
Introduction of Markov Decision Process

Prof. John C.S. Lui
Department of Computer Science & Engineering

The Chinese University of Hong Kong

John C.S. Lui () Computer System Performance Evaluation 1 / 82

Outline

1 Introduction
Motivation
Review of DTMC
Transient Analysis via z-transform
Rate of Convergence for DTMC

2 Markov Process with Rewards
Introduction
Solution of Recurrence Relation
The Toymaker Example

3 Solution of Sequential Decision Process (SDP)
Introduction
Problem Formulation

4 Policy-Iteration Method for SDP
Introduction
The Value-Determination Operation
The Policy-Improvement Routine
Illustration: Toymaker’s problem

5 SDP with Discounting
Introduction
Steady State DSP with Discounting
Value Determination Operation
Policy-Improvement Routine
Policy Improvement Iteration
An Example

John C.S. Lui () Computer System Performance Evaluation 2 / 82

Introduction Motivation

Motivation

Why Markov Decision Process?
To decide on a proper (or optimal) policy.
To maximize performance measures.
To obtain transient measures.
To obtain long-term measures (fixed or discounted).
To decide on the optimal policy via an efficient method (using
dynamic programming).

John C.S. Lui () Computer System Performance Evaluation 4 / 82

Introduction Review of DTMC

Review of DTMC

Toymaker
A toymaker is involved in a toy business.
Two states: state 1 is toy is favorable by public, state 2 otherwise.
State transition (per week) is:

P =
[
pij
]

=

 1
2

1
2

2
5

3
5


What is the transient measure, say state probability?

John C.S. Lui () Computer System Performance Evaluation 6 / 82

Introduction Review of DTMC

Transient State Probability Vector

Transient calculation
Assume the MC has N states.
Let πi(n) be the probability of system at state i after n transitions if its
state at n = 0 is known.
We have:

N∑
i=1

πi(n) = 1 (1)

πj(n + 1) =
N∑

i=1

πi(n)pij for n = 0, 1, 2, .. (2)

John C.S. Lui () Computer System Performance Evaluation 7 / 82

Introduction Review of DTMC

Transient State Probability Vector

Iterative method
In vector form, we have:

π(n + 1) = π(n)P for n = 0, 1, 2, ...

or

π(1) = π(0)P
π(2) = π(1)P = π(0)P2

π(3) = π(2)P = π(0)P3

.

π(n) = π(0)Pn for n = 0, 1, 2, ...

John C.S. Lui () Computer System Performance Evaluation 8 / 82

Introduction Review of DTMC

Illustration of toymaker

Assume π(0) = [1, 0]

n = 0 1 2 3 4 5 ...
π1(n) 1 0.5 0.45 0.445 0.4445 0.44445
π2(n) 0 0.5 0.55 0.555 0.5555 0.55555

Assume π(0) = [0, 1]

n = 0 1 2 3 4 5 ...
π1(n) 0 0.4 0.44 0.444 0.4444 0.44444
π2(n) 1 0.6 0.56 0.556 0.5556 0.55556

Note π at steady state is independent of the initial state vector.

John C.S. Lui () Computer System Performance Evaluation 9 / 82

Introduction Transient Analysis via z-transform

Review of z-transform

Examples:

Time Sequence f (n) z-transform F (z)

f (n) = 1 if n ≥ 0, 0 otherwise 1
1−z

kf (n) kF (z)

αnf (n) F (αz)

f (n) = αn, for n ≥ 0 1
1−αz

f (n) = nαn, for n ≥ 0 αz
(1−αz)2

f (n) = n, for n ≥ 0 z
(1−z)2

f (n − 1), or shift left by one zF (z)

f (n + 1), or shift right by one z−1 [F (z)− f (0)]

John C.S. Lui () Computer System Performance Evaluation 11 / 82

Introduction Transient Analysis via z-transform

z-transform of iterative equation

π(n + 1) = π(n)P for n = 0, 1, 2, ...

Taking the z-transform:

z−1 [Π(z)− π(0)] = Π(z)P
Π(z)− zΠ(z)P = π(0)

Π(z) (I − zP) = π(0)

Π(z) = π(0) (I − zP)−1

We have Π(z)⇔ π(n) and (I − zP)−1 ⇔ Pn. In other words, from
Π(z), we can perform transform inversion to obtain π(n), for n ≥ 0,
which gives us the transient probability vector.

John C.S. Lui () Computer System Performance Evaluation 12 / 82

Introduction Transient Analysis via z-transform

Example: Toymaker

Given:

P =

 1
2

1
2

2
5

3
5


We have:

(I − zP) =

[
1− 1

2z −1
2z

−2
5z 1− 3

5z

]

(I − zP)−1 =

 1− 3
5 z

(1−z)(1− 1
10 z)

1
2 z

(1−z)(1− 1
10 z)

2
5 z

(1−z)(1− 1
10 z)

1− 1
2 z

(1−z)(1− 1
10 z)



John C.S. Lui () Computer System Performance Evaluation 13 / 82

Introduction Transient Analysis via z-transform

(I − zP)−1 =


4/9
1−z + 5/9

1− z
10

5/9
1−z + −5/9

1− z
10

4/9
1−z + −4/9

1− z
10

5/9
1− z

10
+ 4/9

1− z
10


=

1
1− z

[
4/9 5/9
4/9 5/9

]
+

1
1− 1

10z

[
5/9 −5/9
−4/9 4/9

]
Let H(n) be the inverse of (I − zP)−1 (or Pn):

H(n) =

[
4/9 5/9
4/9 5/9

]
+

(
1
10

)n [5/9 −5/9
−4/9 4/9

]
= S + T (n)

Therefore:
π(n) = π(0)H(n) for n = 0, 1, 2...

John C.S. Lui () Computer System Performance Evaluation 14 / 82

Introduction Rate of Convergence for DTMC

A closer look into Pn

What is the convergence rate of a particular MC? Consider:

P =

 0 3/4 1/4
1/4 0 3/4
1/4 1/4 1/2

 ,

(I − zP) =

 1 −3
4z −1

4z
−1

4z 1 −3
4z

−1
4z −1

4z 1− 1
2z

 .

John C.S. Lui () Computer System Performance Evaluation 16 / 82

Introduction Rate of Convergence for DTMC

A closer look into Pn: continue

We have

det(I − zP) = 1− 1
2

z − 7
16

z2 − 1
16

z2

= (1− z)

(
1 +

1
4

z
)2

It is easy to see that z = 1 is always a root of the determinant for an
irreducible Markov chain (which corresponds to the equilibrium
solution).

John C.S. Lui () Computer System Performance Evaluation 17 / 82

Introduction Rate of Convergence for DTMC

A closer look into Pn: continue

[I − zP]−1 =
1

(1− z)[1 + (1/4)z]2

×


1− 1

2z − 3
16z2 3

4z − 5
16z2 1

4z + 9
16z2

1
4z − 1

16z2 1− 1
2z − 1

16z2 3
4z + 1

16z2

1
4z − 1

16z2 1− 1
4z − 3

16z2 1− 3
16z2


Now the only issue is to find the inverse via partial fraction expansion.

John C.S. Lui () Computer System Performance Evaluation 18 / 82

Introduction Rate of Convergence for DTMC

A closer look into Pn: continue

[I − zP]−1 =
1/25
1− z

 5 7 13
5 7 13
5 7 13

+
1/5

(1 + z/4)

 0 −8 8
0 2 −2
0 2 −2


+

1/25
(1 + z/4)2

 20 33 −53
−5 8 −3
−5 −17 22



John C.S. Lui () Computer System Performance Evaluation 19 / 82

Introduction Rate of Convergence for DTMC

A closer look into Pn: continue

H(n) =
1
25

 5 7 13
5 7 13
5 7 13

+
1
5
(n + 1)

(
−1

4

)n
 0 −8 8

0 2 −2
0 2 −2


+

1
5

(
−1

4

)n
 20 33 −53
−5 8 −3
−5 −17 22

 n = 0, 1, . . .

John C.S. Lui () Computer System Performance Evaluation 20 / 82

Introduction Rate of Convergence for DTMC

A closer look into Pn: continue

Important Points
Equilibrium solution is independent of the initial state.
Two transient matrices, which decay in the limit.
The rate of decay is related to the characteristic values, which is
one over the zeros of the determinant.
The characteristic values are 1, 1/4, and 1/4.
The decay rate at each step is 1/16.

John C.S. Lui () Computer System Performance Evaluation 21 / 82

Markov Process with Rewards Introduction

Motivation
An N−state MC earns rij dollars when it makes a transition from
state i to j .
We can have a reward matrix R = [rij].
The Markov process accumulates a sequence of rewards.
What we want to find is the transient cumulative rewards, or even
long-term cumulative rewards.
For example, what is the expected earning of the toymaker in n
weeks if he (she) is now in state i?

John C.S. Lui () Computer System Performance Evaluation 23 / 82

Markov Process with Rewards Solution of Recurrence Relation

Let vi(n) be the expected total rewards in the next n transitions:

vi(n) =
N∑

j=1

pij [rij + vj(n − 1)] i = 1, . . . , N, n = 1, 2, ... (3)

=
N∑

j=1

pij rij +
N∑

j=1

pijvj(n − 1) i = 1, . . . , N, n = 1, 2, ... (4)

Let qi =
∑N

j=1 pij rij , for i = 1, . . . , N and qi is the expected reward for
the next transition if the current state is i , and

vi(n) = qi +
N∑

j=1

pijvj(n − 1) i = 1, . . . , N, n = 1, 2, ... (5)

In vector form, we have:

v(n) = q + Pv(n − 1) n = 1, 2, .. (6)

John C.S. Lui () Computer System Performance Evaluation 25 / 82

Markov Process with Rewards The Toymaker Example

Example

Parameters
Successful business and again a successful business in the
following week, earns $9.
Unsuccessful business and again an unsuccessful business in the
following week, loses $7.
Successful (or unsuccessful) business and an unsuccessful
(successful) business in the following week, earns $3.

John C.S. Lui () Computer System Performance Evaluation 27 / 82

Markov Process with Rewards The Toymaker Example

Example

Parameters

Reward matrix R =

[
9 3
3 −7

]
, and P =

[
0.5 0.5
0.4 0.6

]
.

We have q =

[
0.5(9) + 0.5(3)

0.4(3) + 0.6(−7)

]
=

[
6
−3

]
. Use:

vi(n) = qi +
N∑

j=1

pijvj(n − 1), for i = 1, 2, n = 1, 2, ... (7)

Assume v1(0) = v2(0) = 0, we have:
n = 0 1 2 3 4 5 ...

v1(n) 0 6 7.5 8.55 9.555 10.5555
v2(n) 0 -3 -2.4 -1.44 -0.444 0.5556

John C.S. Lui () Computer System Performance Evaluation 28 / 82

Markov Process with Rewards The Toymaker Example

Example

Observations
If one day to go and if I am successful (unsuccessful), I should
continue (stop) my business.
If I am losing and I still have four or less days to go, I should stop.
For large n, the long term average gain, v1(n)− v2(n), has a
difference of $10 if I start from state 1 instead of state 2. In other
words, starting from a successful business will have $10 gain, as
compare with an unsuccessful business.
For large n, v1(n)− v1(n − 1) = 1 and v2(n)− v2(n − 1) = 1. In
other words, each day brings a $1 of profit.

John C.S. Lui () Computer System Performance Evaluation 29 / 82

Markov Process with Rewards The Toymaker Example

z−transform reward analysis for toymaker

Equation (7) can be written:

vi(n + 1) = qi +
N∑

j=1

pijvj(n), for i = 1, 2, n = 0, 1, 2, ...

Apply z−transform, we have:

z−1 [v(z)− v(0)] =
1

1− z
q + Pv(z)

v(z)− v(0) =
z

1− z
q + zPv(z)

(I − zP) v(z) =
z

1− z
q + v(0)

v(z) =
z

1− z
(I − zP)−1 q + (I − zP)−1 v(0)

John C.S. Lui () Computer System Performance Evaluation 30 / 82

Markov Process with Rewards The Toymaker Example

z−transform reward analysis for toymaker

Assume v(0) = 0 (i.e., terminating cost is zero), we have:

v(z) =
z

1− z
(I − zP)−1 q. (8)

Based on previous derivation:

(I − zP)−1 =
1

1− z

[
4/9 5/9
4/9 5/9

]
+

1
1− 1

10z

[
5/9 −5/9
−4/9 4/9

]

John C.S. Lui () Computer System Performance Evaluation 31 / 82

Markov Process with Rewards The Toymaker Example

z−transform reward analysis for toymaker

z
1− z

(I − zP)−1 =
z

(1− z)2

»
4/9 5/9
4/9 5/9

–
+

z

(1− z)(1− 1
10 z)

»
5/9 −5/9
−4/9 4/9

–

=
z

(1− z)2

»
4/9 5/9
4/9 5/9

–
+

10/9
1− z

+
−10/9
1− 1

10 z

!»
5/9 −5/9
−4/9 4/9

–

Let F (n) = [z/(1− z)] (I − zP)−1, then

F (n) = n
[

4/9 5/9
4/9 5/9

]
+

10
9

[
1−

(
1
10

)n] [5/9 −5/9
−4/9 4/9

]

Given that q =

[
6
−3

]
, we can obtain v(n) in closed form.

John C.S. Lui () Computer System Performance Evaluation 32 / 82

Markov Process with Rewards The Toymaker Example

z−transform reward analysis for toymaker

v(n) = n
[

1
1

]
+

10
9

[
1−

(
1
10

)n] [5
−4

]
n = 0, 1, 2, 3...

When n →∞, we have:

v1(n) = n +
50
9

; v2(n) = n − 40
9

.

For large n, v1(n)− v2(n) = 10.
For large n, the slope of v1(n) or v2(n), the average reward per
transition, is 1, or one unit of return per week. We can the average
reward per transition the gain.

John C.S. Lui () Computer System Performance Evaluation 33 / 82

Markov Process with Rewards The Toymaker Example

Asymptotic Behavior: for long duration process

We derived this previously:

v(z) =
z

1− z
(I − zP)−1 q + (I − zP)−1 v(0).

The inverse transform of (I − zP)−1 has the form of S + T (n).
S is a stochastic matrix whose i th row is the limiting state
probabilities if the system started in the i th state,
T (n) is a set of differential matrices with geometrically decreasing
coefficients.

John C.S. Lui () Computer System Performance Evaluation 34 / 82

Markov Process with Rewards The Toymaker Example

Asymptotic Behavior: for long duration process

We can write (I − zP)−1 = 1
1−z S + T (z) where T (z) is the

z-transform of T (n). Now we have

v(z) =
z

(1− z)2 Sq +
z

1− z
T (z)q +

1
1− z

Sv(0) + T (z)v(0)

After inversion, v(n) = nSq + T (1)q + Sv(0).
If a column vector g = [gi] is defined as g = Sq, then

v(n) = ng + T (1)q + Sv(0). (9)

John C.S. Lui () Computer System Performance Evaluation 35 / 82

Markov Process with Rewards The Toymaker Example

Asymptotic Behavior: for long duration process

Since any row of S is π, the steady state prob. vector of the MC,
so all gi are the same and gi = g =

∑N
i=1 πiqi .

Define v = T (1)q + Sv(0), we have:

v(n) = ng + v for large n. (10)

John C.S. Lui () Computer System Performance Evaluation 36 / 82

Markov Process with Rewards The Toymaker Example

Example of asymptotic Behavior

For the toymaker’s problem,

(I − zP)−1 =
1

1− z

[
4/9 5/9
4/9 5/9

]
+

1
1− 1

10z

[
5/9 −5/9
−4/9 4/9

]
=

1
1− z

S + T (z)

Since

S =

[
4/9 5/9
4/9 5/9

]
; T (1) =

[
50/81 −50/81
−40/81 40/81

]
q =

[
6
−3

]
; g = Sq =

[
1
1

]
.

By assumption, v(0) = 0, then v = T (1)q =

[
50/9
−40/9

]
.

Therefore, we have v1(n) = n + 50
9 and v2(n) = n − 40

9 .

John C.S. Lui () Computer System Performance Evaluation 37 / 82

Sequential Decision Process Introduction

Toymaker’s Alternatives

Suppose that the toymaker has other alternatives.
If he has a successful toy, use advertising to decrease the chance
that the toy will fall from favor.
However, there is a cost to advertising and therefore the expected
profit will generally be lower.
If in state 1 and advertising is used, we have:

[p1,j] = [0.8, 0.2] [r1,j] = [4, 4]

In other words, for each state, the toymaker has to make a
decision, advertise or not.

John C.S. Lui () Computer System Performance Evaluation 39 / 82

Sequential Decision Process Introduction

Toymaker’s Alternatives

In general we have policy 1 (no advertisement) and policy 2
(advertisement). Use superscript to represent policy.
The transition probability matrices and rewards in state 1
(successful toy) are:

[p1
1,j] = [0.5, 0.5], [r1

1,j] = [9, 3];

[p2
1,j] = [0.8, 0.2], [r2

1,j] = [4, 4];

The transition probability matrices and rewards in state 2
(unsuccessful toy) are:

[p1
2,j] = [0.4, 0.6], [r1

2,j] = [3,−7];

[p2
2,j] = [0.7, 0.3], [r2

2,j] = [1,−19];

John C.S. Lui () Computer System Performance Evaluation 40 / 82

Sequential Decision Process Problem Formulation

Toymaker’s Sequential Decision Process

Suppose that the toymaker has n weeks remaining before his
business will close down and n is the number of stages remaining
in the process.
The toymaker would like to know as a function of n and his
present state, what alternative (policy) he should use to maximize
the total earning over n−week period.
Define di(n) as the policy to use when the system is in state i and
there are n−stages to go.
Redefine v∗i (n) as the total expected return in n stages starting
from state i if an optimal policy is used.

John C.S. Lui () Computer System Performance Evaluation 42 / 82

Sequential Decision Process Problem Formulation

We can formulate v∗i (n) as

v∗i (n + 1) = max
k

N∑
j=1

pk
ij

[
r k
ij + v∗j (n)

]
n = 0, 1, . . .

Based on the “Principle of Optimality”, we have

v∗i (n + 1) = max
k

qk
i +

N∑
j=1

pk
ij v
∗
j (n)

 n = 0, 1, . . .

In other words, we start from n = 0, then n = 1, and so on.

John C.S. Lui () Computer System Performance Evaluation 43 / 82

Sequential Decision Process Problem Formulation

The numerical solution

Assume v∗i = 0 for i = 1, 2, we have:
n = 0 1 2 3 4 · · ·

v1(n) 0 6 8.20 10.222 12.222 · · ·
v2(n) 0 -3 -1.70 0.232 2.223 · · ·

d1(n) - 1 2 2 2 · · ·
d2(n) - 1 2 2 2 · · ·

John C.S. Lui () Computer System Performance Evaluation 44 / 82

Sequential Decision Process Problem Formulation

Lessons learnt

For n ≥ 2 (greater than or equal to two weeks decision), it is better
to do advertisement.
For this problem, convergence seems to have taken place at
n = 2. But for general problem, it is usually difficult to quantify.
Some limitations of this value-iteration method:

What about infinite stages?
What about problems with many states (e.g., n is large) and many
possible policies (e.g., k is large)?
What is the computational cost?

John C.S. Lui () Computer System Performance Evaluation 45 / 82

Policy-Iteration Method Introduction

Preliminary

From previous section, we know that the total expected earnings
depend upon the total number of transitions (n), so the quantity
can be unbounded.
A more useful quantity is the average earnings per unit time.
Assume we have an N−state Markov chain with one-step
transition probability matrix P = [pij] and reward matrix R = [rij].
Assume ergodic MC, we have the limiting state probabilities πi for
i = 1, . . . , N, the gain g is

g =
N∑

i=1

πiqi ; where qi =
N∑

j=1

pij rij i = 1, . . . , N.

John C.S. Lui () Computer System Performance Evaluation 47 / 82

Policy-Iteration Method Introduction

A Possible five-state Markov Chain SDP

Consider a MC with N = 5 states and k = 5 possible alternatives.
It can be illustrated by

k alternatives

i present state

j next state

X

X

X

XX

pkij

X indicate the the chosen policy, we have d = [3, 2, 2, 1, 3].
Even for this small system, we have 4× 3× 2× 1× 5 = 120
different policies.

John C.S. Lui () Computer System Performance Evaluation 48 / 82

Policy-Iteration Method The Value-Determination Operation

Suppose we are operating under a given policy with a specific MC with
rewards. Let vi(n) be the total expected reward that the system obtains
in n transitions if it starts from state i . We have:

vi(n) =
N∑

j=1

pij rij +
N∑

j=1

pijvj(n − 1) n = 1, 2, . . .

vi(n) = qi +
N∑

j=1

pijvj(n − 1) n = 1, 2, . . . (11)

Previous, we derived the asymptotic expression of v(n) in Eq. (9) as

vi(n) = n

(
N∑

i=1

πiqi

)
+ vi = ng + vi for large n. (12)

John C.S. Lui () Computer System Performance Evaluation 50 / 82

Policy-Iteration Method The Value-Determination Operation

For large number of transitions, we have:

ng + vi = qi +
N∑

j=1

pij
[
(n − 1)g + vj

]
i = 1, ..., N

ng + vi = qi + (n − 1)g
N∑

j=1

pij +
N∑

j=1

pijvj .

Since
∑N

j=1 pij = 1, we have

g + vi = qi +
N∑

j=1

pijvj i = 1, . . . , N. (13)

Now we have N linear simultaneous equations but N + 1 unknown (vi
and g). To resolve this, set vN = 0, and solve for other vi and g. They
will be called the relative values of the policy.

John C.S. Lui () Computer System Performance Evaluation 51 / 82

Policy-Iteration Method The Policy-Improvement Routine

On Policy Improvement

Given these relative values, we can use them to find a policy that
has a higher gain than the original policy.
If we had an optimal policy up to stage n, we could find the best
alternative in the ith state at stage n + 1 by

arg max
k

qk
i +

N∑
j=1

pk
ij vj(n)

For large n, we can perform substitution as

arg max
k

qk
i +

N∑
j=1

pk
ij (ng + vj) = arg max

k
qk

i + ng +
N∑

j=1

pk
ij vj .

Since ng is independent of alternatives, we can maximize

arg max
k

qk
i +

N∑
j=1

pk
ij vj . (14)

John C.S. Lui () Computer System Performance Evaluation 53 / 82

Policy-Iteration Method The Policy-Improvement Routine

We can use the relative values (vj) from the value-determination
operation for the policy that was used up to stage n and apply
them to Eq. (14).
In summary, the policy improvement is:

For each state i , find the alternative k which maximizes Eq. (14)
using the relative values determined by the old policy.
The alternative k now becomes di the decision for state i .
A new policy has been determined when this procedure has been
performed for every state.

John C.S. Lui () Computer System Performance Evaluation 54 / 82

Policy-Iteration Method The Policy-Improvement Routine

The Policy Iteration Method
1 Value-Determination Method: use pij and qi for a given policy to

solve

g + vi = qi +
N∑

j=1

pijvj i = 1, ..., N.

for all relative values of vi and g by setting vN = 0.
2 Policy-Improvement Routine: For each state i , find alternative k

that maximizes

qk
i +

N∑
j=1

pk
ij vj .

using vi of the previous policy. The alternative k becomes the new
decision for state i , qk

i becomes qi and pk
ij becomes pij .

3 Test for convergence (check for di and g), if not, go back to step 1.

John C.S. Lui () Computer System Performance Evaluation 55 / 82

Policy-Iteration Method Illustration: Toymaker’s problem

Toymaker’s problem

For the toymaker we presented, we have policy 1 (no advertisement)
and policy 2 (advertisement).

state i alternative (k) pk
i1 pk

12 r k
i1 r k

i2 qk
i

1 no advertisement 0.5 0.5 9 3 6
1 advertisement 0.8 0.2 4 4 4
2 no advertisement 0.4 0.6 3 -7 -3
2 advertisement 0.7 0.3 1 -19 -5

Since there are two states and two alternatives, there are four policies,
(A, A), (Ā, A), (A, Ā), (Ā, Ā), each with the associated transition
probabilities and rewards. We want to find the policy that will maximize
the average earning for indefinite rounds.

John C.S. Lui () Computer System Performance Evaluation 57 / 82

Policy-Iteration Method Illustration: Toymaker’s problem

Start with policy-improvement
Since we have no a priori knowledge about which policy is best,
we set v1 = v2 = 0.
Enter policy-improvement which will select an initial policy that
maximizes the expected immediate reward for each state.
Outcome is to select policy 1 for both states and we have

d =

[
1
1

]
P =

[
0.5 0.5
0.4 0.6

]
q =

[
6
−3

]
Now we can enter the value-determination operation.

John C.S. Lui () Computer System Performance Evaluation 58 / 82

Policy-Iteration Method Illustration: Toymaker’s problem

Value-determination operation

Working equation: g + vi = qi +
∑N

j=1 pijvj , for i = 1, . . . , N.
We have

g + v1 = 6 + 0.5v1 + 0.5v2, g + v2 = −3 + 0.4v1 + 0.6v2.

Setting v2 = 0 and solving the equation, we have

g = 1, v1 = 10, v2 = 0.

Now enter policy-improvement routine.

John C.S. Lui () Computer System Performance Evaluation 59 / 82

Policy-Iteration Method Illustration: Toymaker’s problem

Policy-improvement routine

State Alternative Test Quantity
i k qk

i +
∑N

j=1 pk
ij vj

1 1 6 + 0.5(10) + 0.5(0) = 11 X
1 2 4 + 0.8(10) + 0.2(0) = 12

√

2 1 −3 + 0.4(10) + 0.6(0) = 1 X
2 2 −5 + 0.7(10) + 0.3(0) = 2

√

Now we have a new policy, instead of (Ā, Ā), we have (A, A).
Since the policy has not converged, enter value-determination.
For this policy (A, A), we have

d =

[
2
2

]
P =

[
0.8 0.2
0.7 0.3

]
q =

[
4
−5

]

John C.S. Lui () Computer System Performance Evaluation 60 / 82

Policy-Iteration Method Illustration: Toymaker’s problem

Value-determination operation
We have

g + v1 = 4 + 0.8v1 + 0.2v2, g + v2 = −5 + 0.7v1 + 0.3v2.

Setting v2 = 0 and solving the equation, we have

g = 2, v1 = 10, v2 = 0.

The gain of the policy (A, A) is thus twice that of the original policy,
and the toymaker will earn 2 units per week on the average, if he
follows this policy.
Enter the policy-improvement routine again to check for
convergence, but since vi didn’t change, it converged and we stop.

John C.S. Lui () Computer System Performance Evaluation 61 / 82

SDP with Discounting Introduction

The importance of discount factor β.

Working equation for SDP with discounting
Let vi(n) be the present value of the total expected reward for a
system in state i with n transitions before termination.

vi(n) =
N∑

j=1

pij
[
rij + βvj(n − 1)

]
i = 1, 2, ..., N, i = 1, 2, ...

= qi + β

N∑
j=1

pijvj(n − 1) i = 1, 2, ..., N. i = 1, 2, ... (15)

The above equation also can represent the model of uncertainty
(with probability β) of continuing another transition.

John C.S. Lui () Computer System Performance Evaluation 63 / 82

SDP with Discounting Introduction

Z−transform of v(n)

v(n + 1) = q + βPv(n)

z−1 [v(z)− v(0)] =
1

1− z
q + βPv(z)

v(z)− v(0) =
z

1− z
q + βPv(z)

(I − βzP) v(z) =
z

1− z
q + v(0)

v(z) =
z

1− z
(I − βzP)−1 q + (I − βzP)−1 v(0) (16)

John C.S. Lui () Computer System Performance Evaluation 64 / 82

SDP with Discounting Introduction

Example

Using the toymaker’s example, we have

d =

[
1
1

]
; P =

[
1/2 1/2
2/5 3/5

]
; q =

[
6
−3

]
.

In short, he is not advertising and not doing research.

Also, there is a probability that he will go out of business after a week
(β = 1

2). If he goes out of business, his reward will be zero (v(0) = 0).

What is the v(n)?

John C.S. Lui () Computer System Performance Evaluation 65 / 82

SDP with Discounting Introduction

Using Eq. (16), we have

v(z) =
z

1− z
(I − βzP)−1 q = H(z)q.

(I − 1
2

zP) =

[
1− 1

4z −1
4z

−1
5z 1− 3

10z

]

(I − 1
2

zP)−1 =

 1− 3
10 z

(1− 1
2 z)(1− 1

20 z)

1
4 z

(1− 1
2 z)(1− 1

20 z)
1
5 z

(1− 1
2 z)(1− 1

20 z)

1− 1
4 z

(1− 1
2 z)(1− 1

20 z)


H(z) =

 z(1− 3
10 z)

(1−z)(1− 1
2 z)(1− 1

20 z)

1
4 z2

(1−z)(1− 1
2 z)(1− 1

20 z)
1
5 z2

(1−z)(1− 1
2 z)(1− 1

20 z)

z(1− 1
4 z)

(1−z)(1− 1
2 z)(1− 1

20 z)



John C.S. Lui () Computer System Performance Evaluation 66 / 82

SDP with Discounting Introduction

H(z)=
1

1− z

[28
19

10
19

8
19

30
19

]
+

1
1− 1

2z

[
−8

9 −10
9

−8
9 −10

9

]
+

1
1− 1

20z

[
−100

171
100
171

80
171 − 80

171

]
H(n)=

[28
19

10
19

8
19

30
19

]
+

(
1
2

)n [−8
9 −10

9
−8

9 −10
9

]
+

(
1
20

)n [−100
171

100
171

80
171 − 80

171

]

Since q =

[
6
−3

]
, we have

v(n) =

[138
19
−42

19

]
+

(
1
2

)n [−2
−2

]
+

(
1
20

)n [−100
19

80
9

]
Note that n →∞, v1(n)→ 138

19 and v2(n)→ −42
19 , which is NOT a

function of n as the non-discount case.

John C.S. Lui () Computer System Performance Evaluation 67 / 82

SDP with Discounting Steady State DSP with Discounting

What is the present value v(n) as n →∞?
From Eq. (15), we have v(n + 1) = q + βPv(n), hence

v(1) = q + βPv(0)

v(2) = q + βPq + β2P2v(0)

v(3) = q + βPq + β2P2q + β3P3v(0)

... =
...

v(n) =

n−1∑
j=0

(βP)j

q + βnPnv(0)

v = lim
n→∞

v(n) =

 ∞∑
j=0

(βP)j

q

John C.S. Lui () Computer System Performance Evaluation 69 / 82

SDP with Discounting Steady State DSP with Discounting

What is the present value v(n) as n →∞?
Note that v(0) = 0. Since P is a stochastic matrix, all its eigenvalues
are less than or equal to 1, and the matrix βP has eigenvalues that are
strictly less than 1 because 0 ≤ β < 1. We have

v =

 ∞∑
j=0

(βP)j

q = (I − βP)−1 q (17)

Note: The above equation also provides a simple and efficient
numerical method to compute v .

John C.S. Lui () Computer System Performance Evaluation 70 / 82

SDP with Discounting Steady State DSP with Discounting

Another way to solve v

Direct Method
Another way to compute v i is to solve N equations:

vi = qi + β

N∑
j=1

pijvj i = 1, 2, . . . , N. (18)

Consider the present value of the toymaker’s problem with β = 1
2 and

P =

[
1/2 1/2
2/5 3/5

]
q =

[
6
−3

]
.

We have v1 = 6 + 1
4v1 + 1

4v2 and v2 = −3 + 1
5v1 + 3

10v2, with solution
v1 = 138

19 and v2 = −42
19 .

John C.S. Lui () Computer System Performance Evaluation 71 / 82

SDP with Discounting Value Determination Operation

Value Determination for infinite horizon
Assume large n (or n →∞) and that v(0) = 0.
Evaluate the expected present reward for each state i using

vi = qi + β

N∑
j=1

pijvj i = 1, 2, . . . , N. (19)

for a given set of transition probabilities pij and the expected
immediate reward qi .

John C.S. Lui () Computer System Performance Evaluation 73 / 82

SDP with Discounting Policy-Improvement Routine

Policy-improvement

The optimal policy is the one that has the highest present values
in all states.
If we had a policy that was optimal up to stage n, for state n + 1,
we should maximize qk

i + β
∑N

j=1 pijvj(n) with respect to all
alternative k in the i th state.
Since we are interested in the infinite horizon, we substitute vj for
vj(n), we have qk

i + β
∑N

j=1 pijvj .

Suppose that the present value for an arbitrary policy have been
determined, then a better policy is to maximize

qk
i + β

N∑
j=1

pk
ij vj

using vi determined for the original policy. This k now becomes
the new decision for the i th state.

John C.S. Lui () Computer System Performance Evaluation 75 / 82

SDP with Discounting Policy Improvement Iteration

Iteration for SDP with Discounting
1 Value-Determination Operation: Use pij and qi to solve th set of

equations

vi = qi + β

N∑
j=1

pijvj i = 1, 2, ..., N.

2 Policy-Improvement Routing: For each state i , find the
alternative k∗ that maximizes

qk
i + β

N∑
j=1

pk
ij vj

using the present values of vj from the previous policy. Then k∗

becomes the new decision for the ith state, qk∗
i becomes qi and

pk∗
ij becomes pij .

3 Check for convergence of policy. If not, go back to step 1, else
halt.

John C.S. Lui () Computer System Performance Evaluation 77 / 82

SDP with Discounting An Example

Consider the toymaker’s example with β = 0.9, we choose the initial
policy that maximizes the expected immediate reward, we have

d =

[
1
1

]
P =

[
0.5 0.5
0.4 0.6

]
q =

[
6
−3

]
Using the Value-Determination Operation, we have

v1 = 6 + 0.9(0.5v1 + 0.5v2) v2 = −3 + 0.9(0.4v1 + 0.6v2)

The solution is v1 = 15.5 and v2 = 5.6.

John C.S. Lui () Computer System Performance Evaluation 79 / 82

SDP with Discounting An Example

Policy-improvement routine

State Alternative Value Test Quantity
i k qk

i + β
∑N

j=1 pk
ij vj

1 1 6 + 0.9[0.5(15.5) + 0.5(5.6)] = 15.5 X
1 2 4 + 0.9[0.8(15.5) + 0.2(5.6)] = 16.2

√

2 1 −3 + 0.9[0.4(15.5) + 0.6(5.6)] = 5.6 X
2 2 −5 + 0.9[0.7(15.5) + 0.3(5.6)] = 6.3

√

Now we have a new policy, instead of (Ā, Ā), we have (A, A).
Since the policy has not converged, enter value-determination.
For this policy (A, A), we have

d =

[
2
2

]
P =

[
0.8 0.2
0.7 0.3

]
, q =

[
4
−5

]

John C.S. Lui () Computer System Performance Evaluation 80 / 82

SDP with Discounting An Example

Value-Determination Operation

Using the Value-Determination Operation, we have

v1 = 4 + 0.9(0.8v1 + 0.2v2) v2 = −5 + 0.9(0.7v1 + 0.3v2)

The solution is v1 = 22.2 and v2 = 12.3, which indicate a signficant
increase in present values.

John C.S. Lui () Computer System Performance Evaluation 81 / 82

SDP with Discounting An Example

Policy-improvement routine

State Alternative Value Test Quantity
i k qk

i + β
∑N

j=1 pk
ij vj

1 1 21.5 X
1 2 22.2

√

2 1 11.6 X
2 2 12.3

√

The present value v1 = 22.2 and v2 = 12.3.
Now we have the same policy (A, A). Since the policy remains the
same, and the present values are the same. We can stop.

John C.S. Lui () Computer System Performance Evaluation 82 / 82

	Outline
	Introduction
	Motivation
	Review of DTMC
	Transient Analysis via z-transform
	Rate of Convergence for DTMC

	Markov Process with Rewards
	Introduction
	Solution of Recurrence Relation
	The Toymaker Example

	Solution of Sequential Decision Process (SDP)
	Introduction
	Problem Formulation

	Policy-Iteration Method for SDP
	Introduction
	The Value-Determination Operation
	The Policy-Improvement Routine
	Illustration: Toymaker's problem

	SDP with Discounting
	Introduction
	Steady State DSP with Discounting
	Value Determination Operation
	Policy-Improvement Routine
	Policy Improvement Iteration
	An Example

