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Abstract

The problem of measuring “similarity” of objects arises in
many applications, and many domain-specific measures
have been developed, e.g., matching text across docu-
ments or computing overlap among item-sets. We pro-
pose a complementary approach, applicable in any domain
with object-to-object relationships, that measures similar-
ity of the structural context in which objects occur, based
on their relationships with other objects. Effectively, we
compute a measure that says “two objects are similar if
they are related to similar objects.” This general similar-
ity measure, calledSimRank, is based on a simple and in-
tuitive graph-theoretic model. For a given domain, Sim-
Rank can be combined with other domain-specific simi-
larity measures. We suggest techniques for efficient com-
putation of SimRank scores, and provide experimental re-
sults on two application domains showing the computa-
tional feasibility and effectiveness of our approach.

1 Introduction

Many applications require a measure of “similarity” between ob-
jects. One obvious example is the “find-similar-document” query,
on traditional text corpora or the World-Wide Web [2]. More gen-
erally, a similarity measure can be used to cluster objects, such as
for collaborative filteringin a recommender system [7, 11, 20], in
which “similar” users and items are grouped based on the users’
preferences.

Various aspects of objects can be used to determine similarity,
usually depending on the domain and the appropriate definition of
similarity for that domain. In a document corpus, matching text may
be used, and for collaborative filtering, similar users may be iden-
tified by common preferences. We propose a general approach that
exploits the object-to-object relationships found in many domains
of interest. On the Web, for example, we can say that two pages
are related if there are hyperlinks between them. A similar approach
can be applied to scientific papers and their citations, or to any other
document corpus with cross-reference information. In the case of
recommender systems, a user’s preference for an item constitutes a
relationship between the user and the item. Such domains are natu-
rally modeled as graphs, with nodes representing objects and edges
representing relationships. We present an algorithm for analyzing

∗This work was supported by the National Science Foundation under
grants IIS-9817799 and IIS-9811947.

Univ

ProfA

ProfB StudentB

StudentA

{ProfB, StudentB}{ProfA, StudentB}

0.106 0.088

{Univ, StudentB}

0.034

{ProfB, StudentA}
0.042

{StudentA, StudentB}
0.331

{ProfA, ProfB}
0.414

{Univ, Univ}
1

{Univ, ProfB}
0.132

G G
2

(b)(a)

Figure 1: A small Web graphG and simplified node-pairs
graphG2. SimRank scores using parameterC = 0.8 are
shown for nodes inG2.

the (logical) graphs derived from such data sets to compute similar-
ity scores between nodes (objects) based on thestructural contextin
which they appear, a concept to be made clear shortly. The intuition
behind our algorithm is that, in many domains,similar objects are
related tosimilar objects. More precisely, objectsa andb are sim-
ilar if they are related to objectsc andd, respectively, andc andd
are themselves similar. The base case is that objects are similar to
themselves.

As an example, consider the tiny Web graphG shown in Figure
1(a), representing the Web pages of two professors ProfA and ProfB,
their students StudentA and StudentB, and the home page of their
university Univ. Edges between nodes represent hyperlinks from
one page to another. From the fact that both are referenced (linked
to) by Univ, we may infer that ProfA and ProfB are similar, and some
previous algorithms are based on thisco-citation [21] information.
We generalize this idea by observing that once we have concluded
similarity between ProfA and ProfB, and considering that ProfA and
ProfB reference StudentA and StudentB respectively, we can also
conclude that StudentA and StudentB are similar. Continuing forth,
we can infer some similarity between Univ and ProfB, ProfA and
StudentB, etc.

Let us logically represent the computation by using a node-pair
graphG2, in which each node represents an ordered pair of nodes
of G. A node(a, b) of G2 points to a node(c, d) if, in G, a points
to c andb points tod. A simplified view ofG2 is shown in Figure
1(b); scores will be explained shortly. As we shall see later, scores
are symmetric, so for clarity in the figure we draw(a, b) and(b, a)
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as a single node{a, b} (with the union of their associated edges).
Further simplifications in Figure1(b) are explained in Section4.

We run an iterative fixed-point algorithm onG2 to compute what
we call SimRankscores for the node-pairs inG2. The SimRank
score for a nodev of G2 gives a measure of similarity between the
two nodes ofG represented byv. Scores can be thought of as “flow-
ing” from a node to its neighbors. Each iteration propagates scores
one step forward along the direction of the edges, until the system
stabilizes (i.e., scores converge). Since nodes ofG2 represent pairs
in G, similarity is propagated from pair to pair. Under this com-
putation, two objects aresimilar if they are referenced bysimilar
objects.1

It is important to note that we are proposing a general algorithm
that determines only the similarity of structural context. Our algo-
rithm applies to any domain where there are enough relevant rela-
tionships between objects to base at least some notion of similarity
on relationships. Obviously, similarity of other domain-specific as-
pects are important as well; these can—and should—be combined
with relational structural-context similarity for an overall similarity
measure. For example, for Web pages we can combine SimRank
with traditional textual similarity; the same idea applies to scien-
tific papers or other document corpora. For recommender systems,
there may be built-in known similarities between items (e.g., both
computers, both clothing, etc.), as well as similarities between users
(e.g., same gender, same spending level). Again, these similarities
can be combined with the similarity scores that we compute based
on preference patterns, in order to produce an overall similarity mea-
sure.

The main contributions of this paper are as follows.

• A formal definition forSimRanksimilarity scoring over arbitrary
graphs, several useful derivatives of SimRank, and an algorithm
to compute SimRank scores (Section4).

• A graph-theoretic model for SimRank that gives intuitive math-
ematical insight into its use and computation (Section5).

• Experimental results using an initial in-memory implementation
of SimRank over two different real data sets that show the effec-
tiveness and feasibility of SimRank (Section6).

Discussions of related work and our basic graph model are provided
in Sections2 and3, respectively.

2 Related Work
Structural context has been used and analyzed in specific applica-
tions, such as bibliometrics, database schema-matching, and hyper-
text classification. The more general problem of finding similar ob-
jects has been studied in Information Retrieval and recommender
systems, among other areas.

Bibliometricsstudies the citation patterns of scientific papers (or
other publications), and relationships between papers are inferred
from their cross-citations. Most noteworthy from this field are the
methods ofco-citation [21] and bibliographic coupling[9]. In the
co-citation scheme, similarity between two papersp andq is based
on the number of papers which cite bothp andq. In bibliographic
coupling, similarity is based on the number of papers cited by bothp

1The recursive nature of our algorithm, and thus its name, resembles that
of the PageRankalgorithm, used by the Google [1] Web search engine to
compute importance scores for Web pages [16]. In Section2 we discuss how
PageRank and other iterative algorithms relate to our work.

andq. These methods have been applied to cluster scientific papers
according to topic [18, 21]. More recently, the co-citation method
has been used to cluster Web pages [12, 17]. As discussed in Sec-
tion 1, our algorithm can be thought of as a generalization of co-
citation where the similarity of citing documents is also considered,
recursively. In terms of graph structure, co-citation scores between
any two nodes are computed only from their immediate neighbors,
whereas our algorithm can use the entire graph structure to deter-
mine the similarity between any two nodes. This generalization is
especially beneficial for nodes with few neighbors (e.g., documents
rarely cited), a property we will discuss in Section4.

Computing similarity recursively based on structure has also
been explored in the specific context of database schema-matching
[15]. However, that work deals with the pairing of nodes across two
graphs and relies on domain-specific metadata (e.g., node and edge
labels) as well as structural relationships.

Iterative algorithms over the web graph have been used in
[10, 16] to compute “importance” scores for Web pages. Results
show that the use of structure can greatly improve Web search ver-
sus text alone. The algorithms in [10, 16] analyze individual pages
with respect to the global structure, whereas our similarity measure
analyzes relationships between pairs of pages.

In the classifier for Web pages presented in [5], the classification
of the neighbors of a Web pagep is used to improve upon the textual
classification ofp through a probabilistic model. In contrast, Sim-
Rank computes scores for pairs of pages (instead of a single page) by
comparing their neighbors. Our algorithm is not limited to discrete
categories and it computes a purely structural score that is indepen-
dent of domain-specific information.

Similarity of documents by textual content has been studied ex-
tensively in the field of Information Retrieval (IR) [2]. As discussed
in Section1, our work addresses only similarity of structural infor-
mation, and may be used in combination with textual methods.

The process of making recommendations to a user based on
preference or purchase data from other users is known ascollab-
orative filtering [7, 11, 20]. Many approaches to collaborative fil-
tering rely on identifying similar users or similar items. A good
overview of the techniques used, which include numerical methods
like vector-cosine similarity [2] and the Pearson correlation [11],
can be found in [3]. These methods compute similarity between
sets of objects (e.g., preference lists for users, or preferred-by lists
for items), whereas our algorithm deals with similarity of context in
graph structures. Still other approaches take advantage of external
information about the objects themselves, e.g., a hierarchy by which
the items may be categorized [6].

The intuitive underlying model for our similarity measure is
based on “random surfers”, a concept which is also used in [16]
to provide an intuitive model for thePageRankalgorithm. For our
purposes we formalize and extend the model usingexpected-f dis-
tances, a general graph-theoretic property that can apply in other
structure-based applications, such as personalized Web search [8].

Finally, some of the graph-theoretic definitions and properties
used in this work are surveyed in [4, 14].

3 Basic Graph Model
We model objects and relationships as a directed graphG = (V, E)
where nodes inV represent objects of the domain and edges in
E represent relationships between objects. In Web pages or sci-
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entific papers, which arehomogeneousdomains, nodes represent
documents, and a directed edge〈p, q〉 from p to q corresponds to
a reference (hyperlink or citation) from documentp to documentq.
In a user-item domain, which isbipartite, we represent both users
and items by nodes inV . A directed edge〈p, q〉 corresponds to a
purchase (or other expression of preference) of itemq by personp.
The result in this case is a bipartite graph, with users and items on
either side. Note that edge weights may be used to represent varying
degrees of preference, but currently they are not considered in our
work.

For a nodev in a graph, we denote byI(v) andO(v) the set
of in-neighbors and out-neighbors ofv, respectively. Individual in-
neighbors are denoted asIi(v), for 1 ≤ i ≤ |I(v)|, and individual
out-neighbors are denoted asOi(v), for 1 ≤ i ≤ |O(v)|.

4 SimRank

4.1 Motivation

Recall that the basic recursive intuition behind our approach is “two
objects aresimilar if they are referenced bysimilar objects.” As
the base case, we consider an object maximally similar to itself,
to which we can assign a similarity score of 1. (If other objects
are known to be similar a-priori, such as from human input or text
matching, their similarities can be preassigned as well.) Referring
back to Figure1, ProfA and ProfB are similar because they are both
referenced by Univ (i.e., they are co-cited by Univ), and Univ is
(maximally) similar to itself. Note in Figure1(b) the similarity score
of 1 on the node{Univ, Univ}, and the score of 0.414 on the node
{ProfA, ProfB}. (How we obtained 0.414 will be described later.)
StudentA and StudentB are similar because they are referenced by
similar nodes ProfA and ProfB; notice the similarity score of 0.331
on the node for{StudentA, StudentB} in Figure1(b).

In Section4.2we state and justify the basic equation that formal-
izes SimRank as motivated above. Section4.3modifies the equation
for bipartite graphs, such as graphs for recommender systems as dis-
cussed in Section3. The actual computation of SimRank values is
discussed in Section4.4, including pruning techniques to make the
algorithm more efficient. Finally, Section4.5discusses the benefits
of SimRank in scenarios where information is limited.

4.2 Basic SimRank Equation

Let us denote the similarity between objectsa andb by s(a, b) ∈
[0, 1]. Following our earlier motivation, we write a recursive equa-
tion for s(a, b). If a = b thens(a, b) is defined to be1. Otherwise,

s(a, b) =
C

|I(a)||I(b)|

|I(a)|∑
i=1

|I(b)|∑
j=1

s(Ii(a), Ij(b)) (1)

whereC is a constant between0 and1. A slight technicality here is
that eithera or b may not have any in-neighbors. Since we have no
way to infer any similarity betweena andb in this case, we should
sets(a, b) = 0, so we define the summation in equation (1) to be0
whenI(a) = ∅ or I(b) = ∅.

One SimRank equation of the form (1) is written for each (or-
dered) pair of objectsa and b, resulting in a set ofn2 SimRank
equations for a graph of sizen. Let us defer discussion of the con-
stantC for now. Equation (1) says that to computes(a, b), we it-
erate over all in-neighbor pairs(Ii(a), Ij(b)) of (a, b), and sum up

the similaritys(Ii(a), Ij(b)) of these pairs. Then we divide by the
total number of in-neighbor pairs,|I(a)||I(b)|, to normalize. That
is, the similarity betweena andb is the average similarity between
in-neighbors ofa and in-neighbors ofb. As discussed earlier, the
similarity between an object and itself is defined to be1.

In the Appendix we show that a simultaneous solutions(∗, ∗) ∈
[0, 1] to then2 SimRank equations always exists and is unique. Thus
we can define theSimRank scorebetween two objectsa and b to
be the solutions(a, b). From equation (1), it is easy to see that
SimRank scores are symmetric, i.e.,s(a, b) = s(b, a).

We said in Section1 that similarity can be thought of as “prop-
agating” from pair to pair. To make this connection explicit, we
consider the derived graphG2 = (V 2, E2), where each node in
V 2 = V × V represents a pair(a, b) of nodes inG, and an edge
from (a, b) to (c, d) exists inE2 iff the edges〈a, c〉 and〈b, d〉 exist
in G. Figure1(b) shows a simplified version of the derived graph
G2 for the graphG in Figure1(a), along with similarity scores com-
puted usingC = 0.8. As mentioned earlier, we have drawn the
symmetric pairs(a, b) and(b, a) as a single node{a, b}. Two types
of nodes are omitted from the figure. The first are thosesingleton
nodes which have no effect on the similarity of other nodes, such as
{ProfA, ProfA}. The second are the nodes with0 similarity, such as
{ProfA, StudentA}.

Similarity propagates inG2 from node to node (corresponding
to propagation from pair to pair inG), with the sources of similarity
being the singleton nodes. Notice that cycles inG2, caused by the
presence of cycles inG, allow similarity to flow in cycles, such as
from {Univ, ProfB} back to{ProfA, ProfB} in the example. Simi-
larity scores are thusmutually reinforced.

Now let us consider the constantC, which can be thought of
either as a confidence level or a decay factor. Consider a simple
scenario where pagex references bothc andd, so we conclude some
similarity betweenc andd. The similarity ofx with itself is1, but we
probably don’t want to conclude thats(c, d) = s(x, x) = 1. Rather,
we lets(c, d) = C ·s(x, x), meaning that we are less confident about
the similarity betweenc andd than we are betweenx and itself. The
same argument holds when two distinct pagesa and b cite c and
d. Viewed in terms of similarity flowing inG2, C gives the rate of
decay (sinceC < 1) as similarity flows across edges. In Sections5
and6 we will discuss the empirical significance ofC.

Though we have given motivation for the basic SimRank equa-
tion, we have yet to characterize its solution, which we take to be a
measure of similarity. It would be difficult to reason about similar-
ity scores, to adjust parameters of the algorithm (so far onlyC), or
to recognize the domains in which SimRank would be effective, if
we cannot get an intuitive feel for the computed values. Section5
addresses this issue with an intuitive model for SimRank.

4.3 Bipartite SimRank

Next we extend the basic SimRank equation (1) to bipartite domains
consisting of two types of objects. We continue to use recommender
systems as motivation. Suppose persons A and B purchased item-
sets{eggs, frosting, sugar} and{eggs, frosting, flour} respectively.
A graph of these relationships is shown in Figure2(a). Clearly, the
two buyers are similar: both are baking a cake, say, and so a good
recommendation to person A might be flour. One reason we can con-
clude that A and B are similar is that they both purchased eggs and
frosting. But moreover, A purchased sugar while B purchased flour,
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Figure 2: Shopping graphG and a simplified version of the
derived node-pairs graphG2. Bipartite SimRank scores are
shown forG2 usingC1 = C2 = 0.8.

and these are similar items, in the sense that they are purchased by
similar people: cake-bakers like A and B. Here, similarity of items
and similarity of people are mutually-reinforcing notions:

• People aresimilar if they purchasesimilar items.

• Items aresimilar if they are purchased bysimilar people.

The mutually-recursive equations that formalize these notions are
analogous to equation (1). Let s(A, B) denote the similarity be-
tween personsA andB, and lets(c, d) denote the similarity between
itemsc andd. Since, as discussed in Section3, directed edges go
from people to items, forA 6= B we write the equation

s(A, B) =
C1

|O(A)||O(B)|

|O(A)|∑
i=1

|O(B)|∑
j=1

s(Oi(A), Oj(B)) (2)

and forc 6= d we write

s(c, d) =
C2

|I(c)||I(d)|

|I(c)|∑
i=1

|I(d)|∑
j=1

s(Ii(c), Ij(d)) (3)

If A = B, s(A, B) = 1, and analogously fors(c, d). Neglecting
C1 andC2, equation (2) says that the similarity between personsA
andB is the average similarity between the items they purchased,
and equation (3) says that the similarity between itemsc andd is
the average similarity between the people who purchased them. The
constantsC1, C2 have the same semantics asC in equation (1).

Figure2(b) shows the derived node-pairs graphG2 for the graph
G in Figure 2(a). Simplifications have been made toG2, as in
Figure 1(b). Similarity scores for nodes ofG2, computed using
C1 = C2 = 0.8, are also shown. Notice how sugar and flour are
similar even though they were purchased by different people, al-
though not as similar as, say, frosting and eggs. The node{frosting,
eggs} has the same score as, say,{sugar, eggs}, even though frosting
and eggs have been purchased together twice, versus once for sugar
and eggs, since the normalization in equations (2) and (3) says that
we consider only the percentage of times that items are purchased

together, not the absolute number of times. It is, however, easy to
incorporate the absolute number if desired; see Section4.5.

4.3.1 Bipartite SimRank in Homogeneous Domains

It turns out that the bipartite SimRank equations (2) and (3) can also
be applied to homogeneous domains, such as Web pages and scien-
tific papers. Although a bipartite distinction is not explicit in these
domains, it may be the case that elements take on different roles
(e.g., “hub” pages and “authority” pages for importance [10]), or
that in-references and out-references give different information. For
example, two scientific papers might be similar assurveypapers if
they cite similarresult papers, while two papers might be similar
as result papers if they are cited by similar survey papers. In anal-
ogy with the HITS [10] algorithm, we can associate a “points-to”
similarity scores1(a, b) to each pair of nodesa andb, as well as a
“pointed-to” similarity scores2(a, b), and write the same equations
(2) and (3) as if the domain were bipartite:

s1(a, b) =
C1

|O(a)||O(b)|

|O(a)|∑
i=1

|O(b)|∑
j=1

s2(Oi(a), Oj(b))

s2(a, b) =
C2

|I(a)||I(b)|

|I(a)|∑
i=1

|I(b)|∑
j=1

s1(Ii(a), Ij(b))

Depending on the domain and application, either score or a combi-
nation may be used.

4.3.2 The Minimax Variation

The basic SimRank equation (and the bipartite version) is one way
to encode mathematically our recursive notion of structural-context
similarity. We present another possibility here for bipartite domains,
inspired by a real data set on which we experimented: finding sim-
ilarity between undergraduate students and between courses based
on the students’ history of courses taken. Students often take groups
of related courses due to curricular requirements. For example, two
Computer Science (CS) majorsA andB may both take a group of
required CS courses, while one takes Sociology-related electives and
the other English-related. In the formalization presented thus far,
each ofA’s courses would be compared with each ofB’s. How-
ever, it may be meaningless to compareA’s CS courses withB’s
electives, or vice versa, diluting the results. Instead, we are more in-
terested in comparingA’s elective choices withB’s elective choices.

One approach that addresses this problem is to compare each of
B’s coursesc with only the one course taken byA which is most
similar to c. For notational convenience in writing the new equa-
tion for s(A, B), we define the intermediate termssA(A, B) and
sB(A, B) (for A 6= B) as follows:

sA(A, B) =
C1

|O(A)|

|O(A)|∑
i=1

|O(B)|
max
j=1

s(Oi(A), Oj(B))

sB(A, B) =
C1

|O(B)|

|O(B)|∑
j=1

|O(A)|
max
i=1

s(Oi(A), Oj(B))

Intuitively, sA(A, B) gives a score forB’s liking of the preferences
of A, while sB(A, B) gives a score forA’s liking of the prefer-
ences ofB. Since we consider a good match to be one of common

4



predilection, we take

s(A, B) = min(sA(A, B), sB(A, B)) (4)

to be the similarity between studentsA andB, requiring that each
must be interested in the other’s interests (i.e., no one-sided relation-
ships). For the similarity of coursess(c, d), equation (3) or a mini-
max variation analogous to (4) (or possibly other variations) can be
used. Likewise, a minimax variation can also be applied to equation
(1) for use in homogeneous domains.

4.4 Computing SimRank

4.4.1 Naive Method

A solution to the SimRank equations (or bipartite variations) for a
graphG can be reached by iteration to a fixed-point. Letn be the
number of nodes inG. For each iterationk, we can keepn2 entries
Rk(∗, ∗) of lengthn2, whereRk(a, b) gives the score betweena
andb on iterationk. We successively computeRk+1(∗, ∗) based
onRk(∗, ∗). We start withR0(∗, ∗) where eachR0(a, b) is a lower
bound on the actual SimRank scores(a, b):

R0(a, b) =

{
0 (if a 6= b)
1 (if a = b)

To computeRk+1(a, b) from Rk(∗, ∗), we use equation (1) to get:

Rk+1(a, b) =
C

|I(a)||I(b)|

|I(a)|∑
i=1

|I(b)|∑
j=1

Rk(Ii(a), Ij(b)) (5)

for a 6= b, andRk+1(a, b) = 1 for a = b. That is, on each iter-
ationk + 1, we update the similarity of(a, b) using the similarity
scores of the neighbors of(a, b) from the previous iterationk ac-
cording to equation (1). The valuesRk(∗, ∗) are nondecreasing as
k increases. We show in the Appendix that they converge to lim-
its satisfying (1), the SimRank scoress(∗, ∗), i.e., for alla, b ∈ V ,
limk→∞ Rk(a, b) = s(a, b). In all of our experiments we have seen
rapid convergence, with relative rankings stabilizing within 5 itera-
tions (details are in Section6), so we may choose to fix a number
K ≈ 5 of iterations to perform.

Let us analyze the time and space requirements for this method
of computing SimRank. The space required is simplyO(n2) to store
the resultsRk. Let d2 be the average of|I(a)||I(b)| over all node-
pairs (a, b). The time required isO(Kn2d2), since on each iter-
ation, the score of every node-pair (n2 of these) is updated with
values from its in-neighbor pairs (d2 of these on average). As it cor-
responds roughly to the square of the average in-degree,d2 is likely
to be a constant with respect ton for many domains. The resource
requirements for bipartite versions are similar.

We mentioned that typicallyK ≈ 5, and in most cases we also
expect the average in-degree to be relatively small. However,n2 can
be prohibitively large in some applications, such as the Web, where
it exceeds the size of main memory. Specialized disk layout and
indexing techniques may be needed in this case; such techniques
are beyond the scope of this paper. However, in the next subsec-
tion we do briefly consider pruning techniques that reduce both the
time and space requirements. Pruning has allowed us to run our ex-
periments entirely in main memory, without the need for disk-based
techniques.

4.4.2 Pruning

One way to reduce the resource requirements is to prune the logical
graphG2. So far we have assumed that alln2 node-pairs ofG2 are
considered, and a similarity score is computed for every node-pair.
Whenn is significantly large, it is very likely that the neighborhood
(say, nodes within a radius of 2 or 3) of a typical node will be a very
small percentage (< 1%) of the entire domain. Nodes far from a
nodev, whose neighborhood has little overlap with that ofv, will
tend to have lower similarity scores withv than nodes nearv, an ef-
fect that will become intuitive in Section5. Thus one pruning tech-
nique is to set the similarity between two nodes far apart to be 0, and
consider node-pairs only for nodes which are near each other. If we
consider only node-pairs within a radius ofr from each other in the
underlying undirected graph (other criteria are possible), and there
are on averagedr such neighbors for a node, then there will bendr

node-pairs. The time and space complexities becomeO(Kndrd2)
andO(ndr) respectively, whered2 is the average of|I(a)||I(b)| for
pagesa, b close enough to each other. Sincedr is likely to be much
less thann and constant with respect ton for many types of data,
we can think of the approximate algorithm as being linear with a
possibly large constant factor.

Of course, the quality of the approximation needs to be verified
experimentally for the actual data sets. For the case of scientific
papers, our empirical results suggest that this is a good approxima-
tion strategy, and allows the computation to be carried out entirely
in main memory for a corpus ofn = 278, 626 objects. More details
can be found in Section6.

4.5 Limited-Information Problem

In document corpora, there may be many “unpopular” documents,
i.e., documents with very few in-citations. Although the scarcity of
contextual information makes them difficult to analyze, these docu-
ments are often the most important, since they tend to be harder for
humans to find. This is especially true for new documents, which
are likely unpopular because it takes time for others to notice and
cite them, but often we are most interested in new documents. Un-
like the simple co-citation scheme, SimRank can effectively analyze
documents with little contextual information.

The intermediate scoresR1(∗, ∗) resulting from the first itera-
tion of the basic SimRank algorithm (Section4.4.1) are essentially
weighted co-citation scores. To be precise,R1(a, b) gives the num-
ber of documents that cite botha andb, divided by the product of
their in-degrees;|I(a)||I(b)|R1(a, b) is exactly the co-citation score
betweena andb. Successive iterations can be thought of as improv-
ing upon these scores, especially in the limited-information case. We
demonstrate with an example.

Suppose we are trying to answer a “find-similar-document”
query for documentA, andA is cited by only one other document
B, which also citesA1, . . . , Am. The situation is shown in Figure3.
Under the co-citation scheme, any ofA1, . . . , Am appears equally
similar toA. In reality, we expect that not all citations fromB are
equal. There may be some “outlier” documents amongA1, . . . , Am

which have relatively little to do withB or the rest of the group. In
our algorithm, the citers of each of the pagesA1, . . . , Am are also
taken into account, and they affect the similarity scores betweenA
and each ofA1, . . . , Am. Those documentsAi which are cited by
other documents similar toB will have higher similarity toA. In the
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Figure 3: Little information is available forA, which is cited
only byB.

figure,Am is shown as a better match forA thanA1, sinceAm’s
other citer isB′, which is similar toB.

The example demonstrates the case where we are interested in
documents similar to documentA about which there is little infor-
mation. We can also consider the complementary case where we
are interested in a general documentC, and ask whetherA should
be included on a list of documents most similar toC. In our ex-
ampleA has only one in-citation, and it may be the case that this
is an “outlier” citation. It would be safer to consider only docu-
ments for which we have more information. On the other hand, we
don’t want to eliminate unpopular documents from consideration or
popular documents to be favored for every query. If we eliminated
the constant factor 1

|I(b)| from equation (1), then documentsb with
a very high popularity would have a high similarity score with any
other documenta. As a compromise, we can weigh the final results
of the algorithm by popularity, using the asymmetric formula

sP (a, b) = s(a, b) · |I(b)|P (6)

where the constantP ∈ (0, 1) is a parameter adjustable by the end
user. In Section6 we discuss experimentation with this weighting
scheme.

Note that although we have used documents as examples of un-
popular objects, the same ideas apply in other domains, such as to
items rarely purchased, courses rarely taken, etc.

5 Random Surfer-Pairs Model

As discussed in Section4.2, it is important to have an intuition for
the similarity scores produced by the algorithm. For this we provide
an intuitive model based on “random surfers”. (Readers not inter-
ested in underlying models may proceed directly to Section6 on
experimental results.) We will show that the SimRank scores(a, b)
measures how soon two random surfers are expected to meet at the
same node if they started at nodesa andb and randomly walked the
graph backwards. The details involve some complexity, and are de-
veloped in the remainder of this section. The model is presented in
the context of general directed graphs; variations for bipartite Sim-
Rank (Section4.3) are easy to derive and we leave them to the inter-
ested reader.

5.1 Expected Distance

Let H be any strongly connected graph (in which a path exists be-
tween every two nodes). Letu, v be any two nodes inH. We define

v w

u

(a) (b) (c)

Figure 4: Sample graph structures.

theexpected distance2 d(u, v) from u to v as

d(u, v) =
∑

t:u v

P [t]l(t) (7)

The summation is taken over alltourst (paths that may have cycles)
which start atu and end atv, and do not touchv except at the end.
For a tourt = 〈w1, . . . , wk〉, the lengthl(t) of t is k−1, the number
of edges int. The probabilityP [t] of travelingt is

∏k−1
i=1

1
|O(wi)|

, or
1 if l(t) = 0. Note that the case whereu = v, for whichd(u, v) =
0, is a special case of (7): only one tour is in the summation, and it
has length 0. Because of the presence of cycles, there are infinitely
many tours fromu to v, and (7) is an (convergent) infinite sum. The
expected distance fromu to v is exactly the expected number of
steps a random surfer, who at each step follows a random out-edge,
would take before he first reachesv, starting fromu.

5.2 Expected Meeting Distance

For our model, we extend the concept of expected distance toex-
pected meeting distance(EMD). Intuitively, the expected meeting
distancem(a, b) betweena andb is the expected number of steps re-
quired before two surfers, one starting ata and the other atb, would
meet if they walked (randomly) in lock-step. The EMD is symmetric
by definition. Before formalizing EMD, let us consider a few exam-
ples. The EMD between any two distinct nodes in Figure4(a) is
(informally)∞, since two surfers walking the loop in lock-step will
follow each other forever. In Figure4(b),m(u, v) = m(u, w) = ∞
(surfers will never meet) andm(v, w) = 1 (surfers meet on the next
step), suggesting thatv andw are much more similar to each other
thanu is tov or w. Between two distinct nodes of4(c), the EMD is
3, suggesting a lower similarity than betweenv andw in 4(b), but
higher than betweenu andv (or u andw).

To define EMD formally inG, we use the derived graphG2 of
node-pairs. Each node(a, b) of V 2 can be thought of as the present
state of a pair of surfers inV , where an edge from(a, b) to (c, d)
in G2 says that in the original graphG, one surfer can move from
a to c while the other moves fromb to d. A tour in G2 of lengthn
represents a pair of tours inG also having lengthn.

The EMD m(a, b) is simply the expected distance inG2 from
(a, b) to any singleton node(x, x) ∈ V 2, since singleton nodes in
G2 represent states where both surfers are at the same node. More
precisely,

m(a, b) =
∑

t:(a,b) (x,x)

P [t]l(t) (8)

2In the literature this quantity, in undirected graphs, is known as thehit-
ting time[14], but we will develop the idea differently and so choose to use
another name for our presentation.
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The sum is taken over all tourst starting from(a, b) which touch a
singleton node at the end and only at the end. Unfortunately,G2 may
not always be strongly connected (even ifG is), and in such cases
there may be no tourst for (a, b) in the summation (8). The intuitive
definition form(a, b) in this case is∞, as in Figure4(b), discussed
above. However, this definition would cause problems in defining
distances for nodes from which some tours lead to singleton nodes
while others lead to(a, b). We discuss a solution to this problem in
the next section.

5.3 Expected-f Meeting Distance

There are various ways to circumvent the “infinite EMD” problem
discussed in the previous section. For example, we can make each
surfer “teleport” with a small probability to a random node in the
graph (the solution suggested for PageRank in [16]). Our approach,
which as we will see yields equations equivalent to the SimRank
equations, is to map all distances to a finite interval: instead of com-
puting expected lengthl(t) of a tour, we can compute the expected
f(l(t)), for a nonnegative, monotonic functionf which is bounded
on the domain[0,∞). With this replacement we get theexpected-
f meeting distance. For our purposes, we choose the exponential
functionf(z) = cz, wherec ∈ (0, 1) is a constant. The benefits of
this choice off , which has values in the range(0, 1] over domain
[0,∞), are:

• Equations generated are simple and easy to solve.

• Closer nodes have a lower score (meeting distances of0 go to1
and distances of∞ go to0), matching our intuition of similarity.

We defines′(a, b), the similarity betweena and b in G based on
expected-f meeting distance, as

s′(a, b) =
∑

t:(a,b) (x,x)

P [t]cl(t) (9)

wherec is a constant in(0, 1). The summation is taken to be0 if
there is no tour from(a, b) to any singleton nodes. Note from (9)
thats′(a, b) ∈ [0, 1] for all a, b, and thats′(a, b) = 1 if a = b.

Let us consider these similarity scores on Figure4 usingC = 0.8
as an example. Between any two distinct nodesa, b in Figure4(a),
s′(a, b) = 0. In Figure 4(b), s′(v, w) = 0.8 while s′(u, v) =
s′(u, w) = 0. For any two distinct nodes in the complete graph of
Figure4(c), s′(a, b) ≈ 0.47, a lower score than betweenv andw in
Figure4(b).

5.4 Equivalence to SimRank

We now show thats′(∗, ∗) exactly models our original definition
of SimRank scores by showing thats′(∗, ∗) satisfies the SimRank
equations (1). To ease presentation, let us assume that all edges in
our graphG have been reversed, so following an edge is equivalent
to moving one step backwards in the original graph.3

First, to aid in understanding, we give an intuitive but infor-
mal argument about the expected distanced(u, v) in a graph; the
same ideas can be applied to the expected-f meeting distance. Sup-
pose a surfer is atu ∈ V . At the next time step, he chooses
one ofO1(u), . . . , O|O(u)|(u), each with probability 1

|O(u)| . Upon

3Had we written equation (1) in terms of out-neighbors instead of in-
neighbors, as may be appropriate in some domains, this step would not be
necessary.

choosingOi(u), the expected number of steps he will still have to
travel isd(Oi(u), v) (the base case is whenOi(u) = v, for which
d(Oi(u), v) = 0). Accounting for the step he travels to get to
Oi(u), we get:

d(u, v) = 1 +
1

|O(u)|

|O(u)|∑
i=1

d(Oi(u), v)

With this intuition in mind, we derive similar recursive equations
for s′(a, b) which will show thats′(a, b) = s(a, b). If a = b then
s′(a, b) = s(a, b) = 1. If there is no path inG2 from (a, b) to any
singleton nodes, in which cases′(a, b) = 0, it is easy to see from
equation (5) thats(a, b) = 0 as well, since no similarity would flow
to (a, b) (recall that edges have been reversed). Otherwise, consider
the tourst from (a, b) to a singleton node in which the first step is to
the out-neighborOz((a, b)). There is a one-to-one correspondence
between sucht and tourst′ from Oz((a, b)) to a singleton node:
for eacht′ we may derive a correspondingt by appending the edge
〈(a, b), Oz((a, b))〉 at the beginning. LetT be the bijection that
takes eacht′ to the correspondingt. If the length oft′ is l, then the
length oft = T (t′) is l + 1. Moreover, the probability of travelingt
is P [t] = 1

|O((a,b))|P [t′] = 1
|O(a)||O(b)|P [t′]. We can now split the

sum in (9) according to the first step of the tourt to write

s′(a, b) =

|O((a,b))|∑
z=1

∑
t′: Oz((a,b)) (x,x)

P [T (t′)]cl(T (t′))

=

|O((a,b))|∑
z=1

∑
t′: Oz((a,b)) (x,x)

1

|O(a)||O(b)|P [t′]cl(t′)+1

=
c

|O(a)||O(b)|

|O((a,b))|∑
z=1

∑
t′: Oz((a,b)) (x,x)

P [t′]cl(t)

=
c

|O(a)||O(b)|

|O(a)|∑
i=1

|O(b)|∑
j=1

s′(Oi(a), Oj(b)) (10)

Equation (10) is identical to the SimRank equation (1) with c =
C and in-edges swapped for out-edges. Since the solution to (1)
is unique,s′(a, b) = s(a, b) for all a, b ∈ V . Thus we have the
following theorem.

Theorem. The SimRank score, with parameterC, between two
nodes is their expected-f meeting distance traveling back-edges, for
f(z) = Cz.

Thus, two nodes with a high SimRank score can be thought of as
being “close” to a common “source” of similarity.

6 Experimental Results
We have proposed an algorithm for computing SimRank similarity
scores between nodes of a graph, a mathematical property that de-
pends only on the graph structure and can be computed in any graph.
In this section, we report on some preliminary experiments, whose
primary purpose is to show that SimRank scores do in fact refine
simpler notions of structural similarity for graph structures derived
from practical data sets. The experiments also illustrate the effects
of varying the parameters of the algorithm. Although performance
and scalability issues obviously are extremely important, they are
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Figure 5: SimRank and co-citation on scientific papers.

not the focus of this paper or of our experiments. Nevertheless, the
fact that we were able to run experiments on relatively large data sets
shows the general feasibility of our approach.

We ran experiments on two data sets. The first is
a corpus of scientific research papers fromResearchIndex
(http://www.researchindex.com ) [13], which crawls the
Web for research papers and parses their contents for citation infor-
mation and other metadata. We had information on 688,898 cross-
references among 278,628 papers, along with the titles for most pa-
pers. The second data set comes from the transcripts of 1030 under-
graduate students in the School of Engineering at Stanford Univer-
sity. Each transcript lists all the courses that the student has taken so
far in his undergraduate career, an average of about 40 courses per
student.

The feature that distinguishes SimRank is its recursive definition
of similarity, which computationally is manifested in the fixed-point
iteration process (Section4.4.1). Thus we should expect to see that
the intermediate similarity scoresRk(∗, ∗) become more “accurate”
on successive iterations. We can also compare our algorithm against
the simple co-citation scheme, which as discussed in Section4.5 is
similar to using just one iteration of SimRank.

A good evaluation of SimRank or any other method of measur-
ing similarity in any domain is difficult without performing exten-
sive user studies or having a reliable external measure of similarity
to compare against. For the results reported in this paper, we take a
simple approach that uses domain-specific properties as rough met-
rics of similarity. Although admittedly not definitive or exhaustive,
this approach does serve to illustrate empirically important aspects
of SimRank.

We consider objectsp in our domain of interest, generating lists
of objects similar top. The procedure for evaluating the similarity
scores for an objectp by algorithmA is as follows:

1. Generate a settopA,N (p) of the topN objects most similar top
(exceptp itself), according to algorithmA.

2. For eachq ∈ topA,N (p), computeσ(p, q), where σ is a
coarse domain-specific similarity measure. Return the average
σA,N (p) of these scores.

The numberσA,N (p) gives the average “actual” similarity top of
the topN objects that algorithmA decides are similar top.

Different values ofN were tried in our experiments, ranging
from 5 to 50, in increments of5. Since only the set of co-cited
objectsc(p) ever appear as candidates in the simple co-citation
scheme, for proper comparison we restricted our experiments to
those objectsp for which co-citation had at least50 candidates to
consider, or|c(p)| ≥ 50. As a baseline, letσR,N (p) be the av-
erage ofσ(p, q) for N objectsq randomly chosen fromc(p). We
measure the performance of algorithmA on objectp using the dif-
ferenceδA,N (p) = σA,N (p) − σR,N (p), which is the amount of
“improvement” ofA over a random assignment of similarity. The
average ofδA,N (p) over allp, ∆A,N , is the final score for algorithm
A. In our experiments, algorithmA is either SimRank or the simple
co-citation scheme.

6.1 Scientific Papers

For scientific papers, we based our external similarity metricσ on
citations and titles. Similar papers should be more likely to cite com-
mon papers and have common words in their titles. More precisely,
we used the evaluation functions

σC(p, q) = fraction ofq’s citations also cited byp

σT (p, q) = fraction of words inq’s title also inp’s title

where title words were first stemmed using the standard Porter algo-
rithm [19]. At first one might question the use of citations to eval-
uate algorithms that are themselves based on citation structure. To
be fair, we ran the bipartite variant (Section4.3.1) of the SimRank
algorithm and used only the pointed-to similarity scores, which for
papersp andq are computed using only their in-citations.

We experimented with various values for the parametersC1 and
C2 in equations (2) and (3), and found little difference in the rank-
ings, although there were differences in absolute magnitudes of
scores. This behavior is to be expected sinceC1 and C2 can be
viewed as the bases of exponential functions whose only purpose
is to map distances to finite intervals (Section5.3). For efficiency,
we pruned considerably, creating node-pairs only for nodes sharing
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Figure 6: SimRank and co-citation on scientific papers for varying N.

a common in-edge for pointed-to similarity calculations, or shar-
ing a common out-edge for points-to similarity calculations (Section
4.4.2). Our experiments showed little difference in relative rankings
as we increased the radius of consideration for node-pair creation,
which confirms that this is a good approximation to make. We tried
different values forP (Section4.5), and found thatP = 0.5 seems
to be the best setting for this corpus. Results here are shown for
C1 = C2 = 0.8 andP = 0.5.

Figure 5 plots the scores∆C
A,N (left) and ∆T

A,N (right) for
N = 5 andN = 10, over a total of 13,481 objectsp, for various
intermediate SimRank valuesRk(∗, ∗) computed afterk iterations.
The iteration numberk is on the x-axis, and the scores∆A,N are
on the y-axis. The co-citation scores are also shown for comparison.
Scores for the initial vectorR0(∗, ∗) are not shown because they
provide random rankings and are equivalent to the random baseline.

Iteration2, which computesR2(∗, ∗) based on iteration-1 scores
R1(∗, ∗), can be thought of as the first iteration that takes advantage
of the recursive definition of similarity. Subsequent changes become
increasingly minor, suggesting a rapid convergence, at least in terms
of the two metrics. This result is in agreement with the numerical
differences

∑
a,b |Rk+1(a, b)−Rk(a, b)| that we observed.

Figure6 plots the final scores∆C
A,N (left) and∆T

A,N (right) for
different values ofN . The value ofN is on the x-axis and the score
is on the y-axis. Across allN , the average improvement of SimRank
over simple co-citation under these coarse evaluation measures is
about45% (citations) and36% (titles). The downward curves show
a decrease in score (for both algorithms) asN increases, which is
expected since higher-ranking papers are more similar. We note that
the high resemblance between the plots of the citation-based and
title-based metrics confirms the appropriateness of these metrics as
indicators of “actual” similarity.

6.2 Students and Courses

For our second data set, students and courses, we used an external
similarity metric for courses only, not having any reasonable met-
ric for students. The external course-similarity metric is based on
departments:σD(p, q) = 1 if p andq are courses from the same

Department score versus iteration

0.15

0.17

0.19

0.21

0 1 2 3 4 5 6 7 8 9

Iteration

S
co

re

SimRank (top 5) SimRank (top 10)
First iteration (top 5) First iteration (top 10)

Figure 7: SimRank on courses for increasing iterations.

department, andσD(p, q) = 0 otherwise. We found that for this
bipartite domain, the minimax variation of SimRank (Section4.3.2)
performs best. Again, we found that the parametersC1 andC2 have
little effect on relative rankings. The results shown here are for the
minimax variation (used for both students and courses) with param-
etersC1 = C2 = 0.8. Figure7 plots the scores∆D

A,N usingN = 5
andN = 10 for intermediate resultsRk(∗, ∗), over a total of 3,193
trials. Co-citation scores, which are very poor (≈ 0.161 for N = 5
and≈ 0.147 for N = 10), are not shown in the graph. Scores corre-
sponding to the first-iteration resultsR1(∗, ∗) are also plotted across
the x-axis to show the improvements of successive iterations.

7 Conclusion and Future Work

To summarize the contributions of this paper:

• We started with the basic premise that in many domains with
object-to-object relationships, “structural-context similarity” be-
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tween two objects can be inferred by considering recursively the
similarity of their neighbors. This approach generalizes previous
approaches that compute similarity by common neighbors alone.

• We wrote mathematical equations to formalize our recursive no-
tion of structural-context similarity, and definedSimRankscores
in terms of these equations. We also presented variations of Sim-
Rank that are applicable to different domains.

• We presented a fixed-point algorithm for computing SimRank
scores, as well as methods to reduce its time and space require-
ments.

• We defined a “random-surfer” model by which to interpret so-
lutions to the SimRank equations, relating SimRank scores to
intuitive graph-theoretic properties. The model is based on the
concept ofexpected meeting distance(EMD).

• We ran experiments on two representative data sets. Results con-
firm the applicability of the algorithm in these domains, showing
significant improvement over simpler co-citation measures.

There are a number of avenues for future work. Foremost, we
must address efficiency and scalability issues, including additional
pruning heuristics and disk-based algorithms. One possible approx-
imation that differs from the neighborhood-based pruning heuristic
in Section4.4.2is to divide a corpus into chunks, computing accu-
rate similarity scores separately for each chunk and then combining
them into a global solution. A second area of future work is to con-
sider ternary (or more) relationships in computing structural-context
similarity. For example, in the student-course domain we might also
include the professors who taught the courses and the grades re-
ceived by the students. Extending our entire framework to encom-
pass such relationships should be possible, but it is not straightfor-
ward. Finally, we believe that structural-context similarity is only
one component of similarity in most domains, so we plan to explore
the combination of SimRank with other domain-specific similarity
measures.
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APPENDIX

We prove the existence and uniqueness of a simultaneous solution to then2 SimRank equations (1). The unique solution is
actually constructed in Section4.4.1, and the correctness of the iterative algorithm follows. First, a simple fact about the values
Rk(∗, ∗), which follows by induction using equation (5):

Fact. Monotonicity:0 ≤ Rk(a, b) ≤ Rk+1(a, b) ≤ 1 for all a, b ∈ V , k ≥ 0.

This says for everya, b, the sequence{Rk(a, b)} is bounded and nondecreasing ask increases without bound. By the Com-
pleteness Axiom of calculus, each sequence{Rk(a, b)} converges to a limitR(a, b) ∈ [0, 1]. But limk→∞Rk+1(a, b) =
limk→∞Rk(a, b) = R(a, b), and the limit of a sum is the sum of the limits, so we have from (5):

R(a, b) =

 C
|I(a)||I(b)|

|I(a)|∑
i=1

|I(b)|∑
j=1

R(Ii(a), Ij(b)) (if a 6= b)

1 (if a = b)

which shows that the limitsR(∗, ∗) satisfy the SimRank equations.
Now we show uniqueness. Supposes1(∗, ∗) ands2(∗, ∗) are two solutions to then2 SimRank equations. For alla, b ∈ V ,

let δ(a, b) = s1(a, b) − s2(a, b) be their difference. LetM = max(a,b) |δ(a, b)| be the maximum absolute value of any
difference. We need to show thatM = 0. Let |δ(a, b)| = M for somea, b ∈ V . CertainlyM = 0 if a = b, in which case
s1(a, b) = s2(a, b) = 1, or if a or b have no out-neighbors, in which cases1(a, b) = s2(a, b) = 0. Otherwise,s1(a, b) and
s2(a, b) are the average scores of their in-neighbors. That is, from equation (1),

s1(a, b) =
C

|I(a)||I(b)|

|I(a)|∑
i=1

|I(b)|∑
j=1

s1(Ii(a), Ij(b))

s2(a, b) =
C

|I(a)||I(b)|

|I(a)|∑
i=1

|I(b)|∑
j=1

s2(Ii(a), Ij(b))

In terms ofδ(a, b),

δ(a, b) = s1(a, b)− s2(a, b)

=
C

|I(a)||I(b)|

|I(a)|∑
i=1

|I(b)|∑
j=1

s1(Ii(a), Ij(b))− s2(Ii(a), Ij(b))

=
C

|I(a)||I(b)|

|I(a)|∑
i=1

|I(b)|∑
j=1

δ(Ii(a), Ij(b))

Thus,

M = |δ(a, b)|

=

∣∣∣∣∣∣ C

|I(a)||I(b)|

|I(a)|∑
i=1

|I(b)|∑
j=1

δ(Ii(a), Ij(b))

∣∣∣∣∣∣
≤ C

|I(a)||I(b)|

|I(a)|∑
i=1

|I(b)|∑
j=1

|δ(Ii(a), Ij(b))|

≤ C

|I(a)||I(b)|

|I(a)|∑
i=1

|I(b)|∑
j=1

M

=
C

|I(a)||I(b)|
|I(a)||I(b)|M

= CM

Since0 < C < 1, it follows thatM = 0.
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