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Introduction

Why we need the Matrix-Geometric Technique?

Motivation

» Closed-form solution is hard to obtain.
» Need to seek efficient, numerical stable solutions.

» Can be viewed as a generalization of conventional
gueueing analysis.
» A Special way to solve a Markov Chain.
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Key ldeas

» Itis a technique to solve stationary state probability for
vector state Markov processes. Two parts:

1. Boundary set
2. Repetitive set

» Example: a modified M/M /1, \* if the system is empty,
else \. Customers require two exponential stages of
service, u1, and uo

S :{(i,s)|i > 0 anditis the no. of customer in the queue,}
s is the current stage of service, s € (1,2)}
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Matrix-Geometric in Action
Key Idea

Key ldeas

» Itis a technique to solve stationary state probability for
vector state Markov processes. Two parts:
1. Boundary set
2. Repetitive set
» Example: a modified M/M /1, \* if the system is empty,
else \. Customers require two exponential stages of
service, u1, and uo
S :{(i,s)|i > 0 anditis the no. of customer in the queue,}
s is the current stage of service, s € (1,2)}
» s = 0if no customer in the system
» Well, let us proceed to specify the state transition diagram,
then the Q matrix.
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Matrix-Geometric in Action

Key Idea

Leta; = A+ pj, 1 = 1,2. Arrange states lexicographically,
(0,0),(0,1),(0,2),(1,1),(1,2),....
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Matrix-Geometric in Action

Key Idea

The transition rate matrix Q is:

X\ A 0|0 o]0 o01]0oO
0 -a4 m | A 0|0 o01]o0oO
up 0 -a,| 0 X |0 o00oO
0 0 0 |-a pm | »X 00O
Q= 0 uw 0] 0 -a| 0 A |0OoO
0 0 0] 0 0 |-a m |»O
0 0 0 |u O |0 -ay|0
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Matrix-Geometric in Action

Key Idea

Let us re-write the Q in matrix form:
[x0o]l., -2 pw |, _[O O
S S )

=\ 0
Boo = 0 —a; 1 Bo1 =

j77) 0 -a
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Matrix-Geometric in Action

Key Idea

Let us solve it. For the repetitive portion
7l'j_1Ao+7l'jA1+7Tj_|_lA2 = 0 j=23,... (1)

This is similar to the solution of M/M /1. Therefore, «r; is a
function only of the transition rates between states with j — 1
gqueued customers and states with | queued customers.

™= Wj_lR j:2,3,...
or wm = mRY j=2,3... 2)
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Matrix-Geometric in Action

Key Idea

Putting (2) into (1), we have:
Wle_2A0+W1Rj_1A1+7T1RjA2 =0 J :273a"'
Since it is true for j = 2,3, .. ., substitute j = 2, we have:

Ao+ RA; + R%2A, =0
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Matrix-Geometric in Action

Key Idea

For the initial portion:

woBoo + 1By = O
woBo1 + 1AL +7m0A, = 0

or

Boo Bo1 _
(o, ma] [ Bio A1+RA; ] =0

We also need:

o
1 = mpe +ﬂ'12 Re = mpe + 71 (I — R)fle
=1

e BE;O BO]_ _
[ﬂ'o,ﬂ'l] |: (I o R)fle Bﬁio A1+ RA2 :| - [17 0]

where M* is M with first column being eliminated.
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Matrix-Geometric in Action

Key Idea

Ng = E[queuedcustomers]

- ije_z (i))mR e =m (I -R)%e
=1

o0

Note: S = ZR1—1:|+R+R2+...
=1
SR = R+R?>+R3+...
S(I—R) = |
S = I1-R)'=(-R)™

This is true only when the spectral radius of R is less than unity.
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General Matrix-Geometric Solution General Concept

Boo Bo1| O O
Bio Bi1|Ao| O
B2o B2i1 | A1 ] Ao
Q= |Bs Ba|Az|AL|Ao
Bso Bar |Az|Ax| A

oo o

We index the state by (i,j) wherei is the level, i > 0 and j is the
state withinthe level, 0 <j<m —1fori > 1.
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General Matrix-Geometric Solution General Concept

For the repetitive portion,

o
domiuAc = 0 j=2,3,... (3)
k=0
m = mR™ j=2.3,... (4)
putting (4) to (3), we have:
o0
> RKA=0
k=0
For the boundary states, we have:

o m][ Boo Bos
M|y RE-1g, s RE-lB,,

John C.S. Lui Matrix-Geometric Analysis and Its Applications



General Matrix-Geometric Solution General Concept

Procedure (continue:)

Using the same normalization, we have
e Béo Bo1

o, ] [ (1-R) ‘e [ch)o:l RIFlBko]* SR R B ] = 1.0

Therefore, it boils down to
1. Solving R.
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General Matrix-Geometric Solution General Concept

Procedure (continue:)

Using the same normalization, we have

: ] e Boo Boz 1.0]
T, T _ _ * _ =11,
DT 1-R) e [SRLRBro| TR B

Therefore, it boils down to
1. Solving R.
2. Solving the initial portion of the Markov process.
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Multiprocessing System

We have a multiprocessing system in which
» K homogeneous processors.
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Performance Analysis of Multiprocessing System
Application of Matrix-Geometric

Multiprocessing System

We have a multiprocessing system in which
» K homogeneous processors.
» Each processor is subjected to failure with rate +.
» A single repair facility with repair rate «.
» Jobs arrive at a Poisson rate \.
» Whenever there is no processor available, all jobs are lost.
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Performance Analysis of Multiprocessing System
Application of Matrix-Geometric

Markov Model
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Performance Analysis of Multiprocessing System

Application of Matrix-Geometric

Definebj = A+iy+afori=1,2,..., K. We have:

7y
O .
BOO:[_a];801:[aa07"',O];BjO: : ;BO,jZO J:2,3,___’

0
[ —b; « O 0 --- 0 0 0 7
2y —-b, a 0 --- 0 0 0
0

0 3y b3 a --- 0 0

0 0 0 0 .- (K—1)y —bxy1 «
O 0 0 0 - 0 Ky —bg |
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Performance Analysis of Multiprocessing System

Application of Matrix-Geometric

» The matrices of the repeating portion of the process are:

g 0 .. 0 0
0 2 0 0
Ag=Al;A1 =B11;A = : : :
0 0 (K-1u 0
0 0 0 Ky
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Application of Matrix-Geometric

Performance Analysis of Multiprocessing System

» The matrices of the repeating portion of the process are:

Apg=AlA1=B11;A2 =

0 --- 0 0
20 - 0 0

o=x=

0 0 -« (K—1)u O
0 0 - 0 Ku |

» This can be solved numerically rather than using the

transform method.

John C.S. Lui
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Properties of Solutions

» Informally, the stability of a process depends on the drift of
the process for states in the repetitive portion.
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Properties

Properties of Solutions

» Informally, the stability of a process depends on the drift of
the process for states in the repetitive portion.

» For example, M/M/1, the expected drift toward higher
states is A1. The expected drift toward lower states is
u(—1) = —p. The drift of the process is A — u. Process is
stable if the total expected drift is NEGATIVE, or A < p in
our case.
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Properties

Properties of Solutions

Informally, the stability of a process depends on the drift of
the process for states in the repetitive portion.

For example, M/M /1, the expected drift toward higher
states is A1. The expected drift toward lower states is
u(—1) = —p. The drift of the process is A — u. Process is
stable if the total expected drift is NEGATIVE, or A < p in
our case.

Now suppose the process can go up by 1 and go down by
at most K steps. Let the rate for | steps be r(l),

| = —-K,-K —1,...,0,1.

K
(1) + > (=Dr(=1) —r 1)<er
=1
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Properties

Properties of Solutions

» Analogous to the scalar case, we can think of the drift of
the process in terms of levels. Assume that for the
repetitive portion, we have m states, a transition from level
i,i>>0,toleveli —k, 1<k <K

m
k> A )
=1

where Ax.1(], 1) is the transition from state j in level i to
state | in level i — k.
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Properties

Properties of Solutions

» Analogous to the scalar case, we can think of the drift of
the process in terms of levels. Assume that for the
repetitive portion, we have m states, a transition from level
i,i>>0,toleveli —k, 1<k <K

m
k> A )
=1

where Ax.1(], 1) is the transition from state j in level i to
state | in level i — k.

» Letf, 0 <j <m—1be the probability that the process is
in inter-level j of the repeating portion of the process of
level i >> 0. The average drift from level i to level i — k is

m—1 m-1

—k Y 6> Acralis)
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Properties

Properties of Solutions

» To get the total drift, we sum the previous equation for all k,
0<k<K+1
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Properties

Properties of Solutions

» To get the total drift, we sum the previous equation for all k,
0<k<K+1

» Butwhatis f;? Let us define A = Y[ A, we have
f = (fo,f1,--.,fm_1). Therefore:

fA=0 & fe=1
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Properties

Properties of Solutions

» To get the total drift, we sum the previous equation for all k,
0<k<K+1

» Butwhatis f;? Let us define A = Y[ A, we have
f = (fo,f1,--.,fm_1). Therefore:

fA=0 & fe=1

» The stability condition is:

K+1
fAge < ) (k —1)fAce
k=2
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Algorithm for solving R

Computational Properties of R

» It is an iterative method. Let

R(O) = 0
Rin+1) = - > R'MAAI" n=0,1,2,...
1=0,l£1
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Computational Properties of R

» It is an iterative method. Let
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» The iterative process halts whenever entries in R(n + 1)
and R(n) differ in absolute value by less than a given
constant.
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Algorithm for solving R

Computational Properties of R

It is an iterative method. Let

R(O) = 0
Rin+1) = - > R'MAAI" n=0,1,2,...
1=0,l£1

The iterative process halts whenever entries in R(n + 1)
and R(n) differ in absolute value by less than a given
constant.

The sequence {R(n)} are entry-wise non-decreasing and
converge monotonically to a non-negative matrix R.

the number of iteration needed for convergence increases
as the spectral radius of R increases. This is similar to the
scalar case where p — 1. As the system utilization
increases, it becomes computationally more difficult to get
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Algorithm for solving R

Computational Properties of R

Replicated Database

» Poisson arrival with rate ).
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Computational Properties of R

Replicated Database

» Poisson arrival with rate .

» Probability it is a read request: r.

» A read request can be served by any server.

» A write request has to be served by BOTH servers.

Matrix-Geometric Analysis and Its Applications



Algorithm for solving R

Computational Properties of R

Replicated Database

Poisson arrival with rate \.

Probability it is a read request: r.

A read request can be served by any server.

A write request has to be served by BOTH servers.
What is the proper state space?

vV V. v v VY
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Algorithm for solving R

Computational Properties of R

The state space S = (i,j) where i is the number of queued
customers and j is the number of replications that are involved
in service. Soi >0andj=0,1,2.

A1) A A
Y Y

ool
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Algorithm for solving R

Computational Properties of R

- Ar Al-=r) 0 0 0
p —(A+p Ar Al-=r) 0 0
0 21 —(A+2p) 0 A 0
Q= 0 0 u —(A+p) 0 A
0 0 2ur 2u(1—r) —(A+2p) 0
0 0 0 0 7 “(\+p)
[ -\ Ar A1-r) 0 0
Boo = u —(A-I—/L) I :Bo1 = A(l—l’) 0
| O 2u —(A+2u) 0 A
_ (00 pu | o A _| (At 0 .
Bio = 0 0 2ur ]'Bll_Al_ [ 2u(l—r) —(A+2u) |’
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Algorithm for solving R

Computational Properties of R

To determine the stability:

_ —p 7 _
A‘[Zu(l—r) —2u(1—r)]‘A°+A1+A2
f_2(1—r)_ e 1
W3 T 2T 32

K+1 2
fA ~1)fA A
oe<Z € A<
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