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Motivation

Motivation
Motivation of why we need to perform transient analysis.
Important questions are:

state of the model at the end of a time interval,
the time until an event occurs,
the residence time in a subset of states during a given interval,
the number of given events in an interval.

John C.S. Lui () Computer System Performance Evaluation 4 / 18



General Solution

Outline

1 Motivation

2 General Solution

3 Uniformization Method
Uniformization
Probabilistic Interpretation

4 Practical Issues
Finite Sum
Extension to non-homogeneous CTMC

John C.S. Lui () Computer System Performance Evaluation 5 / 18



General Solution

Let {X (t), t ≥ 0} be a CTMC with finite state space
S = {si : i = 1, . . . , M} and Q the transition rate matrix:

Q =


−q1 q12 · · · q1M
q21 −q2 · · · q2M

...
... · · ·

...
qM1 qM2 · · · −qM

 (1)

where qi =
∑M

j=1,j 6=i qij .

Let Π(t) be a M × M matrix where πij(t) in Π(t) is :

πij(t) = P[X (t) = sj |X (0) = si ] (2)

John C.S. Lui () Computer System Performance Evaluation 6 / 18



General Solution

Based on Kolmogorov’s forward equation, we have:

Π
′
(t) = Π(t)Q (3)

Solving the above matrix equation, we have:

Π(t) = eQt (4)

Let π(t) = [π1(t), . . . , πM(t)] be a 1 × M row vector such that πi(t)
equal to the P[X (t) = si ]. Therefore, we have:

π(t) = π(0)Π(t) (5)

In general, finding π(t) involves finding the corresponding eigenvalues
and eigenvectors of Q, which is computationally difficult.
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Uniformization Method Uniformization

Uniformization is a computational efficient method of performing
transient analysis. Given a homogeneous CTMC X (t) and the
corresponding rate matrix Q, let us define a homogeneous DTMC
X ′(n) with the one-step transition probability matrix P as:

P = I +
Q
Λ

(6)

where Λ ≥ maxi{qi}, i.e., Λ is greater than or equal to the absolute
diagonal value in Q. Therefore, we have:

Π(t) = eQt = e(P−I)Λ t = ePΛte−Λt =
∞∑

n=0

Pn (Λt)n

n!
e−Λt (7)

π(t) = π(0)Π(t) =
∞∑

n=0

π(0) Pn (Λt)n

n!
e−Λt =

∞∑
n=0

π(n)
(Λt)n

n!
e−Λt (8)
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Uniformization Method Probabilistic Interpretation

Consider a homogeneous CTMC X with state space S with M states
and with rate matrix Q. The diagonal element qi in Q represents the
output rate (which is exponential). That is, once in si , the process
moves to a different state with an exponential rate qi . Furthermore,
when it moves to other state, it moves to state sj with probability qij/qi .

DTMC Construction
We construct a DTMC X ′ with one step transition probability matrix P
(where P = I + Q/Λ). We construct X ′ from X such that:

X ′ has the same state space as X .
The residence time in any state before a transition occurs is
exponential with rate Λ.
The probability that X ′ make a transition from si to sj (i 6= j) is
equal to qij/Λ. Furthermore, X ′ make a transition back to the
same state with probability (1 − qi/Λ).
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Uniformization Method Probabilistic Interpretation

First Observation
Note that the probability that X ′ moves from si to sj (for i 6= j) given that
the transition is for a different state from si is:

qij/Λ

qi/Λ
=

qij

qi
,

which is equal to the probability that X goes from si to sj in a transition.
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Uniformization Method Probabilistic Interpretation

Second Observation
Given that the process makes n transitions to the same state si
before leaving it, the distribution of the residence time in this state
is simply the sum of n random variables with exponential
distribution and rate Λ. This is equal to the Erlangian-n distribution
and the density function E

′
n,Λ(t) is given by:

E
′
n,Λ(t) =

Λ (Λt)n−1 e−Λt

(n − 1)!

The probability that the process makes n − 1 self transitions
before leaving si is: (

1 − qi

Λ

)n−1 qi

Λ

Combining the last two expression (via theorem of total
probability), then we see that the total residence time in si has an
exponential distribution with rate qi .
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Uniformization Method Probabilistic Interpretation

Third Observation
Since the total residence time and transition probabilities of X and X ′

are the same, we can make the following conclusion:

π
′

ij(t) = P[X ′(t) = sj |X ′(0) = si ] = P[X (t) = sj |X (0) = si ] = πij(t)

Therefore, the process CTMC X is equivalent to the DTMC X ′

subordinated to a Poisson process.
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Practical Issues Finite Sum

Computational Procedure

Therefore, given Q, we need to find Π(t). We first get P, then solve for
π(n) = π(0)Pn and then weight it by the probability that in the interval
t , there are n Poisson arrival events.

π(t) = π(0)Π(t) =
∞∑

n=0

π(0) Pn (Λt)n

n!
e−Λt =

∞∑
n=0

π(n)
(Λt)n

n!
e−Λt (9)

So, given P, find π(n), which is just a vector matrix multiplication.
Since in most cases, P is a sparse matrix, therefore, it is efficient to
compute. Then weighted the X ′ via an Poisson probability that there
will be n Poisson arrival events.
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Practical Issues Finite Sum

To avoid the infinite summing series, we can use truncation and at the
same time, know the error in advance! For example, if we only
consider N + 1 transitions, we have:

π(t) =
N∑

n=0

π(n)e−Λt (Λt)n

n!
+ ε(N) (10)

where ε(N) is the error when the series is truncated after N terms. One
important advantage of the uniformization method is that it is possible
to find N in advance for a given tolerance since ||π(n)||∞ ≤ 1 or:

ε(N) =
∞∑

n=N+1

π(n)e−Λt (Λt)n

n!

≤
∞∑

n=N+1

e−Λt (Λt)n

n!
= 1 −

N∑
n=0

e−Λt (Λt)n

n!
(11)
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Practical Issues Extension to non-homogeneous CTMC

Non-homogeneous CTMC

Consider a non-homogeneous CTMC that has different transition rates
for different interval of times. That is, for each interval [ti−1, ti), the
corresponding rate matrix is Qi (we are assuming that Xi to be time
homogeneous). To extend this transient solution technique, let P i be
the transition probability matrix of process Xi after uniformization, we
have:

π(t) =
∞∑

n=0

πi(n)e−Λi t (Λi t)
n

n!
for ti−1 ≤ t < ti (12)

πi(n) = πi(n − 1)P i (13)

πi(0) = π(ti−1) (14)
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Practical Issues Extension to non-homogeneous CTMC

Let ε be the component-wise error bound, we spread the error into all
intervals (weighted) by:

εi =
ti − ti−1

t
ε (15)

And Ni can be computed based on εi by:

εi ≤ 1 −
Ni∑

n=0

e−Λi t (Λi t)
n

n!
(16)
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