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Social networks are primary conduits of information, opinions, and behaviors. 
They carry news about products, jobs, and various social programs; influence 

decisions to become educated, to smoke, and to commit crimes; and drive political 
opinions and attitudes toward other groups. In view of this, it is important to under-
stand how beliefs and behaviors evolve over time, how this depends on the network 
structure, and whether or not the resulting outcomes are efficient. In this paper, we 
examine one aspect of this broad theme: for which social network structures will a 
society of agents who communicate and update naïvely come to aggregate decentral-
ized information completely and correctly?

Given the complex forms that social networks often take, it can be difficult for the 
agents involved (or even for a modeler with full knowledge of the network) to update 
beliefs properly. For example, Syngjoo Choi, Douglas Gale, and Shachar Kariv 
(2005, 2008) find that although subjects in simple three-person networks update 
fairly well in some circumstances, they do not do so well in evaluating repeated 
observations and judging indirect information for which the origin is uncertain. 
Given that social communication often involves repeated transfers of information 
among large numbers of individuals in complex networks, fully rational learning 
becomes infeasible. Nonetheless, it is possible that agents using fairly simple updat-
ing rules will arrive at outcomes like those achieved through fully rational learning. 
We identify social networks for which naïve individuals converge to fully rational 
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Naïve Learning in Social Networks and the 
Wisdom of Crowds†

By Benjamin Golub and Matthew O. Jackson*

We study learning in a setting where agents receive independent 
noisy signals about the true value of a variable and then communi-
cate in a network. They naïvely update beliefs by repeatedly taking 
weighted averages of neighbors’ opinions. We show that all opinions 
in a large society converge to the truth if and only if the influence 
of the most influential agent vanishes as the society grows. We also 
identify obstructions to this, including prominent groups, and pro-
vide structural conditions on the network ensuring efficient learn-
ing. Whether agents converge to the truth is unrelated to how quickly 
consensus is approached. (JEL D83, D85, Z13)
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beliefs despite using simple and decentralized updating rules and we also identify 
social networks for which beliefs fail to converge to the rational limit under the same 
updating.

We base our study on an important model of network influence largely due 
to Morris H. DeGroot (1974). The social structure of a society is described by a 
weighted and possibly directed network. Agents have beliefs about some common 
question of interest—for instance, the probability of some event. At each date, agents 
communicate with their neighbors in the social network and update their beliefs. 
The updating process is simple. An agent’s new belief is the (weighted) average of 
his or her neighbors’ beliefs from the previous period. Over time, provided the net-
work is strongly connected (so there is a directed path from any agent to any other) 
and satisfies a weak aperiodicity condition, beliefs converge to a consensus. This is 
easy to understand. At least one agent with the lowest belief must have a neighbor 
who has a higher belief, and similarly, some agent with the highest belief must have a 
neighbor with a lower belief. So, distance between highest and lowest beliefs decays 
over time.

We focus on situations where there is some true state of nature that agents are 
trying to learn and each agent’s initial belief is equal to the true state of nature plus 
some idiosyncratic zero-mean noise. An outside observer who could aggregate all of 
the decentralized initial beliefs could develop an estimate of the true state that would 
be arbitrarily accurate in a large enough society. Agents using the DeGroot rule will 
converge to a consensus estimate. Our question is: for which social networks will 
agents using the simple and naïve updating process all converge to an accurate esti-
mate of the true state?

The repeated updating model we use is simple, tractable, and captures some of 
the basic aspects of social learning, so it is unsurprising that it has a long history. 
Its roots go back to sociological measures of centrality and prestige that were intro-
duced by Leo Katz (1953) and further developed by Phillip Bonacich (1987). There 
are precursors, reincarnations, and cousins of the framework discussed by John R. 
P. French, Jr. (1956); Frank Harary (1959); Noah E. Friedkin and Eugene C. Johnsen 
(1997); and Peter M. DeMarzo, Dimitri Vayanos, and Jeffrey Zwiebel (2003), among 
others. In the DeGroot (1974) version of the model that we study, agents update 
their beliefs or attitudes in each period simply by taking weighted averages of their 
neighbors’ opinions from the previous period, possibly placing some weight on their 
own previous beliefs. The agents in this scenario are boundedly rational, failing to 
adjust correctly for repetitions and dependencies in information that they hear mul-
tiple times.1 While this model captures the fact that agents repeatedly communicate 
with each other and incorporate indirect information in a boundedly rational way, it 
is rigid in that agents do not adjust the weights they place on others’ opinions over 
time. Nonetheless, it is a useful and tractable first approximation that serves as a 
benchmark. In fact, the main results of the paper show that even this rigid and naïve 

1 For more discussion and background on the form of the updating, there are several sources. For Bayesian 
foundations under some normality assumptions, see DeGroot (1974, 416–17). Behavioral explanations are dis-
cussed in Friedkin and Johnsen (1997) and DeMarzo, Vayanos, and Zwiebel (2003). For additional results from 
other versions of the model, see Jackson (2008).
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process can lead agents to converge jointly to fully accurate beliefs in the limit as 
society grows large in a variety of social networks. Moreover, the limiting properties 
of this process are useful not only for understanding belief evolution, but also as a 
basis for analyzing the influence or power of the different individuals in a network.2

Our contributions are outlined as follows, in the order in which they appear in 
the paper.

Section I introduces the model, discusses the updating rule, and establishes some 
definitions. Then, to lay the groundwork for our study of convergence to true beliefs, 
we briefly review issues of convergence itself in Section II. Specifically, for strongly 
connected networks, we state the necessary and sufficient condition for all agents’ 
beliefs to converge as opposed to oscillating indefinitely; the condition is based on 
the well-known characterization of Markov chain convergence. When beliefs do 
converge, they converge to a consensus. In Section A of the Appendix, we provide 
a full characterization of convergence even for networks that are not strongly con-
nected, based on straightforward extensions of known results from linear algebra.

When convergence obtains, the consensus belief is a weighted average of agents’ 
initial beliefs and the weights provide a measure of social influence or importance. 
Those weights are given by a principal eigenvector of the social network matrix. 
This is what makes the DeGroot model so tractable, and we take advantage of this 
known feature to trace how influential different agents are as a function of the struc-
ture of the social network. This leads us to the novel theoretical results of the paper. 
In Sections III and IV, we ask for which social networks will a large society of naïve 
DeGroot updaters converge to beliefs such that all agents learn the true state of 
nature, assuming that they all start with independent (but not necessarily identically 
distributed), noisy signals about the state. For example, if all agents listen to just 
one particular agent, then their beliefs converge, but they converge to that agent’s 
initial information, and thus the beliefs are not accurate, in the sense that they have 
a substantial probability of deviating substantially from the truth. In contrast, if all 
agents place equal weight on all agents in their communication, then clearly they 
immediately converge to an average of all of the signals in the society, and then, 
by a law of large numbers, agents in large societies all hold beliefs close to the true 
value of the variable. We call networked societies that converge to this accurate limit 
“wise.” The question is what happens for large societies that are more complex than 
those two extremes.

Our main results begin with a simple but complete characterization of wisdom in 
terms of influence weights in Section III. A society is wise if and only if the influ-
ence of the most influential agent is vanishing as the society grows. Building on this 
characterization, we focus on the relationship between social structure and wisdom 
in Section IV. First, in a setting where all ties are reciprocal and agents pay equal 
attention to all their neighbors, wisdom can fail if and only if there is an agent whose 
degree (number of neighbors) is a nonvanishing fraction of the total number of links 
in the network, no matter how large the network grows. Thus, in this setting, dispro-
portionate popularity is the sole obstacle to wisdom. Moving to more general results, 

2 The model can also be applied to study a myopic best-response dynamic of a game in which agents care 
about matching the behavior of those in their social network (possibly placing some weight on themselves).
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we show that having a bounded number of agents who are prominent (receiving a 
nonvanishing amount of possibly indirect attention from everyone in the network) 
causes learning to fail, since their influence on the limiting beliefs is excessive. This 
result is a fairly direct elaboration of the characterization of wisdom given above, 
but it is stated in terms of the geometry of the network as opposed to the influence 
weights. Next, we provide examples of types of network patterns that prevent a soci-
ety from being wise. One is a lack of balance, where some groups get much more 
attention than they give out, and the other is a lack of dispersion, where small groups 
do not pay sufficient attention to the rest of the world. Based on these examples, we 
formulate structural conditions that are sufficient for wisdom. The sufficient condi-
tions formally capture the intuition that societies with balance and dispersion in their 
communication structures will have accurate learning.

In Section V, we discuss some of what is known about the speed and dynamics of 
the updating process studied here. Understanding the relationship between commu-
nication structures and the persistence of disagreement is independently interesting, 
and also sheds light on when steady-state analysis is relevant. We note that the speed 
of convergence is not related to wisdom.

The proofs of all results appear in Section B of the Appendix; some additional 
results, along with their proofs, appear in Sections A and C of the Appendix.

Our work relates to several lines of research other than the ones already discussed. 
There is a large theoretical literature on social learning, both fully and boundedly 
rational. Herding models (e.g., Abhijit V. Banerjee 1992; Sushil Bikhchandani, 
David Hirshleifer, and Ivo Welch 1992; Glenn Ellison and Drew Fudenberg 1993, 
1995; Gale and Kariv 2003, Boğaçhan Çelen and Kariv 2004; and Banerjee and 
Fudenberg 2004) are prime examples, and there agents converge to holding the 
same belief or at least the same judgment as to an optimal action. These conclu-
sions generally apply to observational learning, where agents are observing choices 
and/or payoffs over time and updating accordingly.3 In such models, the structure 
determining which agents observe which others when making decisions is typically 
constrained, and the learning results do not depend sensitively on the precise struc-
ture of the social network. Our results are quite different from these. In contrast to 
the observational learning models, convergence and the efficiency of learning in our 
model depend critically on the details of the network architecture and on the influ-
ences of various agents.

The work of Venkatesh Bala and Sanjeev Goyal (1998) is closer to the spirit of our 
work, as they allow for richer network structures. Their approach is different from 
ours in that they examine observational learning where agents take repeated actions 
and can observe each other’s payoffs. There, consensus within connected components 
generally obtains because all agents can observe whether their neighbors are earning 
payoffs different from their own.4 They also examine the question of whether agents 
might converge to taking the wrong actions, which is a sort of wisdom question, 

3 For a general version of the observational learning approach, see Dinah Rosenberg, Eilon Solan, and Nicolas 
Vieille (2009).

4 Bala and Goyal (2001) shows that heterogeneity in preferences in the society can cause similar individuals 
to converge to different actions if they are not connected.
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and the answer depends on whether some agents are too influential, which has some 
similar intuition to the prominence results that we find in the DeGroot model. Bala 
and Goyal also provide sufficient conditions for convergence to the correct action. 
Roughly speaking, these require some agent to be arbitrarily confident in each action, 
so that each action gets chosen enough to reveal its value; and the existence of paths 
of agents observing each such agent, so that the information diffuses. While the ques-
tions are similar, the analysis and conclusions are quite different in two important 
ways. First, the pure communication we study is different from observational learn-
ing, and changes the sorts of conditions that are needed for wisdom. Second, the 
DeGroot model allows for precise calculations of the influence of every agent in any 
network, which is not seen in the observational learning literature. The second point 
is obvious, so let us explain the first aspect of the difference, which is especially use-
ful to discuss since it highlights fundamental differences between issues of learning 
through repeated observation and actions, and updating via repeated communication. 
In the observational learning setting, if some agent is sufficiently stubborn in pursu-
ing a given action, then, through repeated observation of that action’s payoffs, the 
agent’s neighbors learn that action’s value if it is superior. That leads them to take 
the action, and then their neighbors learn, and so forth. Thus, to be arbitrarily sure of 
converging to the best action, all that is needed is for each action to have a player who 
has a prior that places sufficiently high weight on that action so that its payoff will be 
sufficiently accurately assessed. And, if it turns out to be the highest payoff action, it 
will eventually diffuse throughout the component regardless of network structure. In 
contrast, in the updating setting of the DeGroot model, every agent starts with just 
one noisy signal, and the question is how that decentralized information is aggregated 
through repeated communication. Generally, we do not require any agent to have 
an arbitrarily accurate signal, nor would this circumstance be sufficient for wisdom 
except for some very specific network structures. In this repeated communication set-
ting, signals can quickly become mixed with other signals, and the network structure 
is critical to determining what the ultimate mixing of signals is. So, the models, basic 
structure, and conclusions are quite different between the two settings even though 
there are some superficial similarities.

Closer in terms of the formulation, but less so in terms of the questions asked, 
is the study by DeMarzo, Vayanos, and Zwiebel (2003), which focuses mainly on 
a network-based explanation for the “unidimensionality” of political opinions. 
Nevertheless, they do present some results on the correctness of learning. Our results 
on sufficient conditions for wisdom may be compared with their Theorem 2, where 
they conclude that consensus beliefs (for a fixed population of n agents) optimally 
aggregate information if and only if a knife-edge restriction on the weights holds. 
Our results show that under much less restrictive conditions, aggregation can be 
asymptotically accurate even if it is not optimal in finite societies. More generally, 
our conclusions differ from a long line of previous work which suggests that suffi-
cient conditions for naïve learning are hopelessly strong.5 We show that beliefs can 
be correct in the large-society limit for a fairly broad collection of networks.

5 See Joel Sobel (2000) for a survey.
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The most recent work on this subject of which we are aware is a paper (following 
the first version of this paper) by Daron Acemoglu et al. (2008), which is in the ratio-
nal observational learning paradigm but relates to our work in terms of the questions 
asked and the spirit of the main results. The paper both complements and contrasts 
with ours. In that model, each agent makes a decision once in a predetermined order 
and observes previous agents’ decisions according to a random process for which the 
distribution is common knowledge. The main result of the paper is that if agents have 
priors that allow signals to be arbitrarily informative, then the absence of agents who 
are excessively influential is enough to guarantee convergence to the correct action. 
The definition of excessive influence is demanding. To be excessively influential, 
a group must be finite and must provide all of the information to an infinite group 
of other agents. Conversely, an excessively influential group, in this sense, destroys 
social learning. The structure of the model is quite different from ours. The agents 
of Acemoglu et al. (2008) take one action as opposed to updating constantly, and the 
learning there is observational. Nevertheless, these results are interesting to compare 
with our main theorems. As we mentioned, prominent groups can also destroy learn-
ing in our model, and ruling them out is a first step in guaranteeing wisdom. However, 
our notion of prominence is different from and, intuitively speaking, not as strong 
as the notion of excessive influence. To be prominent, in our setting, a group must 
only get some attention from everyone, as opposed to providing all the information 
to a very large group. Thus, our agents are more easily misled, and the errors that 
can happen depend more sensitively on the details of the network structure. This is 
natural. Since they are more naïve, social structure matters more in determining the 
outcome. We view the approaches of Acemoglu et al. (2008) and our work as being 
quite complementary in the sense that some of these differences are driven by differ-
ences in agents’ rationality. However, there are also more basic differences between 
the models in terms of what information represents, as well as the repetition, timing, 
and patterns of communication.

In addition, there are literatures in physics and computer science on the DeGroot 
model, and variations on it.6 There, the focus has generally been on consensus rather 
than on wisdom. In sociology, since the work of Katz (1953), French (1956), and 
Bonacich (1987), eigenvector-like notions of centrality and prestige have been ana-
lyzed.7 As some such models are based on convergence of iterated influence relation-
ships, our results provide insight into the structure of the influence vectors in those 
models, especially in the large-society limit. Finally, there is an enormous empirical 
literature about the influence of social acquaintances on behavior and outcomes that 
we will not attempt to survey here,8 but simply point out that our model provides test-
able predictions about the relationships between social structure and social learning.

6 See Jackson (2008, Section 8.3) for an overview and more references.
7 See, also, Stanley Wasserman and Katherine Faust (1994), Bonacich and Paulette Lloyd (2001), and Jackson 

(2008) for more recent elaborations.
8 The Handbook of Social Economics (Jess Benhabib, Alberto Bisin, and Jackson (forthcoming) provides 

overviews of various aspects of this.
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I.  The DeGroot Model

A. Agents and Interaction

A finite set N = {1, 2, … , n} of agents or nodes interact according to a social net-
work. The interaction patterns are captured through an n × n nonnegative matrix T, 
where Tij > 0 indicates that i pays attention to j. The matrix T may be asymmetric, 
and the interactions can be one-sided, so that Tij > 0 while Tji = 0. We refer to T as 
the interaction matrix. This matrix is stochastic, so that its entries across each row 
are normalized to sum to one.

B. Updating

Agents update beliefs by repeatedly taking weighted averages of their neighbors’ 
beliefs with Tij being the weight or trust that agent i places on the current belief of 
agent j in forming his or her belief for the next period. In particular, each agent has 
a belief ​p​i​ 

(t )​ ∈ 핉 at time t ∈ {0, 1, 2, … }. For convenience, we take ​p​i​ 
(t )​ to lie in [0, 1], 

although it could lie in a multidimensional Euclidean space without affecting the 
results below. The vector of beliefs at time t is written p(t ). The updating rule is

	 p(t ) = Tp(t−1),

and so

(1)	 p(t ) = T tp(0).

The evolution of beliefs can be motivated by the following Bayesian setup dis-
cussed by DeMarzo, Vayanos, and Zwiebel (2003). At time t = 0, each agent receives 
a noisy signal ​p​i​ 

(0)​ = μ + ei, where ei ∈ 핉 is a noise term with expectation zero and 
μ is some state of nature. Agent i hears the opinions of the agents with whom he 
interacts, and assigns precision πij to agent j. These subjective estimates may, but 
need not, coincide with the true precisions of their signals. If agent i does not listen 
to agent j, then agent i gives j precision πij = 0. In the case where the signals are 
normal, Bayesian updating from independent signals at t = 1 entails the rule (1) with 
Tij = πij /​∑ k=1​ 

n
  ​ πik​. As agents may only be able to communicate directly with a sub-

set of agents due to some exogenous constraints or costs, they will generally wish 
to continue to communicate and update based on their neighbors’ evolving beliefs, 
since that allows them to incorporate information from those whom they do not 
observe directly. The key behavioral assumption is that the agents continue using 
the same updating rule throughout the evolution. That is, they do not account for the 
possible repetition of information and for the “cross-contamination” of their neigh-
bors’ signals. This bounded rationality arising from persuasion bias is discussed at 
length by DeMarzo, Vayanos, and Zwiebel (2003), and so we do not reiterate that 
discussion here.

It is important to note that other applications also have the same form as that 
analyzed here. What we refer to as “beliefs” could also be some behavior that people 
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adjust in response to their neighbors’ behaviors, either through some desire to match 
behaviors or through other social pressures favoring conformity. As another example, 
Google’s “PageRank” system is based on a measure related to the influence vectors 
derived below, where the T matrix is the normalized link matrix.9 Other citation 
and influence measures also have similar eigenvector foundations (e.g., see Ignacio 
Palacios-Huerta and Oscar Volij 2004). Finally, we also see iterated interaction matri-
ces in studies of recursive utility (e.g., Brian W. Rogers 2006) and in strategic games 
played by agents on networks where influence measures turn out to be important (e.g., 
Coralio Ballester, Antoni Calvó-Armengol, and Yves Zenou 2006). In such applica-
tions, understanding the properties of T t and related matrices is critical.

C. Walks, Paths, and Cycles

The following are standard graph-theoretic definitions applied to the directed 
graph of connections induced by the interaction matrix T.

A walk in T is a sequence of nodes i1, i2, … , iK , not necessarily distinct, such that ​
T​ik ik+1

​ > 0 for each k ∈ {1, … , K − 1}. The length of the walk is defined to be K − 1. 
A path in T is a walk consisting of distinct nodes.

A cycle is a walk i1, i2, … , iK  such that i1 = iK. The length of a cycle with K (not 
necessarily distinct) entries is defined to be K − 1. A cycle is simple if the only node 
appearing twice in the sequence is the starting (and ending) node.

The matrix T is strongly connected if there is path in T from any node to any other 
node. Similarly, we say that B ⊂ N is strongly connected if T restricted to B is strongly 
connected. This is true if and only if the nodes in B all lie on a cycle that involves only 
nodes in B. If T is undirected in the sense that Tij > 0, if and only if Tji > 0, then we 
simply say the matrix is connected.

II.  Convergence of Beliefs Under Naïve Updating

We begin with the question of when the beliefs of all agents in a network converge 
to well-defined limits as opposed to oscillating forever. Without such convergence, it 
is clear that wisdom could not be obtained.

Definition 1: A matrix T is convergent if limt→∞ T tp exists for all vectors p ∈ [0, 1]n.

This definition of convergence requires that beliefs converge for all initial vectors 
of beliefs. Clearly, any network will have convergence for some initial vectors, since, 
if we start all agents with the same beliefs, then no nontrivial updating will ever 
occur. It turns out that if convergence fails for some initial vector, then there will be 
cycles or oscillations in the updating of beliefs and convergence will fail for whole 
classes of initial vectors.

A condition ensuring convergence in strongly connected stochastic matrices is 
aperiodicity.

9 So, Tij = 1/ℓi if page i has a link to page j, where ℓi is the number of links that page i has to other pages. From 
this basic form T is perturbed for technical reasons. See Amy N. Langville and Carl D. Meyer (2006) for details.
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Definition 2: The matrix T is aperiodic if the greatest common divisor of the 
lengths of its simple cycles is 1.

A. Examples

The following very simple and standard example illustrates a failure of aperiodicity.

Example 1:

	 T = a​​ 
0   1   1   0 

​
​b .

Clearly,

	 T t = e ​T   
 I ​    ​if t is odd     

if t is even.
​

In particular, if p1(0) ≠ p2 (0), then the belief vector never reaches a steady state, 
and the two agents keep switching beliefs.

Here, each agent ignores his own current belief in updating. Requiring at least 
one agent to weight his current belief ensures convergence. This is a special case of 
Proposition 1. However, it is not necessary to have Tii > 0 for even a single i in order 
to ensure convergence.

Example 2: Consider,

T = a 
0 1/2 1/2

b .1 0 0
0 1 0

Here,

T t → a 
2/5 2/5 1/5

b .2/5 2/5 1/5
2/5 2/5 1/5

Even though T has only 0 along its diagonal, it is aperiodic and converges. If we 
change the matrix to

T = a 
0 1/2 1/2

b ,1 0 0
1 0 0

then T is periodic as all of its cycles are of even lengths and T is no longer convergent.
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B. A Characterization of Convergence and Limiting Beliefs

It is well-known that aperiodicity is necessary and sufficient for convergence in 
the case where T is strongly connected (John G. Kemeny and J. Laurie Snell 1960). 
We summarize this in the following statement.

Proposition 1: If T is a strongly connected matrix, the following are equivalent:

	 (i)	 T is convergent.

	 (ii)	 T is aperiodic.

	 (iii)	 There is a unique left eigenvector s of  T corresponding to eigenvalue 1 whose 
entries sum to 1 such that, for every p ∈ [0, 1]n,

	 Q ​ lim    
t→∞

​T tpR i = sp

for every i.

In addition to characterizing convergence, this fact also establishes what beliefs 
converge to when they do converge. The limiting beliefs are all equal to a weighted 
average of initial beliefs, with agent i’s weight being si. We refer to si as the influence 
weight or the influence of agent i.

To see why there is an eigenvector involved, let us suppose that we would like to 
find a vector s = (s1, … , sn ) ∈ [0, 1]n which would measure how much each agent 
influences the limiting belief. In particular, let us look for a nonnegative vector, nor-
malized so that its entries sum to 1, such that for any vector of initial beliefs p ∈ [0, 1]n,
we have

	 Q ​ lim    
t→∞

​T tpR j = ​∑ 
i

  ​ 
 

  ​s​i pi (0).

Noting that limt→∞T tp = limt→∞T t(Tp), it must be that

	 sp = sTp,

for every p ∈ [0, 1]n. This implies that s = sT, and so s is simply a unit (left-hand or 
row) eigenvector of T, provided that such an s can be found.

The eigenvector property, of course, is just saying that si = ​∑ j∈N​ 
 
  ​ T​ji sj for all i, so 

that the influence of i is a weighted sum of the influences of various agents j who pay 
attention to i, with the influence sj weighted by Tji, which is the trust that j places on 
i. This is a very natural property for a measure of influence to have and entails that 
influential people are those who are trusted by other influential people.

As mentioned in the introduction, the result can be generalized to situations with-
out strong connectedness, which are relevant for many applications. This is discussed 
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in Section A of the Appendix. Much of the structure previously discussed remains in 
that case, with some modifications, but some aspects of the characterization, such as 
the equality of everyone’s limiting beliefs, do not hold in general settings.

C. Undirected Networks with Equal Weights

A particularly tractable special case of the model arises when T is derived from 
having each agent equally split attention among his or her neighbors in an undirected 
network. Suppose that we start with a symmetric, connected adjacency matrix G of 
an undirected network, where Gij = 1 indicates that i and j have an undirected link 
between them, and Gij = 0 otherwise. Let di (G) = ​∑ j=1​ 

n
  ​ G​ij be the degree, or number 

of neighbors, of agent i. Then, if we define T(G) by Tij = Gij/di (G), we obtain a 
stochastic matrix. The interpretation is that G gives a social network of undirected 
connections, and everyone puts equal weight on all his neighbors in that network.10 It 
is impossible, in this setting, for i to pay attention to j and not vice versa, and it is not 
possible for someone to pay different amounts of attention to different sources that 
he or she listens to. Thus, this setting places some real restrictions on the structure 
of the interaction matrix, but, in return, yields a very intuitive characterization of 
influence weights. Indeed, as pointed out in DeMarzo, Vayanos, and Zwiebel (2003), 
the vector s has a simple structure:

	 si = ​ 
di (G) ________ 

​∑ i=1​ 
n
  ​ d​i(G)

 ​,

as can be verified by a direct calculation, using Proposition 1 (iii). Thus, in this spe-
cial case, influence is directly proportional to degree.

III.  The Wisdom of Crowds: Definition and Characterization

With the preliminaries out of the way, we now turn to the central question of the 
paper. Under what circumstances does the decentralized DeGroot process of com-
munication correctly aggregate the diverse information initially held by the different 
agents? In particular, we are interested in large societies. The large-society limit 
is relevant in many applications of the theory of social learning. Moreover, a large 
number of agents is necessary for there to be enough diversity of opinion for a soci-
ety, even in the best case, to be able to wash out idiosyncratic errors and discover 
the truth.

To capture the idea of a “large” society, we examine sequences of networks in 
which we let the number of agents n grow and work with limiting statements. In 
discussing wisdom, we are taking a double limit. First, for any fixed network, we 
ask what its beliefs converge to in the long run. Next, we study limits of these long-
run beliefs as the networks grow. The second limit is taken across a sequence of 
networks.

10 In Markov chain language, T(G) corresponds to a symmetric random walk on an undirected graph, and the 
Markov chain is reversible (Persi Diaconis and Daniel Stroock 1991).
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The sequence of networks is captured by a sequence of n-by-n interaction matri-
ces. We say that a society is a sequence (T(n)​)​n=1​ 

∞ ​ indexed by n, the number of agents 
in each network. We will denote the (i, j ) entry of interaction matrix n by Tij (n), and, 
more generally, all scalars, vectors, and matrices associated to network n will be 
indicated by an argument n in parentheses.

Throughout this section and the next, we maintain the assumption that each net-
work is convergent for each n. It does not make sense to talk about wisdom if the 
networks do not even have convergent beliefs, and so convergence is an a priori nec-
essary condition for wisdom.11 Let us now specify the underlying probability space 
and give a formal definition of a wise society.

A. Defining Wisdom

There is a true state of nature μ ∈ [0, 1].12 We do not need to specify anything 
regarding the distribution from which this true state is drawn; we treat the truth as 
fixed. If it is actually the realization of some random process, then all of the analysis 
is conditional on its realization.

At time t = 0, agent i in network n sees a signal ​p​i​ 
(0)​(n) that lies in a bounded set, 

normalized without loss of generality to be in [0, 1]. The signal is distributed with 
mean μ and a variance of at least σ2 > 0, and the signals ​p​1​ 

(0)​(n), … , ​p​n​ (0)​(n) are inde-
pendent for each n. No further assumptions are made about the joint distribution of 
the variables ​p​i​ 

(0)​(n) as n and i range over their possible values. The common lower 
bound on variance ensures that convergence to truth is not occurring simply because 
there are arbitrarily well informed agents in the society.13

Let s(n) be the influence vector corresponding to T(n), as defined in Proposition 1 
(or, more generally, Theorem 3). We write the belief of agent i in network n at time 
t as ​p​i​ 

(t)​(n).
For any given n and realization of p(0)(n), the belief of each agent i in network 

n approaches a limit which we denote by ​p​i​ 
(∞)​(n). The limits are characterized in 

Proposition 1 (or, more generally, Theorem 3). Each of these limiting beliefs is a 
random variable that depends on the initial signals. We say the sequence of networks 
is wise when the limiting beliefs converge jointly in probability to the true state μ.

Definition 3: The sequence (T(n)​)​n=1​ 
∞  ​ is wise if,

	​ plim    
n→∞

 ​ ​max    
i≤n

 ​ | ​p​i​ 
(∞)​(n) − μ | = 0.

While this definition is given with a specific distribution of signals in the back-
ground, it follows from Proposition 2 that a sequence of networks will be wise for all 

11 We do not, however, require strong connectedness. All the results go through for general convergent net-
works. Thus, some of the proofs use results in Section A of the Appendix.

12 This is easily extended to allow the true state to lie in any finite-dimensional Euclidean space, as long as the 
signals that agents observe have a bounded support.

13 The lower bound on variance is only needed for one part of one result, which is the “only if   ” statement in 
Lemma 1. Otherwise, one can dispose of this assumption.
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such distributions or for none. Thus, the specifics of the distribution are irrelevant for 
determining whether a society is wise, provided the signals are independent, have 
mean μ, and have variances bounded away from zero. If these conditions are satis-
fied, the network structure alone determines wisdom.

B. Wisdom in Terms of Influence: A Law of Large Numbers

To investigate the question of which societies are wise, we first state a simple 
law of large numbers that is helpful in our setting, as we are working with weighted 
averages of potentially nonidentically distributed random variables. The following 
result will be used to completely characterize wisdom in terms of influence weights.

Without loss of generality, label the agents so that si(n) ≥ si+1(n) ≥ 0 for each i and 
n. That is, the agents are arranged by influence in decreasing order.

Lemma 1: [A Law of Large Numbers] If (s(n)​)​n=1​ 
∞ ​ is any sequence of influence vec-

tors, then

	​ plim    
n→∞

 ​ s(n)p(0)(n) = μ

if and only if s1(n) → 0.14

Thus, in strongly connected networks, the limiting belief of all agents,

	 p(∞)(n) = ​∑ 
i≤n

​ 
 
  ​s​i (n) ​p​i​ 

(0)​(n),

will converge to the truth as n → ∞ if and only if the most important agent’s influ-
ence tends to zero (recall that we labeled agents so that s1(n) is maximal among the 
si (n)). With slightly more careful analysis, it can be shown that the same result holds 
whether or not the networks are strongly connected, which is the content of the fol-
lowing proposition.

Proposition 2: If (T (n)​)​n=1​ 
∞ ​ is a sequence of convergent stochastic matrices, then 

it is wise if and only if the associated influence vectors are such that s1(n) → 0.

This result is natural in view of the examples in Section IVC below, which show 
that a society can be led astray if the leader has too much influence. Indeed, the 
proofs of both results follow a very simple intuition. For the idiosyncratic errors 
to wash out and for the limiting beliefs—which are weighted averages of initial 
beliefs—to converge to the truth, nobody’s idiosyncratic error should be getting 
positive weight in the large-society limit.

14 Since ​∑ i≤n​ 
 
  ​ s​i (n)​p​i​ 

(0)​(n) is bounded due to our assumption that ​p​i​ 
(0)​(n) ∈ [0, 1] for each n and i, the

statement plimn→∞s(n)p(0)(n) = μ is equivalent to having plimn→∞( | s(n)p(0)(n) − μ |r ) = 0 for all r > 0.
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IV.  Wisdom in Terms of Social Structure

The characterization in Section III is still abstract in that it applies to influence 
vectors and not directly to the structure of the social network. It is interesting to see 
how wisdom is determined by the geometry of the network, which structures prevent 
wisdom, and which ones ensure it. That is the focus of this section.

We begin with a simple characterization in the special case of undirected networks 
with equal weights discussed in Section IIC. After that, we state a general necessary 
condition for wisdom—the absence of prominent groups that receive attention from 
everyone in society. However, simple examples show that when wisdom fails, it is 
not always possible to identify an obvious prominent group. Ensuring wisdom is thus 
fairly subtle. Some sufficient conditions are given in Section IVD.

A. Wisdom in Undirected Networks with Equal Weights

A particularly simple characterization is obtained in the setting of Section IIC, 
where agents weight their neighbors equally and communication is reciprocal. It is 
stated in the following corollary of Proposition 2.

Corollary 1: Let (G(n)​)​n=1​ 
∞ ​ be a sequence of symmetric, connected adjacency 

matrices. The sequence (T (G(n))​)​n=1​ 
∞ ​ is wise if and only if

	​  max    
1≤i≤n

​   ​  di (G(n)) __________  
​∑ i=1​ 

n
  ​ d​i (G(n))

 ​   ​ n      →​ 0.

That is, a necessary and sufficient condition for wisdom in this setting is that the 
maximum degree becomes vanishingly small relative to the sum of degrees. In other 
words, disproportionate popularity of some agent is the only obstacle to wisdom.

While this characterization is very intuitive, it also depends on the special struc-
ture of reciprocal attention and equal weights, as the examples in Section IVC show.

B. Prominent Families as an Obstacle to Wisdom

We now discuss a general obstacle to wisdom in arbitrary networks, namely, the 
existence of prominent groups that receive a disproportionate share of attention and 
lead society astray. This is reminiscent of the discussion in Bala and Goyal (1998) 
of what can go wrong when there is a commonly observed “royal family” under a 
different model of observational learning. However, as noted in the introduction, 
the way in which this works, and the implications for wisdom, are quite different.15

15 The similarity is that in both observational learning and in the repeated updating discussed here, having all 
agents concentrate their attention on a few agents can lead to societal errors if those few are in error. The differ-
ence is in the way that this is avoided. In the observational learning setting, the sufficient condition for complete 
learning of Bala and Goyal (1998) is for each action to be associated with some very optimistic agent, and then 
to have every other agent have a path to every action’s corresponding optimistic agent. Thus, the payoff to every 
action will be correctly figured out by its optimistic agent, and then society will eventually see which is the best 
of those actions. The only property of the network that is needed for this conclusion is connectedness. In our 
context, the analogue of this condition would be to have some agent, who observes the true state of nature with 



126	 American Economic Journal: Microeconomics� February 2010

To introduce this concept, we need some definitions and notation. It is often use-
ful to consider the weight of groups on other groups. To this end, we define

	 TB, C  =  ​∑ 
​
​
 
i∈B

   

j∈C

 
​
​
​ 

 

  ​T​ij

which is the weight that group B places on group C. The concept is illustrated in 
Figure 1.

Returning to the setting of a fixed network of n agents for a moment, we begin by 
making a natural definition of what it means for a group to be observed by everyone.

Definition 4: The group B is prominent in t steps relative to T if (T t )i,B > 0 for 
each i ∉ B.
  Call πB(T ; t ) := mini∉B(T t )i,B the t-step prominence of B relative to T.

Thus, a group that is prominent in t steps is one such that each agent outside of it 
is influenced by at least someone in that group in t steps of updating. Note that the 
way in which the weight is distributed among the agents in the prominent group is 
left arbitrary, and some agents in the prominent group may be ignored altogether. If 
t = 1, then everyone outside the prominent group is paying attention to somebody 
in the prominent group directly, i.e., not through someone else in several rounds of 
updating.

This definition is given relative to a single matrix T. While this is useful in deriv-
ing explicit bounds on influence (see Section B of the Appendix), we also define 

very high accuracy, and then does not weight anyone else’s opinion. However, in keeping with our theme of start-
ing with noisy information, we are instead interested in when the network structure correctly aggregates many 
noisy signals, none of which is accurate or persistent. Thus, our results do depend critically on network structure.

Figure 1

Note: The large arrows illustrate the concept of the weight of one group on another.

B C

TC,B

TB,C
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a notion of prominence in the asymptotic setting. First, we define a family to be a 
sequence of groups (Bn ) such that Bn ⊂ {1, … , n } for each n. A family should be 
thought of as a collection of agents that may be changing and growing as we expand 
the society. In applications, the families could be agents of a certain type, but a priori 
there is no restriction on the agents in the group Bn. Now, we can extend the notion 
of prominence to families.

Definition 5: The family (Bn) is uniformly prominent relative to (T (n)​)​n=1​ 
∞ ​ if there 

exists a constant α > 0 such that for each n there is a t so that the group Bn is promi-
nent in t steps relative to T (n) with πBn(T (n); t ) ≥ α.

For the family (Bn ) to be uniformly prominent, we must have that for each n, the 
group Bn is prominent relative to T (n) in some number of steps without the promi-
nence growing too small (hence, the word “uniformly”). Note that at least one uni-
formly prominent family always exists, namely {1, … , n }.

We also define a notion of finiteness for families. A family is finite if it stops 
growing eventually.

Definition 6: The family (Bn ) is finite if there is a q such that supn | Bn | ≤ q.

With these definitions in hand, we can state a first necessary condition for wisdom 
in terms of prominence—wisdom rules out finite, uniformly prominent families. 
This result, and the other facts in this section, rely on bounds on various influences, 
as shown in Section B of the Appendix.

Proposition 3: If there is a finite, uniformly prominent family with respect to 
(T (n)), then the sequence is not wise.

To see the intuition behind this result, consider a special but illuminating exam-
ple. Let (Bn ) be a finite, uniformly prominent family so that, in the definition of 
uniform prominence, t = 1 for each n—that is, the family is always prominent in one 
step. Further, consider the strongly connected case, with agent i in network n getting 
weight si (n). Normalize the true state of the world to be μ = 0, and, for the purposes 
of exposition, suppose that everyone in Bn starts with belief 1, and that everyone 
outside starts with belief 0. Let α be a lower bound on the prominence of Bn. Then 
after one round of updating, everyone outside Bn has belief at least α. So, for a large 
society, the vast majority of agents have beliefs that differ by at least α from the 
truth. The only way they could conceivably be led back to the truth is if, after one 
round of updating, at least some agents in Bn have beliefs equal to zero and can lead 
society back to the truth. Now we may forget what happened in the past and just view 
the current beliefs as new starting beliefs. If the agents in Bn have enough influence 
to lead everyone back to zero forever when the other agents are α away from it, then 
they also have enough influence to lead everyone away from zero forever at the very 
start. So, at best, they can only lead the group part of the way back. Thus, we con-
clude that starting Bn with incorrect beliefs and everyone else with correct beliefs 
can lead the entire network to incorrect beliefs.
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C. Other Obstructions to Wisdom: Examples

While prominence is a simple and important obstruction to wisdom, not all exam-
ples where wisdom fails have a group that is prominent in a few steps. The following 
example illustrates Proposition 3 and demonstrates its limitations.

Example 3: Consider the following network, defined for arbitrary n. Fix δ, ε ∈ 
(0, 1) and define, for each n ≥ 1, an n-by-n interaction matrix

T(n)  :=  s 

1 − δ ​  δ _____ 
n − 1

 ​ ​  δ _____ 
n − 1

 ​ ⋯ ​  δ _____ 
n − 1

 ​

t.

1 − ε ε 0 ⋯ 0

1 − ε ε ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
1 − ε 0 0 ⋯ ε

The network is shown in Figure 2 for n = 6 agents.
We find that

	 si(n)  =  e ​
​  1 − ε ________ 
1 − ε + δ ​          
​  δ ______________  (n − 1)(1 − ε + δ) ​

​  ​ 
if i = 1

     
if i > 1

​.

This network will not converge to the truth. Observe that in society n, the limiting 
belief of each agent is s1(n)​p​1​ 

(0)​(n) plus some other independent random variables 
that have mean μ. As s1(n) is constant and independent of n, the variance of the lim-
iting belief remains bounded away from zero for all n. So beliefs will deviate from 
the truth by a substantial amount with positive probability. The intuition is simply 
that the leader’s information, even when it is far from the mean, is observed by 
everyone and weighted heavily enough that it biases the final belief, and the follow-
ers’ signals cannot do much to correct it. Indeed, Proposition 2 above establishes 
the lack of wisdom due to the nonvanishing influence of the central agent. If δ and ε 
are fixed constants, then the central agent (due to his or her position) is prominent 
in one step, making this an illustration of Proposition 3.

However, note that even if we let 1 − ε approach 0 at any rate we like, so that 
people are not weighting the center very much, the center has nonvanishing influ-
ence as long as 1 − ε is of at least the order16 of δ. Thus, it is not simply the total 
weight on a given individual that matters, but the relative weights coming in and out 
of particular nodes (and groups of nodes). In particular, if the weight on the center 
decays (so that nobody is prominent in one step), wisdom may still fail.

16 Formally, suppose we have a sequence ε(n) and δ(n) with (1 − ε(n))/δ(n) ≥ c > 0 for all n.
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On the other hand, if 1 − ε becomes small relative to δ as society grows, then we 
can obtain wisdom despite the seemingly unbalanced social structure. This demon-
strates that the result of Section IVA is sensitive to the assumption that agents must 
place equal amounts of weight on each of their neighbors including themselves.

One thing that goes wrong in this example is that the central agent receives a high 
amount of trust relative to the amount given back to others, making him or her unduly 
influential. However, this is not the only obstruction to wisdom. There are examples 
in which the weight coming into any node is bounded relative to the weight going out, 
and there is still an extremely influential agent who can keep society’s beliefs away 
from the truth. The next example shows how indirect weight can matter.

Example 4: Fix δ ∈ (0, 1/2) and define, for each n ≥ 1, an n-by-n interaction 
matrix by

	 T 11(n) = 1 − δ	

	 Ti,i−1(n) = 1 − δ	 if i ∈ {2, … , n } 

	 Ti,i+1(n) = δ	 if i ∈ {1, … , n − 1} 

	 Tnn (n) = δ

	 Tij (n) = 0	 otherwise.

The network is shown in Figure 3.

Figure 2

Note: The unbalanced star network (shown here for n = 6 agents) is an example demonstrating that the limiting 
belief is not always accurate.

δ /(n – 1)

1 – ε

1 – δ

ε
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It is simple to verify that

	 si(n) = Q​  δ _____ 
1 − δ ​​R​ 

i−1
​ · ​ 

1 − Q​  δ _____ 
1 − δ ​R  ___________  

1 − Q​  δ _____ 
1 − δ ​​​R​ 

n

​​ 
 
​
 ​ .

In particular, limn→∞s1(n) can be made as close to 1 as desired by choosing a small 
δ, and then Proposition 2 shows that wisdom does not obtain. The reason for the 
leader’s undue influence here is somewhat more subtle than in Example 3. It is not 
the weight agent 1 directly receives, but indirect weight due to this agent’s privileged 
position in the network. Thus, while agent 1 is not prominent in any number of steps 
less than n − 1, the agent’s influence can exceed the sum of all other influences by 
a huge factor for small δ. This shows that it can be misleading to measure agents’ 
influence based on direct incoming weight or even indirect weight at a few levels. 
Instead, the entire structure of the network is relevant.

D. Ensuring Wisdom: Structural Sufficient Conditions

We now provide structural sufficient conditions for a society to be wise. The 
examples of Section IVC make it clear that wisdom is, in general, a subtle property. 
Thus, formulating the sufficient conditions requires defining some new concepts, 
which can be used to rule out obstructions to wisdom.

Property 1 (Balance): There exists a sequence j (n) → ∞ such that if  | Bn | ≤ j (n)
then

	​ sup    
n
  ​  ​ 

​T​​B​n​ 
c​, Bn

​(n)
 ______ ​T​Bn, ​B​n​ 

c​​(n)
 ​ < ∞.

The balance condition says that no family below a certain size limit captured by 
j(n) can be getting infinitely more weight from the remaining agents than it gives to 
the remaining agents. The sequence j(n) → ∞ can grow very slowly, which makes 
the condition reasonably weak.

Balance rules out, among other things, the obstruction to wisdom identified by 
Proposition 3, since a finite prominent family will be receiving an infinite amount 
of weight but can only give finitely much back (since it is finite). The condition also 

Figure 3

Notes: The unbalanced line demonstrates that the beliefs in a society may not converge to truth even if the ratio of 
incoming to outgoing weight is bounded for each agent. Agents are numbered from left to right.

δ

1 − δ

δδ

1 − δ

δ

1 − δ

δ

1 − δ

1 − δ 

. . .
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rules out situations like Example 3, in which there is a single agent who gets much 
more weight than he or she gives out.

The basic intuition of the condition is that in order to ensure wisdom, one not only 
has to worry about single agents getting infinitely more weight than they give out, but 
also about finite groups being in this position. And one needs not only to rule out this 
problem for groups of some given finite size, but for any finite size. This accounts 
for the sequence j(n) tending to infinity in the definition. The sequence could grow 
arbitrarily slowly, but it must eventually get large enough to catch any particular 
finite size. This is a tight condition in the sense that if one, instead, requires j(n) to be 
below some finite bound for all n, then one can always find an example that satisfies 
the condition and yet does not exhibit wisdom.

We know, from Example 4, that it is not enough simply to rule out situations where 
there is infinitely more direct weight into some family of agents than out. One also has 
to worry about large-scale asymmetries of a different sort, which can be viewed as 
small groups focusing their attention too narrowly. The next condition deals with this.

Property 2 (Minimal Out-Dispersion): There is a q ∈ 핅 and r > 0 such that if Bn 
is finite, | Bn | ≥ q, and | Cn |/n → 1, then ​T​Bn,Cn

​ (n) > r for all large enough n.

The minimal out-dispersion condition requires that any large enough finite family 
must give at least some minimal weight to any family which makes up almost all 
of society. This rules out situations like Example 4, in which there are agents who 
ignore the vast majority of society. Thus, this ensures that no large group’s attention 
is narrowly focused.

Having stated these two conditions, we can give the main result of this section, 
which states that the conditions are sufficient for wisdom.

Theorem 1: If (T (n)​)​n=1​ 
∞ ​ is a sequence of convergent stochastic matrices satisfy-

ing balance and minimal out-dispersion, then it is wise.

Note, however, that neither condition is sufficient on its own. Example 4 satisfies 
the first property but not the second. The square of the matrix in Example 3 satisfies 
the second property but not the first. In both examples, the society fails to be wise.17

Theorem 1 suggests that there are two important ingredients in wisdom: a lack of 
extreme imbalances in the interaction matrix and an absence of small families that 
interact with a very narrow slice of the outside world. To explore this idea further, we 
formulate another dispersion condition—one that focuses on the weight into small 
families rather than out of them and is also sufficient, when combined with balance, 
to guarantee wisdom. This is discussed in Section C of the Appendix.

The proof of Theorem 1 is technical, but the intuition behind it is not difficult. 
Suppose, by way of contradiction, that the wisdom conclusion does not hold. Then 
there must be a family of agents that have positive influence as n → ∞ , and a 

17 Since the left eigenvector of eigenvalue 1 is the same for T(n)2 as for T(n), the fact that the sequence of 
Example 3 is not wise also shows that the same is true when we replace each T(n) by its square. A generalization 
of this simple observation is Proposition 4 in Section B of the Appendix.
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remaining uninfluential family. Since the sum of influences must add up to one, 
having some very influential agents requires having a great number of uninfluential 
agents. In particular, the influential family must be fairly small. As a result, it can 
only give out a limited amount of trust, and thus can only have a similarly limited 
amount of trust coming in, using the balance condition. Recall that the influence 
of an agent is a trust-weighted sum of the influences of those who trust him. Now, 
the uninfluential family does not have enough influence to support the high influ-
ence of the influential family, since it can give this family only a limited amount of 
trust. The influential family cannot get all its support from inside itself because the 
minimal out-dispersion condition requires it to send a nontrivial amount of its trust 
outside.

It turns out that this informal argument is challenging to convert to a formal one 
because the array of influence weights si(n) as n and i range over all possible values 
has some surprising and difficult properties. Nevertheless, the basic ideas outlined 
above can be carried through successfully.

V.  The Speed of Convergence

Our analysis has focused on long-run consensus beliefs. Given that disagreement 
is often observed in practice, even within a community, there seem to be many situ-
ations where convergence—if it obtains eventually—is slow relative to the rate at 
which the environment (the true parameter μ in our model) changes. Understanding 
how the speed of convergence depends on social structure can be crucial in judging 
when the steady-state results are relevant. In mathematical terms, this question can 
be translated via (1) into the question of how long it takes T t to approach its limit, 
when that limit exists. There is a large literature on convergence of iterated sto-
chastic matrices, some of which we informally describe in this section, without any 
effort to be comprehensive. The interested reader is referred to the papers discussed 
below for more complete discussions and references.

A key insight is that the convergence time of an iterated stochastic matrix is 
related to its second largest eigenvalue in magnitude, which we denote by λ2(T). 
Indeed, convergence time is essentially proportional to −1/log( | λ2(T) | ) under 
many measures of convergence. While a characterization in terms of eigenvalues 
is mathematically enlightening and useful for computations, more concrete insight 
is often needed.18 To this end, a variety of techniques have been developed to char-
acterize convergence times in terms of the structure of T. One such method relies 
on conductance, which is a measure of how inward-looking various sets of nodes 
or states are. Loosely speaking, if there is a set that is not most of society and that 
keeps most of its weight inside, then convergence can take a long time.19 Another 
approach, which is similar in some intuitions but differs in its mathematics, uses 

18 There is intuition as to the role of the second eignenvalue and why it captures convergence speed. See the 
explanation in Jackson (2008).

19 The famous Cheeger inequality (see the Ravi Montenegro and Prasad Tetali (2005, Section 6.3) survey) 
is the seminal example of this technique. A paper by D. J. Hartfiel and Carl D. Meyer (1998) also focuses on a 
related notion of insularity and shows that an extremely large second eigenvalue corresponds to a society split 
into inward-looking factions.
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Poincaré inequalities to relate convergence to the presence of bottlenecks. The basic 
notion is that if there are segments of society connected only by narrow bridges, then 
convergence will be slow.20

A technique for understanding rates of convergence that is particularly relevant to 
the setting of social networks has recently been developed in Benjamin Golub and 
Matthew O. Jackson (2008). There, we focus on the important structural feature of 
many social networks called homophily, which is the tendency of agents to associ-
ate with others who are somehow “similar” to themselves. In the setting of Section 
IIC, homophily provides general lower bounds on the convergence time. With some 
additional (probabilistic) structure, it is also possible to prove that these bounds are 
essentially tight, so that homophily is an exact proxy for convergence time.21 A com-
mon thread running through all these results is that societies that are split up, or 
insular in some way, have slow convergence, while societies that are cohesive have 
fast convergence. The speed of convergence can thus be essentially orthogonal to 
whether or not the network exhibits wisdom, as we now discuss.

Speed of Convergence and Wisdom.—The lack of any necessary relationship 
between convergence and wisdom can easily be seen via some examples.

	 • � First, consider the case where all agents weight each other equally. This society 
is wise and has immediate convergence.

	 • � Second, consider a society where all agents weight just one agent. Here, we 
have immediate convergence but no wisdom.

	 • � Third, consider a setting where all agents place 1 − ε weight on themselves 
and distribute the rest equally. This society is wise but can have arbitrarily slow 
convergence if ε is small enough.

	 • � Lastly, suppose all agents place 1 − ε weight on themselves and the rest on one 
particular agent. Then there is neither wisdom nor fast convergence.

Thus, in general, convergence speed is independent of wisdom. One can have 
both, neither, or either one without the other.

VI.  Conclusion

The main topic of this paper concerns whether large societies, whose agents get 
noisy estimates of the true value of some variable, are able to aggregate dispersed 
information in an approximately efficient way despite their naïve and decentralized 

20 These techniques are discussed extensively and compared with other approaches in Diaconis and Stroock 
(1991), which has a wealth of references. The results there are developed in the context of reversible Markov 
chains (i.e., the types of networks discussed in Section IIC), but extensions to more general settings are also pos-
sible (Montenegro and Tetali (2005)). Beyond this, there is a large literature on expander graphs. An introduction 
is provided by Shlomo Hoory, Nathan Linial, and Avi Wigderson (2006). These are networks that are designed 
to have extremely small second eigenvalues as the graph grows large; DeGroot communication on such networks 
converges very quickly.

21 Beyond the interest in tying convergence speed to some intuitive attributes of the society, this approach also 
sometimes gives bounds that are stronger than those obtained from previous techniques based on the spectrum of 
the matrix, such as Cheeger inequalities.
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updating. We show, on the one hand, that naïve agents can often be misled. The 
existence of small prominent groups of opinion leaders, who receive a substantial 
amount of direct or indirect attention from everyone in society, destroys efficient 
learning. The reason is clear. Due to the attention it receives, the prominent group’s 
information is overweighted, and its idiosyncratic errors lead everyone astray. While 
this may seem like a pessimistic result, the existence of such a small but prominent 
group in a very large society is a fairly strong condition. If there are many differ-
ent segments of society, each with different leaders, then it is possible for wisdom 
to obtain as long as the segments have some interconnection. Thus, in addition to 
the negative results about prominent groups, we also provide structural sufficient 
conditions for wisdom. The flavor of the first condition of balance is that no group 
of agents (unless it is large) should get arbitrarily more weight than it gives back. 
The second condition requires that small groups not be too narrow in distributing 
their attention, as, otherwise, their beliefs will be too slow to update and will end 
up dominating the eventual limit. Under these conditions, we show that sufficiently 
large societies come arbitrarily close to the truth.

These results suggest two insights. First, excessive attention to small groups of 
pundits or opinion makers is bad for social learning, unless those individuals have 
information that dominates that of the rest of society. On the other hand, there are 
natural forms of networks such that even very naïve agents will learn well. There is 
room for further work along the lines of structural sufficient conditions. The ones 
that we give here can be hard to check for given sequences of networks. Nevertheless, 
they provide insight into the types of structural features that are important for effi-
cient learning in this type of naïve society. Perhaps most importantly, these results 
demonstrate that, in contrast to much of the previous literature, the efficiency of 
learning can depend, in sensitive ways, on the way the social network is organized. 
From a technical perspective, the results also show that the DeGroot model provides 
an unusually tractable framework for characterizing the relationship between struc-
ture and learning and should be a useful benchmark.

More broadly, our work can be seen as providing an answer, in one context, to a 
question asked by Sobel (2000): can large societies whose agents are naïve individu-
ally be smart in the aggregate? In this model, they can, if there is enough dispersion in 
the people to whom they listen, and if they avoid concentrating too much on any small 
group of agents. In this sense, there seems to be more hope for boundedly rational 
social learning than has previously been believed. On the other hand, our sufficient 
conditions can fail if there is just one group that receives too much weight or is too 
insular. This raises a natural question: which processes of network formation produce 
societies that satisfy the sufficient conditions we have set forth (or different sufficient 
conditions)? In a setting where agents decide on weights, how must they allocate those 
weights to ensure that no group obtains an excessive share of influence in the long run? 
If most agents begin to ignore stubborn or insular groups over time, then the society 
could learn quite efficiently. These are potential directions for future work.

The results that we surveyed regarding convergence rates provide some insight 
into the relationship between social structure and the formation of consensus. A 
theme which seems fairly robust is that insular or balkanized societies will converge 
slowly, while cohesive ones can converge very quickly. However, the proper way to 
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measure insularity depends heavily on the setting, and many different approaches 
have been useful for various purposes.

To finish, we mention some other extensions of the project. First, the theory can 
be applied to a variety of strategic situations in which social networks play a role. For 
instance, consider an election in which two political candidates are trying to con-
vince voters. While the voters remain nonstrategic about their communications, the 
politicians (who may be viewed as being outside the network) can be quite strategic 
about how they attempt to shape beliefs. A salient question is whom the candidates 
would choose to target. The social network would clearly be an important ingredi-
ent. A related application would consider firms competitively selling similar prod-
ucts (such as Coke and Pepsi).22 Here, there would be some benefits to one firm of the 
other firms’ advertising. These complementarities, along with the complexity added 
by the social network, would make for an interesting study of marketing. Second, it 
would be interesting to involve heterogeneous agents in the network. In this paper, 
we have focused on nonstrategic agents who are all boundedly rational in essentially 
the same way. We might consider how the theory changes if the bounded rationality 
takes a more general form (perhaps with full rationality being a limiting case). Can a 
small admixture of different agents significantly change the group’s behavior? Such 
extensions would be a step toward connecting fully rational and boundedly rational 
models, and would open the door to a more robust understanding of social learning.

Mathematical Appendix

A. Convergence in the Absence of Strong Connectedness

In this section, we rely on known results about Markov chains to give a full char-
acterization of when individual beliefs converge (as opposed to oscillating forever) 
and what the limiting beliefs are. Mathematically, we state a necessary and sufficient 
condition for the existence of limt→∞ T t, where T is an arbitrary stochastic matrix, 
and characterize the limit. The full characterization that we state on this point is 
in terms of the geometric structure of the network. It does not assume strong con-
nectedness, and is slightly more general than what has previously been stated in the 
literature on the DeGroot model. Most of this literature—even when it allows for 
the absence of strong connectedness—works under a technical assumption that at 
least some agents always place some weight on their own opinions when updating, 
which guarantees convergence of beliefs via an application of some basic results 
about the spectrum of a stochastic matrix. While we might expect the assumption 
to be satisfied in many situations, there are applications where agents start without 
information, or believe that others may be better informed, and thus defer to their 
opinions. The theory we develop in the paper goes through even in settings where 
the usual self-trust assumption does not apply, but where a weaker condition given 
below does hold.

To state the condition, we need a few further definitions.

22 See Andrea Galeotti and Sanjeev Goyal (2007) and Arthur Campbell (2009) for one-firm models of optimal 
advertising on a network.



136	 American Economic Journal: Microeconomics� February 2010

A group of nodes B ⊂ N is closed relative to T if i ∈ B and Tij > 0 imply that 
j ∈ B. A closed group of nodes is a minimal closed group relative to T (or mini-
mally closed) if it is closed, and no nonempty strict subset is closed. Observe that T 
restricted to any minimal closed group is strongly connected.23

With these notions in hand, we can define a strengthening of aperiodicity which 
will characterize convergence.

Definition 7: The matrix T is strongly aperiodic if it is aperiodic when restricted 
to every closed group of nodes.

The following result is an immediate application of a theorem of Peter Perkins 
(1961) and standard facts from the Perron-Frobenius theory of nonnegative matrices. 
The details of how they are combined to yield the theorem are given in the proofs at 
the end of this section.

Theorem 2: A stochastic matrix T is convergent if and only if it is strongly 
aperiodic.

Beyond knowing whether or not beliefs converge, we are also interested in char-
acterizing what beliefs converge to when they do converge. The following simple 
extension of Theorem 10 in DeMarzo, Vayanos, and Zwiebel (2003) answers this 
question. They consider a case where T has positive entries on the diagonal, but their 
proof is easily extended to the case with 0 entries on the diagonal.

To understand what beliefs converge to, let us discuss the structure of the groups 
of agents and who pays attention to whom.

Let  be the collection of minimal closed groups of agents and set M = ⋃B∈B. 
The set of agents N is partitioned into the groups of agents B1, … , Bm which compose 
, and then a remaining set of agents C. The agents in any minimal closed group Bk 
will be weighting each other’s beliefs (directly or indirectly), and only each other’s 
beliefs. Provided T is convergent, each such group will converge to a consensus 
belief. However, different minimal closed groups can converge to different limit-
ing beliefs. The remaining group—call it C—must be paying attention collectively 
to some agents in M, or else some subset of C would be a minimal closed group, 
contrary to the construction. The beliefs of agents in C will then converge to some 
weighted averages of the limiting beliefs of the various minimal closed groups Bk, 
depending on the precise interaction structure.

To understand the limit of beliefs inside the minimal closed group Bk, without loss 
of generality consider the case in which this set is all of N, so that T is strongly con-
nected. This is legitimate because Bk is not influenced by anyone outside it. Section 
IIB treated this case in detail. From the results there, it follows that the influence of 

23 In the language of Markov chains, strongly connected matrices are referred to as irreducible, and minimal 
closed groups are also called communication classes. We use some terminology from graph theory rather than 
from Markov processes since our process is not a Markov chain. Nodes here are not states, and T is not a transi-
tion matrix. We emphasize that even though many mathematical results from Markov processes are useful in the 
context of the DeGroot model, the DeGroot model is very different from a Markov chain in its interpretation.
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any agent in a minimal closed group corresponds to his or her weight in an associ-
ated eigenvector of T restricted to that group.

These observations can be combined to yield the following characterization of 
limiting beliefs.

Some additional notation: a subscript B indicates restriction of vectors or operators 
to the subspace of [0, 1]n corresponding to the set of agents in B, and we write v > 0
when each entry of the vector v is positive.

Theorem 3: A stochastic matrix T is convergent if and only if there is a nonnega-
tive row vector s ∈ [0, 1]n, and for each j ∉ M a vector w j ≥ 0 with |  | entries that 
sum to 1 such that

	 (i)	​ ∑ i∈B​ 
 
  ​ s​i = 1 for any minimal closed group B,

	 (ii)	 si = 0 if i is not in a minimal closed group,

	 (iii)	 sB > 0 and is the left eigenvector of TB corresponding to the eigenvalue 1,

	 (iv)	 for any minimal closed group B and any vector p ∈ [0, 1]n, we have

	 Q ​ lim    
t→∞

​T tpR j = sB pB

		  for each j ∈ B,

	 (v)	 for any j ∉ M, (limt→∞ T tp)j = ​∑ B∈​ 
 
  ​ ​w​B​ j

 ​​ sB pB.

Proofs:
Theorems 2 and 3 are proved via several lemmas. First, we introduce one more 

definition.

Definition 8: A nonnegative matrix is said to be primitive if  T t has only positive 
entries for some t ≥ 1.

The following lemma establishes a relationship between primitivity and aperiodicity.

Lemma 2: Assume T is strongly connected and stochastic. It is aperiodic if and 
only if it is primitive.

The lemma (along with much more) is proved in Theorems 1 and 2 of Peter 
Perkins (1961).

In the case in which T is primitive, we can directly give a full characterization of 
what limt→∞ T tp is.

Lemma 3: If T is stochastic and primitive, then there is a row vector s > 0 with 
entries summing to 1 such that for any p,

	​  lim    
t→∞

​T tp = sp. 
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This vector is the unique (up to scale) left eigenvector of T corresponding to the 
eigenvalue 1. In particular, all entries of the limit are the same.

Proof of LEMMA 3:
Under the assumption that T is primitive, it follows from equation (8.4.3) of Carl 

D. Meyer (2000) that

	​  lim    
t→∞

​T tp = esp,

where s is as described in the statement of the lemma. The right side is e, which is a 
vector of all ones, times a 1-by-1 matrix, so all its entries are the same—namely sp.

The next lemma provides a converse to Lemma 3.

Lemma 4: Assume T is strongly connected and stochastic. If it is convergent, then 
it is primitive.

Proof of LEMMA 4:
Since S := ​ lim    

t→∞
​T t exists, we have

	 ST = Q ​ lim    
t→∞

​T t R T = ​ lim    
t→∞

​T t = S.

So each row of S is a left eigenvector of T corresponding to the eigenvalue 1. Such 
eigenvectors have no 0 entries by the Perron-Frobenius theorem. Thus, S has strictly 
positive entries, and so all entries of T t must simultaneously be strictly positive for 
all high enough t.

With these lemmas in hand, we can prove the two theorems.

Proof of THEOREM 2:
By permuting agents, T can be transformed into

(2)	 T = s​
​
 
T11    T12    0     T22

 
​
​t ,

where the bottom right block corresponds to all agents in M, i.e., all agents in any 
minimal closed group, and the rows above it correspond to the agents (if any) who 
are in no minimal closed group. We may further decompose

	 T22 = s​ 
​T​B1

​          
  

      
        ⋱                

      ​      T​Bm
​
​t ,

with 0 elsewhere, where each Bk is minimally closed.
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If T is not strongly aperiodic, then some ​T​Bk
​ will fail to be aperiodic (by defini-

tion), and then Lemmas 2 and 4 show that ​T​Bk
​ t

  ​ has no limit as t → ∞. Since the cor-
responding block of T t is ​T​Bk

​ t
  ​, the entire matrix also does not converge. This proves 

the “only if” direction of Theorem 2.
Conversely, if T is strongly aperiodic, then each ​T​Bk

​ is aperiodic, and hence, prim-
itive by Lemma 2. Lemma 3 then shows that for each k,

(3)	​  lim    
t→∞

​ ​T​Bk
​ t

  ​  ​p​Bk
​ = ​s​Bk

​ ​p​Bk
​ ,

where ​s​Bk
​ is the unique left eigenvector of ​T​Bk

​ corresponding to eigenvalue 1, scaled 
so that its entries sum to 1.

To complete the proof, we note by Meyer (2000, Section 8.4) that the decomposi-
tion in (2) entails

(4)	​  lim    
t→∞

​ T t = s ​0   
0
​      ​

Z
   

E
​ t ,

where Z is some matrix and

(5)	 E = s​ 
​e​B1

​​ s​B1
​      

  
      

      ⋱              
         ​e​Bm ​​s​Bm

​
​t .

(Here, ​e​Bk
​ is a | Bk | -by-1 vector of ones.) This shows that T is convergent.

Proof of Theorem 3:
The “if” direction is trivial, since conditions (iv) and (v) in the statement of the 

theorem imply convergence directly.
To prove the “only if” direction, we assume that T is convergent. Then, using the 

block decomposition at the beginning of the previous proof, each ​T​Bk
​ is convergent. 

We now proceed to show conditions (i–v) in the statement of the theorem.
Lemma 4 shows that for each k, the matrix ​T​Bk

​ is primitive. Lemma 3 then shows 
that for each k, equation (3) holds. Define

	 s = 0 ⊕ ​s​B1
​⊕ ⋯ ⊕​s​Bm

​ ,

where 0 is a zero row vector such that s ∈ 핉n and the ⊕ symbol denotes concatena-
tion. This vector satisfies (i–iii) of Theorem 3.

Next, note that equation (4) and the block-diagonal form of E in (5) immediately 
imply condition (iv) of Theorem 3.
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To finish the proof, we use equation (4). Since powers of stochastic matrices are 
stochastic, Z has rows summing to 1. For each j ∉ M, define w j ∈ 핉 |  | by ​w ​k​ 

j
 ​ 

= ​∑ i∈Bk​ 
 
  ​ Z​ji. Then ​∑ k=1​ 

m
  ​ ​w​k​ 

j
 ​​ = 1. Note that

	​  lim    
t→∞

​ T t = T Q ​ lim    
t→∞

​ T t R

so that

	​  lim    
t→∞

​ T t = Q ​ lim    
r→∞

​ T r R Q ​ lim    
t→∞

​ T t R ,

and so the matrix on the right-hand side of (4) is idempotent. Then (4) can be writ-
ten as

(6)	​  lim    
t→∞

​ T tp = s ​0   
0
​      ​

Z
   

E
​ t q,

where

	 q = s ​0   
0
​      ​

Z
   

E
​ t p.

Since EBk
 pBk

 = sBk
 pBk

, it follows that qi = sBk
 pBk

 if i ∈ Bk. From this, we deduce that 
for each j ∉ M, we have

	 Q ​ lim    
t→∞

​ T t pR j = ​∑ 
i∈M

​ 
 

  ​Z​ji qi = ​∑ 
k=1

​ 
m

 ​​w​k​ 
j
 ​​ sBk pBk

by definition of q and w j. This completes the proof of (v) in Theorem 3.

B. Proofs of Results on Wisdom

Proof of Lemma 1: 
We know that the variance of each ​p​i​ 

(0)​(n) lies between σ2 and 1, the latter being 
true because ​p​i​ 

(0)​(n) ∈ [0, 1] for all n and i.
Let X(n) = ​∑ i​ 

 
 ​ s​i(n)​p​i​ 

(0)​(n). Then var (X (n)) ≤ ​
__

 σ ​2 ​∑ i​ 
 
 ​ s​i (n)2.

First, suppose s1(n) → 0. Since s i(n) ≥ si+1(n) ≥ 0 for all i and n, it follows that

	 var (X (n)) ≤  ​__
 σ ​2 ​∑ 

i

  ​ 
 

  ​ s​i (n)2 ≤  ​__
 σ ​2s1 (n)​∑ 

i

  ​ 
 

  ​ s​i (n) = ​
__

 σ ​2s1(n) → 0.

By Chebychev’s inequality, fixing any ε > 0,

	 핇 s |​∑ 
i

  ​ 
 

  ​si​(n)​p​i​ 
(0)​(n) − � | > ε t ≤  ​ var(X(n)) ________ 

ε2 ​  → 0.
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For the converse, suppose (taking a subsequence if necessary) s1(n) → s > 0. 
Since each pi

0(n) has a variance bounded below, it then follows that there exists 
δ > 0 such that var (X (n)) > δ for all n. It is well-known that for uniformly bounded 
random variables, convergence in probability to 0 implies that the same holds in L2, 
which means that the X (n) cannot converge to 0 in probability.

Proof of Proposition 2: 
First, we prove that if the condition s1(n) → 0 holds, then convergence to truth 

occurs. By Theorem 3, agents with no influence converge to weighted averages of 
limiting beliefs of agents with influence, so it suffices to show that if in ≤ n is any 
sequence of agents in minimal closed groups, then plimn→∞ ​p​in

​ (∞)​(n) = �. Let Bn be 
the minimal closed group of in. Without loss of generality, we may replace T(n) 
with induced interaction matrix on the agents in Bn. Now, by Lemma 1, all that is 
required for every agent in Bn to converge to true beliefs is that the most influential 
agent in Bn have influence converging to 0. But this condition holds, because the 
most influential agent in {1, … , n } has influence converging to 0, and a fortiori the 
same must hold for the leader in Bn.

Conversely, if the influence of some agent remains bounded above zero, then we 
may restrict attention to his or her closed group and conclude from the argument of 
the above lemma that convergence to truth is not generally guaranteed.

Lastly, the following is a small technical result which is useful in that it allows 
us to work with whatever powers of the interaction matrices are most convenient in 
studying wisdom.

Proposition 4: If for each n there exists a k(n) such that

	 R(n) = T(n)k(n),

then (T(n)​)​n=1​ 
∞ ​ is wise if and only if (R(n)​)​n=1​ 

∞ ​ is wise.

Proof of Proposition 4: 
Note that limt→∞T(n)t = limt→∞R(n)t, so that for every n, the influence vectors 

will be the same for both matrices by an easy application of Theorem 3.

Prominence and Wisdom.—The next results focus on how prominence rules out 
wisdom. We start in the finite setting and then apply the results to the asymptotic 
context. We write κ(T) for the number of closed and strongly connected groups rela-
tive to T, and we let sB = ​∑ i∈B​ 

 
  ​  s​i. Also, we write ​T​ij​ 

(t )​ for the (i, j ) entry of T t. The 
following fact is a direct consequence of Theorem 3.

Proposition 5: The entries of s sum to κ(T).

With this property in hand, we can proceed to prove the following lemma.
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Lemma 5: For any B ⊆ N and natural number t,

(7)	 sB ≥  ​ κ(T)πB(T; t )  __________  
1 + πB(T; t ) ​

and

(8)	​ max    
i∈N

 ​ si ≥  ​  κ(T)πB(T; t )  _____________  | B | (1 + πB(T; t )) ​ .

Proof of Lemma 5: 
Since s is a row unit eigenvector of T t, it follows that

	​ ∑ 
i∈B

​ 
 
  ​si​ ≥ ​∑ 

i∈B
​ 

 

  ​​∑ 
j∉B

​ 
 
  ​​T​ji​ 

 (t )​​​sj

	 = ​∑ 
j∉B

​ 
 

  ​sj​ ​∑ 
i∈B

​ 
 

  ​ ​T​ji​ 
 (t )​​

	 ≥ πB(T; t )​∑ 
j∉B

​ 
 
  ​s​j.

Then, since the sum of s is κ(T) by Proposition 5, we know that

	​ ∑ 
j∉B

​ 
 
  ​sj​ = κ(T) − sB.

After substituting this into the inequality above, it follows that

	 sB ≥ πB(T; t )(κ(T) − sB),

which yields the first claim of the lemma. The second claim follows directly.

Proof of Proposition 3: 
The fact that s1(n) does not converge to 0 as n → ∞ follows immediately upon 

applying Lemma 5 to each matrix in the sequence. We use the finiteness of (Bn) to 
prevent the denominator in equation (8) in the lemma from exploding, and the uni-
form lower bound on the prominence of each Bn relative to T (n) to keep the numera-
tor from going to 0.

Proof of Theorem 1:
Recall that we have ordered the agents so that si(n) ≥ si+1(n) for all i. Take q 

and r guaranteed by the minimal out-dispersion property. We will first show that 
limn→∞sq(n) = 0, which will reduce the argument to a simple calculation.

To this end, let us first argue that there exists a sequence k(n) such that three prop-
erties hold: k(n) ≥ q for large enough n, k(n)sk(n)(n) → 0, and k(n)/n → 0.
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In order to verify this, consider first the sequence j (n) guaranteed by the balance 
condition. We may assume not only that j (n) → ∞ and the inequality in the balance 
condition holds, but also, by reducing the j (n) if necessary, that j (n)/n → 0. Next, we 
argue that for each x > 0 there is at most a finite set of n such that isi(n) ≥ x for all 
i satisfying q ≤ i ≤ j (n). Suppose to the contrary that there exists x > 0 such that, 
for an infinite set of n, we have isi(n) ≥ x for all i satisfying q ≤ i ≤ j (n). Thus, for 
these n,

	​ ∑ 
i=q

​ 
j (n)

​ s​i (n) ≥ ​∑ 
i=q

​ 
j (n) 

 ​ ​ x __ 
i
 ​ ​→ ∞,

which is a contradiction. It follows that for each x there is a smallest natural number 
nx, such that for every n ≥ nx, the set Zx,n = {i : isi(n) < x, q ≤ i ≤ j (n)} is nonempty. 
For all n ≤ n1, define k(n) = 1. For all other n, select k(n) by choosing an arbitrary 
element from ​Z​yn,n​, where yn = in​f​nx≤n​ x + (1/2)n. Of course, we should verify that this 
set is nonempty. To this end, note that as x increases, nx is weakly decreasing. Since 
there exists an x < yn with n ≥ nx, it follows by this monotonicity that n ≥ ​n​yn

​ , and ​
Z​yn,n​ is nonempty. Additionally, since nx is a well-defined integer for all x, we see that 
in​f​nx≤n​ x → 0 as n → ∞, and hence the same is true for yn. It follows by construction 
of ​Z​yn,n​ and the fact that j(n)/n → ∞ that all three properties claimed at the start of 
the paragraph hold.

For each n, let Hn = {1, … , k(n)} and Ln = ​H​n​ 
c​. Observe that since s(n) is a left hand 

eigenvector of Tn, we have

	​ ∑ 
j∈Hn

​ 
 

  ​s​j (n) = ​∑ 
i∈Hn

​ 
 

  ​ ​∑ 
j∈Hn

​ 
 

  ​T​​ij(n)si (n) + ​∑ 
i∈Ln

​ 
 

  ​ ​∑ 
j∈Hn

​ 
 

  ​T​​ij (n)si (n).

Rewrite this as

	​ ∑ 
j∈Hn

​ 
 

  ​s​j (n) a1 − ​∑ 
i∈Hn

​ 
 

  ​T​ji(n)b = ​∑ 
i∈Ln

​ 
 

  ​​∑ 
j∈Hn

​ 
 

  ​T​​ij (n)si (n)

or

(9)	​ ∑ 
j∈Hn

​ 
 

  ​s​j (n) a  ​∑ 
i∈Ln

​ 
 

  ​T​ji (n)b = ​∑ 
i∈Ln

​ 
 

  ​a   ​​∑ 
j∈Hn

​ 
 

  ​T​ij (n)si (n)b .

Let

(10)	 SH (n) = ​∑ 
j∈Hn

​ 
 

  ​s​j (n) ·  ​ 
​∑ i∈Ln

​  
  ​ T​ji (n) ________ ​T​Hn,Ln

​(n) ​

and

	 SL(n) = ​∑ 
i∈Ln

​ 
 

  ​s​i(n) ·  ​ 
​∑ j∈Hn

​  
  ​ T​ij(n) ________ ​T​Ln,Hn

​(n) ​  .
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We rewrite (9) as

(11)	 SH (n)​T​Hn,Ln
​(n) = SL(n)​T​Ln,Hn

​(n).

Now, taking Bn = {1, … , q } and Cn = Ln in the statement of the minimal disper-
sion condition, we have that ​T​Bn,Ln

​ > r eventually. (We showed at the beginning of the 
proof that k (n)/n → 0, so that | Ln | /n → 1, and therefore the condition applies.) By 
construction of the k (n), we know that k (n) ≥ q eventually, so that Bn ⊆ Hn eventu-
ally. By (10), we deduce that eventually

	 SH (n) ≥ ​∑ 
j∈Bn

​ 
 
  ​s​j (n) · ​ 

​∑ i∈Ln
​  

  ​ T​ji(n) _________ ​T​Hn,Ln
​(n) ​  ≥ sq (n) · ​ 

​∑ j∈Bn
​  

  ​ ​∑ i∈Ln
​ 

 
  ​ Tj​​i(n)  _____________  ​T​Hn,Ln
​(n) ​  .

As the numerator of the fraction on the right-hand side is at least r and the denomina-
tor is at most k (n), we conclude that

	 SH (n) ≥  ​ 
sq (n)r

 _____ 
k (n) ​

for a positive real r.
Also, SL(n) ≤ ​s​k (n)​(n). Thus, the above equation with (11) implies that

(12)	 rsq (n)​T​Hn,Ln
​(n) ≤ k (n)​s​k (n)​(n)​T​Ln,Hn

​(n).

Since ​T​Ln,Hn
​(n)/​T​Hn,Ln

​(n) is bounded (by balance) and k (n)​s​k (n)​(n) → 0 (by what we 
showed at the beginning of the proof), this implies that limn→∞sq (n) = 0.

So, we are reduced to the case limn→∞sq (n) = 0. Suppose that, contrary to the the-
orem’s assertion, the sequence s1(n) does not converge to 0. Let k be the largest i such 
that lim supn si (n) > 0, which is well-defined and finite by the supposition that s1(n) 
does not converge to 0, and the result above that sq (n) → 0. Let Hn = {1, 2, … , k }. 
Then, as above, we have the following facts:

	​ ∑ 
i∈Hn

​ 
 
  ​s​i (n)​∑ 

j∈Ln

​ 
 

  ​T​ij (n) = ​∑ 
i∈Ln

​ 
 
  ​ ​∑ 

j∈Hn

​ 
 
  ​T​​ij (n)si(n)

	 sk (n)​∑ 
i∈Hn

​ 
 
  ​ ​∑ 

j∈Ln

​ 
 
  ​T​​ij (n) ≤ sk+1(n)​∑ 

i∈Ln

​ 
 
  ​ ​∑ 

j∈Hn

​ 
 
  ​T​​ij (n)    by the ordering of the si (n)

	​ 
sk (n) ______ 

sk+1(n)
 ​  ≤  ​ 

​T​​H​n​ 
c​,Hn

​(n)
 _______ 

​T​Hn,​H​n​ 
c​​(n)

 ​ .

The left side will have supremum ∞ over all n because sk (n) has positive limsup 
while sk+1(n) → 0. The right side, however, is bounded using the balance property. 
This is a contradiction, and therefore the proof, is complete.
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C. Alternative Sufficient Conditions for Wisdom

In this section, we formulate an alternative to the minimal out-dispersion prop-
erty which, when paired with balance, also ensures wisdom. The difference between 
this property and minimal out-dispersion is that this one is about links coming into 
a group rather than ones coming out of it.

Property 3 (Minimal In-Dispersion): There is a q ∈ 핅 and an r < 1 such that if 
| Bn |  = q and Cn ⊆ ​B​n​ 

c​ is finite then ​T​Cn,Bn
​(n) ≤ r ​T​Bn,​B​n​ 

c​​ (n) for all large enough n.

This condition requires that the source of the weight coming into a finite fam-
ily not be too concentrated. The finite family Bn cannot have a finite neighborhood 
which gives Bn as much weight, asymptotically, as Bn gives out. This essentially 
requires influential families to have a broad base of support, and rules out situations 
like Example 4. Indeed, along with balance, it is enough to generate wisdom.

Theorem 4: If (T (n)​)​n=1​ 
∞ ​ is a sequence of convergent stochastic matrices satisfy-

ing balance and minimal in-dispersion, then it is wise.

Proof of Theorem 4: 
By Proposition 2 and the ordering we have chosen for s(n), it suffices to show that

(13)	​  lim    
n→∞​s1(n) = 0

Suppose otherwise.
We proceed by cases. First, assume that there are only finitely many i, such that 

limn→∞ si(n) > 0. Then we can proceed as at the end of the proof of Theorem 1 to 
reach a contradiction. Note that only balance for finite families (Bn) is needed, which 
is implied by the balance property.

From now on, we may assume that there are infinitely many i such that lim supn si (n) 
> 0. In particular, if we take the q guaranteed by Property 3 and set Bn = {1, 2, … , q }, 
then we know that lim supn si(n) > 0 for each i ∈ Bn. Now, for a function g : 핅 → 핅, 
whose properties will be discussed below, define Cn = { q + 1, … , q + g(n)}. Finally, 
let Dn = { q + g (n) + 1, q + g (n) + 2, … , n }. That is, Dn = ​B​n​ 

c​ \ Cn.
We claim g can be chosen such that limn→∞ g(n) = ∞ and

	​ lim sup     
n
  ​  ​ 

​T​Cn,Bn
​(n)
 ______ 

​T​Bn, ​B​n​ 
c​​(n)

 ​  ≤ r ,

where r < 1 is the number provided by Property 3. Let ​C​n​ k​ = {q + 1, q + 2, … , q + k}.
By Property 3, there exists an n1, such that for all n ≥ n1, we have

	​ 
​T​​C​n​ 1​,Bn

​(n)
 ______ 

​T​Bn, ​B​n​ 
c​ ​(n)

 ​  ≤ r.
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Having chosen n1, … , nk−1, there exists an nk > nk−1, such that for all n ≥ nk, we have

	​ 
​T​​C​n​ k​, Bn

​(n)
 _______ ​T​​B​n​, ​B​n​ c​​ (n)
 ​  ≤  r .

Define

	 g(n) = max { k : nk ≤ n }.

Since n1, n2, … is an increasing sequence of integers, the set whose maximum is 
being taken is finite. It is also nonempty for n ≥ n1, so g is well defined there. For n 
< n1, let g (n) = 1. Next, note that g is nondecreasing by construction, that g (nk) ≥ 
k, and that nk → ∞, so that limn→∞ g(n) = ∞. Finally, since Cn, defined above, is 
equal to ​C​n​ 

g(n)​, and

	​ 
​T​​C​n​ 

g(n)​, Bn
​(n)
 _______ ​T​Bn, ​B​n​ 

c​​ (n)
 ​  ≤ r

for all n ≥ n1 by construction, it follows that

(14)	​ lim sup     
n
  ​  ​ 

​T​Cn,Bn
​(n)
 ______ ​T​Bn, ​B​n​ 

c​​(n)
 ​  ≤ r .

This shows our claim about the choice of g.
Now we have the following string of implications:

	​ ∑ 
i∈Bn

​ 
 

  ​ s​i (n) = ​∑ 
i∈Bn

​ 
 

  ​​∑ 
j∈N

​ 
 
  ​T​​ji (n)sj (n)

	​ ∑ 
i∈Bn

​ 
 

  ​s​i(n) = ​∑ 
i∈Bn

​ 
 

  ​​∑ 
j∈Bn

​ 
 
  ​T​​ji (n)sj (n) + ​∑ 

i∈Bn

​ 
 

  ​​∑ 
j∈Cn

​ 
 

  ​T​​ji (n)sj (n) + ​∑ 
i∈Bn

​ 
 

  ​ ​∑ 
j∈Dn

​ 
 
  ​T​​ji (n)sj (n)

	​ ∑ 
i∈Bn

​ 
 

  ​s​i(n) = ​∑ 
i∈Bn

​ 
 

  ​​∑ 
j∈Bn

​ 
 
  ​T​​ij(n)si(n) + ​∑ 

i∈Cn

​ 
 
  ​​∑ 

j∈Bn

​ 
 
  ​T​​ij(n)si(n) + ​∑ 

i∈Dn

​ 
 
  ​​∑ 

j∈Bn

​ 
 
  ​T​​ij(n)si(n)

	​ ∑ 
i∈Bn

​ 
 

  ​s​i(n)​∑ 
j∉Bn

​ 
 
  ​T​ij(n) = ​∑ 

i∈Cn

​ 
 
  ​s​i(n)​∑ 

j∈Bn

​ 
 
  ​T​ij(n) + ​∑ 

i∈Dn

​ 
 
  ​s​i(n)​∑ 

j∈Bn

​ 
 
  ​T​ij(n).

Rearranging,

(15)	​ ∑ 
i∈Bn

​ 
 

  ​s​i (n) ​∑ 
j∉Bn

​ 
 
  ​T​ij (n) −  ​∑ 

i∈Cn

​ 
 
  ​s​i (n) ​∑ 

j∈Bn

​ 
 
  ​T​ij (n) = ​∑ 

i∈Dn

​ 
 
  ​s​i (n) ​∑ 

j∈Bn

​ 
 
  ​T​ij (n).
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Using the ordering of the si(n), the first double summation on the left side satisfies

	​ ∑ 
i∈Bn

​ 
 

  ​s​i(n) ​∑ 
j∉Bn

​ 
 
  ​T​ij(n) ≥ sq (n)​∑ 

i∈Bn

​ 
 

  ​​∑ 
j∉Bn

​ 
 
  ​T​​ij(n) = sq (n)​T​Bn, ​B​n​ 

c​​ (n).

Similarly, the second summation on the left side of (15) satisfies

	​ ∑ 
i∈Cn

​ 
 
  ​s​i(n) ​∑ 

j∈Bn

​ 
 
  ​T​ij(n) ≤ sq+1(n)​∑ 

i∈Cn

​ 
 
  ​​∑ 

j∈Bn

​ 
 
  ​T​​ij(n) = sq+1(n)​T​Cn, Bn

​(n).

Finally, the summation on the right side of (15) satisfies

	​ ∑ 
i∈Dn

​ 
 
  ​s​i(n) ​∑ 

j∈Bn

​ 
 
  ​T​ij(n) ≤ sq+g (n)+1(n) ​∑ 

i∈Dn

​ 
 
  ​​∑ 

j∈Bn

​ 
 
  ​T​​ij(n) = sq+g (n)+1(n)​T​​B​n​ 

c ​\ Cn,Bn
​(n).

We will write f (n) = q + g (n) + 1. Combining the above facts with (15), we find

	 sq (n)​T​Bn, ​B​n​ 
c​​ (n) − sq+1(n)​T​Cn, Bn

​(n) ≤ sf (n)(n)​T​​B​n​ 
c​ \ Cn, Bn

​(n).

By the ordering of the si(n), it follows that

(16)	 sq+1(n)​T​Bn, ​B​n​ 
c​​(n) − sq+1(n)​T​Cn, Bn

​(n) ≤ sf (n)(n)​T​​B​n​ 
c​ \ Cn, Bn

​(n).

By the argument at the beginning of this proof, there is an r < 1, so that for all large 
enough n, we have

	​ T​Cn,Bn
​(n) ≤ r ​T​Bn, ​B​n​ 

c​​ (n).

Using this and a trivial bound on the right hand side of (16), we may rewrite (16) as

(17)	 sq+1(n)(1 − r )​T​Bn, ​B​n​ 
c​​ (n) ≤ sf (n)(n)​T​​B​n​ 

c​, Bn
​(n).

To finish the proof, we need two observations. The first is that sf (n)(n) → 0. Suppose 
not, so that it exceeds some a > 0 for infinitely many n. Then for all such n, we use 
the ordering of the si(n) to find

	​ ∑ 
i=1

​ 
f (n) 

​ s​i(n) ≥ af (n),
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and this quantity tends to +∞, contradicting the fact that

	​ ∑ 
i=1

​ 
n 

 ​ s​i(n) = 1.

The second observation is that we may, without loss of generality, assume g is 
a function satisfying all the properties previously discussed and also g(n) ≤ j (n), 
where the j (n) are from the balance condition. For, if we have a g, so that this condi-
tion does not hold, it is easy to verify that reducing g to some smaller function tend-
ing to +∞, for which the condition does hold, cannot destroy the property in (14).

Now we rewrite (17) as

	 (1 − r )  ​ 
sq+1(n) ______ 
sf (n)(n)

 ​  ≤  ​ 
​T​​B​n​ 

c​, Bn
​(n)
 ______ ​T​Bn,​ B​n​ 

c​​(n)
 ​ .

Arguing as at the end of the proof of Theorem 1, the observations we have just 
derived along with Property 1 generate the needed contradiction.

References

Acemoglu, Daron, Munther A. Dahleh, Ilan Lobel, and Asuman Ozdaglar. 2008. “Bayesian Learning 
in Social Networks.” http://econ-www.mit.edu/files/2756.

Bala, Venkatesh, and Sanjeev Goyal. 1998. “Learning from Neighbours.” Review of Economic Stud-
ies, 65(3): 595–621.

Bala, Venkatesh, and Sanjeev Goyal. 2001. “Conformism and Diversity under Social Learning.” Eco-
nomic Theory, 17(1): 101–20.

Ballester, Coralio, Antoni Calvó-Armengol, and Yves Zenou. 2006. “Who’s Who in Networks: 
Wanted: The Key Player.” Econometrica, 74(5): 1403–17.

Banerjee, Abhijit V. 1992. “A Simple Model of Herd Behavior.” Quarterly Journal of Economics, 
107(3): 797–817.

Banerjee, Abhijit V., and Drew Fudenberg. 2004. “Word-of-Mouth Learning.” Games and Economic 
Behavior, 46(1): 1–22.

Benhabib, Jess, Alberto Bisin, and Matthew O. Jackson, ed. Forthcoming. Handbook of Social Eco-
nomics. Amsterdam: Elsevier.

Bikhchandani, Sushil, David Hirshleifer, and Ivo Welch. 1992. “A Theory of Fads, Fashion, Cus-
tom, and Cultural Change as Informational Cascades.” Journal of Political Economy, 100(5): 
992–1026.

Bonacich, Phillip. 1987. “Power and Centrality: A Family of Measures.” American Journal of Sociol-
ogy, 92(5): 1170–82.

Bonacich, Phillip, and Paulette Lloyd. 2001. “Eigenvector-like Measures of Centrality for Asymmet-
ric Relations.” Social Networks, 23(3): 191–201.

Campbell, Arthur. 2009. “Tell Your Friends! Word of Mouth and Percolation in Social Networks.” 
http://econ-www.mit.edu/files/3719.

Celen, Bo​      g​ açhan, and Shachar Kariv. 2004. “Distinguishing Informational Cascades from Herd 
Behavior in the Laboratory.” American Economic Review, 94(3): 484–98.

Choi, Syngjoo, Douglas Gale, and Shachar Kariv. 2005. “Social Learning in Networks: A Quan-
tal Response Equilibrium Analysis of Experimental Data.” Unpublished. http://emlab.berkeley.
edu/~kariv/CGK_I.pdf.

Choi, Syngjoo, Douglas Gale, and Shachar Kariv. 2008. “Sequential Equilibrium in Monotone 
Games: A Theory-Based Analysis of Experimental Data.” Journal of Economic Theory, 143(1): 
302–30.

DeGroot, Morris H. 1974. “Reaching a Consensus.” Journal of the American Statistical Association, 
69(345): 118–21.

DeGroot, Morris H., and Mark J. Schervish. 2001. Probability and Statistics. 3rd ed. New York: 
Addison Wesley.



Vol. 2 No. 1� 149Golub and Jackson: Naïve Learning in Social Networks

DeMarzo, Peter M., Dimitri Vayanos, and Jeffrey Zwiebel. 2003. “Persuasion Bias, Social Influence, 
and Unidimensional Opinions.” Quarterly Journal of Economics, 118(3): 909–68.

Diaconis, Persi, and Daniel Stroock. 1991. “Geometric Bounds for Eigenvalues for Markov Chains.” 
Annals of Applied Probability, 1(1): 36–61.

Ellison, Glenn, and Drew Fudenberg. 1993. “Rules of Thumb for Social Learning.” Journal of Politi-
cal Economy, 101(4): 612–43.

Ellison, Glenn, and Drew Fudenberg. 1995. “Word-of-Mouth Communication and Social Learning.” 
Quarterly Journal of Economics, 110(1): 93–125.

French, John R. P., Jr. 1956. “A Formal Theory of Social Power.” Psychological Review, 63(3): 181–
94.

Friedkin, Noah E., and Eugene C. Johnsen. 1997. “Social Positions in Influence Networks.” Social 
Networks, 19(3): 209–22.

Gale, Douglas, and Shachar Kariv. 2003. “Bayesian Learning in Social Networks.” Games and Eco-
nomic Behavior, 45(2): 329–46.

Galeotti, Andrea, and Sanjeev Goyal. 2007. “A Theory of Strategic Diffusion.” Fondazione Eni Enrico
Mattei Working Paper 130. http://www.bepress.com/cgi/viewcontent.cgi?article=1131&context
=feem.

Golub, Benjamin, and Matthew O. Jackson. 2008. “How Homophily Affects Communication in Net-
works.” http://arxiv.org/PS_cache/arxiv/pdf/0811/0811.4013v1.pdf.

Harary, Frank. 1959. “Status and Contrastatus.” Sociometry, 22(1): 23–43.
Hartfiel, D. J., and Carl D. Meyer. 1998. “On the Structure of Stochastic Matrices with Subdominant 

Eigenvalue Near 1.” Linear Algebra and Its Applications, 272(1–3): 193–203.
Hoory, Shlomo, Nathan Linial, and Avi Wigderson. 2006. “Expander Graphs and Their Applica-

tions.” Bulletin of the American Mathematical Society, 43(4): 439–561.
Jackson, Matthew O. 2008. Social and Economic Networks. Princeton, NJ: Princeton University 

Press.
Katz, Leo. 1953. “A New Status Index Derived from Sociometric Analysis.” Psychometrika, 18(1): 

39–43.
Kemeny, John G., and J. Laurie Snell. 1960. Finite Markov Chains. Princeton, NJ: Van Nostrand.
Langville, Amy N., and Carl D. Meyer. 2006. Google’s PageRank and Beyond: The Science of Search 

Engine Rankings. Princeton, NJ: Princeton University Press.
Meyer, Carl D. 2000. Matrix Analysis and Applied Linear Algebra. Philadelphia, PA: Society for 

Industrial and Applied Mathematics.
Montenegro, Ravi, and Prasad Tetali. 2005. “Mathematical Aspects of Mixing Times in Markov 

Chains.” Foundations and Trends® in Theoretical Computer Science, 1(3): 237–354.
Palacios-Huerta, Ignacio, and Oscar Volij. 2004. “The Measurement of Intellectual Influence.” 

Econometrica, 72(3): 963–77.
Perkins, Peter. 1961. “A Theorem on Regular Matrices.” Pacific Journal of Mathematics, 11(4): 1529–

33.
Rogers, Brian W. 2006. “A Strategic Theory of Network Status.” http://www.its.caltech.edu/~leectr/

workshop06/papers/JacksonNetworkStatus.pdf.
Rosenberg, Dinah, Eilon Solan, and Nicolas Vieille. 2009. “Informational Externalities and Emer-

gence of Consensus.” Games and Economic Behavior, 66(2): 979–94.
Sobel, Joel. 2000. “Economists’ Models of Learning.” Journal of Economic Theory, 94(2): 241–61.
Wasserman, Stanley, and Katherine Faust. 1994. Social Network Analysis: Methods and Applica-

tions. Cambridge, UK: Cambridge University Press.


	Naïve Learning in Social Networks and the Wisdome of Crowds
	I. The DeGroot Model
	A. Agents and Interaction
	B. Updating
	C. Walks, Paths, and Cycles

	II. Convergence of Beliefs Under Naïve Updating
	A. Examples
	B. A Characterization of Convergence and Limiting Beliefs
	C. Undirected Networks with Equal Weights

	III. The Wisdom of Crowds: Definition and Characterization
	A. Defining Wisdom
	B. Wisdom in Terms of Influence: A Law of Large Numbers

	IV. Wisdom in Terms of Social Structure
	A. Wisdom in Undirected Networks with Equal Weights
	B. Prominent Families as an Obstacle to Wisdom
	C. Other Obstructions to Wisdom: Examples
	D. Ensuring Wisdom: Structural Sufficient Conditions

	V. The Speed of Convergence
	VI. Conclusion
	A. Convergence in the Absence of Strong Connectedness
	B. Proofs of Results on Wisdom
	C. Alternative Sufficient Conditions for Wisdom

	REFERENCES
	Mathematical Appendix


