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ABSTRACT
Frigyes Karinthy, in his 1929 short story “Láncszemek” (in
English, “Chains”) suggested that any two persons are dis-
tanced by at most six friendship links.1 Stanley Milgram in
his famous experiments challenged people to route postcards
to a fixed recipient by passing them only through direct ac-
quaintances. Milgram found that the average number of in-
termediaries on the path of the postcards lay between 4:4

and 5:7, depending on the sample of people chosen. We re-
port the results of the first world-scale social-network graph-
distance computations, using the entire Facebook network
of active users (⇡ 721 million users, ⇡ 69 billion friend-
ship links). The average distance we observe is 4:74, corre-
sponding to 3:74 intermediaries or “degrees of separation”,
prompting the title of this paper. More generally, we study
the distance distribution of Facebook and of some interesting
geographic subgraphs, looking also at their evolution over
time. The networks we are able to explore are almost two
orders of magnitude larger than those analysed in the previ-
ous literature. We report detailed statistical metadata show-
ing that our measurements (which rely on probabilistic algo-
rithms) are very accurate.

INTRODUCTION

⇤Paolo Boldi, Marco Rosa and Sebastiano Vigna have been par-
tially supported by a Yahoo! faculty grant and by MIUR PRIN
“Query log e web crawling”. This research is done in the frame
of the EC FET NADINE project.
1The exact wording of the story is slightly ambiguous: “He bet us
that, using no more than five individuals, one of whom is a personal
acquaintance, he could contact the selected individual [. . . ]”. It is
not completely clear whether the selected individual is part of the
five, so this could actually allude to distance five or six in the lan-
guage of graph theory, but the “six degrees of separation” phrase
stuck after John Guare’s 1990 eponymous play. Following Mil-
gram’s definition and Guare’s interpretation (see further on), we
will assume that “degrees of separation” is the same as “distance
minus one”, where “distance” is the usual path length (the number
of arcs in the path).
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At the 20th World–Wide Web Conference, in Hyderabad,
India, one of the authors (Sebastiano) presented a new tool
for studying the distance distribution of very large graphs:
HyperANF [3]. Building on previous graph compression
work [4] and on the idea of diffusive computation pioneered
in [19], the new tool made it possible to accurately study the
distance distribution of graphs orders of magnitude larger
than what was previously possible.

One of the goals in studying the distance distribution is the
identification of interesting statistical parameters that can be
used to tell proper social networks from other complex net-
works, such as web graphs. More generally, the distance
distribution is one interesting global feature that makes it
possible to reject probabilistic models even when they match
local features such as the in-degree distribution. In particu-
lar, earlier work [3] had shown that the spid2, which mea-
sures the dispersion of the distance distribution, appeared to
be smaller than 1 (underdispersion) for social networks, but
larger than one (overdispersion) for web graphs. Hence, dur-
ing the talk, one of the main open questions was “What is the
spid of Facebook?”.

Lars Backstrom happened to listen to the talk, and suggested
a collaboration studying the Facebook graph. This was of
course an extremely intriguing possibility: beside testing
the “spid hypothesis”, computing the distance distribution of
the Facebook graph would have been the largest Milgram-
like [18] experiment ever performed, orders of magnitudes
larger than previous attempts (during our experiments Face-
book has ⇡ 721 million active users and ⇡ 69 billion friend-
ship links).

This paper reports our findings in studying the distance dis-
tribution of the largest electronic social network ever cre-
ated. The average distance of the current Facebook graph is
4:74. Moreover, the spid of the graph is just 0:09, corrobo-
rating the conjecture [3] that proper social networks have a
spid well below one. Contrary to what has been commonly
observed analysing graphs orders of magnitude smaller, we
also observe both a stabilisation of the average distance over
time and that the density of the graph over time does not
neatly fit previous models. Towards a deeper understand-
ing of the structure of the Facebook graph, we apply recent
compression techniques that exploit the underlying cluster
2The spid (shortest-paths index of dispersion) is the variance-to-
mean ratio of the distance distribution.
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structure of the graph to increase locality. The results ob-
tained suggests the existence of overlapping clusters similar
to those observed in other social networks.

Replicability of scientific results is important. While we
can not release to the public the actual 30 graphs that have
been studied in this paper, we distribute freely the derived
data upon which the tables and figures of this papers have
been built, that is, the WebGraph properties, which contain
structural information about the graphs, and the probabilis-
tic estimations of their neighbourhood functions (see below)
that have been used to study their distance distributions. The
software used in this paper is distributed under the (L)GPL
General Public License.3

RELATED WORK
The most obvious precursor of our work is Milgram’s cele-
brated “small world” experiment, described first in [18] and
later with more details in [21]: Milgram’s works were ac-
tually following a stream of research started in sociology
and psychology in the late 50s [11]. In his experiment, Mil-
gram aimed to answer the following question (in his words):
“given two individuals selected randomly from the popula-
tion, what is the probability that the minimum number of
intermediaries required to link them is 0, 1, 2, . . . , k?”. In
other word, Milgram is interested in computing the distance
distribution of the acquaintance graph.

The technique Milgram used (inspired by [20]) was the fol-
lowing: he selected 296 volunteers (the starting population)
and asked them to dispatch a message to a specific individ-
ual (the target person), a stockholder living in Sharon, MA,
a suburb of Boston, and working in Boston. The message
could not be sent directly to the target person (unless the
sender knew him personally), but could only be mailed to a
personal acquaintance who is more likely than the sender to
know the target person. The starting population consisted of
100 people living in Boston chosen at random, 100 stock-
holders living in Nebraska (i.e., people living far from the
target but sharing with him their profession), and 96 people
living in Nebraska chosen at random.

In a nutshell, the results obtained from Milgram’s experi-
ments were the following: only 64 chains (22%) were com-
pleted (i.e., they reached the target); the average number of
intermediaries in these chains was 5:2, with a marked dif-
ference between the Boston group (4:4) and the rest of the
starting population, whereas the difference between the two
other subpopulations was not statistically significant; at the
other end of the spectrum, the random Nebraskan population
needed 5:7 intermediaries on average (i.e., rounding up, “six
degrees of separation”). The main conclusions outlined in
Milgram’s paper were that the average path length is small,
much smaller than expected, and that geographic location
seems to have an impact on the average length whereas other
information (e.g., profession) does not.

Note that Milgram was measuring the average length of a
3See http://webgraph.dsi.unimi.it/ and http://law.
dsi.unimi.it/.

routing path on a social network, which is truly only an up-
per bound on the average distance (as the people involved
in the experiment were not necessarily sending the postcard
to an acquaintance on a shortest path to the destination).4
In a sense, the results he obtained are even more striking,
because not only do they prove that the world is small, but
that the actors living in the small world are able to exploit
its smallness. Nevertheless, it is clear that in [18, 21] the
purpose of the authors is to estimate the number of inter-
mediaries: the postcards are just a tool, and the details of
the paths they follow are studied only as an artifact of the
measurement process. Efficient routing was an unintended
finding of these experiments, and largely went unremarked
until much later [12]. Had Milgram had an actual database
of friendship links and algorithms like the ones we use, we
presume he would have dispensed with the postcards alto-
gether. In the words of Milgram and Travers:

The theoretical machinery needed to deal with social
networks is still in its infancy. The empirical technique
of this research has two major contribution to make to
the development of that theory. First it sets an upper
bound on the minimum number of intermediaries re-
quired to link widely separated Americans. Since sub-
jects cannot always foresee the most efficient path to
a target, our trace procedure must inevitably produce
chains longer than those generated by an accurate theo-
retical model which takes full account of all paths em-
anating from an individual.

Thus, we believe the experiments reported in this paper are
faithful to Milgram’s original purpose5, and able to over-
come the problem that Milgram and Travers refer to in the
above quotation—we are able to foresee the most efficient
(shortest) path.

One difference between our experiment and Milgram’s is
that the notion of friendship in Facebook is hardly com-
parable to the idea of friendship in life; in particular, we
cannot expect that all Facebook contacts are first-name ac-
quaintances (as it was originally required by Milgram and
Travers). This fact may artificially reduce path lengths, but
also the contrary is true: since there will be many first-name
acquaintances that are not on Facebook (and hence not Face-
book friends) some short paths will be missing. These two
phenomena will likely, at least in part, balance each other;
so, although we do not have (and cannot obtain) a precise
proof of this fact, we do not think we are losing or gain-
ing much in considering the notion of Facebook friend as
a surrogate of first-name friendship. Nonetheless, a strict
4Incidentally, this observation is at the basis of one of the most
intense monologues in Guare’s play: Ouisa, unable to locate Paul,
the con man who convinced them he is the son of Sidney Poitier,
says “I read somewhere that everybody on this planet is separated
by only six other people. Six degrees of separation. Between us
and everybody else on this planet. [. . . ] But to find the right six
people.” Note that this fragment of the monologue clearly shows
that Guare’s interpretation of the “six degree of separation” idea is
equivalent to distance seven in the graph-theoretical sense.
5We felt the need to state this fact very clearly, as there is a lot
of confusion about this issue: in any case, we invite the reader to
consult [21] directly.



comparison of Milgram’s experiments and ours is difficult.6

We limited ourselves to the part of Milgram’s experiment
that is more clearly defined, that is, the estimation of the
distance distribution. The largest experiment similar to the
ones presented here that we are aware of is [14], where the
authors considered a communication graph with 180 million
nodes and 1:3 billion edges extracted from a snapshot of the
Microsoft Messenger network; they find an average distance
of 6:6 (i.e., 5:6 intermediaries; again, rounding up, six de-
grees of separation). Note, however, that the communication
graph in [14] has an edge between two persons only if they
communicated during a specific one-month observation pe-
riod, and thus does not take into account friendship links
through which no communication was detected.

In another study, the authors of [22] explore the distance dis-
tribution of some small-sized social networks. In both cases
the networks were undirected and small enough (by at least
two orders of magnitude) to be accessed efficiently in a ran-
dom fashion, so the authors used sampling techniques. We
remark, however, that sampling is not easily applicable to di-
rected networks (such as Twitter) that are not strongly con-
nected, whereas our techniques would still work (for some
details about the applicability of sampling, see [7]).

Analyzing the evolution of social networks in time is also a
lively trend of research. Leskovec, Kleinberg and Faloutsos
observe in [15] that the average degree of complex networks
increase over time while the effective diameter shrinks. Their
experiments are conducted on a much smaller scale (their
largest graph has 4 millions of nodes and 16 millions of
arcs), but it is interesting that the phenomena observed seems
quite consistent. Probably the most controversial point is the
hypothesis that the number of edges m.t/ at time t is related
to the number of nodes n.t/ by the following relation:

m.t/ / n.t/

a

;

where a is a fixed exponent usually lying in the interval
.1 : : 2/. We will discuss this hypothesis in light of our find-
ings.

DEFINITIONS AND TOOLS
The neighbourhood function N

G

.t/ of a graph G returns for
each t 2 N the number of pairs of nodes hx; yi such that
y is reachable from x in at most t steps. It provides data
about how fast the “average ball” around each node expands.
From the neighbourhood function it is possible to derive the
distance distribution (between reachable pairs), which gives
for each t the fraction of reachable pairs at distance exactly
t .

In this paper we use HyperANF, a diffusion-based algorithm
(building on ANF [19]) that is able to approximate quickly
the neighbourhood function of very large graphs; HyperANF
6Incidentally, there have been several attempts to reproduce
Milgram-like routing experiments on various large networks [17,
13, 10], an independent line of research that is interesting in its own
right, but we do not explore the routing properties of Facebook in
this study.

is a probabilistic algorithm giving as output a vector random
variable whose mean is the neighbourhood function to be
estimated. Our implementation also uses WebGraph [4] to
represent the graphs in a highly compressed but quickly ac-
cessible form.

HyperANF is based on the observation (made in [19]) that
B.x; r/, the ball of radius r around node x, satisfies

B.x; r/ D
[

x!y

B.y; r � 1/ [ f x g:

Since B.x; 0/ D f x g, we can compute each B.x; r/ incre-
mentally using sequential scans of the graph (i.e., scans in
which we go in turn through the successor list of each node).
The obvious problem is that during the scan we need to ac-
cess randomly the sets B.x; r � 1/ (the sets B.x; r/ can be
just saved on disk on a update file and reloaded later).

The space needed for such sets would be too large to be kept
in main memory. However, HyperANF represents these sets
in an approximate way, using HyperLogLog counters [9],
which could be thought as dictionaries that can answer just
questions about size: the answer is probabilistic and depends
on a random seed that is chosen independently for each run.
Each counter is made of a number of small (in our case, 5-
bit) registers, and the precision of the answer depends on the
number of registers.

Theoretical error bounds
The result of a run of HyperANF at the t -th iteration is an
estimation of the neighbourhood function in t . We can see it
as a random variable

O
N

G

.t/ D
X

0i<n

X

i;t

where each X

i;t

is the HyperLogLog counter that counts
nodes reached by node i in t steps (n is the number of nodes
of the graph). When m registers per counter are used, each
X

i;t

has a guaranteed relative standard deviation ⌘

m

 1:06=

p
m.

It is shown in [3] that the output O
N

G

.t/ of HyperANF at the
t -th iteration is an asymptotically almost unbiased estimator
of N

G

.t/, that is

EŒ

O
N

G

.t/ç

N

G

.t/

D 1 C ı

1

.n/ C o.1/ for n ! 1;

where ı

1

is the same as in [9][Theorem 1] (and jı
1

.x/j <

5 � 10

�5 as soon as m � 16). Moreover, O
N

G

.t/ has a relative
standard deviation not greater than that of the X

i

’s, that is
q

VarŒ O
N

G

.t/ç

N

G

.t/

 ⌘

m

:

In particular, our runs used m D 64 (⌘
m

D 0:1325) for all
graphs except for the two largest Facebook graphs, where
we used m D 32 (⌘

m

D 0:187). Runs were repeated so to
obtain a uniform relative standard deviation for all graphs.



EXPERIMENTS
The graphs analysed in this paper are graphs of Facebook
users who were active in May of 2011; an active user is one
who has logged in within the last 28 days. The decision
to restrict our study to active users allows us to eliminate
accounts that have been abandoned in early stages of cre-
ation, and focus on accounts that plausibly represent actual
individuals. In accordance with Facebook’s data retention
policies, historical user activity records are not retained, and
historical graphs for each year were constructed by consid-
ering currently active users that were registered by January
1st of that year, along with those friendship edges that were
formed prior that that date. The “current” graph is simply the
graph of active users at the time when the experiments were
performed (May 2011). The graph predates the existence of
Facebook “subscriptions”, a directed relationship feature in-
troduced in August 2011, and also does not include “pages”
(such as celebrities) that people may “like”. For standard
user accounts on Facebook there is a limit of 5 000 possible
friends.

We decided to extend our experiments in two directions: re-
gional and temporal. We thus analyse the entire Facebook
graph (fb), the USA subgraph (us), the Italian subgraph
(it) and the Swedish (se) subgraph. We also analysed
a combination of the Italian and Swedish graph (itse) to
check whether combining two regional but distant networks
could significantly change the average distance, in the same
spirit as in the original Milgram’s experiment.7 For each
graph we compute the distance distribution from 2007 up to
today by performing several HyperANF runs, obtaining an
estimate of values of neighbourhood function with relative
standard deviation at most 5:8%: in several cases, however,
we performed more runs, obtaining a higher precision. We
report the jackknife [8] estimate of derived values (such as
average distances) and the associated estimation of the stan-
dard error.

Setup
The computations were performed on a 24-core machine
with 72 GiB of memory and 1 TiB of disk space.8 The first
task was to import the Facebook graph(s) into a compressed
form for WebGraph [4], so that the multiple scans required
by HyperANF’s diffusive process could be carried out rela-
tively quickly. This part required some massaging of Face-
book’s internal IDs into a contiguous numbering: the result-
ing current fb graph (the largest we analysed) was com-
pressed to 345 GB at 20 bits per arc, which is 86% of the
information-theoretical lower bound (log

�
n

2

m

�
bits for n nodes

and m arcs).9 Regardless of coding, for half of all possible

7To establish geographic location, we use the users’ current geo-
IP location; this means, for example, that the users in the it-2007
graph are users who are today in Italy and were on Facebook on
January 1, 2007 (most probably, American college students then
living in Italy).
8We remark that the commercial value of such hardware is of the
order of a few thousand dollars.
9Note that we measure compression with respect to the lower
bound on arcs, as WebGraph stores directed graphs; however, with
the additional knowledge that the graph is undirected, the lower

graphs with n nodes and m arcs we need at least
⌅

log
�

n

2

m

�˘
bits per graph: the purpose of compression is precisely to
choose the coding so to represent interesting graphs in a
smaller space than that required by the bound.

To understand what is happening, we recall that WebGraph
uses the BV compression scheme [4], which applies three
intertwined techniques to the successor list of a node:

✏ successors are (partially) copied from previous nodes within
a small window, if successors lists are similar enough;

✏ successors are intervalised, that is, represented by a left
extreme and a length, if significant contiguous successor
sequences appear;

✏ successors are gap-compressed if they pass the previous
phases: instead of storing the actual successor list, we
store the differences of consecutive successors (in increas-
ing order) using instantaneous codes.

Thus, a graph compresses well when it exhibits similarity
(nodes with near indices have similar successor lists) and
locality (successor lists have small gaps).

The better-than-random result above (usually, randomly per-
muted graphs compressed with WebGraph occupy 10�20%
more space than the lower bound) has most likely been in-
duced by the renumbering process, as in the original stream
of arcs all arcs going out from a node appeared consecu-
tively; as a consequence, the renumbering process assigned
consecutive labels to all yet-unseen successors (e.g., in the
initial stages successors were labelled contiguously), induc-
ing some locality.

It is also possible that the “natural” order for Facebook (es-
sentially, join order) gives rise to some improvement over
the information-theoretical lower bound because users often
join the network at around the same time as several of their
friends, which causes a certain amount of locality and simi-
larity, as circle of friends have several friends in common.

Because our computation time is greatly reduced by com-
pression, we were interested in the first place to establish
whether more locality could be induced in a graph of this
size by suitably permuting the graph using layered labelled
propagation [2] (LLP). This approach (which computes sev-
eral clusterings with different levels of granularity and com-
bines them to sort the nodes of a graph so to increase its lo-
cality and similarity) has recently led to the best compression
ratios for social networks when combined with the BV com-
pression scheme. An increase in compression means that we
were able to partly understand the cluster structure of the
graph.

Each of the clusterings required by LLP is in itself a tour
de force, as the graphs we analyse are almost two orders of
magnitude larger than any network used for experiments in
the literature on graph clustering. Indeed, applying LLP to
bound should be applied to edges, thus doubling, in practice, the
number of bits used.
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Figure 1. The change in distribution of the logarithm of the gaps

between successors when the current fb graph is permuted by layered

label propagation. See also Table 1.

the current Facebook graph required ten days of computation
on our hardware.

We applied layered labelled propagation and re-compressed
our graphs (the current version), obtaining a significant im-
provement. In Table 1 we show the results: we were able to
reduce the graph size by 30% (i.e., from 345 GB to 211 GB
in the case of the whole Facebook graph), which suggests
that LLP has been able to discover several significant clus-
ters.

The change in structure can be easily seen from Figure 1,
where we show the distribution of the binary logarithm of
gaps between successors for the current fb graph. The smaller
the gaps, the higher the locality. In the graph with renum-
bered Facebook IDs, the distribution is bimodal: there is a
local maximum at two, showing that there is some locality,
but the bulk of the probability mass is around 20–21, which
is slightly less than the information-theoretical lower bound
(⇡ 23).

In the graph permuted with LLP, however, the distribution
radically changes: it is now very nearly monotonically de-
creasing, with a very small bump at 23, which testifies the
existence of a small core of “randomness” in the graph that
LLP was not able to tame.

Regarding similarity, we see an analogous phenomenon: the
number of successors represented by copying has doubled,
going from 9% to 18%. The last datum is in line with other
social networks (web graphs, on the contrary, are extremely
redundant and more than 80% of the successors are usually
copied). Moreover, disabling copying altogether results in
only a modest increase in size (⇡ 5%), again in line with
other social networks, which suggests that for most appli-
cations it is better to disable copying at all to obtain faster
random access.

The compression ratio for the current fb graph is around
53%, which is similar to other similar social networks, such
as LiveJournal (55%) or DBLP (40%) [2]10. For other graphs

10The interested reader will find similar data for several type of net-
works at the LAW web site (http://law.dsi.unimi.it/).
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(see Table 1), however, it is slightly worse. This might be
due to several phenomena: First, our LLP runs were exe-
cuted with only half the number or clusters, and for each
cluster we restricted the number of iterations to just four, to
make the whole execution of LLP feasible. Thus, our runs
are capable of finding considerably less structure than the
runs we had previously performed for other networks. Sec-
ond, the number of nodes is much larger: there is some cost
in writing down gaps (e.g., using � , ı or ⇣ codes) that is de-
pendent on their absolute magnitude, and the lower bound
does not take into account that cost.

Running
The runs of HyperANF on the current whole Facebook graph
used 32 registers, so the space for counters was about 27 GiB
(e.g., we could have analysed a graph with four times the
number of nodes on the same hardware, but in that case we
would have needed a larger number of runs to obtain the
same precision). As a rough measure of speed, a single run
on the LLP-compressed current whole Facebook graph re-
quires about 13:5 hours. Note that these timings would scale
linearly with an increase in the number of cores.

General comments
In September 2006, Facebook was opened to non-college
students: there was an instant surge in subscriptions, as our



it se itse us fb
Original 14.8 (83%) 14.0 (86%) 15.0 (82%) 17.2 (82%) 20.1 (86%)

LLP 10.3 (58%) 10.2 (63%) 10.3 (56%) 11.6 (56%) 12.3 (53%)

Table 1. The number of bits per link and the compression ratio (with respect to the information-theoretical lower bound) for the current graphs in

the original order and for the same graphs permuted by layered label propagation.
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data shows. In particular, the it and se subgraphs from
January 1, 2007 were highly disconnected, as shown by the
incredibly low percentage of reachable pairs we estimate in
Table 3. Even Facebook itself was rather disconnected, but
all the data we compute stabilizes (with small oscillations)
after 2009, with essentially all pairs reachable. Thus, we
consider the data for 2007 and 2008 useful to observe the
evolution of Facebook, but we do not consider them repre-
sentative of the underlying human social-link structure.

it se itse us fb
2007 1.31 3.90 1.50 119.61 99.50
2008 5.88 46.09 36.00 106.05 76.15
2009 50.82 69.60 55.91 111.78 88.68
2010 122.92 100.85 118.54 128.95 113.00
2011 198.20 140.55 187.48 188.30 169.03

current 226.03 154.54 213.30 213.76 190.44

Table 2. Average degree of the datasets.

it se itse us fb
2007 0.04 10.23 0.19 100.00 68.02
2008 25.54 93.90 80.21 99.26 89.04

Table 3. Percentage of reachable pairs 2007–2008.

The distribution
Figure 2 displays the probability mass functions of the cur-
rent graphs. We will discuss later the variation of the average
distance and spid, but qualitatively we can immediately dis-
tinguish the regional graphs, concentrated around distance
four, and the whole Facebook graph, concentrated around
distance five. The distributions of it and se, moreover,
have significantly less probability mass concentrated on dis-
tance five than itse and us. The variance data (Table 7

Lower bounds from HyperANF runs
it se itse us fb

2007 41 17 41 13 14
2008 28 17 24 17 16
2009 21 16 17 16 15
2010 18 19 19 19 15
2011 17 20 17 18 35

current 19 19 19 20 58
Exact diameter of the giant component
current 25 23 27 30 41

Table 4. Lower bounds for the diameter of all graphs, and exact values

for the giant component (> 99:7%) of current graphs computed using

the iFUB algorithm.

 1e-07

 1e-06

 1e-05

 0.0001

 1e+06  1e+07  1e+08  1e+09

G
ra

p
h
 d

en
si

ty

Nodes

fb

us

it

se

itse

Figure 5. A plot correlating number of nodes to graph density (for the

graph from 2009 on).

and Figure 4) show that the distribution quickly became ex-
tremely concentrated.

Average degree and density
Table 2 shows the relatively quick growth in time of the av-
erage degree of all graphs we consider. The more users join
the network, the more existing friendship links are uncov-
ered. In Figure 6 we show a loglog-scaled plot of the same
data: with the small set of points at our disposal, it is dif-
ficult to draw reliable conclusions, but we are not always
observing the power-law behaviour suggested in [15]: see,
for instance, the change of the slope for the us graph.11

In Figure 5 we plot the density12 (number of edges divided
11We remind the reader that on a log-log plot several distributions
“looks like” a straight line. The quite illuminating examples shown
in [16], in particular, show that goodness-of-fit tests are essential.

12We remark that the authors of [15] call densification the increase



it se itse us fb
2007 159.8 K (105.0 K) 11.2 K (21.8 K) 172.1 K (128.8 K) 8.8 M (529.3 M) 13.0 M (644.6 M)
2008 335.8 K (987.9 K) 1.0 M (23.2 M) 1.4 M (24.3 M) 20.1 M (1.1 G) 56.0 M (2.1 G)
2009 4.6 M (116.0 M) 1.6 M (55.5 M) 6.2 M (172.1 M) 41.5 M (2.3 G) 139.1 M (6.2 G)
2010 11.8 M (726.9 M) 3.0 M (149.9 M) 14.8 M (878.4 M) 92.4 M (6.0 G) 332.3 M (18.8 G)
2011 17.1 M (1.7 G) 4.0 M (278.2 M) 21.1 M (2.0 G) 131.4 M (12.4 G) 562.4 M (47.5 G)

current 19.8 M (2.2 G) 4.3 M (335.7 M) 24.1 M (2.6 G) 149.1 M (15.9 G) 721.1 M (68.7 G)

Table 5. Number of nodes and friendship links of the datasets. Note that each friendship link, being undirected, is represented by a pair of symmetric

arcs.

it se itse us fb
2007 10.25 (˙0.17) 5.95 (˙0.07) 8.66 (˙0.14) 4.32 (˙0.02) 4.46 (˙0.04)
2008 6.45 (˙0.03) 4.37 (˙0.03) 4.85 (˙0.05) 4.75 (˙0.02) 5.28 (˙0.03)
2009 4.60 (˙0.02) 4.11 (˙0.01) 4.94 (˙0.02) 4.73 (˙0.02) 5.26 (˙0.03)
2010 4.10 (˙0.02) 4.08 (˙0.02) 4.43 (˙0.03) 4.64 (˙0.02) 5.06 (˙0.01)
2011 3.88 (˙0.01) 3.91 (˙0.01) 4.17 (˙0.02) 4.37 (˙0.01) 4.81 (˙0.04)

current 3.89 (˙0.02) 3.90 (˙0.04) 4.16 (˙0.01) 4.32 (˙0.01) 4.74 (˙0.02)

Table 6. The average distance (˙ standard error). See also Figure 3 and 7.
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Figure 6. A plot correlating number of nodes to the average degree

(for the graphs from 2009 on).

by number of nodes) of the graphs against the number of
nodes. On the whole Facebook graph we see a clear trend to-
ward sparsification; on the contrary, the density of the other
regional networks seem to have stabilized, hinting possibly
at the fact that the sparsification currently observed on the
whole graph is due to other less mature country subnetworks
and to the unavoidably lower-density connections between
different countries.

In an absolute sense, though, geographical concentration in-
creases density: in Figure 5 we can see the lines correspond-
ing to our regional graphs clearly ordered by geographical
concentration, with the fb graph in the lowest position.

Average distance

of the average degree, in contrast with established literature in
graph theory, where density is the fraction of edges with respect to
all possible edges (e.g., 2m=.n.n � 1//). We use “density”, “den-
sification” and “sparsification” in the standard sense.

The results concerning average distance13 are displayed in
Figure 3 and Table 6. The average distance14 on the Face-
book current graph is 4:74.15 Moreover, a closer look at the
distribution shows that 92% of the reachable pairs of indi-
viduals are at distance five or less.

On both the it and se graphs we find significantly lower
but similar values. We interpret this result as telling us that
the average distance is actually dependent on the geograph-
ical closeness of users, more than on the actual size of the
network. This is corroborated by the higher average distance
of the itse graph.

During the fastest growing years of Facebook our graphs
show a quick decrease in the average distance, which how-
ever appears now to be stabilizing. This is not surprising, as
“shrinking diameter” phenomena are always observed when
a large network is “uncovered”, in the sense that we look at
larger and larger induced subgraphs of the underlying global
human network. At the same time, as we already remarked,
density was going down steadily. We thus see the small-
world phenomenon fully at work: a smaller fraction of arcs

13The data we report is about the average distance between reach-
able pairs, for which the name average connected distance has
been proposed [5]. This is the same measure as that used by Travers
and Milgram in [21]. We refrain from using the word “connected”
as it somehow implies a bidirectional (or, if you prefer, undirected)
connection. The notion of average distance between all pairs is
useless in a graph in which not all pairs are reachable, as it is nec-
essarily infinite, so no confusion can arise.

14In some previous literature (e.g., [15]), the 90% percentile (pos-
sibly with some interpolation) of the distance distribution, called
effective diameter, has been used in place of the average distance.
Having at our disposal tools that can compute easily the average
distance, which is a parameterless, standard feature of the distance
distribution that has been used in social sciences for decades, we
prefer to stick to it. Experimentally, on web and social graphs the
average distance is about two thirds of the effective diameter plus
one [3].

15Note that both Karinthy and Guare had in mind the maximum,
not the average number of degrees, so they were actually upper
bounding the diameter.



it se itse us fb
2007 32.46 (˙1.49) 3.90 (˙0.12) 16.62 (˙0.87) 0.52 (˙0.01) 0.65 (˙0.02)
2008 3.78 (˙0.18) 0.69 (˙0.04) 1.74 (˙0.15) 0.82 (˙0.02) 0.86 (˙0.03)
2009 0.64 (˙0.04) 0.56 (˙0.02) 0.84 (˙0.02) 0.62 (˙0.02) 0.69 (˙0.05)
2010 0.40 (˙0.01) 0.50 (˙0.02) 0.64 (˙0.03) 0.53 (˙0.02) 0.52 (˙0.01)
2011 0.38 (˙0.03) 0.50 (˙0.02) 0.61 (˙0.02) 0.39 (˙0.01) 0.42 (˙0.03)

current 0.42 (˙0.03) 0.52 (˙0.04) 0.57 (˙0.01) 0.40 (˙0.01) 0.41 (˙0.01)

Table 7. The variance of the distance distribution (˙ standard error). See also Figure 4.

it se itse us fb
2007 3.17 (˙0.106) 0.66 (˙0.016) 1.92 (˙0.078) 0.12 (˙0.003) 0.15 (˙0.004)
2008 0.59 (˙0.026) 0.16 (˙0.008) 0.36 (˙0.028) 0.17 (˙0.003) 0.16 (˙0.005)
2009 0.14 (˙0.007) 0.14 (˙0.004) 0.17 (˙0.004) 0.13 (˙0.003) 0.13 (˙0.009)
2010 0.10 (˙0.003) 0.12 (˙0.005) 0.14 (˙0.006) 0.11 (˙0.004) 0.10 (˙0.002)
2011 0.10 (˙0.006) 0.13 (˙0.006) 0.15 (˙0.004) 0.09 (˙0.003) 0.09 (˙0.005)

current 0.11 (˙0.007) 0.13 (˙0.010) 0.14 (˙0.003) 0.09 (˙0.003) 0.09 (˙0.003)

Table 8. The index of dispersion of distances, a.k.a. spid (˙ standard error). See also Figure 7.

connecting the users, but nonetheless a lower average dis-
tance.

To make more concrete the “degree of separation” idea, in
Table 9 we show the percentage of reachable pairs within
the ceiling of the average distance (note, again, that it is the
percentage relatively to the reachable pairs): for instance, in
the current Facebook graph 92% of the pairs of reachable
users are within distance five—four degrees of separation.

Spid
The spid is the index of dispersion �

2

=� (a.k.a. variance-
to-mean ratio) of the distance distribution. Some of the
authors proposed the spid [3] as a measure of the “webbi-
ness” of a social network. In particular, networks with a spid
larger than one should be considered “web-like”, whereas
networks with a spid smaller than one should be consid-
ered “properly social”. We recall that a distribution is called
under- or over-dispersed depending on whether its index of
dispersion is smaller or larger than 1 (e.g., variance smaller
or larger than the average distance), so a network is consid-
ered properly social or not depending on whether its distance
distribution is under- or over-dispersed.

The intuition behind the spid is that “properly social” net-
works strongly favour short connections, whereas in the web
long connection are not uncommon. As we recalled in the
introduction, the starting point of the paper was the question
“What is the spid of Facebook”? The answer, confirming
the data we gathered on different social networks in [3], is
shown in Table 8. With the exception of the highly discon-
nected regional networks in 2007–2008 (see Table 3), the
spid is well below one.

Interestingly, across our collection of graphs we can confirm
that there is in general little correlation between the average
distance and the spid: Kendall’s ⌧ is �0:0105; graphical evi-
dence of this fact can be seen in the scatter plot shown in Fig-
ure 7. If we consider points associated with a single network,
though, there appears to be some correlation between aver-
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Figure 7. A scatter plot showing the (lack of) correlation between the

average distance and the spid.

age distance and spid, in particular in the more connected
networks (the values for Kendall’s ⌧ are all above 0:6, ex-
cept for se). However, this is very likely to be an artifact, as
the correlation between spid and average distance is inverse
(larger average distance, smaller spid). What is happening
is that in this case the variance (see Table 7) is changing in
the same direction: smaller average distances (which would
imply a larger spid) are associated with smaller variances.
Figure 8 displays the mild correlation between average dis-
tance and variance in the graphs we analyse: as a network
gets tighter, its distance distribution also gets more concen-
trated.

Diameter
HyperANF cannot provide exact results about the diameter:
however, the number of steps of a run is necessarily a lower
bound for the diameter of the graph (the set of registers can
stabilize before a number of iterations equal to the diame-
ter because of hash collisions, but never after). While there
are no statistical guarantees on this datum, in Table 4 we re-
port these maximal observations as lower bounds that differ
significantly between regional graphs and the overall Face-
book graph—there are people that are significantly more “far



it se itse us fb
2007 65% (11) 64% (6) 67% (9) 95% (5) 91% (5)
2008 77% (7) 93% (5) 77% (5) 83% (5) 91% (6)
2009 90% (5) 96% (5) 75% (5) 86% (5) 94% (6)
2010 98% (5) 97% (5) 91% (5) 91% (5) 97% (6)
2011 90% (4) 86% (4) 95% (5) 97% (5) 89% (5)

current 88% (4) 86% (4) 97% (5) 97% (5) 91% (5)

Table 9. Percentage of reachable pairs within the ceiling of the average distance (shown between parentheses).
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Figure 8. A scatter plot showing the mild correlation between the aver-

age distance and the variance.

apart” in the world than in a single nation.16

To corroborate this information, we decided to also approach
the problem of computing the exact diameter directly, al-
though it is in general a daunting task: for very large graphs
matrix-based algorithms are simply not feasible in space,
and the basic algorithm running n breadth-first visits is not
feasible in time. We thus implemented a highly parallel ver-
sion of the iFUB (iterative Fringe Upper Bound) algorithm
introduced in [6].

The basic idea is as follows: consider some node x, and find
(by a breadth-first visit) a node y farthest from x. Find now
a node z farthest from y: d.y; z/ is a (usually very good)
lower bound on the diameter, and actually it is the diameter
if the graph is a tree (this is the “double sweep” algorithm).

We now consider a node c halfway between y and z: such
a node is “in the middle of the graph” (actually, it would be
a center if the graph was a tree), so if h is the eccentricy
of c (the distance of the farthest node from c) we expect
2h to be a good upper bound for the diameter. If our up-
per and lower bound match, we are finished. Otherwise, we
consider the fringe: the nodes at distance exactly h from c.
Clearly, if M is the maximum of the eccentricities of the
nodes in the fringe, maxf 2.h � 1/; M g is a new (and hope-
fully improved) upper bound, and M is a new (and hopefully
improved) lower bound. We then iterate the process by ex-
amining fringes closer to the root until the bounds match.

Our implementation uses a multicore breadth-first visit: the

16Incidentally, as we already remarked, this is the measure that
Karinthy and Guare actually had in mind.

queue of nodes at distance d is segmented into small blocks
handled by each core. At the end of a round, we have com-
puted the queue of nodes at distance d C 1. Our implemen-
tation was able to discover the diameter of the current us
graph (which fits into main memory, thanks to LLP com-
pression) in about twenty minutes. The diameter of Face-
book required ten hours of computation on a machine with
1TiB of RAM (actually, 256GiB would have been sufficient,
always because of LLP compression).

The values reported in Table 4 confirm what we discovered
using the approximate data provided by the length of Hy-
perANF runs, and suggest that while the distribution has a
low average distance and it is quite concentrated, there are
nonetheless (rare) pairs of nodes that are much farther apart.
We remark that in the case of the current fb graph, the di-
ameter of the giant component is actually smaller than the
bound provided by the HyperANF runs, which means that
long paths appear in small (and likely very irregular) com-
ponents.

CONCLUSIONS
In this paper we have studied the largest electronic social
network ever created (⇡ 721 million active Facebook users
and their ⇡ 69 billion friendship links) from several view-
points.

First of all, we have confirmed that layered labelled propa-
gation [2] is a powerful paradigm for increasing locality of
a social network by permuting its nodes. We have been able
to compress the whole current Facebook graph at 12:3 bits
per link—53% of the information-theoretical lower bound,
similarly to other, much smaller social networks.

We then analyzed using HyperANF the complete Facebook
graph and 29 other graphs obtained by restricting geograph-
ically or temporally the links involved. We have in fact car-
ried out the largest Milgram-like experiment ever performed.
The average distance of Facebook is 4:74, that is, 3:74 “de-
grees of separation”, prompting the title of this paper. The
spid of Facebook is 0:09, well below one, as expected for a
social network. Geographically restricted networks have a
smaller average distance, as it happened in Milgram’s origi-
nal experiment. Overall, these results help paint the picture
of what the Facebook social graph looks like. As expected, it
is a small-world graph, with short paths between many pairs
of nodes. However, the high degree of compressibility and
the study of geographically limited subgraphs show that ge-
ography plays a very significant role in forming the overall
structure of network. Indeed, we see in this study, as well as



other studies of Facebook [1] that, while the world is con-
nected enough for short paths to exist between most nodes,
there is a high degree of locality induced by various exter-
nalities, geography chief amongst them, all reminiscent of
the model proposed in [12].

When Milgram first published his results, he in fact offered
two opposing interpretations of what “six degrees of sepa-
ration” actually meant. On the one hand, he observed that
such a distance is considerably smaller than what one would
naturally intuit. But at the same time, Milgram noted that
this result could also be interpreted to mean that people are
on average six “worlds apart”: “When we speak of five17

intermediaries, we are talking about an enormous psycho-
logical distance between the starting and target points, a dis-
tance which seems small only because we customarily re-
gard ‘five’ as a small manageable quantity. We should think
of the two points as being not five persons apart, but ‘five cir-
cles of acquaintances’ apart—five ‘structures’ apart.” [18].
From this gloomier perspective, it is reassuring to see that
our findings show that people are in fact only four world
apart, and not six: when considering another person in the
world, a friend of your friend knows a friend of their friend,
on average.
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