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Introduction Illustration

Example: Network of Queues
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Introduction Illustration

for k0 > 0, k1 > 0:

(µ0 +µ1 +λ)p(k0, k1) = µ0p(k0 +1, k1−1)+µ1p(k0, k1 +1)+λp(k0−1, k1)

for k0 > 0, k1 = 0:

(µ0 + λ)p(k0,0) = µ1p(k0,1) + λp(k0 − 1,0)

for k0 = 0, k1 > 0:

(µ1 + λ)p(0, k1) = µ0p(1, k1 − 1) + µ1p(0, k1 + 1)

for k0 = 0, k1 = 0:
λp(0,0) = µ1p(0,1)
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Introduction Illustration

Normalization :
∞∑

k0=0

∞∑
k1=0

p(k0, k1) = 1

p(k0, k1) = (1− ρ0)ρk0
0 (1− ρ1)ρk1

1 for k0, k1 = 0,1, · · ·

where ρ0 = λ
µ0

; ρ1 = λ
µ1

;

P[N0 = k0] = (1− ρ0)ρk0
0 ; P[N1 = k1] = (1− ρ1)ρk1

1
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Jackson Network Example

Open Queueing Network [Jackson 57]

It allows "feedback" and "product-form" can still be maintained.

µ 0 µ 1!

P0

P1
!0

!0
!1

CPU I/O

p(k0, k1) = (1− ρ0)ρk0
0 (1− ρ1)ρk1

1

λ0 = λ+ λ1

λ1 = λ0p1
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Jackson Network Example

Therefore,

λ0 =
λ

1− p1

λ1 =
λp1

1− p1

ρ0 =
λ0

µ0
=

λ

(1− p1)µ0
=

λ

p0µ0

ρ1 =
λ1

µ1
=

λp1

p0µ1

What is the average response time of a job?
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Jackson Network Example

By Little’s formula, T = N̄
λ where N̄ is the average no. of jobs in the

"system".

N̄ = N̄0 + N̄1 =
∞∑

k0=0

∞∑
k1=0

(k0 + k1)p(k0, k1)

=
∞∑

k0=0

∞∑
k1=0

k0p(k0, k1) +
∞∑

k0=0

∞∑
k1=0

k1p(k0, k1)

=
∞∑

k0=0

k0(1− ρ0)ρk0
0

∞∑
k1=0

(1− ρ1)ρk1
1

+
∞∑

k0=0

(1− ρ0)ρk0
0

∞∑
k1=0

k1(1− ρ1)ρk1
1

N̄ =
ρ0

1− ρ0
+

ρ1

1− ρ1
; E [T ] =

N̄
λ

=

[
ρ0

1− ρ0
+

ρ1

1− ρ1

] [
1
λ

]
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Jackson Network Example

Types of service centers
FCFS and service time is exponentially distributed.
Processor sharing (PS)
Last come first serve pre-emptive resume (LCFS-PR)
Infinite server (IS) or delay nodes

We also allow a state dependent service rate (µi(n) = service rate
at the i th node where there is n customer).

Single server fixed rate (SSFR) where µi (n) = ui
Infinite server (IS) , µi (n) = nµi
Queue length dependent (QLD) with service rate µi (n)
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Jackson Network Theory on Jackson Networks

Jackson Network

A queueing network with M nodes (labeled i = 1,2, · · · ,M) s.t.
Node i is QLD with rate µi(n) when it has n customers.
A customer completing service at a node makes a probabilistic
choice of either leaving the network or entering another node,
independent of past history.
The network is open and any external arrivals to node i is from a
Poisson stream.
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Jackson Network Theory on Jackson Networks

Jackson Network : Continue

State space S = {(n1,n2, · · · ,nM) | ni ≥ 0}

Routing probability matrix Q = (qij | i , j = 1,2, · · ·M)

qi0 = 1−
M∑

j=1

qij

Let γ be the "TOTAL" external arrival rate to the open queueing
network, the rate to node i is γi = γq0i for i = 1,2, · · ·M. So

γ =
M∑

i=1

γi (
∑

q0i = 1)
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Jackson Network Theory on Jackson Networks

All nodes in the Jackson network are QLD with exponential
service time. Pictorially we can have:

!1
"1

"2

"3

!2

!3

!4

M=4

Let λi = mean arrival rate to node i,(i = 1,2, · · · ,M)

λi = γi +
M∑

j=1

λjqji there is unique solution to{λi}
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Jackson Network Theory on Jackson Networks

Example :

λ1 = γ1 + λ2q21 + λ3q31

λ2 = γ2 + λ1q12 + λ2q22

λ3 = γ3 + λ1q13

λ4 = λ2q24 + λ3q34
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Jackson Network Theory on Jackson Networks

Jackson’s Theorem: For a Jackson Network in steady state with
arrival rate λi to node i ,

The no. of customer at any node is independent of the number of
customers at every other node.
Node i behaves "stochastically" as if it were subjected to Poisson
arrival rates λi

Let π(~n) = Prob[(n1,n2, · · · nM)] where ni ≥ 0, for SSFR:

π(~n) =
M∏

i=1

(
1− λi

µi

)(
λi

µi

)ni

For QLD, M/M/c queues, define ui(r) = µi min(r , ci) for r ≥ 0,
i = 1, ..,M, and ρi = λi/µi for i = 1, ..M.

π(~n)=
M∏

i=1

Ci

(
λni

i∏ni
r=1 µi(r)

)
; Ci =

ci−1∑
r=0

ρr
i

r !
+

(
ρci

i
ci !

)(
1

1− ρi/ci

)−1
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Jackson Network Theory on Jackson Networks

The i th node:

0 1 2

!i !i !i !i

µi(1) µi(2)
µi(3) µi( )ni -1 (ni)µi

............

!i

ni -1 ni

How about the normalization constant Ci ?

π(~n) = π(n1,n2, · · · ,nM) =
M∏

i=1

πi(ni) =
M∏

i=1

Ci

[
λni

i∏ni
j=1 µi(j)

]

where Ci can be found by
∑∞

ni =0 Ci

[
λ

ni
iQni

j=1 µi (j)

]
= 1
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Jackson Network Theory on Jackson Networks

So , what do we have?
extremely powerful modeling tool to model a very large class of
system.
efficient solution
we can compute mean queue length, utilization and throughout
mean response time.

John C.S. Lui () Computer System Performance Evaluation 19 / 79



Jackson Network Theory on Jackson Networks

Comment

1 The arrival to each node, in general (unless it’s only feed forward),
is NOT a Poisson process.

2 How can we compute the T̄ and each node utilization?
3 Optimal allocation : assume that the open network of SSFR nodes

with arrival rate λi and µi for each node (i = 1,2, · · ·M)

Min N̄ =
M∑

i=1

λi
µi

1− λi
µi

s.t.
M∑

i=1

µi = C = constant

4 Application : Network, distributed system
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Jackson Network Examples

Example 1
Consider a switching facility that transmits messages to a required
destination. A NACK is sent by the destination when a packet has not
been properly received. If so, the packet in error is retransmitted as
soon as the NACK is received.

Assume the time to send a message and the time to receive a NACK
are both exponentially distributed with parameter µ. Assume that
packets arrive at the switch according to a Poisson process with rate
λ0. Let p, 0 < p ≤ 1, be the probability that a message is received
correctly. Derive mean response time T .
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Jackson Network Examples

We can model it as a Jackson network of one node with feedback,
where ci = 1 (SSFR), p10 = p and p11 = 1− p. Let π(n), the
probability of having n packets, is:

λ = λ0 + λ(1− p)

π(n) =

(
1− λ

µ

)(
λ

µ

)n

n ≥ 0

We have λ = λ0/p and

π(n) =

(
1− λ0

pµ

)(
λ0

pµ

)n

n ≥ 0

Let N and T be the mean number of packet and mean response time.

N =
λ0

pµ− λ0

T =
1

pµ− λ0
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Jackson Network Examples

Example 2
Similar to last example but now the switching facility is composed of K
nodes in series, each model as M/M/1 queue with switching rate µ.
What is the response time T ?

We have λ0
i = 0 for i = 2, ...,K (no external arrival to nodes

2, ...,K ), µi = µ for i = 1,2, ...,K , pi,i+1 = 1 for i = 1, ...,K − 1, and
pK ,0 = p and pK ,1 = 1− p.
λ1 = λ0 + (1− p)λK , λi = λi−1 for i = 2, ...,K . So

λi = λ0/p ∀i = 1, ...,K .
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Jackson Network Examples

By the Jackson’s theorem, we have

π(~n) =

(
pµ− λ0

pµ

)K (
λ0

pµ

)n1+···+nK

∀~n = (n1,n2, . . . ,nK ) ∈ INK

provided that λ0 < pµ. Let E [Ni ] be the average number of packets in

queue i :

E [Ni ] =
λ0

pµ− λ0 i = 1, . . . ,K .

Let E [T ] be the average response time:

E [T ] =
K∑

i=1

E [Ni ] = K
(

1
pµ− λ0

)
.
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Jackson Network Examples

Example 3: open central server network
A computer system with one CPU and two I/O devices. New jobs
enter the system, wait for CPU resource, then possibly an I/O
requests. When a job finishes its I/O, it may return for more CPU
resource. Eventually a job completes and leave the system.
It means that K = 3 (three nodes). λ0

i = 0 for i = 2,3,
p2,1 = p3,1 = 1, while p1,0 > 0.
The traffic equations are: λ1 = λ0

1 + λ2 + λ3, λ2 = λ1p1,2,
λ3 = λ1p1,3. Solving, we have: λ1 = λ0

1/p1,0, λi = λ0
1p1,i/p1,0 for

i = 2,3. Thus,

π(~n)=

(
1−

λ0
1

µ1p1,0

)(
λ0

1
µ1p1,0

)n1 3∏
i=2

(
1−

λ0
1p1,i

µip1,0

)(
λ0

1p1,i

µip1,0

)ni

~n ∈ IN3

E [T ] =
1

µ1p1,0 − λ0
1

+
3∑

i=2

p1,i

µip1,0 − λ0
1p1,i
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Closed Queueing Network Example

Example of Queueing Network

We fixed the total number of jobs be n in the system, where n is
also called the “degree of multiprogramming”.

µ 0 µ 1

P0

P1!0
!1

CPU I/O

new program path

State representation (k0, k1). Now with the constant that
k0 + k1 = n
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Closed Queueing Network Example

Unlike the open queueing network, the state space is finite. The
flow balance equations are:

(µ1 + µ0p1)p(k0, k1) = µ0p1p(k0 + 1, k1 − 1) + µ1p(k0 − 1, k1 + 1)

µ1p(0,n) = µ0p1p(1,n − 1)

µ0p1p(n,0) = µ1p(n − 1,1)
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Closed Queueing Network Example

If we draw the state transition diagram, we have:

0,n 1,n-1 2,n-2 3,n-3 n,0

µ1 µ1 µ1 µ1 µ1

µ0p1 µ0p1 µ0p1 µ0p1 µ0p1

...................

Using "traditional method", we know how to find the solution of
p(k0, k1)

New approach: Let ρ0 = a
µ0

; ρ1 = ap1
µ1

, by substituting to the flow
equations

p(k0, k1) =
1

C(n)
ρk0

0 ρ
k1
1 k0, k1 ≥ 0
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Closed Queueing Network Example

The normalization factor C(n) is chosen s.t∑
k0+k1=n & k0,k1≥0

p(k0, k1) = 1

The choice of a (where ρ0 = a
µ0
, ρ1 = ap1

µ1
) is very arbitrary in that

the value of p(k0, k1) will not change with a.
If we define λ0 = a and λ1 = ap1, then (λ0, λ1) as the relative
throughput of the corresponding nodes.
We can choose, for example, a = 1 or a = µ0. Assume we choose
a = µ0 , then ρ0 = 1, ρ1 = µ0p

µ1
. Since

p(k0, k1) =
1

C(n)
ρk0

0 ρ
k1
1 =

1
C(n)

ρk1
1

1 =
1

C(n)

n∑
k1=0

ρk1
1 =

1
C(n)

[
1− ρn+1

1
1− ρ1

]
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Closed Queueing Network Example

C(n) =

{
1−ρn+1

1
1−ρ1

where ρ1 6= 1
n + 1 where ρ1 = 1(L’Hospital Rule)
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Closed Queueing Network Example

If we choose a = 1,then ρ0 = 1
µ0

, ρ1 = p1
µ1

p(k0, k1) =
1

C(n)
ρk0

0 ρ
k1
1 =

1
C(n)

(
1
µ0

)k0
(

p1

µ1

)k1

, summing all k0, k1

1 =
n∑

k0=0

n−k0∑
k1=n−k0

1
C(n)

(
1
µ0

)k0
(

p1

µ1

)k1

=
n∑

k0=0

1
C(n)

(
1
µ0

)k0
(

p1

µ1

)n−k0

C(n) =
n∑

k0=0

(
1
µ0

)k0
(

p1

µ1

)n−k0

= (
p1

µ1
)n

n∑
k0=0

(
1
µ0

)k0
(

p1

µ1

)−k0

=

(
p1

µ1

)n n∑
k0=0

(
µ1

p1µ0

)k0

C(n) =

(
p1

µ1

)n
[

1− ( µ1
p1µ0

)n+1

1− µ1
p1µ0

]
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Closed Queueing Network Example

→ p(k0, k1) =
1

C(n)

(
1
µ0

)k0
(

p1

µ1

)k1

=
1

C(n)

(
1
µ0

)k0
(

p1

µ1

)n−k0

=
1

C(n)

(
p1

µ0

)n ( µ1

p1µ0

)k0

p(k0, k1) =

(
µ1

p1

)n
[

1− µ1
p1µ0

1− ( µ1
p1µ0

)n+1

](
p1

µ1

)n ( µ1

p1µ0

)k0

= (p1)−k0

[
1− p−1

1

1− p−(n+1)
1

]

= (p1)−(n−k1)

[
pn

1 −
1− p1

1− pn+1
1

]

= (p1)k1

(
1− p1

1− pn+1
1

)
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Closed Queueing Network Example

The CPU utilization is

CPU utilization = Prob[ CPU is busy ]

= 1− P(0,n) = 1−
ρn

1
C(n)

=


ρ1−ρn+1

1
1−ρn+1

1
ρ1 6= 1

n
n+1 ρ1 = 1

Average throughput is

E [T ] = P[CPU is busy]µ0p0
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Closed Queueing Network Theory of Closed Queueing Network

Gordon - Newell network (1967)

A Gordon-Newell network has M nodes (i = 1,2, · · ·M) s.t.
Node i is QLD with rate µi (n) when there is n customers.
a customer completing service at a node chooses a node to enter
next probabilistically, independent of past history
The network is CLOSED and has a fixed population K

State space:S = {(n1,n2, · · · nM) | ni ≥ φ,
∑M

i=1 ni = K}

|S| =

(
K + M − 1

M − 1

)
→ VERY LARGE NUMBER

If M = 5, K = 10, |S| = 1,001.
If M = 10, K = 35, |S| = 52,451,256.
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Closed Queueing Network Theory of Closed Queueing Network

Since there is no external arrival, γ = φ.
Routing probabilities qij satisfy:

M∑
j=1

qij = 1

traffic equations are:

λi =
M∑

j=1

λjqji i = 1,2, · · · ,M

The number of solutions {λi} that satisfy the traffic equations is
infinite.
All solutions differ by a multiplicative factor C
Let (e1,e2, · · · eM) be any non-zero solution, that is ei = Cλi (visit
rate). Define: xi = ei

µi

(e1,e2, · · · eM) is chosen by fixing one component to a convenient
value, such as e1 = 1
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Closed Queueing Network Theory of Closed Queueing Network

Gordon Newell Theorem

π(n1,n2, · · · nM) =
1
G

M∏
i=1

xi(ni)

where xi(ni) =

[
e

ni
iQni

j=1 µi (j)

]
and

∑M
i=1 ni = K

Therefore,

G =
∑
~n∈S

M∏
i=1

xi(ni)
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Closed Queueing Network Computation Methods

Computation of G (assume SSFR)

Define S(m,n) = {(n1, · · · nm) | ni ≥ 0,
∑m

i=1 ni = n}

G(m,n) =
∑

~n∈S(m,n)

m∏
i=1

xi(ni) where xi =
ei

µi

G(m,n) =
∑

~n∈S(m,n);

nm=0

m∏
i=1

xni
i +

∑
~n∈S(m,n);

nm>φ

m∏
i=1

xni
i

=
∑

~n∈S(m−1,n)

m−1∏
i=1

xi(ni) + xm
∑

~n∈S(m,n);

ki =ni (i 6=m);

km=nm−1

m∏
i=1

xi(ki)

G(m,n) = G(m − 1,n) + xmG(m,n − 1) m,n > φ
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Closed Queueing Network Computation Methods

In summary, for SSFR queueing network, we have

G(m,n) = G(m − 1,n) +
em

µm
G(m,n − 1) m,n > 0

G(m,0) = 1 m > 0
G(0,n) = 0 n ≥ 0
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Closed Queueing Network Computation Methods

m
n 0 1 2 3 i M-1 M

0 1 1 1 1 1

0
e1
µ1

e1
µ1
+
e2
µ2

e1
µ1( )
2

..........

...
...
...
.

0

0

1

2

K-1

K

0

0

e1
µ1( )
K-1

e1
µ1( )
K

...
...
...
. ei

µi
x
+

+

..........
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Closed Queueing Network Computation Methods

Performance Measures

Idle Probability for node i :

P(NM = 0) =
1

G(M,K )

∑
~n∈S(M,K );

nM =0

M−1∏
i=1

(
ei

µi

)ni

=
G(M − 1,K )

G(M,K )

Another way to express it:

P(Ni = 0) =
1

G(M,K )

∑
~n∈S(µ,k);

ni =0

i−1∏
j=1

(
ei

µj

)nj M∏
k=i+1

(
ek

µk

)nk

=
G(M\i ,K )

G(M,K )
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Closed Queueing Network Computation Methods

Utilization of node i or (Ui ):

Ui = 1− P[Ni = 0] = 1− G(M\i ,K )

G(M,K )

How about P[Ni ≥ k ]:

P[Ni ≥ k ] =
1

G(M,K )

∑
~n∈S(M,K );

ni≥k

M∏
j=1

(
ej

µj

)nj

=
1

G(M,K )

(
ei

µi

)k ∑
mj =nj (j 6=i);

mi =ni−k ;

~n∈S(M,K );

ni≥k

M∏
j=1

(
ej

µj

)mj

=

(
ei

µi

)k G(M,K − k)

G(M,K )

For P[Ni ≥ 1]:

P[Ni ≥ 1] = µi =

(
ei

µi

)
G(M,K − 1)

G(M,K )

(more useful)
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Closed Queueing Network Computation Methods

The throughout of node i is

λi = µiUi = µi

(
ei

µi

)
G(M,K − 1)

G(M,K )
= ei

G(M,K − 1)

G(M,K )

Prob[ni = k ] = πi(k) = P[Ni ≥ k ]− P[Ni ≥ k + 1]

πi(k) =
1

G(M,K )

∑
~n∈S(M,K );

ni =k

M∏
j=1

(
ej

µj

)nj

=
( ei
µi

)k

G(M,K )

∑
~n∈S(M,K−k);

ni =0

M∏
j=1

(
ej

µj

)nj

=

(
ei

µi

)k G(M\i ,K − k)

G(M,K )

πi(k) = P[Ni ≥ k ]− P[Ni ≥ k + 1]

=

(
ei

µi

)k
[

G(M,K − k)− ei
µi

G(M,K − k − 1)

G(M,K )

]
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Closed Queueing Network Computation Methods

Expected no. of customer in node i = Li(K )

Li(K ) =
K∑

j=1

jP[Ni = j] =
K∑

j=1

P[Ni = j]
K∑

k=1

I(k≤j)

=
K∑

k=1

K∑
j=k

P[Ni = j] =
K∑

k=1

P[Ni ≥ k ]

Li(K ) =
1

G(M,K )

K∑
k=1

(
ei

µi

)k

G(M,K − k) i = 1,2, · · · ,M

Derivation of above expression:

LI(K ) = P[Ni = 1] +

P[Ni = 2] + P[Ni = 2] +

P[Ni = 3] + P[Ni = 3] + P[Ni = 3] + · · ·+
P[Ni = K ] + P[Ni = K ] + P[NI = K ] + · · ·+ P[Ni = K ]
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Closed Queueing Network Convolution Algorithm

Garden Newell Convolution Algorithm

Assume M QLD nodes and K customers
Define

fi (Z ) =
∞∑

k=0

Xi (k)Z k = 1 + Xi (1)Z + Xi (2)Z 2 + Xi (3)Z 3 + · · ·

= 1 +

[
ei

µi (1)

]
Z +

[
e2

i
µi (1)µi (2)

]
Z 2 +

[
e3

i
µi (1)µi (2)µi (3)

]
Z 3 + · · ·

f (Z ) = f1(Z )f2(Z ) . . . fM(Z )

The coefficient of Z k in f (Z )→ the sum of products of the form
X1(n1)X2(n2) . . .XM(nM) such that

∑
i ni = k

John C.S. Lui () Computer System Performance Evaluation 49 / 79



Closed Queueing Network Convolution Algorithm

Thus

f (Z ) = 1+G(M,1)Z +G(M,2)Z 2+G(M,3)Z 3+· · ·+G(M, k)Z k +· · ·

*IDEA: build up f (Z ) from partial products gi(Z ) so that G(i , k) is
the coefficient of Z k in gi(Z )

g1(Z ) = f1(Z )

gi(Z ) = gi−1(Z )fi(Z ) i = 2,3, · · · ,M
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Closed Queueing Network Convolution Algorithm

Therefore,

G(1, k) = coefficient of the Z k term in g1(Z )

G(1, k) = X1(k) =
ek

1∏k
i=1 µ1(i)

G(i , k) =
k∑

j=0

G(i − 1, j)xi(k − j)→ (convolution!)

Example :

G(2, k) =
k∑

j=0

G(1, j)x2(k − j)

= G(1,0)x2(k) + G(1,1)x2(k − 1) + · · ·+ G(1, k)x2(φ)

=
ek

2∏k
j=1 x2(j)

+
e1

µ1(1)

ek−1
2∏k−1

j=1 µ2(j)
+ · · ·
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Closed Queueing Network Convolution Algorithm

k\µ 1 2 · · ·
0 1 1 · · ·
1 e1

µ1(1) · · ·

2 e2
1

µ1(1)µ1(2) · · ·

3 e3
1

µ1(1)µ1(2)µ1(3) · · ·
...

... · · ·
K ek

1
µ1(1)...µ1(k) · · ·
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Closed Queueing Network Convolution Algorithm

Performance Measure

Prob[node i has k customers] = πi(k):

πi(k) =
1

G(M,K )

∑
~n∈S(µ,k);

ni =k

X1(n1)X2(n2) . . .XM(nM)

πi(k) =
xi(k)

G(M,K )
G(M\i ,K − k)

Expected number of customers in node i

E [Li ] =
K∑

k=0

kπi(k) =⇒ very involve

Prob[node i ≥ 1 customer] = ?
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Closed Queueing Network Convolution Algorithm

Utilization of a node, in general, is very involved.

Ui(K ) = Prob[ni ≥ 1] =
K∑

j=1

Prob[ni = j]

For a node that is SSFR, we have

Ui(K ) =

(
ei

µi

)
G(M,K − 1)

G(M,K )

This holds even the other nodes are QLD servers!!
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Closed Queueing Network Convolution Algorithm

Example :

...
...

front end communication

transaction processing

query processing

0P

1P

2P

3P

4P

terminal

!"

!average think time = 1/

eT = eF p0; eF = eT + eCp2; eC = eF p1 + eD + eP ;
eD = eCp3; eP = eCp4

eT = 1; eF = 1
p0

; eC = 1−p0
p0p2

; eD = (1−p0)p3
p0p2

; eP = (1−p4)p4
p0p2

ρT = eT
λ = 1

λ ; ρF = 1
p0µF

; ρC = (1−p0)
p0p1µc

; ρD = (1−p0)p3
p0p2µ0

ρP = (1−p0)p4
p0p2µp

π(nT ,nF ,nC ,nD,np) =
1
G

(ρT )nT

nT !
(ρF )nF (ρC)nC (ρD)nD (ρP)nP
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Closed Queueing Network Convolution Algorithm

UF = ?

Since UF is a SSFR, we have

UF = ρF
G(5,K − 1)

G(5,K )
=

1
p0µF

G(5,K − 1)

G(5,K )

Average throughput or rate of request completion is:

λ∗ = µF p0UF =
G(5, k − 1)

G(5, k)

but Little’s Result (N = λT )
T = the expected response time = K

λ∗ = KG(5,k)
G(5,K−1)

T = average think + average processing time = KG(5,k)
G(5,K−1)

T = 1
λ + average processing time = KG(5,k)

G(5,K−1)

Therefore, average processing time = KG(5,k)
G(5,K−1) −

1
λ
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Closed Queueing Network Multiclass Queueing Networks

Multiclass Open/Closed/Mixed Jackson Networks

Setting
We have K customers and M nodes with µi exponential service
rate for i = 1, ..,M.
R, an arbitrary but finite number of classes of customers.
Let pi,r ;j,s be the probability that a customer of class r completes
service at node i will become class s in node j .
The pairs (i , r) and (j , s) belong to the same subchain if the
same customer can visit node i in class r and node j in class s.
Let m be the number of subchains, let E1, . . . ,Em be the set of
states in each subchains.
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Closed Queueing Network Multiclass Queueing Networks

Setting: continue
Let nir be the number of customers of class r at node i . A “closed”
system is characterized by∑

(i,r)∈Ej

= constant. ∀j = 1, . . . ,m.

For an “open” system, a Poisson process with λ0
ir is the external

arrival rate of class r to node i . Customer may leave the system
with pi,r ;0 so that

∑
j,s pi,r ;j,s + pi,r ;0 = 1.

Define Q(t) = (Q1(t), . . . ,QM(t)) where
Qi(t) = (Qi1(t), . . . ,QiR(t)) with Qir (t) being the number of class r
customers at node i . Note that Q(t) is NOT a CTMC because the
class of a customer leaving a node is not known.
Instead, we define X i(t) = (Ii1(t), . . . , Ii,|Qi (t)|(t)) where
Iij(t) ∈ {1,2, ...,R} is the class of the customer in position j in
node i at time t . Then (X 1(t), ...,X M(t)), t ≥ 0) is a CTMC.
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Closed Queueing Network Multiclass Queueing Networks

Multiclass Open/Closed/Mixed Jackson Networks: For k ∈ {1, ...,m} such
that Ek is an open subchain, let (λir )(i,r)∈Ek be the "unique" strictly positive
solution of the traffic equations

λir = λ0
ir +

∑
(j,s)∈Ek

λjspj,s;i,r ∀(i , r) ∈ Ek .

For k ∈ {1, ...,m} such that Ek is a closed subchain, let (λir )(i,r)∈Ek be any
non-zero solution of

λir =
∑

(j,s)∈Ek

λjspj,s;i,r ∀(i , r) ∈ Ek .

If
∑

r :(i,r)belongs to an open subchain λir < µi for all i = 1,2, ...,M, then

π(~n) =
1
G

M∏
i=1

[
ni !

R∏
r=1

1
nir !

(
λir

µi

)nir
]

for all ~n = (~(n1), ...,~(nM)) in the state space, where~(ni ) = (ni1, ...,niR) ∈ INR

and ni =
∑R

r=1 nir . Here, G is the normalization constant.
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Closed Queueing Network Multiclass Queueing Networks

Example
There are M = 2 nodes and R = 2 classes of customers. There is
no external arrival to node 2. External customers enter node 1 in
class 1 with rate λ. Upon completion at node 1, a customer of
class 1 is routed to node 2 with the probability 1. Upon completion
at node 2, a customer of class a leaves with probability 1.
There are always K customers of class 2 in the system. Upon
service completion at node 1 (resp. node 2), customer of class 2
is routed back to node 2 (resp. node 1) in class 2 with probability
1. Let µi be the service rate at node i = 1,2.
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Closed Queueing Network Multiclass Queueing Networks

Example: continue
The state space S is

S = {(n11,n12,n21,n22) ∈ IN4 : n11 ≥ 0,n21 ≥ 0,n12 + n22 = K}.

There are two subchains: E1 (open), and E2 (closed), with
E1 = {(1,1), (2,1)} and E2 = {(1,2), (2,2)}.

We find λ11 = λ2,1 = λ and λ12 = λ22. Take λ12 = λ22 = 1 for instance.
We have

π(~n) =
1
G

(
n1

n11

)(
n2

n22

)(
λ

µ1

)n11
(
λ

µ2

)n21
(

1
µ1

)n12
(

1
µ2

)n22

with λ < µi , i = 1,2 (stability condition).
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Closed Queueing Network Multiclass Queueing Networks

Example: continue (COMPUTING G)

G =
∑

n11≥0;n21≥0
n12+n22=K

(
λ

µ1

)n11
(
λ

µ2

)n21
(

1
µ1

)n12
(

1
µ2

)n22

=

∑
n11≥0

λ

µ1

n11
∑

n21≥0

λ

µ2

n21 ∑
n12+n22=K

(
1
µ1

)n12
(

1
µ2

)n22

=

(
2∏

i=1

µi

µi − λ

)(
1
µ1

)K K∑
i=1

(
µ1

µ2

)i

G =

(
2∏

i=1

µi

µi − λ

)(
1
µ1

)K 1− (µ1/µ2)K +1

1− (µ1/µ2)
if µ1 6= µ2,

G =
K + 1
µK

(
µ

µ− λ

)2

if µ1 = µ2 = µ.
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Closed Queueing Network Multiclass Queueing Networks

Extension to M/M/c
Let ci ≥ 1 be the number of servers at node i and define
αi(j) = min(ci , j) for i = 1, ...,M. Hence µiαi(j) is the service rate at
node i when there are j customers. We have

π(~n) =
1
G

M∏
i=1

 ni∏
j=1

1
αi(j)

ni !

(
R∏

r=1

1
nir !

(
λir

µi

)nir
) .
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Closed Queueing Network Multiclass Queueing Networks

Extension to M/M/c with state-depending routing

Let the total number of customer be M(~n) =
∑M

i=1 ni . Let the external
arrival rate of class r customer at node i be λ0

irγ(M(~n)), where γ is an
arbitrary function from IN into [0,∞). We have

π(~n) =
d(~n)

G

M∏
i=1

 ni∏
j=1

1
αi(j)

ni !

(
R∏

r=1

1
nir !

(
λir

µi

)nir
) .

where

d(~n) =

M(~n)−1∏
j=0

γ(j).

and d(~n) = 1 if the network is closed.
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Closed Queueing Network BCMP Networks

A classic piece by F. Baskett, K.M. Chandy, R.R. Muntz and F.G.
Palacios on “Open, Closed, and Mixed Networks of Queues with
Different Classes of Customers, JACM, 22(2), 1975.

Terminology
FCFS: First come first serve M/M/c queue.
PS: Processor sharing queue.
LCFS: Last come first serve single server queue.
IF: Infinite server queue
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Closed Queueing Network BCMP Networks

Characterization
If node i is of type FCFS, then ρir = λir/µi for r = 1, . . . ,R, where
R is the number of classes of customer, and µi is the exponential
service times in node i .
If node i is of type PS, LCFS, or IS, then ρir = λir/µir for
r = 1, . . . ,R, and µir is the mean service time for customer of type
r in node i .

For nodes of types PS, LCFS, or IS, the service time distribution is
arbitrary.

λir is the solution of the traffic equations.
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Closed Queueing Network BCMP Networks

Theorem
For a BCMP network with M nodes and R classes of customer, which
is open, closed, or mixed in which each node is of type FCFS, PS,
LCFS, or IS, the steady state probabilities are:

π(~n) =
d(~n)

G

M∏
i=1

fi(~ni).

where ~n = (~n1, · · · , ~nM) in the state space S with
~ni = (ni1,ni2, · · · ,niR) where nir is the number of jobs of class r at
node i. Moreover, |~ni | =

∑R
r=1 nir for i = 1,2, . . . ,M.

G <∞ is the normalization constant such that
∑
~n∈S π(~n) = 1,

d(~n) =
∏M(~n)−1

j=0 γ(j) if the arrivals depend on the total number of

customers M(~n) =
∑M

i=1 |~ni |, and d(~n) = 1 if the network is closed.
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Closed Queueing Network BCMP Networks

fi(~ni) for different types of nodes
If node i is of type FCFS:

fi(~ni) = |~ni |!
|~ni |∏
j=1

1
αi(j)

R∏
r=1

ρnir
ir

nir !

If node i is of type PS or LCFS:

fi(~ni) = |~ni |!
R∏

r=1

ρnir
ir

nir !

If node i is of type IS:

fi(~ni) =
R∏

r=1

ρnir
ir

nir !
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Closed Queueing Network BCMP Networks

Comment
Solve the traffic equations λir for i = 1, ...,M and r = 1, ...,R.
Use queueing network package to solve for G.
When using queueing network package, all we need to enter are
the topology of the network:

K , the number and the types of nodes,
R classes, and
routing matrix [pi,r ;j,s].
external arrival rates
service rates, e.g., µiαi (j), for j = 0,1, ... for a node that is FCFS.
service rates µir for customers of class r = 1, ...R for a node that is
PS, LCFS, or IS.
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Closed Queueing Network Mean Value Analysis (MVA)

Mean value analysis [S. Lavenberg & M. Reiser]

Derive expected performance measures while avoiding derivation
of steady state probability

0

b

a!

!

1

!2 CLOSED
NETWORK

Arrival

Departure

Replace an arc α by α1 → node φ→ α2
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Closed Queueing Network Mean Value Analysis (MVA)

Whenever a customer arrives at node φ (via along α1), it departs
from the network and is replaced by a
"stochastically" identical customer who has the same routing
probability along arc α2

This open network behaves exactly as the closed one (except
node φ)
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Closed Queueing Network Mean Value Analysis (MVA)

Mean Value analysis for state-dependent service rates

The system throughput is still T (K ) = KPM
i=1 vi Wi (k)

Let πi(j |K ) =Prob[node i has j customers where the network has
K customers]

Wi(K ) =
K∑

j=1

πi(j − 1|K − 1)
j

µi(j)

Example:

πi(0|K − 1)
1

µi(1)
+ πi(1|K − 1)

2
µi(2)

+ · · ·+ πi(K − 1|K − 1)
K

µi(K )
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Closed Queueing Network Mean Value Analysis (MVA)

The mean queue length is:

Li(K ) =
K∑

j=1

jπi(j |K )

By definition,πi(0|0) = 1 and

πi(j |K ) =

{
vi T (K )
µi (j) πi(j − 1|K − 1) j = 1,2, . . . , k
1−

∑K
k=1 πi(k |K ) j = φ
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Closed Queueing Network Mean Value Analysis (MVA)

For the α we chosen, let us define the network throughput T as
the average rate customers pass along arc α in steady state.
Now we can view T as the external arrival rate (γ) in the open
network.
Suppose that we have M nodes in the network. Define

vi = average number of visit to node i by a customer
= (visitation rate)

λi = average arrival rate of customer to node i

λi = Tvi , v0 = vaqab

But since customers visit node φ EXACTLY ONCE, v0 = 1,
therefore:

va =
1

qab
; vj =

µ∑
i=1

viqij

Once one vi is found,we can find other vi ’s.
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Closed Queueing Network Mean Value Analysis (MVA)

Looking at node i, let Li= average no. of customers, we have:

Li = λiwi , Li = Tviwi

But since
∑M

i=1 Li = K = T
∑M

i=1 viwi , therefore the system
throughput

T =
K∑M

i=1 viwi

If node i is infinite server,then

wi =
1
µi

If node i is single server fixed rate (SSFR),

wi =
1
µi

[Yi + 1]

where Yi is the mean number of customers seen by an arrival to
node i.
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Closed Queueing Network Mean Value Analysis (MVA)

Example:

πi(j |K ) =

{
vi T (K )
µi (j) πi(j − 1|K − 1) j = 1,2, . . . , k
1−

∑K
k=1 πi(k |K ) j = φ

Assume it is node 1 (that is , i=1)

π1(1|1) =
v1T (1)

µ1(1)
π1(φ|φ) =

v1T (1)

µ1(1)

π1(φ|1) = 1− π1(1|1)

π1(1|2) =
v1T (2)

µ1(1)
π1(φ|1)

π1(2|2) =
v1T (2)

µ2(2)
π1(1|1)

π1(φ|2) = 1− π(1|2)− π(2|2)
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