercise
The 3-person game of Couples is played as follows. Each player
chooses one of the other two players; these choices are made
simultaneously. If a couple forms (e.g., if P2 chooses P3, and P3
chooses P2), then each member of that couple receives a payoff of
1/2, while the person not in the couple receives −1. If no couple forms
(e.g., if P1 chooses P2, P2 chooses P3 and P3 chooses P1), then each
receives a payoff of zero.

Show that this game is a zero-sum and essential.
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Imputations

Introduction
Suppose a coalition forms in an N−person game. We want to
study the final distribution of the payoffs.
This is important because players want to know how much they
gain if they form a coalition.
The amount going to the players form an N−tuple x of numbers.
The N−tuple vector x must satisfy two conditions: individual
rationality and collective rationality for coalition to occur.
An N−tuple of payments to the players which satisfies both these
conditions is call an imputation.
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Imputations

Definition
Let ν be an N−person game in characteristic function form with
players P = {P1, . . . , PN}. An N−tuple x of real numbers is said to be
an imputation if both the following conditions hold

(Individual Rationality) For all players Pi , xi ≥ ν({Pi}).
(Collective Rationality) We have

∑N
i=1 xi = ν(P).

Remark: Individual rationality is reasonable. If xi < ν({Pi}), then no
coalition given Pi only the amount of xi would ever form and Pi would
do better going on his own.

John C.S. Lui (CUHK) Advanced Topics in Network Analysis 20 / 48



Imputations

To show the "Collective Rationality":
∑N

i xi = ν(P)

Let us first show
∑N

i=1 xi ≥ ν(P).
Assume this inequality is false, then we would have
β = ν(P)−

∑N
i xi > 0.

Thus, the players could form a grand coalition and distribute the
total payoff ν(P): x

′

i = xi + β/N, giving every player more.
Hence, if x is to have a chance, the inequality should be "≥".

We then argue that
∑N

i=1 xi ≤ ν(P).
Suppose x occurs and that S is the coalition, members in S and Sc

agree to x as their payoffs.
Using super-additivity:

N∑
i=1

xi =
∑
Pi∈S

xi +
∑

Pi∈Sc

xi = ν(S) + ν(Sc) ≤ ν(P).

Combining both conditions, we must have
∑N

i=1 xi = ν(P).

John C.S. Lui (CUHK) Advanced Topics in Network Analysis 21 / 48



Imputations

Example
Consider the game in Table 1, any 3-tuple x which satisfies the
conditions:

x1 + x2 + x3 = 1; x1 ≥ 1/4; x2 ≥ −1/3; x3 ≥ 0.

is a valid imputation.
It is easy to see that there are infinite many 3-tuples which satisfy
these conditions, e.g.,

(1/3, 1/3, 1/3),
(1/4, 3/8, 3/8),
(1, 0, 0).
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Imputations

Theorem
Let ν be an N−person game in characteristic function form. If ν is
inessential, then it has only one imputation, namely,

x = (ν({P1}), . . . , ν({PN})).

If ν is essential, then it has infinitely many imputations.
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Imputations

Proof
Suppose first that ν is inessential, and x is an imputation.

If, for some j , xj > ν({Pj}),
then

∑N
i=1 xi >

∑N
i=1 ν({PI}) = ν(P). This is a contradiction to

collective rationality.
Suppose ν is essential

Let β = ν(P)−
∑N

i=1 ν({Pi}) > 0.
For any N−tuple α of nonnegative number summing to β, we have

xi = ν({Pi}) + αi ,

which defines an imputation.
Obviously there are infinitely many choices of α, so there are
infinitely many imputations for essential game.
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Imputations

Remark
For an essential game, the issue is to find out which imputations
deserve to be called “solutions”.
For the game in Table 1, none of the three imputations listed
earlier seems likely to occur.
Imputation (1/4, 3/8, 3/8), it is unstable because P1 and P2 could
form a coalition and gain a total payoff of at least 1.
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Imputations

Dominance of Imputations
Some imputations are more "preferable".

Definition
Let ν be a game in characteristic function form, let S be a coalition,
and let x , y be imputations. We say that x dominates y through
coalition S, or x �S y , if the following conditions hold:

xi > yi for all Pi ∈ S.∑
Pi∈S xi ≤ ν(S).

Remark: the second condition of the definition says that x is feasible,
that the players in S attain enough payoff so that x i can be paid to
Pi ∈ S.
Example: (a) (1/3,1/3,1/3) dominates (1,0,0) through coalition {P2, P3}
since ν({P2, P3}) = 3/4. (b) (1/4,3/8,3/8) dominates (1/3,1/3,1/3)
through {P2, P3}. (c) (1/2,1/2,0) dominates (1/3,1/3,1/3) through
{P1, P2} since ν({P1, P2}) = 1.
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Imputations

The Core
Observation: an imputation which is dominated through some coalition
would never become permanently established and there is a tendency
for this coalition to break up and be replaced by one which gives its
members a larger share.

Definition
Let ν be a game in characteristic form. The core of ν consists of all
imputations which are not dominated by any other imputations through
any coalition.

If an imputation x is in the core, there is no group of players which has
a reason to form a coalition and replace x . Therefore, the core is the
“solution concept” of N−person cooperative games. As we will soon
seen, this solution concept is ok as long as the core is not empty.
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Imputations

How to determine whether x is in the core?

Theorem
Let ν be a game in characteristic function form with N players, and x
be an imputation. Then x is in the core of ν if and only if∑

Pi∈S
xi ≥ ν(S),

for every coalition S.

Corollary
Let ν be a game in characteristic function form with N players and x be
an N−tuple of numbers. Then x is an imputation in the core if and only
if the following two conditions hold:∑N

i=1 xi = ν(P).∑
Pi∈S xi ≥ ν(S) for every coalition S.
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Imputations

Let us find the core of the game in Table 1. By the corollary, (x1, x2, x3)
is an imputation in the core iff:

x1 + x2 + x3 = 1, (1)
x1 ≥ 1/4, (2)
x2 ≥ −1/3, (3)
x3 ≥ 0, (4)

x1 + x2 ≥ 1, (5)
x1 + x3 ≥ 4/3, (6)
x2 + x3 ≥ 3/4. (7)

Analysis: From Eq. (1),(4) and (5), we have x3 = 0, x1 + x2 = 1. From
Eq. (6)-(7), we have x1 ≥ 4/3, x2 ≥ 3/4. Adding these, we have
x1 + x2 ≥ 25/12 > 1. This is a contradiction. So the core of this game
is empty.
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Imputations

Another 3-player game G whose characteristic function is given by

ν({P1}) = −1/2, (8)
ν({P2}) = 0, (9)
ν({P3}) = −1/2, (10)

ν({P1, P2}) = 1/4, (11)
ν({P1, P3}) = 0, (12)
ν({P2, P3}) = 1/2, (13)

ν({P1, P2, P3}) = 1. (14)

Note that (a) super-additivity holds for this example.
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Imputations

A 3-tuple x is an imputation in the core of this game if and only if:

x1 + x2 + x3 = 1,

x1 ≥ −1/2,

x2 ≥ 0,

x3 ≥ −1/2,

x1 + x2 ≥ 1/4,

x1 + x3 ≥ 0,

x2 + x3 ≥ 1/2.

The system has many solutions, For example, (1/3,1/3,1/3) is in the
core.
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Imputations

Example (The Used Car Game)
Nixon has an old car and he wants to sell. The car is worth nothing to
Nixon unless he can sell it. Two persons: Agnew and Mitchell, want the
car. Agnew values the car at $500 while Mitchell values it at $700. The
game consists of each of the prospective buyers bidding on the car,
and Nixon either accepting one of the higher bids, or rejecting both of
them.

Abbreviate the names by N, A and M, the characteristic function form
of the game is:

ν({N}) = ν({A}) = ν({M}) = 0
ν({N, A}) = 500, ν({N, M}) = 700, ν({A, M}) = 0,

ν({N, A, M}) = 700.

John C.S. Lui (CUHK) Advanced Topics in Network Analysis 32 / 48



Imputations

Justification
Consider ν({N}) and its counter-coalition {A, M}. N has two pure
strategies: (a) accept the higher bid, or (b) reject both if the higher
bid is less than some lower bound. There is a joint strategy for
{A, M} in which both bid for zero. By definition of maximin value,
ν({N}) = 0.
ν({A}) = ν({M}) = 0 because the counter-coalition can always
reject that player’s bid.
Coalition {N, A} has many joint strategies which result in a payoff
to it of $500, e.g., A pays $500 to N, payoff to N is $500 and
payoff to A is zero (value of car minus the money). Note that they
cannot get more than $500 without the cooperation of M.
Similarly, {N, M} = 700.
Finally, the grand coalition has the value of $700 since it is the
large possible sum of payoffs, e.g., if M pays $700 for the car.
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Imputations

Imputation of the game
An imputation x is in the core iff

xN , xA, xM ≥ 0
xN + xA + xM = 700

xN + xA ≥ 500; xN + xM ≥ 700; xA + xM ≥ 0.

We solve these and give:
500 ≤ xN ≤ 700; xM = 700− xN ; xA = 0.

Interpretation: M gets the car with a bid between $500 and $700
(xN is the bid). Agnew does not get the car, but his presence
forces the prices up over $500.
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Imputations

Additional observations
Since the game is cooperative, it is possible that A and M to
conspire: A bids for zero, M bids for $300. N gets $300, and M
pays A $200. The imputation (xN , xA, xM) is (300, 200, 200).
However, it is NOT in the core because it is dominated by previous
imputation via {N, M}, e.g., (500, 0, 200).
Another possibility is that Agnew and Mitchell play as above, but
Nixon rejects the bid. He keeps the car and the 3-tuple payoff is
(0,0,0). Note that this is NOT an imputation, because eventhough
individual rationality holds, but collective rationality does not
because xN + xA + xM = 0 < ν({N, A, M}) = 700.
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Constant-Sum Games

Let us consider games whose normal forms are zero-sum.

Definition
Let ν be a game in characteristic function form. We say that ν is
constant-sum if, for every coalition S, we have

ν(S) + ν(Sc) = ν(P).

Further, ν is zero-sum if it is constant sum and if, in addition ν(P) = 0.

Example: The game in Table 1 is constant-sum, while the Used Car
Game is not since

ν({N, A}) + ν({M}) = 500 + 0 6= 700 = ν({N, A, M}).

(*) Note that a game which is constant-sum in its normal form is
different from a game which is constant-sum in its characteristic
function form.
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Constant-Sum Games

Definition
Let π be an N−person game in normal form. Then we say that π is
constant-sum if there is a constant c such that

N∑
i=1

πi(x1, . . . , xN) = c,

for all choices of strategies x1, . . . , xN for players P1, . . . , PN
respectively. If c = 0, this reduces to zero-sum.
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Constant-Sum Games

Theorem
If an N−person game π is constant-sum in its normal form, then its
characteristic function is also constant-sum.

Proof: Let c be the constant value of π. Define a new game τ by
subtracting c/N from every payoff in π. Thus

τi(x1, . . . , xN) = πi(x1, . . . , xN)− c/N

for all choice of i and all choices of strategies. Thus τ is zero-sum. We
can show (homework ??) that the characteristic function µ of τ is
zero-sum. Now it is easy to see that the characteristic function ν of π
is related to µ by

ν(S) = µ(S) + kc/N,

where k is the number of players in S. From this, we can see ν is
constant-sum.
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Constant-Sum Games

Theorem
If ν is both essential and constant-sum, then its core is empty.

Proof: Suppose ν has N players: P = {P1, . . . , PN}. Assume ν is
esstential and there is an imputation x in the core, then we show that ν
is inessential. For any player Pj , by individual rationality, we have

xj ≥ ν({Pj}).

Since x is in the core, we have∑
i 6=j

xi ≥ ν({Pj}c). (15)

Adding these inequalities, and using collective rationality
ν(P) =

∑N
i=1 xi ≥ ν({Pj}) + ν({Pj}c) = ν(P), by the constant-sum

property. It follows that Eq (15) is acutually an equality. Since it holds
for every j , we have ν(P) =

∑N
i=1 ν({Pi}), which says that ν is

inessential.
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A Voting Game

The theory of cooperative game has been applied to problems like (a)
distribution of power in UN Security Council, (b) to understand the
Electoral College method of electing US presidents.

Example of a voting game
The municipal government of Lake Wobegon, Minnesota, is run by
a City Council and a Mayor.
The Council consists of six Aldermen and a Chairman.
A bill can become a law in two ways:

A majority of the Council (with the Chairman voting only in case of a
tie among the Aldermen) approves it and the Mayor signs it.
The Council passes it, the Mayor vetoes it, but at least six of the
seven members of the Council then vote to override the veto (in this
case, the Chairman always votes).

The game consists of all eight people involved signing approval or
disapproval of the given bill.
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A Voting Game

Example: continue
The payoffs would be in units of “power” gained by being on the
winning side.
Define a winning coalition if it can pass a bill into law, e.g., a
coalition consisting of any three Aldermen, the Chairman and the
mayor. We define ν(S) = 1 if S is a winning coalition.
Define a coalition which is not willing a losing coalition, e.g., the
coalition consisting of four Aldermen is a losing since they do not
have the votes to override the mayor’s veto. We define ν(S) = 0 if
S is a losing coalition.
Note, every “one” player coalition is losing, the grand coalition is
winning.
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A Voting Game

Example: continue
An 8−tuple (xM , xC , x1, . . . , x6) is an imputation if and only if

xM , xC , x1, . . . , x6 ≥ 0;

xM + xC + x1 + · · ·+ x6 = 1.
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A Voting Game

Theorem
The Lake Wobegon game has an empty core.

Proof
Suppose on the contrary, (xM , xC , x1, . . . , x6) is in the core.
Now any coalition consisting of at least six members of the
Council is winning. Thus

xC + x1 + · · ·+ x6 ≥ 1,

and the same inequality holds if any one of the terms in it is
dropped.
Since all x ′s are nonnegative, and the sum of all eight is 1. This
implies that all the x ′s in the inequality above are zero. This is a
contradiction.
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A Voting Game

Example

Definition
A game ν in characteristic form is call simple if all the following holds:

ν(S) is either 0 or 1, for every coalition S.
ν(the grand coalition) = 1.

ν(any one-player coalition) = 0.

In a simple game, a coalition S with ν(S) = 1 is called a winning
coalition, and one with ν(S) is called losing.
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A Voting Game

A four-person game is given in characteristic function form as follows:

ν({P1}) = −1, ν({P2}) = 0, ν({P3}) = −1, ν({P4}) = 0,

ν({P1, P2}) = 0, ν({P1, P3}) = −1, ν({P1, P4}) = 1,

ν({P2, P3}) = 0, ν({P2, P4}) = 1, ν({P3, P4}) = 0,

ν({P1, P2, P3}) = 1, ν({P1, P2, P4}) = 2,

ν({P1, P3, P4}) = 0, ν({P2, P3, P4}) = 1,

ν({P1, P2, P3, P4}) = 2, ν({∅}) = 0.

Verify that ν is a characteristic function. Is the core of this came
nonempty?
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A Voting Game

Solution
To verify ν is a characteristic function, we have to check that
super-additivity,

ν(S ∪ T ) ≥ ν(S) + ν(T ),

holds whenever S and T are disjoint coalitions.
This is easily check, for example

ν({P1, P2, P4}) = 2 ≥ −1 + 1 = ν({P1}) + ν({P2, P4}).

By the previous corollary, (x1, x2, x3, x4) is in the core if and only if
both the following hold:

x1 + x2 + x3 + x4 = ν({P1, P2, P3, P4}) = 2,∑
Pi∈S xi ≥ ν(S).

It is easy to check, for example (1,0,0,1) and (0,1,0,1) satisfy
these conditions. Thus the core is not empty.
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