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@ Motivation of why we need to perform transient analysis.

@ Important questions are:

state of the model at the end of a time interval,

the time until an event occurs,

the residence time in a subset of states during a given interval,
the number of given events in an interval.

John C.S. Lui () Computer System Performance Evaluation 4/18



General Solution

Outline

e General Solution

John C.S. Lui () Computer System Performance Evaluation 5/18



General Solution

Let {X(t),t > 0} be a CTMC with finite state space
S={sj:i=1,...,M} and Q the transition rate matrix:

-q1 G2 - Qim
- (1)
CI/;/n w2 -+ —Qum
where g; = Zj’\g#i qji-
Let MN(t) be a M x M matrix where m;(t) in F(t) is :
mi(f) = PIX(t) = 51X(0) = s} ()
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General Solution

Based on Kolmogorov’s forward equation, we have:

Solving the above matrix equation, we have:
ng = eQ (4)

Let w(t) = [m1(2),...,7m(t)] be a 1 x M row vector such that m;(t)
equal to the P[X(t) = sj]. Therefore, we have:

() = m(O)N(t) (5)

In general, finding 7 (t) involves finding the corresponding eigenvalues
and eigenvectors of Q, which is computationally difficult.
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Uniformization Method Uniformization

Uniformization is a computational efficient method of performing
transient analysis. Given a homogeneous CTMC X(t) and the
corresponding rate matrix Q, let us define a homogeneous DTMC
X'(n) with the one-step transition probability matrix P as:
Q

P = I+ A (6)
where A > max;{q;}, i.e., \ is greater than or equal to the absolute
diagonal value in Q. Therefore, we have:

00 A n
n(t) = et — o(P-hnt _ gPntg—nt _ Z Pn( ntl) e ()
n=0 '

7T(t) = TI'(O)n(t) = iﬂ.(o) P" (/\nt)ne/\t _ iﬂ_(n) (/\t)nef/\t (8)

n=0 n=0
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Uniformization Method Probabilistic Interpretation

Consider a homogeneous CTMC X with state space S with M states
and with rate matrix Q. The diagonal element g; in Q represents the
output rate (which is exponential). That is, once in s;, the process
moves to a different state with an exponential rate g;. Furthermore,
when it moves to other state, it moves to state s; with probability g;i/g;.

DTMC Construction

We construct a DTMC X’ with one step transition probability matrix P
(where P =1+ Q/A). We construct X’ from X such that:
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and with rate matrix Q. The diagonal element g; in Q represents the
output rate (which is exponential). That is, once in s;, the process
moves to a different state with an exponential rate g;. Furthermore,
when it moves to other state, it moves to state s; with probability g;i/g;.

DTMC Construction
We construct a DTMC X’ with one step transition probability matrix P
(where P =1+ Q/A). We construct X’ from X such that:

@ X’ has the same state space as X.

@ The residence time in any state before a transition occurs is
exponential with rate A.

@ The probability that X’ make a transition from s; to s; (i # j) is
equal to gj;;/A. Furthermore, X’ make a transition back to the
same state with probability (1 — g;/A).
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Uniformization Method Probabilistic Interpretation

First Observation

Note that the probability that X" moves from s; to s; (for i # j) given that
the transition is for a different state from s; is:

gi/N _ 9j

q/N  ai’

which is equal to the probability that X goes from s; to s; in a transition.

v
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Second Observation

@ Given that the process makes n transitions to the same state s;
before leaving it, the distribution of the residence time in this state
is simply the sum of n random variables with exponential
distribution and rate A. This is equal to the Erlangian-n distribution
and the density function E;, (1) is given by:

n—1 ,—At
Enn) =~ s
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n—1 ,—At
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@ The probability that the process makes n — 1 self transitions
before leaving s; is:
(-0 %
A A

@ Combining the last two expression (via theorem of total
probability), then we see that the fotal residence time in s; has an
exponential distribution with rate g;.
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Uniformization Method Probabilistic Interpretation

Third Observation

Since the total residence time and transition probabilities of X and X’
are the same, we can make the following conclusion:

mj(t) = PIX'(t) = §1X'(0) = 8] = PIX(t) = §X(0) = s}] = mi(t)

Therefore, the process CTMC X is equivalent to the DTMC X’
subordinated to a Poisson process.
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Practical Issues Finite Sum

Computational Procedure

Therefore, given Q, we need to find M(t). We first get P, then solve for
7(n) = w(0)P" and then weight it by the probability that in the interval
t, there are n Poisson arrival events.

7T(t) = TI'(O)n(t) — iﬂ,(o) Pn (Ant)ne/\t _ iﬂ'(n) (/\t)nef/\t (9)

n=0 n=0

So, given P, find 7(n), which is just a vector matrix multiplication.
Since in most cases, P is a sparse matrix, therefore, it is efficient to
compute. Then weighted the X’ via an Poisson probability that there
will be n Poisson arrival events.
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Practical Issues Finite Sum

To avoid the infinite summing series, we can use fruncation and at the
same time, know the error in advance! For example, if we only
consider N + 1 transitions, we have:

N
n(t) = Zw(n)e”\t(/\t) +¢(N) (10)

n=0

where ¢(N) is the error when the series is truncated after N terms. One
important advantage of the uniformization method is that it is possible
to find N in advance for a given tolerance since ||7(n)||oc < 1 Or:

((N) = i w(n)e"t(/\rfl)n
n=N-+1 )
%) n N

< Y eM(’\;I) = 1—Ze*N(M)n (11)

n=N+1 ' n=0
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Practical Issues Extension to non-homogeneous CTMC

Non-homogeneous CTMC

Consider a non-homogeneous CTMC that has different transition rates
for different interval of times. That is, for each interval [{;_1, t;), the
corresponding rate matrix is Q; (we are assuming that X; to be time
homogeneous). To extend this transient solution technique, let P; be

the transition probability matrix of process X; after uniformization, we
have:

n(t) = Zn, L’;) fort,_y<t<t  (12)
mi(n) = mi(n—1)P; (13)
mi(0) = m(ti-1) (14)
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Practical Issues Extension to non-homogeneous CTMC

Let € be the component-wise error bound, we spread the error into all
intervals (weighted) by:

€ = 7& — i € (15)
t
And N; can be computed based on ¢; by:
N.
i N /\t n
¢ < 1-> e (ML) ,'7!) (16)
n=0
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