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Abstract. Many models for the spread of infectious diseases in populations have been analyzed math-
ematically and applied to specific diseases. Threshold theorems involving the basic repro-
duction number R0, the contact number σ, and the replacement number R are reviewed
for the classic SIR epidemic and endemic models. Similar results with new expressions for
R0 are obtained for MSEIR and SEIR endemic models with either continuous age or age
groups. Values of R0 and σ are estimated for various diseases including measles in Niger
and pertussis in the United States. Previous models with age structure, heterogeneity, and
spatial structure are surveyed.
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1. Introduction. The effectiveness of improved sanitation, antibiotics, and vac-
cination programs created a confidence in the 1960s that infectious diseases would
soon be eliminated. Consequently, chronic diseases such as cardiovascular disease and
cancer received more attention in the United States and industrialized countries. But
infectious diseases have continued to be the major causes of suffering and mortality
in developing countries. Moreover, infectious disease agents adapt and evolve, so that
new infectious diseases have emerged and some existing diseases have reemerged [142].
Newly identified diseases include Lyme disease (1975), Legionnaire’s disease (1976),
toxic-shock syndrome (1978), hepatitis C (1989), hepatitis E (1990), and hantavirus
(1993). The human immunodeficiency virus (HIV), which is the etiological agent
for acquired immunodeficiency syndrome (AIDS), emerged in 1981 and has become
an important sexually transmitted disease throughout the world. Antibiotic-resistant
strains of tuberculosis, pneumonia, and gonorrhea have evolved. Malaria, dengue, and
yellow fever have reemerged and are spreading into new regions as climate changes
occur. Diseases such as plague, cholera, and hemorrhagic fevers (Bolivian, Ebola,
Lassa, Marburg, etc.) continue to erupt occasionally. Surprisingly, new infectious
agents called prions have recently joined the previously known agents: viruses, bac-
teria, protozoa, and helminths (worms). There is strong evidence that prions are the
cause of spongiform encephalopathies, e.g., bovine spongiform encephalopathy (BSE,
“mad cow disease”), Creutzfeldt-Jakob disease (CJD), kuru, and scrapie in sheep
[168]. Recent popular books have given us exciting accounts of the emergence and de-
tection of new diseases [82, 168, 170, 183]. It is clear that human or animal invasions
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of new ecosystems, global warming, environmental degradation, increased interna-
tional travel, and changes in economic patterns will continue to provide opportunities
for new and existing infectious diseases [152].

The emerging and reemerging diseases have led to a revived interest in infec-
tious diseases. Mathematical models have become important tools in analyzing the
spread and control of infectious diseases. The model formulation process clarifies as-
sumptions, variables, and parameters; moreover, models provide conceptual results
such as thresholds, basic reproduction numbers, contact numbers, and replacement
numbers. Mathematical models and computer simulations are useful experimental
tools for building and testing theories, assessing quantitative conjectures, answer-
ing specific questions, determining sensitivities to changes in parameter values, and
estimating key parameters from data. Understanding the transmission characteris-
tics of infectious diseases in communities, regions, and countries can lead to better
approaches to decreasing the transmission of these diseases. Mathematical models
are used in comparing, planning, implementing, evaluating, and optimizing various
detection, prevention, therapy, and control programs. Epidemiology modeling can
contribute to the design and analysis of epidemiological surveys, suggest crucial data
that should be collected, identify trends, make general forecasts, and estimate the
uncertainty in forecasts [100, 111].

Although a model for smallpox was formulated and solved by Daniel Bernoulli
in 1760 in order to evaluate the effectiveness of variolation of healthy people with
the smallpox virus [24], deterministic epidemiology modeling seems to have started
in the 20th century. In 1906 Hamer formulated and analyzed a discrete time model
in his attempt to understand the recurrence of measles epidemics [95]. His model
may have been the first to assume that the incidence (number of new cases per unit
time) depends on the product of the densities of the susceptibles and infectives. Ross
was interested in the incidence and control of malaria, so he developed differential
equation models for malaria as a host-vector disease in 1911 [173]. Other determin-
istic epidemiology models were then developed in papers by Ross, Ross and Hudson,
Martini, and Lotka [18, 60, 66]. Starting in 1926 Kermack and McKendrick published
papers on epidemic models and obtained the epidemic threshold result that the den-
sity of susceptibles must exceed a critical value in order for an epidemic outbreak to
occur [18, 136, 157]. Mathematical epidemiology seems to have grown exponentially
starting in the middle of the 20th century (the first edition in 1957 of Bailey’s book
[18] is an important landmark), so that a tremendous variety of models have now
been formulated, mathematically analyzed, and applied to infectious diseases. Re-
views of the literature [21, 39, 60, 65, 67, 102, 107, 109, 199] show the rapid growth
of epidemiology modeling. The recent models have involved aspects such as passive
immunity, gradual loss of vaccine and disease-acquired immunity, stages of infection,
vertical transmission, disease vectors, macroparasitic loads, age structure, social and
sexual mixing groups, spatial spread, vaccination, quarantine, and chemotherapy.
Special models have been formulated for diseases such as measles, rubella, chicken-
pox, whooping cough, diphtheria, smallpox, malaria, onchocerciasis, filariasis, rabies,
gonorrhea, herpes, syphilis, and HIV/AIDS. The breadth of the subject is shown in
the books on epidemiology modeling [5, 9, 12, 18, 19, 20, 22, 33, 38, 39, 55, 56, 59,
80, 81, 90, 111, 113, 127, 137, 141, 151, 164, 167, 173, 181, 194, 196].

Compartments with labels such as M, S, E, I, and R are often used for the
epidemiological classes as shown in Figure 1. If a mother has been infected, then some
IgG antibodies are transferred across the placenta, so that her newborn infant has
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Fig. 1 The general transfer diagram for the MSEIR model with the passively immune class M, the
susceptible class S, the exposed class E, the infective class I, and the recovered class R.

temporary passive immunity to an infection. The class M contains these infants with
passive immunity. After the maternal antibodies disappear from the body, the in-
fant moves to the susceptible class S. Infants who do not have any passive immunity,
because their mothers were never infected, also enter the class S of susceptible indi-
viduals; that is, those who can become infected. When there is an adequate contact
of a susceptible with an infective so that transmission occurs, then the susceptible
enters the exposed class E of those in the latent period, who are infected but not yet
infectious. After the latent period ends, the individual enters the class I of infectives,
who are infectious in the sense that they are capable of transmitting the infection.
When the infectious period ends, the individual enters the recovered class R consisting
of those with permanent infection-acquired immunity.

The choice of which compartments to include in a model depends on the charac-
teristics of the particular disease being modeled and the purpose of the model. The
passively immune class M and the latent period class E are often omitted, because
they are not crucial for the susceptible-infective interaction. Acronyms for epidemi-
ology models are often based on the flow patterns between the compartments such as
MSEIR, MSEIRS, SEIR, SEIRS, SIR, SIRS, SEI, SEIS, SI, and SIS. For example, in
the MSEIR model shown in Figure 1, passively immune newborns first become sus-
ceptible, then exposed in the latent period, then infectious, and then removed with
permanent immunity. An MSEIRS model would be similar, but the immunity in the
R class would be temporary, so that individuals would regain their susceptibility when
the temporary immunity ended.

The threshold for many epidemiology models is the basic reproduction number
R0, which is defined as the average number of secondary infections produced when
one infected individual is introduced into a host population where everyone is suscep-
tible [61]. For many deterministic epidemiology models, an infection can get started
in a fully susceptible population if and only if R0 > 1. Thus the basic reproduc-
tion number R0 is often considered as the threshold quantity that determines when
an infection can invade and persist in a new host population. Section 2 introduces
epidemiology modeling by formulating and analyzing two classic deterministic mod-
els. The role of R0 is demonstrated for the classic SIR endemic model in section 2.4.
Then thresholds are estimated from data on several diseases and the implications of
the estimates are considered for diseases such as smallpox, polio, measles, rubella,
chickenpox, and influenza. An MSEIR endemic model in a population without age
structure but with exponentially changing population size is formulated and analyzed
in section 3. This model demonstrates how exponential population growth affects the
basic reproduction number R0.

Realistic infectious disease models include both time t and age a as independent
variables, because age groups mix heterogeneously, the recovered fraction usually
increases with age, risks from an infection may be related to age, vaccination pro-
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grams often focus on specific ages, and epidemiologic data is often age specific. These
epidemiologic models are based on the demographic models in section 4 with either
continuous age or age groups. The two demographic models demonstrate the role
of the population reproduction numbers in determining when the population grows
asymptotically exponentially. The MSEIR with continuous age structure is formu-
lated and analyzed in section 5. New general expressions for the basic reproduction
number R0 and the average age of infection A are obtained. Expressions for these
quantities are found in sections 5.4 and 5.6 in the cases when the survival function of
the population is a negative exponential and a step function. In section 5.5 the en-
demic threshold and the average age of infection are obtained when vaccination occurs
at age Av. The SEIR model with age groups is formulated and analyzed in section 6.
The new expressions for the basic reproduction number R0 and the average age of
infection A are analogous to those obtained for the MSEIR model with continuous
age structure.

The theoretical expressions in section 6 are used in section 7 to obtain estimates
of the basic reproduction number R0 and the average age of infection A for measles
in Niger, Africa. These estimates are affected by the very rapid 3.3% growth of the
population in Niger. In section 8 estimates of the basic reproduction number R0 and
the contact number σ (defined in section 2.2) are obtained for pertussis (whooping
cough) in the United States. Because pertussis infectives with lower infectivity occur
in previously infected people, the contact number σ at the endemic steady state is
less than the basic reproduction number R0. Section 9 describes results on the basic
reproduction numberR0 for previous epidemiology models with a variety of structures,
and section 10 contains a general discussion.

2. Two Classic Epidemiology Models. In order to introduce the terminology,
notation, and standard results for epidemiology models, two classic SIR models are
formulated and analyzed. Epidemic models are used to describe rapid outbreaks that
occur in less than one year, while endemic models are used for studying diseases over
longer periods, during which there is a renewal of susceptibles by births or recovery
from temporary immunity. The two classic SIR models provide an intuitive basis for
understanding more complex epidemiology modeling results.

2.1. Formulating EpidemiologyModels. The horizontal incidence shown in Fig-
ure 1 is the infection rate of susceptible individuals through their contacts with infec-
tives. If S(t) is the number of susceptibles at time t, I(t) is the number of infectives,
and N is the total population size, then s(t) = S(t)/N and i(t) = I(t)/N are the
susceptible and infectious fractions, respectively. If β is the average number of ad-
equate contacts (i.e., contacts sufficient for transmission) of a person per unit time,
then βI/N = βi is the average number of contacts with infectives per unit time of one
susceptible, and (βI/N)S = βNis is the number of new cases per unit time due to
the S = Ns susceptibles. This form of the horizontal incidence is called the standard
incidence, because it is formulated from the basic principles above [96, 102].

The simple mass action law ηIS = η(Ni)(Ns), with η as a mass action coefficient,
has sometimes been used for the horizontal incidence. The parameter η has no direct
epidemiological interpretation, but comparing it with the standard formulation shows
that β = ηN , so that this form implicitly assumes that the contact rate β increases
linearly with the population size. Naively, it might seem plausible that the population
density and hence the contact rate would increase with population size, but the daily
contact patterns of people are often similar in large and small communities, cities, and
regions. For human diseases the contact rate seems to be only very weakly dependent
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on the population size. Using an incidence of the form ηNvSI/N , data for five human
diseases in communities with population sizes from 1,000 to 400,000 [9, p. 157] [12,
p. 306] imply that v is between 0.03 and 0.07. This strongly suggests that the standard
incidence corresponding to v = 0 is more realistic for human diseases than the simple
mass action incidence corresponding to v = 1. This result is consistent with the
concept that people are infected through their daily encounters and the patterns of
daily encounters are largely independent of community size within a given country
(e.g., students of the same age in a country usually have a similar number of daily
contacts).

The standard incidence is also a better formulation than the simple mass action
law for animal populations such as mice in a mouse-room or animals in a herd [57],
because disease transmission primarily occurs locally from nearby animals. For more
information about the differences in models using these two forms of the horizontal
incidence, see [83, 84, 85, 96, 110, 159]. Vertical incidence, which is the infection
rate of newborns by their mothers, is sometimes included in epidemiology models by
assuming that a fixed fraction of the newborns is infected vertically [33]. Models with
population size–dependent contact functions have also been considered [29, 171, 190,
191, 201]. Various forms of nonlinear incidences have been considered [112, 147, 148,
149]. See [107] for a survey of mechanisms including nonlinear incidences that can
lead to periodicity in epidemiological models.

A common assumption is that the movements out of the M, E, and I compart-
ments and into the next compartment are governed by terms like δM , εE, and γI in
an ordinary differential equations model. It has been shown [109] that these terms
correspond to exponentially distributed waiting times in the compartments. For ex-
ample, the transfer rate γI corresponds to P (t) = e−γt as the fraction that is still
in the infective class t units after entering this class and to 1/γ as the mean wait-
ing time. For measles the mean period 1/δ of passive immunity is about six to nine
months, while the mean latent period 1/ε is one to two weeks and the mean infec-
tious period 1/γ is about one week. Another possible assumption is that the fraction
still in the compartment t units after entering is a nonincreasing, piecewise contin-
uous function P (t) with P (0) = 1 and P (∞) = 0. Then the rate of leaving the
compartment at time t is −P ′(t), so the mean waiting time in the compartment is∫∞

0 t(−P ′(t))dt = ∫∞0 P (t)dt. These distributed delays lead to epidemiology models
with integral or integrodifferential or functional differential equations. If the waiting
time distribution is a step function given by P (t) = 1 if 0 ≤ t ≤ τ , and P (t) = 0
if τ ≤ t, then the mean waiting time is τ , and for t ≥ τ the model reduces to a
delay-differential equation [109]. Each waiting time in a model can have a different
distribution, so there are many possible models [102].

2.2. Three Threshold Quantities: R0, σ, andR. The basic reproduction num-
ber R0 has been defined in the introduction as the average number of secondary
infections that occur when one infective is introduced into a completely susceptible
host population [61]. Note that R0 is also called the basic reproduction ratio [58] or
basic reproductive rate [12]. It is implicitly assumed that the infected outsider is in
the host population for the entire infectious period and mixes with the host population
in exactly the same way that a population native would mix. The contact number σ
is defined as the average number of adequate contacts of a typical infective during the
infectious period [96, 110]. An adequate contact is one that is sufficient for transmis-
sion, if the individual contacted by the susceptible is an infective. The replacement
number R is defined to be the average number of secondary infections produced by a
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Table 1 Summary of notation.

M Passively immune infants
S Susceptibles
E Exposed people in the latent period
I Infectives
R Recovered people with immunity
m, s, e, i, r Fractions of the population in the classes above
β Contact rate
1/δ Average period of passive immunity
1/ε Average latent period
1/γ Average infectious period
R0 Basic reproduction number
σ Contact number
R Replacement number

typical infective during the entire period of infectiousness [96]. Some authors use the
term reproduction number instead of replacement number, but it is better to avoid
the name reproduction number since it is easily confused with the basic reproduction
number. Note that these three quantities R0, σ, and R in Table 1 are all equal at the
beginning of the spread of an infectious disease when the entire population (except
the infective invader) is susceptible. In recent epidemiological modeling literature, the
basic reproduction number R0 is often used as the threshold quantity that determines
whether a disease can invade a population.

Although R0 is only defined at the time of invasion, σ and R are defined at all
times. For most models, the contact number σ remains constant as the infection
spreads, so it is always equal to the basic reproduction number R0. In these models
σ and R0 can be used interchangeably and invasion theorems can be stated in terms
of either quantity. But for the pertussis models in section 8, the contact number σ
becomes less than the basic reproduction number R0 after the invasion, because new
classes of infectives with lower infectivity appear when the disease has entered the
population. The replacement number R is the actual number of secondary cases from
a typical infective, so that after the infection has invaded a population and everyone is
no longer susceptible, R is always less than the basic reproduction number R0. Also,
after the invasion, the susceptible fraction is less than 1, so that not all adequate
contacts result in a new case. Thus the replacement number R is always less than the
contact number σ after the invasion. Combining these results leads to

R0 ≥ σ ≥ R,
with equality of the three quantities at the time of invasion. Note that R0 = σ for
most models, and σ > R after the invasion for all models.

2.3. The Classic Epidemic Model. Using the notation in section 2.1, the classic
epidemic model is the SIR model given by the initial value problem

dS/dt = −βIS/N, S(0) = So ≥ 0,
dI/dt = βIS/N − γI, I(0) = Io ≥ 0,
dR/dt = γI, R(0) = Ro ≥ 0,

(2.1)

where S(t), I(t), and R(t) are the numbers in these classes, so that S(t)+I(t)+R(t) =
N . This SIR model is a special case of the MSEIR model in Figure 1, in which the
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Fig. 2 Phase plane portrait for the classic SIR epidemic model with contact number σ = 3.

passively immune class M and the exposed class E are omitted. This model uses
the standard incidence and has recovery at rate γI, corresponding to an exponential
waiting time e−γt. Since the time period is short, this model has no vital dynamics
(births and deaths). Dividing the equations in (2.1) by the constant total population
size N yields

ds/dt = −βis, s(0) = so ≥ 0,
di/dt = βis− γi, i(0) = io ≥ 0,

(2.2)

with r(t) = 1 − s(t) − i(t), where s(t), i(t), and r(t) are the fractions in the classes.
The triangle T in the si phase plane given by

T = {(s, i) |s ≥ 0, i ≥ 0, s+ i ≤ 1}(2.3)

is positively invariant and unique solutions exist in T for all positive time, so that the
model is mathematically and epidemiologically well posed [96]. Here the contact num-
ber σ = β/γ is the contact rate β per unit time multiplied by the average infectious
period 1/γ, so it has the proper interpretation as the average number of adequate
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Fig. 3 Solutions of the classic SIR epidemic model with contact number σ = 3 and average infectious
period 1/γ = 3 days.

Fig. 4 Reported number of measles cases in the Netherlands by week of onset and vaccination status
during April 1999 to January 2000. Most of the unvaccinated cases were people belonging
to a religious denomination that routinely does not accept vaccination. The 2,961 measles
cases included 3 measles-related deaths. Reprinted from [52].
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contacts of a typical infective during the infectious period. Here the replacement
number at time zero is σso, which is the product of the contact number σ and the
initial susceptible fraction so.

Theorem 2.1. Let (s(t), i(t)) be a solution of (2.2) in T . If σso ≤ 1, then i(t)
decreases to zero as t → ∞. If σso > 1, then i(t) first increases up to a maximum
value imax = io + so − 1/σ − [ln(σso)]/σ and then decreases to zero as t → ∞.
The susceptible fraction s(t) is a decreasing function and the limiting value s∞ is the
unique root in (0, 1/σ) of the equation

io + so − s∞ + ln(s∞/so)/σ = 0.(2.4)

Typical paths in T are shown in Figure 2, and solutions as a function of time
are shown in Figure 3. Note that the hallmark of a typical epidemic outbreak is an
infective curve that first increases from an initial Io near zero, reaches a peak, and then
decreases toward zero as a function of time. For example, a recent measles epidemic
in the Netherlands [52] is shown in Figure 4. The susceptible fraction s(t) always
decreases, but the final susceptible fraction s∞ is positive. The epidemic dies out
because, when the susceptible fraction s(t) goes below 1/σ, the replacement number
σs(t) goes below 1. The results in the theorem are epidemiologically reasonable, since
the infectives decrease and there is no epidemic, if enough people are already immune
so that a typical infective initially replaces itself with no more than one new infective
(σso ≤ 1). But if a typical infective initially replaces itself with more than one new
infective (σso > 1), then infectives initially increase so that an epidemic occurs. The
speed at which an epidemic progresses depends on the characteristics of the disease.
The measles epidemic in Figure 4 lasted for about nine months, but because the latent
period for influenza is only one to three days and the infectious period is only two
to three days, an influenza epidemic can sweep through a city in less than six weeks.
See [100] for more examples of epidemic outbreak curves.

To prove the theorem, observe that the solution paths

i(t) + s(t)− [ln s(t)]/σ = io + so − [ln so]/σ

in Figure 2 are found from the quotient differential equation di/ds = −1 + 1/(σs).
The equilibrium points along the s axis are neutrally unstable for s > 1/σ and are
neutrally stable for s < 1/σ. For a complete (easy) proof, see [96] or [100]. One
classic approximation derived in [18] is that for small io and so slightly greater than
smax = 1/σ, the difference smax − s(∞) is about equal to so − smax, so the final
susceptible fraction is about as far below the susceptible fraction smax (the s value
where the infective fraction is a maximum) as the initial susceptible fraction was
above it (see Figure 2). Observe that the threshold result here involves the initial
replacement number σso and does not involve the basic reproduction number R0.

2.4. The Classic Endemic Model. The classic endemic model is the SIR model
with vital dynamics (births and deaths) given by

dS/dt = µN − µS − βIS/N, S(0) = So ≥ 0,
dI/dt = βIS/N − γI − µI, I(0) = Io ≥ 0,
dR/dt = γI − µR, R(0) = Ro ≥ 0,

(2.5)

with S(t)+ I(t)+R(t) = N . This SIR model is almost the same as the SIR epidemic
model (2.1) above, except that it has an inflow of newborns into the susceptible class
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at rate µN and deaths in the classes at rates µS, µI, and µR. The deaths balance
the births, so that the population size N is constant. The mean lifetime 1/µ would be
about 75 years in the United States. Dividing the equations in (2.5) by the constant
total population size N yields

ds/dt = −βis+ µ− µs, s(0) = so ≥ 0,

di/dt = βis− (γ + µ)i, i(0) = io ≥ 0,
(2.6)

with r(t) = 1 − s(t) − i(t). The triangle T in the si phase plane given by (2.3)
is positively invariant, and the model is well posed [96]. Here the contact number σ
remains equal to the basic reproduction number R0 for all time, because no new classes
of susceptibles or infectives occur after the invasion. For this model the threshold
quantity is given by R0 = σ = β/(γ + µ), which is the contact rate β times the
average death-adjusted infectious period 1/(γ + µ).

Theorem 2.2. Let (s(t), i(t)) be a solution of (2.6) in T . If σ ≤ 1 or io = 0, then
solution paths starting in T approach the disease-free equilibrium given by s = 1 and
i = 0. If σ > 1, then all solution paths with io > 0 approach the endemic equilibrium
given by se = 1/σ and ie = µ(σ − 1)/β.

Figures 5 and 6 illustrate the two possibilities given in the theorem. If R0 = σ ≤ 1,
then the replacement number σs is less than 1 when io > 0, so that the infec-
tives decrease to zero. Although the speeds of movement along the paths are not
apparent from Figure 5, the infective fraction decreases rapidly to very near zero,
and then over 100 or more years, the recovered people slowly die off and the birth
process slowly increases the susceptibles, until eventually everyone is susceptible at
the disease-free equilibrium with s = 1 and i = 0. If R0 = σ > 1, io is small,
and so is large with σso > 1, then s(t) decreases and i(t) increases up to a peak
and then decreases, just as it would for an epidemic (compare Figure 6 with Fig-
ure 2). However, after the infective fraction has decreased to a low level, the slow
processes of the deaths of recovered people and the births of new susceptibles grad-
ually (over about 10 or 20 years) increase the susceptible fraction until σs(t) is large
enough that another smaller epidemic occurs. This process of alternating rapid epi-
demics and slow regeneration of susceptibles continues as the paths approach the en-
demic equilibrium given in the theorem. At this endemic equilibrium the replacement
number σse is 1, which is plausible since if the replacement number were greater
than or less than 1, the infective fraction i(t) would be increasing or decreasing,
respectively.

Theorem 2.2 was proved in [96] and in [100] using phase plane methods and
Liapunov functions. For this SIR model there is a transcritical (stability exchange)
bifurcation at σ = 1, as shown in Figure 7. Notice that the ie coordinate of the
endemic equilibrium is negative for σ < 1, coincides with the disease-free equilibrium
value of zero at σ = 1, and becomes positive for σ > 1. This equilibrium given by
se = 1/σ and ie = µ(σ − 1)/β is unstable for σ < 1 and is locally asymptotically
stable for σ > 1, while the disease-free equilibrium given by s = 1 and i = 0 is
locally stable for σ < 1 and unstable for σ > 1. Thus these two equilibria exchange
stabilities as the endemic equilibrium moves through the disease-free equilibrium when
σ = 1 and becomes a distinct, epidemiologically feasible, locally asymptotically stable
equilibrium when σ > 1. Analogues of the results in the theorem hold for other
endemic models. For example, in the SEIR model, the threshold is R0 = σ = βε/[(γ+
µ)(ε+ µ)], which is the product of the contact rate β, the average fraction ε/(ε+ µ)
surviving the latent period, and the average infectious period 1/(γ + µ). For the
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Fig. 5 Phase plane portrait for the classic SIR endemic model with contact number σ = 0.5.

SEIR model the global stability below the threshold was proved in [147] and the
global stability above the threshold was recently proved using clever new methods
[143]. Results for the MSEIR model are given in section 3.

The following interpretation of the results in the theorem and paragraph above
is one reason why the basic reproduction number R0 has become widely used in the
epidemiology literature. If the basic reproduction number R0 (which is always equal to
the contact number σ when the entire population is susceptible) is less than 1, then
the disease-free equilibrium is locally asymptotically stable and the disease cannot
“invade” the population. But if R0 > 1, then the disease-free equilibrium is unstable
with a repulsive direction into the positive si quadrant, so the disease can “invade”
in the sense that any path starting with a small positive io moves into the positive si
quadrant where the disease persists. Thus for this classic SIR endemic model and for
many other more complex models [58], the behavior is almost completely dependent
on the threshold quantity R0, which determines not only when the local stability of
the disease-free equilibrium switches, but also when the endemic equilibrium enters
the feasible region with a positive infective fraction. The latter condition is used to
obtain expressions for R0 in age-structured models in sections 5 and 6.
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Fig. 6 Phase plane portrait for the classic SIR endemic model with contact number σ = 3, average
infectious period 1/γ = 3 days, and average lifetime 1/µ = 60 days. This unrealistically
short average lifetime has been chosen so that the endemic equilibrium is clearly above the
horizontal axis and the spiraling into the endemic equilibrium can be seen.

2.5. Threshold Estimates Using the Classic Models. The classic SIR models
above are very important as conceptual models (similar to predator-prey and compet-
ing species models in ecology). The SIR epidemic modeling yields the useful concept of
the threshold quantity σso, which determines when an epidemic occurs, and formulas
for the peak infective fraction im and the final susceptible fraction s∞. The SIR
endemic modeling yields R0 = σ as the threshold quantity that determines when
the disease remains endemic, the concept that the infective replacement number σse

is 1 at the endemic equilibrium, and the explicit dependence of the infective frac-
tion ie on the parameters. However, these simple, classic SIR models have obvious
limitations. They unrealistically assume that the population is uniform and homoge-
neously mixing, whereas it is known that mixing depends on many factors including
age (children usually have more adequate contacts per day than adults). Moreover,
different geographic and social-economic groups have different contact rates. Despite
their limitations, the classic SIR models can be used to obtain some estimates and
comparisons.
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Fig. 7 The bifurcation diagram for the SIR endemic model, which shows that the disease-free and
endemic equilibria exchange stability when the contact number σ is 1.

From (2.4) for s∞ in the classic SIR epidemic model, the approximation

σ ≈ ln(so/s∞)
so − s∞

follows because io is negligibly small. By using data on the susceptible fractions so

and s∞ at the beginning and end of epidemics, this formula can be used to estimate
contact numbers for specific diseases [100]. Using blood samples from freshmen at Yale
University [75], the fractions susceptible to rubella at the beginning and end of the
freshman year were found to be 0.25 and 0.090, so the epidemic formula above gives
σ ≈ 6.4. The fractions so = 0.49 and s∞ = 0.425 for the Epstein–Barr virus (related
to mononucleosis) lead to σ ≈ 2.2, and the fractions so = 0.911 and s∞ = 0.514 for
influenza (H3N2 type A “Hong Kong”) lead to σ ≈ 1.44. For the 1957 “Asian Flu”
(H2N2 type A strain of influenza) in Melbourne, Australia, the fractions so = 1 and
s∞ = 0.55 from [31, p. 129] yield the contact number estimate σ ≈ 1.33. Thus the
easy theory for the classic SIR epidemic model yields the formula above that can be
used to estimate contact numbers from epidemic data.

The classic SIR endemic model can also be used to estimate contact numbers. If
blood samples in a serosurvey are tested for antibodies to a virus and it is assumed
that the SIR model above holds in the population with the disease at an endemic
equilibrium, then the contact number can be estimated from σ = 1/se, where se is the
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fraction of the samples that are not seropositive, since se = 1− ie−re. This approach
is somewhat naive, because the average seropositivity in a population decreases to
zero as the initial passive immunity declines and then increases as people age and are
exposed to infectives. Thus the ages of those sampled are critical in using the estimate
σ = 1/se. For the SIR model with negative exponential survival in section 5.4, one
estimation formula for the basic reproduction number is R0 = 1+L/A, where L is the
average lifetime 1/µ and A is the average age of infection. This estimation formula
can also be derived heuristically from the classic SIR endemic model. The incidence
rate at the endemic equilibrium is βiese, so that βie is the incidence rate constant,
which with exponential waiting time implies that the average age of infection (the
mean waiting time in S) is A = 1/βie = 1/[µ(σ − 1)]. Using µ = 1/L, this leads to
R0 = σ = 1 + L/A, since R0 = σ for this model.

Data on average ages of infection and average lifetimes in developed countries
have been used to estimate basic reproduction numbers R0 for some viral diseases.
These estimates of R0 are about 16 for measles, 11 for varicella (chickenpox), 12 for
mumps, 7 for rubella, and 5 for poliomyelitis and smallpox [12, p. 70], [100]. Because
disease-acquired immunity is only temporary for bacterial diseases such as pertussis
(whooping cough) and diphtheria, the formula R0 = σ = 1 + L/A cannot be used to
estimate R0 for these diseases (see section 8 for estimates of R0 and σ for pertussis).

Herd immunity occurs for a disease if enough people have disease-acquired or
vaccination-acquired immunity, so that the introduction of one infective into the pop-
ulation does not cause an invasion of the disease. Intuitively, if the contact number
is σ, so that the typical infective has adequate contacts with σ people during the
infectious period, then the replacement number σs must be less than 1 so that the
disease does not spread. This means that s must be less than 1/σ, so the immune
fraction r must satisfy r > 1 − 1/σ = 1 − 1/R0. For example, if R0 = σ = 10, then
the immune fraction must satisfy r > 1−1/10 = 0.9, so that the replacement number
is less than 1 and the disease does not invade the population.

Using the estimates above for R0, the minimum immune fractions for herd im-
munity are 0.94 for measles, 0.89 for mumps, 0.86 for rubella, and 0.8 for poliomyeli-
tis and smallpox. Although these values give only crude, ballpark estimates for the
vaccination-acquired immunity level in a community required for herd immunity, they
are useful for comparing diseases. For example, these numbers suggest that it should
be easier to achieve herd immunity for poliomyelitis and smallpox than for measles,
mumps, and rubella. This conclusion is justified by the actual effectiveness of vaccina-
tion programs in reducing, locally eliminating, and eradicating these diseases (eradi-
cation means elimination throughout the world). The information in the next section
verifies that smallpox has been eradicated worldwide and polio should be eradicated
worldwide within a few years, while the diseases of rubella and measles still persist at
low levels in the United States and at higher levels in many other countries. Thus the
next section provides historical context and verifies the disease comparisons obtained
from the simple, classic SIR endemic model.

2.6. Smallpox, Polio, Measles, Rubella, Chickenpox, and Influenza. Smallpox
is believed to have appeared in the first agricultural settlements around 6,000 BC.
For centuries the process of variolation with material from smallpox pustules was
used in Africa, China, and India before arriving in Europe and the Americas in the
18th century. Edward Jenner, an English country doctor, observed over 25 years
that milkmaids who had been infected with cowpox did not get smallpox. In 1796
he started vaccinating people with cowpox to protect them against smallpox [168].
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This was the world’s first vaccine (vacca is the Latin word for cow). Two years
later, the findings of the first vaccine trials were published, and by the early 1800s,
the smallpox vaccine was widely available. Smallpox vaccination was used in many
countries in the 19th century, but smallpox remained endemic. When the World
Health Organization (WHO) started a global smallpox eradication program in 1967,
there were about 15 million cases per year, of which 2 million died and millions
more were disfigured or blinded by the disease [77]. The WHO strategy involved
extensive vaccination programs (see Figure 8), surveillance for smallpox outbreaks,
and containment of these outbreaks by local vaccination programs. There are some
interesting stories about the WHO campaign, including the persuasion of African
chiefs to allow their tribes to be vaccinated and monetary bounty systems for finding
hidden smallpox cases in India. Smallpox was slowly eliminated from many countries,
with the last case in the Americas in 1971. The last case worldwide was in Somalia
in 1977, so smallpox has been eradicated throughout the world [23, 77, 168]. The
WHO estimates that the elimination of worldwide smallpox vaccination saves over
two billion dollars per year. The smallpox virus has been kept in U.S. and Russian
government laboratories; the United States keeps it so that vaccine could be produced
if smallpox were ever used in biological terrorism [182].

Most cases of poliomyelitis are asymptomatic, but a small fraction of cases result
in paralysis. In the 1950s in the United States, there were about 60,000 paralytic
polio cases per year. In 1955 Jonas Salk developed an injectable polio vaccine from
an inactivated polio virus. This vaccine provides protection for the person, but the
person can still harbor live viruses in their intestines and can pass them to others.
In 1961 Albert Sabin developed an oral polio vaccine from weakened strains of the
polio virus. This vaccine provokes a powerful immune response, so the person cannot
harbor the “wild-type” polio viruses, but a very small fraction (about one in 2 million)
of those receiving the oral vaccine develop paralytic polio [23, 168]. The Salk vaccine
interrupted polio transmission and the Sabin vaccine eliminated polio epidemics in
the United States, so there have been no indigenous cases of naturally occurring polio
since 1979. In order to eliminate the few cases of vaccine-related paralytic polio each
year, the United States now recommends the Salk injectable vaccine for the first four
polio vaccinations, even though it is more expensive [50]. In the Americas, the last
case of paralytic polio caused by the wild virus was in Peru in 1991. In 1988 the WHO
set a goal of global polio eradication by the year 2000 [178]. Most countries are using
the live-attenuated Sabin vaccine, because it is inexpensive (8 cents per dose) and can
be easily administered into a mouth by an untrained volunteer. The WHO strategy
includes routine vaccination, National Immunization Days (during which many people
in a country or region are vaccinated in order to interrupt transmission), mopping-up
vaccinations, and surveillance for acute flaccid paralysis [116]. Polio has disappeared
from many countries in the past 10 years, so that by 1999 it was concentrated in
the Eastern Mediterranean region, South Asia, West Africa, and Central Africa. It
is likely that polio will soon be eradicated worldwide. The WHO estimates that
eradicating polio will save about $1.5 billion each year in immunization, treatment,
and rehabilitation around the globe [45].

Measles is a serious disease of childhood that can lead to complications and death.
For example, measles caused about 7,500 deaths in the United States in 1920 and still
causes about 1 million deaths worldwide each year [47, 48]. Measles vaccinations are
given to children between 6 and 18 months of age, but the optimal age of vaccination
for measles seems to vary geographically [99]. Rubella (also called three-day measles
or German measles) is a mild disease with few complications, but a rubella infection
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Fig. 8 Following Jenner’s discovery in 1796, smallpox vaccination spread throughout the world
within decades. But the replacement number R remained above 1, so that smallpox per-
sisted in most areas until the mid-20th century. In 1966 smallpox was still endemic in South
America, Africa, India, and Indonesia. After the WHO smallpox eradication program was
initiated in 1967, the worldwide incidence of the disease decreased steadily. Posters like
these motivated people in Africa to get smallpox vaccinations. The last naturally occurring
smallpox case was in Somalia in 1977. Reprinted from Centers for Disease Control HHS
Publication No. (CDC) 87-8400.

during the first trimester of pregnancy can result in miscarriage, stillbirth, or infants
with a pattern of birth defects called congenital rubella syndrome (CRS) [23]. Because
the goal of a rubella vaccination program is to prevent rubella infections in pregnant
women, special vaccination strategies such as vaccination of 12 to 14-year-old girls are
sometimes used [98, 101]. The estimates above based on R0 values suggest that herd
immunity would be achieved if the immune fraction in the population were greater
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Fig. 9 After a measles vaccine was approved in 1963, vaccination programs in the United States were
very effective in reducing reported measles cases. This 1976 photograph shows schoolchildren
in Highland Park, Illinois, lining up for measles vaccinations. Because of a major outbreak
in 1989–1991, the United States changed to a two-dose measles vaccination program. The
replacement number R now appears to be below 1 throughout the United States, so that
measles is no longer considered to be an indigenous disease there. Photo by Thomas S.
England, Photo Researchers, Inc.

than 0.94 for measles and 0.86 for rubella. But the vaccine efficacy for these diseases
is about 0.95, which means that 5% of those who are vaccinated do not become
immune. Thus to reach the levels necessary to achieve herd immunity, the vaccinated
fractions would have to be at least 0.99 for measles and 0.91 for rubella. These
fractions suggest that achieving herd immunity would be much harder for measles
than for rubella, because the percentages not vaccinated would have to be below
1% for measles and below 9% for rubella. Because vaccinating all but 1% against
measles would be difficult to achieve, a two-dose program for measles is an attractive
alternative in some countries [50, 98, 99].

Consider the history of measles in the United States. In the prevaccine era, every
child had measles, so the incidences were approximately equal to the sizes of the
birth cohorts. After the measles vaccine was licensed in 1963 in the United States,
the reported measles incidence dropped in a few years to around 50,000 cases per
year. See Figure 9. In 1978 the United States adopted a goal of eliminating measles,
and vaccination coverage increased, so that there were fewer than 5,000 reported
cases per year between 1981 and 1988. Pediatric epidemiologists at meetings at the
Centers for Disease Control in Atlanta in November 1985 and February 1988 decided
to continue the one-dose program for measles vaccinations instead of changing to a
more expensive two-dose program. But there were about 16,000, 28,000, and 17,000
reported measles cases in the United States in 1989, 1990, and 1991, respectively;
there were also measles outbreaks in Mexico and Canada during these years [117].
Because of this major measles epidemic, epidemiologists decided in 1989 that the one-
dose vaccination program for measles, which had been used for 26 years, should be
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replaced with a two-dose program with the first measles vaccination at age 12 to 15
months and the second vaccination at 4 to 6 years, just before children start school
[50]. Reported measles cases declined after 1991 until there were only 137, 100, and 86
reported cases in 1997, 1998, and 1999, respectively. Each year some of the reported
cases are imported cases and these imported cases can trigger small outbreaks. The
proportion of cases not associated with importation has declined from 85% in 1995,
72% in 1996, 41% in 1997, to 29% in 1998. Analysis of the epidemiologic data for
1998 suggests that measles is no longer an indigenous disease in the United States
[47]. Measles vaccination coverage in 19 to 35-month-old children was only 92% in
1998, but over 99% of children had at least one dose of measles-containing vaccine
by age 6 years. Because measles is so easily transmitted and the worldwide measles
vaccination coverage was only 72% in 1998 [48, 168], this author does not believe
that it is feasible to eradicate measles worldwide using the currently available measles
vaccines.

In the prevaccine era, rubella epidemics and subsequent CRS cases occurred about
every 4 to 7 years in the United States. During a major rubella epidemic in 1964, it
is estimated that there were over 20,000 CRS cases in the United States with a total
lifetime cost of over $2 billion [98, 101]. Since the rubella vaccine was licensed in 1969,
the incidences of rubella and CRS in the United States have decreased substantially.
Since many rubella cases are subclinical and unreported, we consider only the inci-
dence of CRS. The yearly incidences of CRS in the United States were between 22
and 67 in the 1970s, between 0 and 50 in the 1980s, 11 in 1990, 47 in 1991, 11 in 1992,
and then between 4 and 8 from 1993 to 1999 [43]. Although there have been some
increases in CRS cases associated with occasional rubella outbreaks, CRS has been at
a relatively low level in the United States in recent years. In recent rubella outbreaks
in the United States, most cases occurred among unvaccinated persons aged at least
20 years and among persons who were foreign born, primarily Hispanics (63% of re-
ported cases in 1997) [46]. Although it does not solve the problem of unvaccinated
immigrants, the rubella vaccination program for children has reduced the incidence
of rubella and CRS in the United States to very low levels. Worldwide eradication
of rubella is not feasible, because over two-thirds of the population in the world is
not yet routinely vaccinated for rubella. Indeed, the policies in China and India of
not vaccinating against rubella may be the best policies for those countries, because
most women of childbearing age in these countries already have disease-acquired im-
munity.

The varicella zoster virus (VZV) is the agent for varicella, commonly known as
chickenpox. Chickenpox is usually a mild disease in children that lasts about four to
seven days with a body rash of several hundred lesions. After a case of chickenpox, the
VZV becomes latent in the dorsal root ganglia, but VZV can reactivate in the form of
zoster, commonly known as shingles. Shingles is a painful vesicular rash along one or
more sensory root nerves that usually occurs when the immune system is less effective
due to illness or aging [23]. People with shingles are less infectious than those with
chickenpox, but they can transmit the VZV. Indeed, it was found that some isolated
Amazon tribes had no antibodies to diseases such as measles, mumps, and rubella, but
they did have antibodies to VZV [25]. Thus it appears that the persistence of VZV in
these small isolated populations has occurred because VZV can be dormant in people
for many years and then be spread in the population by a case of shingles. Because of
the transmission by those with both chickenpox and shingles, the expression for R0 is
more complicated than for the MSEIR model [180]. A varicella vaccine was licensed
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in the United States in 1995 and is now recommended for all young children. But the
vaccine-immunity wanes, so that vaccinated children can get chickenpox as adults.
Two possible dangers of this new varicella vaccination program are more chickenpox
cases in adults, when the complication rates are higher, and an increase in cases of
shingles. An age-structured epidemiologic-demographic model has been used with
parameters estimated from epidemiological data to evaluate the effects of varicella
vaccination programs [179]. Although the age distribution of varicella cases does shift
in the computer simulations, this shift does not seem to be a problem since many of
the adult cases occur after vaccine-induced immunity wanes, so they are mild varicella
cases with fewer complications. In the computer simulations, shingles incidence in-
creases in the first 30 years after initiation of a varicella vaccination program, because
people are more likely to get shingles as adults when their immunity is not boosted
by frequent exposures, but after 30 years the shingles incidence starts to decrease as
the population includes more previously vaccinated people, who are less likely to get
shingles. Thus the simulations validate the second danger that the new vaccination
program could lead to more cases of shingles in the first several decades [179].

Type A influenza has three subtypes in humans (H1N1, H2N2, and H3N2) that
are associated with widespread epidemics and pandemics (i.e., worldwide epidemics).
Types B and C influenza tend to be associated with local or regional epidemics.
Influenza subtypes are classified by antigenic properties of the H and N surface gly-
coproteins, whose mutations lead to new variants every few years [23]. For example,
the A/Sydney/5/97(H3N2) variant entered the United States in 1998–1999 and was
the dominant variant in the 1999–2000 flu season [51]. An infection or vaccination for
one variant may give only partial immunity to another variant of the same subtype,
so that flu vaccines must be reformulated almost every year. If an influenza virus sub-
type did not change, then it should be easy to eradicate, because the contact number
for flu has been estimated above to be only about 1.4. But the frequent drift of the
A subtypes to new variants implies that flu vaccination programs cannot eradicate
them because the target is constantly moving. Completely new A subtypes (antigenic
shift) emerge occasionally from unpredictable recombinations of human with swine or
avian influenza antigens. These new subtypes can lead to major pandemics. A new
H1N1 subtype led to the 1918–1919 pandemic that killed over half a million people in
the United States and over 20 million people worldwide. Pandemics also occurred in
1957 from the Asian Flu (an H2N2 subtype) and in 1968 from the Hong Kong flu (an
H3N2 subtype) [134]. When 18 confirmed human cases with 6 deaths from an H5N1
chicken flu occurred in Hong Kong in 1997, there was great concern that this might
lead to another antigenic shift and pandemic. At the end of 1997, veterinary author-
ities slaughtered all (1.6 million) chickens present in Hong Kong, and importation of
chickens from neighboring areas was stopped. Fortunately, the H5N1 virus did not
evolve into a form that is readily transmitted from person to person [185, 198].

3. The MSEIR Model with Exponentially Changing Size. The two classic in-
fectious disease models in section 2 assume that the total population size remains
constant. However, constant population size models are not suitable when the nat-
ural births and deaths are not balanced or when the disease-related deaths are sig-
nificant. Infectious diseases have often had a big impact on population sizes and
historical events [158, 168, 202]. Infectious diseases that have played a major role in
the debilitation and regulation of human populations include plague, measles, scar-
let fever, diphtheria, tuberculosis, smallpox, malaria, schistosomiasis, leishmaniasis,
trypanosomiasis, filariasis, onchocerciasis, hookworm, the gastroenteritises, and the
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pneumonias. For example, the black plague caused 25% population decreases and led
to social, economic, and religious changes in Europe in the 14th century. Diseases such
as smallpox, diphtheria, and measles brought by Europeans devastated native popula-
tions in the Americas. AIDS is now changing the population structure in sub-Saharan
Africa. Infectious diseases such as measles combined with low nutritional status still
cause significant early mortality in developing countries. Indeed, the longer life spans
in developed countries seem to be primarily a result of the decline of mortality due
to communicable diseases [44].

Models with a variable total population size are often more difficult to analyze
mathematically because the population size is an additional variable which is governed
by a differential equation [7, 8, 29, 30, 35, 37, 83, 88, 153, 159, 171, 201]. Some models
of HIV/AIDS with varying population size have been considered [13, 39, 118, 132, 146].
Before looking at MSEIR models with age structures, we first consider an MSEIR
model in a population with an exponentially changing size.

3.1. Formulation of the Differential Equations for the MSEIR Model. The
MSEIR model shown in Figure 10 is suitable for a directly transmitted disease such as
measles, rubella, or mumps, for which an infection confers permanent immunity. Let
the birth rate constant be b and the death rate constant be d, so the population size
N(t) satisfies N ′ = (b− d)N . Thus the population is growing, constant, or decaying
if the net change rate q = b − d is positive, zero, or negative, respectively. Since the
population size can have exponential growth or decay, it is appropriate to separate
the dynamics of the epidemiological process from the dynamics of the population size.
The numbers of people in the epidemiological classes are denoted byM(t), S(t), E(t),
I(t), and R(t), where t is time, and the fractions of the population in these classes are
m(t), s(t), e(t), i(t), and r(t). We are interested in finding conditions that determine
whether the disease dies out (i.e., the fraction i goes to zero) or remains endemic (i.e.,
the fraction i remains positive). Note that the number of infectives I could go to
infinity even though the fraction i goes to zero if the population size N grows faster
than I. Similarly, I could go to zero even when i remains bounded away from zero, if
the population size is decaying to zero [83, 159]. To avoid any ambiguities, we focus
on the behavior of the fractions in the epidemiological classes.

The birth rate bS into the susceptible class of size S corresponds to newborns
whose mothers are susceptible, and the other newborns b(N − S) enter the passively
immune class of size M , since their mothers were infected or had some type of immu-
nity. Although all women would be out of the passively immune class long before their
childbearing years, theoretically a passively immune mother would transfer some IgG
antibodies to her newborn child, so the infant would have passive immunity. Deaths
occur in the epidemiological classes at the rates dM , dS, dE, dI, and dR, respectively.

In this MSEIR epidemiological model, the transfer out of the passively immune
class is δM , the transfer out of the exposed class is εE, and the recovery rate from
the infectious class is γI. The linear transfer terms in the differential equations
correspond to waiting times with negative exponential distributions, so that when
births and deaths are ignored, the mean passively immune period is 1/δ, the mean
latent period is 1/ε, and the mean infectious period is 1/γ [109]. These periods are
1/δ = 6 months, 1/ε = 14 days, and 1/γ = 7 days for chickenpox [179]. For sexually
transmitted diseases, it is useful to define both a sexual contact rate and the fraction
of contacts that result in transmission, but for directly transmitted diseases spread
primarily by aerosol droplets, transmission may occur by entering a room, hallway,
building, etc., that is currently or has been occupied by an infective. Since there
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Fig. 10 Transfer diagram for the MSEIR model with the passively immune class M, the susceptible
class S, the exposed class E, the infective class I, and the recovered class R.

is no clear definition of a contact or a transmission fraction, they are replaced by a
definition that includes both. An adequate contact is a contact that is sufficient for
transmission of infection from an infective to a susceptible. Let the contact rate β be
the average number of adequate contacts per person per unit time, so that the force
of infection λ = βi is the average number of contacts with infectives per unit time.
Then the incidence (the number of new cases per unit time) is λS = βiS = βSI/N ,
since it is the number of contacts with infectives per unit time of the S susceptibles.
As described in section 2.1, this standard form βSI/N for the incidence is consistent
with numerous studies that show that the contact rate β is nearly independent of the
population size.

The system of differential equations for the numbers in the epidemiological classes
and the population size is

dM/dt = b(N − S)− (δ + d)M,

dS/dt = bS + δM − βSI/N − dS,
dE/dt = βSI/N − (ε+ d)E,
dI/dt = εE − (γ + d)I,
dR/dt = γI − dR,
dN/dt = (b− d)N.

It is convenient to convert to differential equations for the fractions in the epidemio-
logical classes with simplifications by using the differential equation for N , eliminating
the differential equation for s by using s = 1 −m − e − i − r, using b = d + q, and
using the force of infection λ for βi. Then the ordinary differential equations for the
MSEIR model are

dm/dt = (d+ q)(e+ i+ r)− δm,
de/dt = λ(1−m− e− i− r)− (ε+ d+ q)e

with λ = βi,

di/dt = εe− (γ + d+ q)i,
dr/dt = γi− (d+ q)r.

(3.1)

A suitable domain is

D = {(m, e, i, r) : m ≥ 0, e ≥ 0, i ≥ 0, r ≥ 0,m+ e+ i+ r ≤ 1}.
The domain D is positively invariant, because no solution paths leave through any
boundary. The right sides of (3.1) are smooth, so that initial value problems have
unique solutions that exist on maximal intervals [92]. Since paths cannot leave D,
solutions exist for all positive time. Thus the model is mathematically and epidemi-
ologically well posed.
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3.2. Equilibria and Thresholds. The basic reproduction number R0 for this
MSEIR model is the same as the contact number σ given by

R0 = σ =
βε

(γ + d+ q)(ε+ d+ q)
.(3.2)

This R0 is the product of the contact rate β per unit time, the average infectious
period adjusted for population growth of 1/(γ+ d+ q), and the fraction ε/(ε+ d+ q)
of exposed people surviving the latent class E. Thus R0 has the correct interpretation
that it is the average number of secondary infections due to an infective during the
infectious period, when everyone in the population is susceptible. The equations (3.1)
always have a disease-free equilibrium given by m = e = i = r = 0, so that s = 1. If
R0 > 1, there is also a unique endemic equilibrium in D given by

me =
d+ q

δ + d+ q

(
1− 1

R0

)
,

ee =
δ(d+ q)

(δ + d+ q)(ε+ d+ q)

(
1− 1

R0

)
,

ie =
εδ(d+ q)

(ε+ d+ q)(δ + d+ q)(γ + d+ q)

(
1− 1

R0

)
,

re =
εδγ

(ε+ d+ q)(δ + d+ q)(γ + d+ q)

(
1− 1

R0

)
,

(3.3)

where se = 1/R0 = 1/σ. Note that the replacement number σse is 1 at the endemic
equilibrium. At the endemic equilibrium the force of infection λ = βie satisfies the
equation

λ = δ(d+ q)(R0 − 1)/(δ + d+ q),(3.4)

so that there is a positive force of infection λ when R0 > 1.
By linearization, the disease-free equilibrium is locally asymptotically stable if

R0 < 1 and is an unstable hyperbolic equilibrium with a stable manifold outside D

and an unstable manifold tangent to a vector into D when R0 > 1. The disease-free
equilibrium can be shown to be globally asymptotically stable in D if R0 ≤ 1 by using
the Liapunov function V = εe + (ε + d + q)i, as follows. The Liapunov derivative
is V̇ = [βεs − (γ + d + q)(ε + d + q)]i ≤ 0, since βε ≤ (γ + d + q)(ε + d + q). The
set where V̇ = 0 is the face of D with i = 0, but di/dt = εe on this face, so that I
moves off the face unless e = 0. When e = i = 0, dr/dt = −(d + q)r, so that r → 0.
When e = i = r = 0, then dm/dt = −δm, so m → 0. Because the origin is the only
positively invariant subset of the set with V̇ = 0, all paths in D approach the origin
by the Liapunov–Lasalle theorem [92, p. 296]. Thus if R0 ≤ 1, then the disease-free
equilibrium is globally asymptotically stable in D.

The characteristic equation corresponding to the Jacobian at the endemic equi-
librium is a fourth-degree polynomial. Using a symbolic algebra program, it can be
shown that the Routh–Hurwitz criteria are satisfied if R0 > 1, so that the endemic
equilibrium (3.3) is locally asymptotically stable when it is in D. Thus if R0 > 1,
then the disease-free equilibrium is unstable and the endemic equilibrium is locally
asymptotically stable. The system (3.1) can be defined to be uniformly persistent if
lim inft→∞ i(t) ≥ c for some c > 0 for all initial points such that e(0) + i(0) > 0.
The properties of the disease-free equilibrium and Theorem 4.5 in [191] imply that
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the system (3.1) is uniformly persistent if R0 > 1. Based on results for the SIR and
SEIR models, we expect (but have not proved rigorously) that all paths in D with
some initial latents or infectives go to the endemic equilibrium if R0 > 1. Then we
have the usual behavior for an endemic model, in the sense that the disease dies out
below the threshold, and the disease goes to a unique endemic equilibrium above the
threshold.

Other similar models also have the endemic threshold property above. The
MSEIRS model is similar to the MSEIR model, but the immunity after an infec-
tion is temporary. This MSEIRS model has a different endemic equilibrium, but it
has the same basic reproduction number R0 given by (3.2). If δ →∞, then heuristi-
cally the M class disappears (think of people moving through the M class with infinite
speed), so that the MSEIR and MSEIRS models become SEIR and SEIRS models
[147] with the same basic reproduction number R0 given by (3.2). If ε→∞, then the
E class disappears, leading to MSIR and MSIRS models with R0 = β/(γ + d+ q). If
an SEIRS model has an αR transfer term from the removed class R to the susceptible
class S and α → ∞, then the R class disappears, leading to an SEIS model with R0
given by (3.2). If ε → ∞, then the E class disappears and the SEIS model becomes
an SIS model with R0 = β/(γ + d + q). If δ → ∞ and ε → ∞, then both the M
and E classes disappear in the MSEIR model leading to an SIR or SIRS model with
R0 = β/(γ+ d+ q). The global stabilities of the endemic equilibria have been proved
for the constant population size SEIR model [143], for the SEIRS model with short or
long period of immunity [145], and for the SEIR model with exponentially changing
population size under a mild restriction [144]. The global stabilities of the SIR, SIRS,
and SEIS models with constant population sizes are proved by standard phase plane
methods [96, 100]. The SIS model with constant population size reduces to a Bernoulli
differential equation, so solutions can be found explicitly [96, 100]. SIRS and SEIR
models with exponential population dynamics have also been studied [144, 159].

4. Two Demographic Models. Before formulating the age-structured epidemi-
ological models, we present the underlying demographic models, which describe the
changing size and age structure of a population over time. These demographic mod-
els are a standard partial differential equations model with continuous age and an
analogous ordinary differential equations model with age groups.

4.1. The Demographic Model with Continuous Age. The demographic model
consists of an initial-boundary value problem with a partial differential equation for
age-dependent population growth [114]. Let U(a, t) be the age distribution of the total
population, so that the number of individuals at time t in the age interval [a1, a2] is the
integral of U(a, t) from a1 to a2. The partial differential equation for the population
growth is

∂U

∂a
+
∂U

∂t
= −d(a)U,(4.1)

where d(a) is the age-specific death rate. Note that the partial derivative combination
occurs because the derivative of U(a(t), t) with respect to t is ∂U

∂a
da
dt +

∂U
∂t , and

da
dt = 1.

Let f(a) be the fertility per person of age a, so that the births at time t are given by

B(t) = U(0, t) =
∫ ∞

0
f(a)U(a, t)da.(4.2)

The initial age distribution is given by U(a, 0) = U0(a) with U0(0) = B(0). This model
was used by Lotka [150] in 1922 for population modeling, by McKendrick [157] in 1926
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in conjunction with epidemic models, and by von Foerster [195] for cell proliferation, so
it is sometimes called the Lotka–McKendrick model or the McKendrick–von Foerster
model.

We briefly sketch the proof ideas for analyzing the asymptotic behavior of U(a, t)
when d(a) and f(a) are reasonably smooth [114, 123]. Solving along characteristics
with slope 1, we find U(a, t) = B(t − a)e−

∫ a
0 d(v)dv for t ≥ a and U(a, t) = u0(a −

t)e−
∫ a
a−t d(v)dv for t < a. If the integral in (4.2) is subdivided at a = t, then substitution

of the expressions for U(a, t) on the intervals yields

B(t) = U(0, t) =
∫ t

0
f(a)B(t− a)e−

∫ a
0 d(v)dvda+

∫ ∞
t

f(a)U0(a)e−
∫ a
a−t d(v)dvda.

This equation with a kernel K(a) in the first integral and g(t) for the second integral
becomes the renewal equation B(t) =

∫ t

0 K(a)B(t− a)da+ g(t). To analyze this con-
volution integral equation for B(t), take Laplace transforms and evaluate the contour
integral form of the inverse Laplace transform by a residue series. As t → ∞, the
residue for the extreme right pole dominates, which leads to U(a, t) → eqtA(a) as
t→∞. Thus the population age distribution approaches the steady state A(a), and
the population size approaches exponential growth or decay of the form eqt.

To learn more about the asymptotic age distribution A(a), assume a separa-
tion of variables form given by U(a, t) = T (t)A(a). Substituting this into the par-
tial differential equation (4.1) and solving the separated differential equations yields
U(a, t) = T (0)eqtA(0)e−D(a)−qa, where D(a) =

∫ a

0 d(v)dv. Substituting this expres-
sion for U(a, t) into the birth equation (4.2), we obtain the Lotka characteristic equa-
tion given by

1 =
∫ ∞

0
f(a) exp[−D(a)− qa]da.(4.3)

If the population reproduction number given by

Rpop =
∫ ∞

0
f(a) exp[−D(a)]da(4.4)

is less than, equal to, or greater than 1, then the q solution of (4.3) is negative, zero,
or positive, respectively, so that the population is decaying, constant, or growing,
respectively.

In order to simplify the demographic aspects of the epidemiological models so
there is no dependence on the initial population age distribution, we assume that the
age distribution in the epidemiology models has reached a steady state age distribution
with the total population size at time 0 normalized to 1, so that

U(a, t) = ρeqte−D(a)−qa with ρ = 1
/∫ ∞

0
e−D(a)−qada .(4.5)

In this case the birth equation (4.2) is equivalent to the characteristic equation (4.3).
If the age-specific death rate d(a) is constant, then (4.5) is U(a, t) = eqt(d +

q)e−(d+q)a. Intuitively, when q > 0, the age distribution is (d + q)e−(d+q)a, because
the increasing inflow of newborns gives a constantly increasing young population, so
that the age distribution decreases with age faster than de−da, corresponding to q = 0.
Note that the negative exponential age structure may be a reasonable approximation
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in some developing countries, but it is generally not realistic in developed countries,
where a better approximation would be that everyone lives until a fixed age L such
as 75 years and then dies. In this case, d(a) is zero until age L and infinite after age
L, so that D(a) is zero until age L and is infinite after age L. These two approximate
survival functions given by the step function and the negative exponential were called
Type I and Type II mortality, respectively, by Anderson and May [12]. Of course,
the best approximation for any country is found by using death rate information for
that country to estimate d(a). This approach is used in the models with age groups
in sections 7 and 8.

The factor w(a) = e−D(a) gives the fraction of a birth cohort surviving until age a,
so it is called the survival function. The rate of death is −w′(a), so that the expected
age a of dying is E[a] =

∫∞
0 a[−w′(a)]da = ∫∞0 wda. When the death rate coefficient

d(a) is constant, then w(a) = e−da and the mean lifetime L is 1/d. For a step survival
function, the mean lifetime is the fixed lifetime L.

4.2. The Demographic Model with Age Groups. This demographic model with
age groups has been developed from the initial boundary value problem in the previous
section for use in age-structured epidemiologic models for pertussis [105]. It consists
of a system of n ordinary differential equations for the sizes of the n age groups defined
by the age intervals [ai−1, ai], where 0 = a0 < a1 < a2 < · · · < an−1 < an = ∞. A
maximum age is not assumed, so the last age interval [an−1,∞) corresponds to all
people over age an−1. For a ∈ [ai−1, ai], assume that the death rates and fertilities
are constant with d (a) = di and f(a) = fi. We also assume that the population
has reached an equilibrium age distribution with exponential growth in the form
U(a, t) = eqtA(a) given by (4.5), so that the number of individuals in the age bracket
[ai−1, ai] is given by

Ni(t) =
∫ ai

ai−1

U(a, t)da = eqt

∫ ai

ai−1

A(a)da = eqtPi,(4.6)

where Pi is the size of the ith age group at time 0.
Substituting U(a, t) = eqtA(a) into (4.1) yields the ordinary differential equation

dA/da = −[d(a) + q]A, which can be solved on the interval [ai−1, ai] to obtain

A(a) = A(ai−1) exp[−(di + q)(a− ai−1)].(4.7)

Integrate this A(a) over the interval [ai−1, ai] to get

Pi = A(ai−1){1− exp[−(di + q)(ai − ai−1)]}/(di + q).(4.8)

For i = 1, 2, . . . , n−1, it is convenient to define the constants ci by A(ai) = ciPi. Use
this definition of the constants ci with (4.7) and (4.8) to obtain

ci =
A(ai)
Pi

=
di + q

exp[(di + q)(ai − ai−1)]− 1
.(4.9)

Integration of (4.1) on the intervals [ai−1, ai] and (4.6) yields

dN1/dt =
n∑

j=1

fjNj − (c1 + d1)N1,

dNi/dt = ci−1Ni−1 − (ci + di)Ni, 2 ≤ i ≤ n− 1,
dNn/dt = cn−1Nn−1 − dnNn.

(4.10)
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Thus the constants ci are the transfer rate constants between the successive age
groups.

Equations (4.7) and (4.8) imply A(ai) − A(ai−1) = −[di + q]Pi. Substituting
A(ai) = ciPi leads to Pi = ci−1Pi−1/(ci + di + q) for i ≥ 2. Iterative use of this
equation leads to the following equation for Pi in terms of P1:

Pi =
ci−1 · · · c1P1

(ci + di + q) · · · (c2 + d2 + q)
.(4.11)

The birth equation A(0) =
∑n

i=1 fiPi, A(0) = (c1 + d1 + q)P1, and (4.11) lead to the
age-group form of the Lotka characteristic equation (4.3) given by

1 =
f1 + f2

c1
(c2 + d2 + q)

+ · · ·+ fn
cn−1 · · · c1

(cn + dn + q) · · · (c2 + d2 + q)
(c1 + d1 + q)

.(4.12)

For this demographic model with n age groups, the population reproduction number
is given by

Rpop = f1
1

(c1 + d1)
+ f2

c1
(c2 + d2)(c1 + d1)

+ · · ·+ fn
cn−1 · · · c1

(cn + dn + q) · · · (c1 + d1)
.

(4.13)

If the fertility constants fi and the death rate constants di for the age groups
are known, then (4.12) with each ci given by (4.9) can be solved for the exponential
growth rate constant q. If the population reproduction number Rpop is less than,
equal to, or greater than 1, then the q solution of (4.12) is negative, zero, or positive,
respectively, so that the population is decaying, constant, or growing, respectively.
As in the continuous demographic model, it is assumed that the population starts at
a steady state age distribution with total size 1 at time 0, so that the group sizes Pi

remain fixed and add up to 1. See [105] for more details on the derivation of this
demographic model for age groups.

5. TheMSEIRModel withContinuousAge Structure. For many endemic mod-
els the basic reproduction number can be determined analytically by either of two
methods. One method is to find the threshold condition above which a positive (en-
demic) equilibrium exists for the model and to interpret this threshold condition as
R0 > 1. The second method is to do a local stability analysis of the disease-free equi-
librium and to interpret the threshold condition at which this equilibrium switches
from asymptotic stability to instability as R0 > 1. As shown in section 2.4, both
of these methods give the same R0 for the classic SIR endemic model, because the
two equilibria exchange stability with each other in the sense that as the contact rate
increases, the unstable, nontrivial equilibrium with a negative coordinate moves from
outside the feasible region through the disease-free equilibrium at R0 = 1 and into the
feasible region, where it becomes a positive, stable endemic equilibrium. Similar meth-
ods work to obtain the basic reproduction number for age-structured epidemiological
models; both are demonstrated for an SIR model with continuous age dependence
in [40]. Here we use the appearance of an endemic steady state age distribution to
identify expressions for the basic reproduction number R0, and then show that the
disease-free steady state is globally asymptotically stable if and only if R0 ≤ 1.
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Table 2 Summary of notation.

f(a), fi Fertilities for continuous age, age groups
d(a), di Death rate coefficients for continuous age, age groups
L Average lifetime
Rpop Population reproduction number
q Population growth rate constant
U(a, t) Distribution of the total population for continuous age
A(a) Steady state age distribution for continuous age
N1(t), . . . , Nn(t) Distribution of total population at time t for age groups
P1, . . . , Pn Steady state age distribution for age groups
ci Rate constant for transfer from ith age class
λ(a, t), λi Force of infections on susceptibles of age a, in age group i
b(a)b̃(ã) Contact rate between people of ages a and ã
bib̃j Contact rate between people in age groups i and j
R0 Basic reproduction number
A Average age of infection

This age-structured MSEIR model uses the transfer diagram of Figure 10 and
the notation in Tables 1 and 2. The age distributions of the numbers in the classes
are denoted by M(a, t), S(a, t), E(a, t), I(a, t), and R(a, t), where a is age and t
is time, so that, for example, the number of susceptible individuals at time t in
the age interval [a1, a2] is the integral of S(a, t) from a1 to a2. Because informa-
tion on age-related fertilities and death rates is available for most countries and
because mixing is generally heterogeneous, epidemiology models with age groups
are now used frequently when analyzing specific diseases. However, special cases
with homogeneous mixing and asymptotic age distributions that are a negative ex-
ponential or a step function are considered in sections 5.4 and 5.6. These special
cases of the continuous MSEIR model are often used as approximate models. For
example, the negative exponential age distribution is used for measles in Niger in
section 7.

5.1. Formulation of the MSEIR Model. The rate constants δ, ε, and γ for the
transfer rates out of the M, E, and I classes are the same as for the MSEIR model
without age structure in section 2. Here it is assumed that the contact rate be-
tween people of age a and age ã is separable in the form b(a)b̃(ã), so that the force
of infection λ is the integral over all ages of the contact rate times the infectious
fraction I(ã, t)/

∫∞
0 U(ã, t)dã at time t. The division by the total population size∫∞

0 U(a, t)da makes the contact rate λ(a, t) independent of the population size, so
the contact number is independent of the population size [57, 97, 102, 159]. One
example of separable mixing is proportionate mixing, in which the contacts of a
person of age a are distributed over those of other ages in proportion to the ac-
tivity levels of the other ages [103, 174]. If l(a) is the average number of people
contacted by a person of age a per unit time, u(a) is the steady state age distribu-
tion for the population, and D =

∫∞
0 l(a)u(a)da is the total number of contacts

per unit time of all people, then b(a) = l(a)/D1/2 and b(ã) = l(ã)/D1/2. An-
other example of separable mixing is age-independent mixing given by b(a) = 1 and
b̃(ã) = β.
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The system of partial integrodifferential equations for the age distributions is

∂M/∂a+ ∂M/∂t = −(δ + d(a))M,

∂S/∂a+ ∂S/∂t = δM − (λ(a, t) + d(a))S

with λ(a, t) =
∫ ∞

0
b(a)b̃(ã)I(ã, t)dã

/∫ ∞
0

U(ã, t)dã ,

∂E/∂a+ ∂E/∂t = λ(a, t)S − (ε+ d(a))E,
∂I/∂a+ ∂I/∂t = εE − (γ + d(a))I,
∂R/∂a+ ∂R/∂t = γI − d(a)R.

(5.1)

Note thatM+S+E+I+R = U(a, t). As in the MSEIR model without age structure,
infants born to mothers in the classes M, E, I, and R have passive immunity. Thus
the boundary conditions at age 0 are

M(0, t) =
∫ ∞

0
f(a)[M + E + I +R]da,

S(0, t) =
∫ ∞

0
f(a)Sda,

while the other distributions at age 0 are zero. Initial age distributions at time 0
complete the initial boundary value problem for this MSEIR model.

For each age a the fractional age distributions of the population in the epidemi-
ological classes at time t are m(a, t) = M(a, t)/U(a, t), s(a, t) = S(a, t)/U(a, t), etc.,
where U(a, t) is given by (4.5) in the previous section. Because the numerators and
denominator contain the asymptotic growth factor eqt, these fractional distributions
do not grow exponentially. The partial differential equations for m, s, e, i, and r
found from (5.1) are

∂m/∂a+ ∂m/∂t = −δm,
∂s/∂a+ ∂s/∂t = δm− λ(a, t)s

with λ(a, t) = b(a)
∫ ∞

0
b̃(ã)i(ã, t)ρe−D(ã)−qãdã,

∂e/∂a+ ∂e/∂t = λ(a, t)s− εe,
∂i/∂a+ ∂i/∂t = εe− γi,
∂r/∂a+ ∂r/∂t = γi,

(5.2)

and the boundary conditions at age 0 are zero except for

m(0, t) =
∫ ∞

0
f(a)[1− s(a, t)]e−D(a)−qada,

s(0, t) =
∫ ∞

0
f(a)s(a, t)e−D(a)−qada,

(5.3)

where m(0, t) + s(0, t) = 1 by (4.3).
For this endemic MSEIR model, the steady state age distributions m(a), s(a),

e(a), i(a), and r(a) add up to 1 and satisfy the ordinary differential equations cor-
responding to the equations (5.2) with the time derivatives set equal to zero. The
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steady state solutions m(a), s(a), e(a), and i(a) are

m(a) = (1− s0)e−δa,

s(a) = e−Λ(a)
[
s0 + δ(1− s0)

∫ a

0
e−δx+Λ(x)dx

]
,

e(a) = e−εa

∫ a

0
λ(y)eεy−Λ(y)

[
s0 + δ(1− s0)

∫ y

0
e−δx+Λ(x)dx

]
dy,

i(a) = e−γa

∫ a

0
εe(γ−ε)z

∫ z

0
λ(y)eεy−Λ(y)

[
s0 + δ(1− s0)

∫ y

0
e−δx+Λ(x)dx

]
dydz,

(5.4)

where Λ(a) =
∫ a

0 λ(α)dα with λ = kb(a) for some constant k. At the disease-free
steady state, k is zero, s = 1, and m = e = i = r = 0. The endemic steady state
corresponds to k being a positive constant.

5.2. The Basic Reproduction Number R0 and Stability. We now use the solu-
tions of the MSEIR model to examine the basic reproduction number R0. Substituting
the steady state solution i(a) in (5.4) into the expression for λ in (5.2) yields

λ(a) = b(a)
∫ ∞

0
b̃(ã)ρe−D(ã)−qã−γã

∫ ã

0
εe(γ−ε)z(5.5)

×
∫ z

0
λ(y)eεy−Λ(y)

[
s0 + δ(1− s0)

∫ y

0
e−δx+Λ(x)dx

]
dydzdã.

Using the definition of s0 and (5.4), we find that

s0 = s0Fλ + δ(1− s0)F∗,(5.6)

where Fλ =
∫∞

0 f(a)e−Λ(a)−D(a)−qada and

F∗ =
∫ ∞

0
f(a)e−Λ(a)−D(a)−qa

∫ a

0
e−δx+Λ(x)dxda.(5.7)

Substituting the solution s0 in (5.6) into (5.5) and canceling λ(a) = kb(a) yields

1 =
∫ ∞

0
b̃(ã)ρe−D(ã)−qã−γã

∫ ã

0
εe(γ−ε)z

∫ z

0
b(y)eεy

(5.8)

×
[
δF∗e−k

∫ y
0 b(α)dα + δ(1− Fλ)

∫ y

0
e−δx−k

∫ y
x

b(α)dαdx

]/
(δF∗ + 1− Fλ)dydzdã.

The right side of this equation can be shown to be a decreasing function of k, so
that (5.8) has a positive solution k corresponding to a positive force of infection
λ(a) = kb(a) if and only if R0 > 1, where the basic reproduction number R0 below is
found by setting k = 0 in the right side of (5.8):

R0 =
∫ ∞

0
b̃(ã)ρe−D(ã)−qã−γã

∫ ã

0
εe(γ−ε)z

∫ z

0
b(y)eεydydzdã.(5.9)

Note that R0 > 1 implies that (5.8) has a positive solution k, which gives a positive
force of infection λ(a) = kb(a) and Λ(a) = k

∫ a

0 b(α)dα defining the endemic steady
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state solution (5.4). This expression (5.9) for the basic reproduction number in the
MSEIR model seems to be new.

Determining the local stability of the disease-free steady state (at which λ =
kb(a) = 0 and s = 1) by linearization is possible following the method in [40], but
we can construct a Liapunov function to show the global stability of the disease-free
steady state when R0 ≤ 1. The feasible set for (5.2) consists of nonnegative fractions
that add to 1. Consider the Liapunov function

V =
∫ ∞

0
[α(a)e(a, t) + β(a)i(a, t)]da,

where the positive, bounded functions α(a) and β(a) are to be determined. The
formal Liapunov derivative is

V̇ =
∫ ∞

0
{α(a)[λs− εe− ∂e/∂a] + β(a)[εe− γi− ∂i/∂a]}da

=
∫ ∞

0
{λsα(a) + e[α′(a)− εα(a) + εβ(a)] + [β′(a)− γβ(a)]i}da.

Choose α(a) so that the coefficient of the e term is zero. Then

V̇ =
∫ ∞

0
sb(a)εeεa

∫ ∞
a

e−εzβ(z)dzda
∫ ∞

0
b̃(ã)iρe−D(ã)−qãdã+

∫ ∞
0

[β′ − γβ]ida.

Choose β(y) so that the last integral is the negative of the next to last integral. Then

V̇ =
[∫ ∞

0
sb(a)εeεa

∫ ∞
a

e(γ−ε)z
∫ ∞

z

b̃(x)ρe−D(x)−qx−γxdxdzda− 1
]

×
∫ ∞

0
b̃(ã)i(ã, t)ρe−D(ã)−qãdã.

Now s ≤ 1 and the triple integral in the first factor in V̇ above with s = 1 is equal to
R0 in (5.9) after changing the order of integration. Thus

V̇ ≤ (R0 − 1)
∫ ∞

0
b̃(ã)i(ã, t)ρe−D(ã)−qãdã ≤ 0 if R0 ≤ 1.

Hence solutions of (5.2) move downward through the level sets of V as long as they
do not stall on the set where V̇ = 0. The set with V̇ = 0 is the boundary of the
feasible region with i = 0, but di(a(t), t)/dt = εe on this boundary, so that i moves
off this boundary unless e = 0. If e = i = 0 so there are no exposed or infectious
people, then (5.1) implies that there would be no removed people or infants with
passive immunity after several generations, so everyone would be susceptible. Thus
the disease-free steady state is the only positively invariant subset of the set with
V̇ = 0. If there is a finite maximum age (so that all forward paths have compact
closure), then either Corollary 2.3 in [162] or Corollary 18.5 in [4] (Liapunov–Lasalle
theorems for semiflows) implies that all paths in the feasible region approach the
disease-free steady state.

If R0 > 1, then we have V̇ > 0 for points sufficiently close to the disease-free
steady state with s close to 1 and i > 0 for some age, so that the disease-free steady
state is unstable. This implies that the system (5.2) is uniformly persistent when
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R0 > 1, as for the ordinary differential equation models in sections 3.2 and 6.2,
but the assumption of a finite maximum age seems to be necessary to satisfy the
condition in Theorem 4.6 in [191] that there is a compact set that attracts all solutions.
Although the endemic steady state would usually be stable, this may not be true in
unusual cases. For example, the endemic steady state can be unstable in the age-
structured SIR model when b(a) is decreasing and b̃(ã) is constant [16] and when b̃(ã)
is concentrated at a certain age while b(a) is constant [189]. Some types of mixing
cannot be written in the separable form b(a)b̃(ã). For example, in preferred mixing,
certain age groups are more likely to mix with their own age group [103]. For more
general mixing, the endemic steady state might not be unique, but some conditions
that guarantee existence, uniqueness, and local stability have been given [53, 125].

Because the basic reproduction number for the MSEIR model does not depend
on δ or on whether recovered people have no, temporary, or permanent immunity, the
expression (5.9) for R0 also works for the MSEIRS, SEIR, SEIRS, and SEIS models,
but the equations (5.8) for k would be different. For example, in the SEIR model all
newborns are susceptible, so s0 = 1 and the equation for k is (5.8) with Fλ = 1. For
the SIR model with no passively immune or latent classes, an analysis similar to that
above for the MSEIR model leads to an equation for the force of infection constant k
given by

1 =
∫ ∞

0
b̃(ã)ρe−D(ã)−qã−γã

∫ ã

0
b(y)eγy−k

∫ y
0 b(α)dαdydã(5.10)

and a basic reproduction number given by

R0 =
∫ ∞

0
b̃(ã)ρe−D(ã)−qã−γã

∫ ã

0
b(y)eγydydã.(5.11)

This expression is similar to previous R0 expressions for SIR models with constant
population size [40, 68]. The expression (5.11) for R0 can also be used for SIRS and
SIS models, but the equations for the positive k when R0 > 1 would be different.
Proofs of stability and persistence for the models in this paragraph are similar to
those for the MSEIR model.

5.3. Expressions for theAverageAge of Infection A. We now find an expression
for the average age of infection for the MSEIR model at the endemic steady state
age distribution. Although the steady state age distribution of the population is
ρe−D(a)−qa, the age distribution for a specific birth cohort is e−D(a)/

∫∞
0 e−D(a)da.

Thus the rate at which individuals in a birth cohort leave the susceptible class due to
an infection is λ(a)s(a)e−D(a)/

∫∞
0 e−D(a)da, where s(a) is given in (5.4). Hence the

expected age A for leaving the susceptible class is

A = E[a] =

∫∞
0 aλ(a)e−D(a)[δF∗e−Λ(a) + δ(1− Fλ)

∫ a

0 e
−δx−Λ(a)+Λ(x)dx]da∫∞

0 λ(a)e−D(a)[δF∗e−Λ(a) + δ(1− Fλ)
∫ a

0 e
−δx−Λ(a)+Λ(x)dx]da

.(5.12)

This expression assumes that the force of infection λ(a) = kb(a) at the endemic
steady state age distribution has already been determined, so that Λ(a), Fλ, and F∗
are known. For the SEIR and SIR models, s(a) = e−Λ(a), so that the expression for
the average age of infection is

A = E[a] =

∫∞
0 aλ(a)e−Λ(a)−D(a)da∫∞
0 λ(a)e−Λ(a)−D(a)da

.(5.13)
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5.4. Expressions forR0 andAwith Negative Exponential Survival. When the
death rate coefficient d(a) is independent of the age a, the age distribution (4.5) be-
comes U(a, t) = eqt(d + q)e−(d+q)a. Also, the waiting times in M, E, and I have
negative exponential distributions, so that, after adjusting for changes in the popu-
lation size, the average period of passive immunity, the average latent period, and
the average infectious period are 1/(δ + d + q), 1/(ε + d + q), and 1/(γ + d + q),
respectively. Here it is also assumed that the contact rate is independent of the ages
of the infectives and susceptibles, so we let b(a) = 1 and b̃(ã) = β. In this case (5.9)
defining the basic reproduction number becomes

R0 = βε/[(γ + d+ q)(ε+ d+ q)],(5.14)

which has the same interpretation as R0 in the MSEIR model without age structure.
With the assumptions above, λ is a constant and (5.5) for λ becomes

1 =
(d+ q)R0

λ+ d+ q

[
s0 +

δ(1− s0)
δ + d+ q

]
.(5.15)

If s̄ is the integral average of the susceptible steady state age distribution s(a)(d +
q)e−(d+q)a over all ages, then using the endemic steady state solution s(a) given in
(5.4), we find that R0s̄ = 1 is equivalent to (5.15). Thus the infective replacement
number R0s̄ is 1 at the endemic equilibrium for this model. However, this is generally
not true, so it is not valid to use R0 = 1/s̄ to derive an expression for the basic
reproduction number.

Using the definition of s0 and the solutions (5.4), we find that

s0 =
δ − λs0

δ − λ Fλ −
δ(1− s0)
δ − λ Fδ,(5.16)

where Fλ =
∫∞

0 f(a)e−(λ+d+q)ada and Fδ =
∫∞

0 f(a)e−(δ+d+q)ada. Note that F∗ in
(5.7) is equal to (Fλ − Fδ)/(δ − λ), so that (5.6) is equivalent to (5.16). Here (5.15)
and (5.16) are two simultaneous equations in the unknowns R0, s0, and λ. One can
solve (5.16) for s0 to obtain

s0 = δ(Fλ − Fδ)/[δ(1− Fδ)− λ(1− Fλ)].(5.17)

The right side of (5.17) is a decreasing function of λ with Fλ = 1 and s0 = 1 at λ = 0.
Substituting (5.17) into (5.15) yields the equation corresponding to (5.8) given by

1 =
R0(d+ q)δ

[
Fλ − Fδ +

(δ − λ)(1− Fλ)
δ + d+ q

]
(λ+ d+ q)[δ(1− Fδ)− λ(1− Fλ)]

,(5.18)

which relates R0 and λ. Because the right side of (5.18) is a decreasing function of
λ that goes from R0 at λ = 0 to zero as λ → ∞, (5.18) has a positive solution λ if
and only if R0 > 1. If d(a) = d and f(a) = b = d + q, then (5.18) reduces to (3.4)
for λ in the ordinary differential equation MSEIR model. When R0 ≤ 1, solutions of
(5.2) approach the disease-free steady state (5.4) with λ = 0, and for fixed R0 > 1,
we expect solutions to approach the endemic steady state (5.4) with the constant λ
determined by solving either (5.18) or the combination of (5.15) and (5.16).

We now find an expression for the average age of infection for this MSEIR model.
Here the steady state age distribution of the population is (d + q)e−(d+q)a, and the
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age distribution for a specific birth cohort is de−da. Thus the rate that individuals in
a birth cohort leave the susceptible class due to an infection is λs(a)de−da, where s(a)
is given in (5.4). Here the equation for the expected age A for leaving the susceptible
class is

A = E[a] =
λd
∫∞

0 a[c1e−(λ+d)a + c2e
−(δ+d)a]da

λd
∫∞

0 [c1e−(λ+d)a + c2e−(δ+d)a]da
=

δ − λs0

(λ+ d)2
− δ(1− s0)

(δ + d)2

δ − λs0

(λ+ d)
− δ(1− s0)

(δ + d)

.(5.19)

It is useful to consider limiting cases of the model and the corresponding limiting
equations for R0 and A. If δ → ∞, the M class disappears, so that the MSEIR
model becomes an SEIR model with s0 = 1, and the equations above reduce to
λ = (d+ q)(R0 − 1) and A = 1/(λ+ d), where R0 is still given by (5.14). These same
equations also hold for the SIR model, but R0 = β/(γ+d+ q) for this model. For the
SEIR and SIR models it is possible to solve explicitly for R0 in terms of the average
lifetime L = 1/d and the average age of infection A to obtain R0 = (q+1/A)/(q+1/L).
When the population has constant size with q = 0, the R0 expression reduces to
R0 = L/A, which is the usual formula for the SEIR and SIR models [105]. By not
including the death factor e−da when considering the rate of leaving the susceptible
class, one obtains the widely cited approximate formula R0 = 1 + L/A for the SEIR
and SIR models [61]. But the death factor really should be included, since we want
to calculate the average age for those who survive long enough to become infected.

As another limiting case, consider the MSEIR model for a very virulent disease
in which almost every mother has been infected. In the limiting situation every
newborn infant has passive immunity, so that m0 → 1 and s0 → 0. In this case
λ = (d + q)[R0δ/(δ + d + q) − 1] and A = 1/(δ + d) + 1/(λ + d). Note that the
formula for λ is for an endemic steady state for a virulent disease, so it does not imply
that R0δ/(δ+d+ q) > 1 is the threshold condition for existence of a positive endemic
steady state age distribution; compare with [12, p. 81]. The formula for A is plausible
since it is the sum of the average period p = 1/(δ + d) of passive immunity and the
average age of attack 1/(λ+d) from the SEIR model. Thus for a very virulent disease,
adding a passively immune class to a model increases the average age of attack by the
mean period of passive immunity. Solving for R0 in terms of the average period p of
passive immunity and the average lifetime L = 1/d, we obtain

R0 =
[q + 1/(A− p)](1 + pq)
(q + 1/L)(1− p/L) .(5.20)

For a constant population size with q = 0, we have R0 = L/[(A − p)(1 − p/L)]. For
q = 0 and p
 L, we obtain the approximation R0 ≈ (L+p)/(A−p). For this MSEIR
model with constant size, it seems that one could just subtract off the average period
p of passive immunity from the average age A of infection and the average lifetime L
to obtain the approximation R0 ≈ (L−p)/(A−p) used in [12, p. 79, p. 658], [99], but
our careful analysis here shows that this naive formula does not work. Of course, when
q = 0 and p = 0, the expression (5.20) reduces to the previous expression R0 = L/A
for the SEIR model with constant population size.

5.5. The MSEIR Model with Vaccination at Age Av. Now we modify the age-
structured MSEIR endemic model above with constant coefficients to include vacci-
nation at age Av. The results using this approximate model for measles in Niger are
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compared with the corresponding results for the MSEIR model with age groups in
section 7. Let g be the fraction of the population vaccinated successfully at age Av

(i.e., the fraction of the population which has permanent immunity after vaccination).
In epidemiological terminology, g is the product of the fraction vaccinated and the
vaccine efficacy. This vaccination at age Av causes a jump discontinuity in the sus-
ceptible age distribution given by s(Av + 0) = (1 − g)s(Av − 0), where s(Av − 0) is
the limit from the left and s(Av + 0) is the limit from the right.

With this jump condition, the ordinary differential equations corresponding to
(5.2) without time derivatives, but with constant d and λ, are solved first on the
interval [0, Av] and then on the interval [Av,∞). The details are omitted, but sub-
stituting the steady state solutions i(a) on these intervals into the expression for λ
yields

1 =
R0(d+ q)
λ+ d+ q

[
s0 +

δ(1− s0)
δ + d+ q

− g[c1e−(λ+d+q)Av + c2e
−(δ+d+q)Av ]

]
,(5.21)

where c1 = (δ − λs0)/(δ − λ) and c2 = −δ(1− s0)/(δ − λ). Note that (5.21) reduces
to (5.15) when g = 0. The analogue here of (5.16) is

s0 = c1Fλ + c2Fδ − g
[
c1 + c2e

(λ−δ)Av
]
FAv ,(5.22)

where FAv =
∫∞
Av
f(a)e−(λ+d+q)ada, and Fλ and Fδ are given in the previous subsec-

tion. Given g, Av, and the values for the parameters β, γ, ε, δ, d, and q, the equations
(5.21) and (5.22) are two simultaneous equations in the unknowns R0, s0, and λ. It is
possible to solve (5.22) for s0 and then substitute into (5.21), but we do not present
the resulting, rather complicated expression, which relates R0 and λ. For SEIR and
SIR models, s0 = 1, so that (5.21) reduces to

1 =
R0(d+ q)
λ+ d+ q

[
1− ge−(λ+d+q)Av

]
.(5.23)

For fixed parameters and R0 > 1, it is interesting to find how large the successfully
vaccinated fraction g must be in order to achieve herd immunity. Recall that a
population has herd immunity if a large enough fraction is immune, so that the
disease would not spread if an outside infective were introduced into the population.
To determine this threshold we consider the situation when the disease is at a very
low level with λ nearly zero, so that almost no one is infected. Thus the initial
passively immune fraction m0 is very small and the initial susceptible fraction s0
is nearly 1. In the limit as s0 → 1, (5.21) for the MSEIR model reduces to λ =
(d + q)(R0[1 − ge−(λ+d+q)Av ] − 1), which has a positive solution λ if and only if
ge−(d+q)Av < 1 − 1/R0. If the successfully vaccinated fraction g at age Av is large
enough so that

ge−(d+q)Av ≥ 1− 1/R0,(5.24)

then the population has herd immunity and the disease cannot spread in this popu-
lation. It may seem surprising that this condition is the same for the SEIR and the
MSEIR models, but for very low disease levels, almost no newborn children have pas-
sive immunity, so that the passively immune class M has no influence on the threshold
condition. A similar criterion for herd immunity with vaccination at two ages in a
constant population is given in [98].



THE MATHEMATICS OF INFECTIOUS DISEASES 633

If the condition (5.24) is satisfied, then we expect solutions of (5.2) to approach
the steady state age distribution with λ = 0, s(a) = 1, and all other distributions
equal to zero, so that the disease disappears. Intuitively, there are so many immunes
that the average infective cannot replace itself with at least one new infective during
the infectious period and, consequently, the disease dies out. If the inequality above
is not satisfied and there are some infecteds initially, then we expect the susceptible
fraction to approach the stable age distribution given by the jump solution with a
positive, constant λ that satisfies (5.21) and (5.22).

For an MSEIR model an expression for the average age of infection is

A =
1

λ+ d
−
gAv[c1e−(λ+d)Av + c2e

−(δ+d)Av ] + c2
δ−λ

(δ+d)2

c1[1− ge−(λ+d)Av ] + c2[λ+d
δ+d − ge−(δ+d)Av ]

.

The analogous expression for an SEIR or SIR model has c2 = 0. The negative signs in
the expression for A make it seem as if A is a decreasing function of the successfully
vaccinated fraction g, but this is not true since the force of infection λ is a decreasing
function of g.

5.6. Expressions for R0 and A for a Step Survival Function. For the demo-
graphic model in which everyone survives until age L and then dies, d(a) is zero until
age L and infinite after age L, so that D(a) is zero until age L and is infinite after
age L. It is assumed that the population is constant, so q = 0 and ρ = 1/L in (4.5).
Mixing is homogeneous, so b(a) = 1 and b̃(ã) = β. For the MSEIR and SEIR models
the basic reproduction number found from (5.9) is

R0 =
β

γ

[
1 +

γ

ε− γ
1− e−εL

εL
− ε

(ε− γ)
1− e−γL

γL

]
.(5.25)

An epidemiological interpretation is that the right side of (5.25) except for the contact
rate β is the average infectious period. For the SEIR model the equation (5.8) for the
constant λ at the endemic steady state age distribution becomes

1 = βε

[
1− e−λL

(γ − λ)(ε− λ)λL +
1− e−εL

(ε− λ)(ε− γ)εL −
1− e−γL

(γ − λ)(ε− γ)γL

]
.(5.26)

For the MSEIR model the integrals in (5.8) do not simplify very much, so this equation
for the constant λ is not presented. The basic reproduction numbers for the MSEIRS
and SEIRS models are also given by (5.25), but the equations for the constant λ at
the endemic steady state age distributions would be different for these models.

For the analogous SIR model, R0 found from (5.11) is given by

R0 =
β

γ

[
1− 1− e−γL

γL

]
,(5.27)

and (5.10) for the constant λ at the endemic steady state age distribution is

1 =
β

γ − λ

[
1− e−λL

λL
− 1− e−γL

γL

]
.(5.28)

These expressions can also be found heuristically by letting ε → ∞ in (5.25) and
(5.26), so that the exposed class E disappears.
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For the SEIR and SIR models equation (5.13) for the average age of attack be-
comes

A =
1
λ
− Le−λL

1− e−λL
.(5.29)

The analogous equation for the MSEIR model does not simplify as much. For the
SEIR and SIR models, the average susceptible fraction is

s̄ =
∫ L

0

e−λa

L
da =

1− e−λL

λL
.(5.30)

It is easy to see from (5.25) and (5.27) that R0s̄ �= 1 for the SEIR and SIR models,
so using R0 = 1/s̄ gives incorrect expressions for R0. Expressions similar to those in
this section can be found for a nonconstant population with ρ = q/(1 − e−qL), but
they are not presented here.

Typically the lifetime L is larger than the average age of attack A ≈ 1/λ, and
both are much larger than the average latent period 1/ε and the average infectious
period 1/γ. Thus for typical directly transmitted diseases, λL is larger than 5 and
γL, εL, γ/λ, and ε/λ are larger than 50. Hence R0 ≈ β/γ from (5.25) and (5.27),
1 = β(1 − e−λL)/γλL from (5.26) and (5.28), and A ≈ 1/λ from (5.29). Thus
R0 ≈ λL/(1 − e−λL) ≈ λL ≈ L/A, and R0s̄ ≈ 1. Hence many of the formulas for
Type I mortality in the Anderson and May book [12, Ch. 4, App. A] are either correct
or reasonable approximations.

6. The SEIR Model with Age Groups. Here we develop an expression for the
basic reproduction number R0 in an SEIR model with n separate age groups. This
SEIR model is similar to the MSEIR model shown in Figure 10, but there is no class M
for passively immune infants. In sections 7 and 8 we estimate the basic reproduction
number in models with age groups for measles in Niger and pertussis in the United
States.

6.1. Formulation of the SEIR Model with Age Groups. The SEIR model uses
the same notation as the MSEIR model described in section 5. The initial boundary
value problem for this model is given below:

∂S/∂a+ ∂S/∂t = −λ(a, t)S − d(a)S,

λ(a, t) =
∫ ∞

0
b(a)b̃(ã)I(ã, t)dã

/∫ ∞
0

U(ã, t)dã ,

∂E/∂a+ ∂E/∂t = λ(a, t)S − εI − d(a)E,
∂I/∂a+ ∂I/∂t = εI − γI − d(a)I,
∂R/∂a+ ∂R/∂t = γI − d(a)R.

(6.1)

The initial conditions are the values of the age distributions at time 0. The boundary
values at age 0 are all zero except for the births given by S(0, t) =

∫∞
0 f(a)U(a, t)da.

The population is partitioned into n age groups as in the demographic model in
section 4.2. The subscripts i denote the parts of the epidemiologic classes in the ith
age interval [ai−1, ai], so that Si(t) =

∫ ai
ai−1

S(a, t)da, etc. Assume that the transfer
rate coefficients on the age intervals are εi and γi. Also assume that the separable
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contact rate is constant for the interactions between age groups, so that b(a) = bi for
a ∈ [ai−1, ai] and b̃(ã) = b̃j for ã ∈ [aj−1, aj ]. By integrating the partial differential
equations (6.1) on the age intervals [ai−1, ai], using

∑n
j=1 fiPi = (c1 + d1 + q)P1,

S(ai, t) = ciSi, E(ai, t) = ciEi, etc., as in the demographic model, and using the
boundary conditions, we obtain an initial value problem for 4n ordinary differential
equations for the sizes of the epidemiological classes in the ith age group. The total
in the four epidemiologic classes for the ith age group is the size Ni(t) = eqtPi of
the ith group, which is growing exponentially, but the age distribution P1, P2, . . . , Pn

remains at a steady state and
∑n

i=1 Pi = 1.
Because the numbers are all growing exponentially by eqt, the fractions of the

population in the epidemiologic classes are of more interest than the numbers in these
epidemiologic classes. These fractions are given by si(t) = Si(t)/eqt, etc., so that the
fractions si, ei, ii, and ri add up to the age group size Pi. The derivatives of these
fractions satisfy s′i(t) = S′i(t)/e

qt−qsi, etc., so that the differential equations for these
fractions are

ds1/dt = (c1 + d1 + q)P1 − [λ1 + c1 + d1 + q]s1,

dsi/dt = ci−1si−1 − [λi + ci + di + q]si, i ≥ 2,

λi = bi

n∑
j=1

b̃jij ,

de1/dt = λ1s1 − [ε1 + c1 + d1 + q]e1,

dei/dt = λisi + ci−1ei−1 − [εi + ci + di + q]ei, i ≥ 2,
di1/dt = ε1e1 − [γ1 + c1 + d1 + q]i1,
dii/dt = εiei + ci−1ii−1 − [γi + ci + di + q]ii, i ≥ 2,

dr1/dt = γ1i1 − [c1 + d1 + q]r1,

dri/dt = γiii + ci−1ri−1 − [ci + di + q]ri, i ≥ 2.

(6.2)

6.2. The Basic Reproduction Number R0 and Stability. Here we follow the
same procedure used in the continuous model to find an expression for the basic re-
production number R0. Note that the steady state age distribution for the differential
equations (6.2) is the equilibrium with

s1 = ĉ1P1/λ̂1, si = ci−1si−1/λ̂i for i ≥ 2,

e1 = λ1s1/ε̂1, ei = (λisi + ci−1ei−1)/ε̂i for i ≥ 2,

i1 = ε1e1/γ̂1, ii = (εiei + ci−1ii−1)/γ̂i for i ≥ 2,

(6.3)

where we use λ̂i for λi + ci + di + q, ε̂i for εi + ci + di + q, γ̂i for γi + ci + di + q, and
ĉ1 for c1 + d1 + q. Substituting si−1 successively, we find that si = Ci−1/[λ̂i · · · λ̂1]
for i ≥ 2, where Ci−1 stands for ci−1 · · · c1ĉ1P1. Next we substitute the si−1 and ei−1

successively into the ei quotient in (6.3) to obtain e1 = λ1ĉ1P1/(ε̂1λ̂1) and

ei =
λiCi−1

ε̂iλ̂i · · · λ̂1
+

λi−1Ci−1

ε̂iε̂i−1λ̂i−1 · · · λ̂1
+

λi−2Ci−1

ε̂iε̂i−1ε̂i−2λ̂i−2 · · · λ̂1
+ · · ·+ λ1Ci−1

ε̂i · · · ε̂1λ̂1
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for i ≥ 2. When the expressions for ei and ii−1 are substituted into the expression
for ii in (6.3), we obtain i1 = ε1λ1ĉ1P1/(γ̂1ε̂1λ̂1), and for i ≥ 2,

ii
Ci−1

=
εi
γ̂i

(
λi

ε̂iλ̂i · · · λ̂1
+

λi−1

ε̂iε̂i−1λ̂i−1 · · · λ̂1
+ · · ·+ λ1

ε̂i · · · ε̂1λ̂1

)
(6.4)

+
εi−1

γ̂iγ̂i−1

(
λi−1

ε̂i−1λ̂i−1 · · · λ̂1
+

λi−2

ε̂i−1ε̂i−2λ̂i−2 · · · λ̂1
+ · · ·+ λ1

ε̂i−1 · · · ε̂1λ̂1

)

+ · · ·+ ε2

γ̂i · · · γ̂2

(
λ2

ε̂2λ̂2λ̂1
+

λ1

ε̂2ε̂1λ̂1

)
+

ε1

γ̂i · · · γ̂1

(
λ1

ε̂1λ̂1

)
.

From (6.2), we observe that λi = kbi, where k is a constant given by k =∑n
j=1 b̃jij . Now the expressions for ii and λi = kbi can be substituted into this

last summation to obtain

1 =
n∑

j=1

b̃jCj−1

[
εj
γ̂j

(
bj

ε̂j b̂j · · · b̂1
+

bj−1

ε̂j ε̂j−1b̂j−1 · · · b̂1
+ · · ·+ b1

ε̂j · · · ε̂1b̂1

)
(6.5)

+
εj−1

γ̂j γ̂j−1

(
bj−1

ε̂j−1b̂j−1 · · · b̂1
+

bj−2

ε̂j−1ε̂j−2b̂j−2 · · · b̂1
+ · · ·+ b1

ε̂j−1 · · · ε̂1b̂1

)

+ · · ·+ ε2

γ̂j · · · γ̂2

(
b2

ε̂2b̂2b̂1
+

b1

ε̂2ε̂1b̂1

)
+

ε1

γ̂j · · · γ̂1

(
b1

ε̂1b̂1

)]
,

where b̂j = bjk + ci + di + q and C0 = ĉ1P1.
The right side of (6.5) is a decreasing function of k, so that it has a solution for

a positive k if and only if R0 > 1, where R0 is the basic reproduction number defined
by setting k = 0 in (6.5).

R0 =
n∑

j=1

b̃jCj−1

[
εj
γ̂j

(
bj

ε̂j ĉj · · · ĉ1
+

bj−1

ε̂j ε̂j−1ĉj−1 · · · ĉ1
+ · · ·+ b1

ε̂j · · · ε̂1ĉ1

)
(6.6)

+
εj−1

γ̂j γ̂j−1

(
bj−1

ε̂j−1ĉj−1 · · · ĉ1
+

bj−2

ε̂j−1ε̂j−2ĉj−2 · · · ĉ1
+ · · ·+ b1

ε̂j−1 · · · ε̂1ĉ1

)

+ · · ·+ ε2

γ̂j · · · γ̂2

(
b2

ε̂2ĉ2ĉ1
+

b1
ε̂2ε̂1ĉ1

)
+

ε1

γ̂j · · · γ̂1

(
b1
ε̂1ĉ1

)]
,

where ĉi = ci + di + q. The expression (6.6) for R0 is the discrete age group analogue
of the triple integral expression (5.9) of R0 for the SEIR model with continuous age.
As in section 5.2, the expression (6.6) for R0 is also valid for the analogous MSEIR,
MSEIRS, SEIRS, and SEIS models with age groups, but the equations involving the
force of infection constant k would be different from (6.5) for these other models. The
equation for k for the MSEIR model could be found by tedious calculations following
the method used above.

If R0 > 1 for the SEIR model, then (6.5) can be solved for a positive k to get
the forces of infection λi = kbi, which give the unique endemic equilibrium in the
age groups from (6.3). Determining the stability of the disease-free equilibrium (at
which everyone is susceptible) by linearization is intractable except for small n, but
we can construct a Liapunov function to prove the global stability of the disease-
free equilibrium when R0 ≤ 1 by taking a linear combination of the exposed and



THE MATHEMATICS OF INFECTIOUS DISEASES 637

infectious fractions. Here the feasible region is the subset of the nonnegative orthant
in the 4n-dimensional space with the class fractions in the ith group summing to Pi.
Let V =

∑
(αiei +βiii), where the coefficients are to be determined. In the Liapunov

derivative V̇ , choose the αi coefficients so that the ei terms cancel out by letting
αn = βnεn/ε̂n and αj−1 = (βj−1εj−1 + cj−1αj)/ε̂j−1 for αn−1, . . . , α1. Then

V̇ =
∑

αibisi

∑
b̃jij − (β1γ̂1 − β2c1)i1 − · · · − (βn−1γ̂n−1 − βncn−1)in−1 − βnγ̂nin.

Now choose the βi so that the coefficients of the ij in the last n terms are −b̃j by
letting βn = b̃n/γ̂n and βj−1 = (b̃j−1 +βjcj−1)/γ̂j−1 for βn−1, . . . , β1. Using si ≤ Pi,
we obtain V̇ ≤ (R0−1)

∑
b̃jij ≤ 0 if R0 ≤ 1. The set where V̇ = 0 is the boundary of

the feasible region with ij = 0 for every j, but dij/dt = εjej on this boundary, so that
ij moves off this boundary unless ej = 0. When ej = ij = 0, drj/dt = −ĉjrj , so that
rj → 0. Thus the disease-free equilibrium is the only positively invariant subset of the
set with V̇ = 0, so that all paths in the feasible region approach the disease-free equilib-
rium by the Liapunov–Lasalle theorem [92, p. 296]. Thus if R0 ≤ 1, then the disease-
free equilibrium is asymptotically stable in the feasible region. If R0 > 1, then we have
V̇ > 0 for points sufficiently close to the disease-free equilibrium with si close to Pi and
ij > 0 for some j, so that the disease-free equilibrium is unstable. The system (6.2)
can be defined to be uniformly persistent if lim inft→∞ ij(t) ≥ c for some c > 0 for all
j and all initial points such that ej(0) + ij(0) > 0 for some j. The instability of the
disease-free equilibrium and Theorem 4.5 in [191] imply that the system (6.2) is uni-
formly persistent if R0 > 1. The endemic equilibrium (6.3) corresponding to positive
k would usually be asymptotically stable in specific applications, but as for the con-
tinuous age model, it could be unstable for unusual or asymmetric choices of bi and b̃i.

Using the same methods for an SIR model, the equation for the k in the forces of
infection λi = kbi is

1 =
n∑

j=1

b̃jCj−1

[
bj

γ̂j b̂j · · · b̂1
+

bj−1

γ̂j γ̂j−1b̂j−1 · · · b̂1
+ · · ·+ b2

γ̂j · · · γ̂2b̂2b̂1
+

b1

γ̂j · · · γ̂1b̂1

]
,

(6.7)

and the equation for the basic reproduction number is

R0 =
n∑

j=1

b̃jCj−1

[
bj

γ̂j ĉj · · · ĉ1
+

bj−1

γ̂j γ̂j−1ĉj−1 · · · ĉ1
+ · · ·+ b2

γ̂j · · · γ̂2ĉ2ĉ1
+

b1
γ̂j · · · γ̂1ĉ1

]
.

(6.8)

These equations can also be derived heuristically from those for the SEIR model by
letting εi → ∞ for every i. The R0 formula (6.8) also works for the SIRS and SIS
models with age groups, but the equations for k would be different. Proofs of stability
and persistence for the models in this paragraph are similar to those for the SEIR
model.

6.3. Expressions for the Average Age of Infection A. From section 5.3 we know
that the average age of infection A is given by

A = E[a] =

∫∞
0 aλ(a)s(a)e−D(a)da∫∞
0 λ(a)s(a)e−D(a)da

=

∑n
i=1

∫ ai
ai−1

aλ(a)s(a)e−D(a)da∑n
i=1

∫ ai
ai−1

λ(a)s(a)e−D(a)da
.
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In each integral above over the interval [ai−1, ai] of length ∆i, we have the endemic
equilibrium values s(a) = si, λ(a) = λi = kbi, and e−D(a) = πi−1e

−di(a−ai−1), where
πi−1 =

∏i−1
j=1e

−dj∆j . The integrals over the intervals can be evaluated to obtain the
following expression for the average age of infection at the endemic equilibrium for
the MSEIR, SEIR, and SIR models with age groups:

A =
∑n

i=1 bisiπi−1[1 + diai−1 − (1 + diai)e−di∆i ]/d2
i∑n

i=1 bisiπi−1[1− e−di∆i ]/di
.(6.9)

7. Application to Measles in Niger. A deterministic compartmental mathemati-
cal model has been developed for the study of the effects of heterogeneous mixing and
vaccination distribution on disease transmission in Africa [133]. This study focuses on
vaccination against measles in the city of Naimey, Niger, in sub-Saharan Africa. The
rapidly growing population consists of a majority group with low transmission rates
and a minority group of seasonal urban migrants with higher transmission rates. De-
mographic and measles epidemiological parameters are estimated from data on Niger.

Here we consider the MSEIR model with 16 age groups for a homogeneously
mixing, unvaccinated population in Niger [133]. The fertility rates and the death rates
in the 16 age groups are obtained from Niger census data. Using the Lotka equation
(4.12) for the demographic model with age groups, the value of q corresponds to a
growth of 3.36% per year. This is consistent with the estimate from 1988 census data
of 3.3% growth per year. From measles data, it is estimated that the average period
of passive immunity 1/δ is 6 months, the average latent period 1/ε is 14 days and
the average infectious period 1/γ is 7 days. From data on a 1995 measles outbreak in
Niamey, the force of infection λ is estimated to be the constant 0.762 per year [133]. A
computer calculation using the demographic and epidemiological parameter values in
the formula (6.6) for the basic reproduction number yields R0 = 18.83. The average
age of infection at the endemic equilibrium found from (6.9) is A = 2.4 years.

We now consider two methods for finding approximations to R, R0, and A. The
first method finds approximate values during the computer simulations of the MSEIR
measles model. Recall from section 1 that the replacement number R is the actual
number of new cases per infective during the infectious period. R can be approximated
by computing the sum over all age groups of the daily incidence times the average
infectious period times the fraction surviving the latent period, and then dividing by
the total number of infectives in all age groups, so that

R ∼=

∑16
j=1λjsjPj

(
1

γ + dj + q

)(
ε

ε+ dj + q

)
∑16

j=1 ijPj

.

At the prevaccination endemic equilibrium, this approximation is computed to be
R ∼= 0.99988, which is consistent with the concept that the average replacement
number is equal to 1 at the endemic equilibrium.

For this MSEIR model there is only one class of infectives, so that the basic
reproduction number R0 is equal to the contact number σ at the prevaccination
endemic equilibrium. This contact number σ is approximated by computing the
product of the sum of the daily incidences when all contacts are assumed to be with
susceptibles times the average infectious period, and dividing by the total number of
infectives. When all of the sj in the numerator in the expression for the replacement
number R are replaced by 1, then we obtain the expression for the contact number σ
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given by

R0 = σ ∼=

∑16
j=1λjPj

(
1

γ + dj + q

)(
ε

ε+ dj + q

)
∑16

j=1 ijPj

.

At the prevaccination endemic equilibrium, this yields R0 ∼= 18.85, which is very close
to the formula value of 18.83. The average age of infection can be approximated in
the measles computer simulations by the quotient of the sum of the average age in
each age group times the incidence in that age group and the sum of the incidences.
Hence

A ∼=
∑16

j=1[
aj−1+aj

2 ]λjsjPj∑16
j=1 λjsjPj

.

This approach gives A ∼= 2.2 years, which is slightly less than the formula value of 2.4
years.

The second approximation method is to use the formulas for the MSEIR model in
sections 4.4 and 4.5, which has uniform constant mortality and a negative exponential
age distribution. This model is plausible because the age distribution of the Niger
population is closely approximated by a negative exponential [133]. From census
data the death rate for the population is 22 per thousand per year. Using this d
value and the fertilities in the Lotka characteristic equation for discrete age groups
(4.12), we solve iteratively to obtain q = 0.02326 per year. This q value corresponds
to a population growth rate of 2.3% per year, which is less than the recent census
value of 3.3% growth per year, but this difference may occur because our model is
a simplification of the actual demographics. The value d + q = 0.045 per year is
consistent with the Niger population surviving fraction as a function of age, which is
very close to the exponential e−0.045a for age a in years.

Recall that the replacement number R is 1 at the endemic equilibrium for this
model. Using the values of d+ q, δ, and λ, (5.15) and (5.16) can be solved iteratively
to obtain a basic reproduction number of R0 = 17.4 and a susceptible fraction at age
0 of s0 = 1.6 × 10−6. Thus in this population nearly every mother is infected with
measles before childbearing age, so almost every newborn child has passive immunity.
In the limit as s0 → 0, (5.15) becomes

R0 = [1 + λ/(d+ q)][1 + (d+ q)/δ],

which also leads to R0 = 17.4. This value is a reasonable approximation to the value
of R0 = 18.83 estimated above in the MSEIR model with 16 age groups. The average
age of infection of A = 1.8 years can be found from either (5.12) or the approximation
A = 1/(δ+d)+1/(λ+d). This value is less than the value of A = 2.4 years estimated
above using the MSEIR model with 16 age groups; this difference may be due to the
high infant mortality that occurs in the model with age groups. Using the estimated
parameter values and a vaccination age of Av = 0.75 years (9 months) in the herd
immunity condition (5.24), we find that to achieve herd immunity the successfully
vaccinated fraction g at age 9 months must satisfy g ≥ 0.98. A measles vaccine
efficacy of 0.95 implies that the fraction vaccinated would have to be 1.03, which is
impossible to achieve with a program that has at most one vaccination per person.
This result is confirmed by the measles computer simulations for Niger, in which herd
immunity is not achieved when all children are vaccinated at age 9 months.
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8. Application to Pertussis in the United States. Previous estimates [12, p. 70]
of 10 to 18 for R0 for pertussis (whooping cough) are based on the formula R0 =
1 + L/A, which is derived in sections 5.4 or 5.6 for SEIR or SIR models of a disease
that confers permanent immunity in a uniform, homogeneously mixing population.
However, these estimates of R0 are not realistic, because pertussis gives only tempo-
rary immunity and spreads by heterogeneous mixing. In the age-structured epidemi-
ologic models developed specifically for pertussis [105, 106], there are 32 age groups.
Using fertilities and death rates from United States census information for 1990, the
value of q in (4.12) corresponds to 0.065% growth per year, which is nearly zero. Thus
the age distribution in the pertussis models is assumed to have become stable with a
constant population size. More details and graphs of the actual and theoretical age
distributions are given in [105].

Immunity to pertussis is temporary, because the agent Bordetella pertussis is
bacterial, in contrast to the viral agents for measles, mumps, and rubella. As the time
after the most recent pertussis infection increases, the relative immunity of a person
decreases. When people become infected again, the severity of their symptoms and,
consequently, their transmission effectiveness (i.e., their infectivity) depends on their
level of immunity at the time of infection. Thus people with lower immunity have
more symptoms and higher infectivity. Of course, infected people who were previously
fully susceptible are generally the most effective transmitters. In the age-structured
pertussis models [105, 106], the epidemiological classes include a susceptible class S,
an infective class I, a class R4 of those removed people with very high immunity,
and classes R3, R2, and R1 for those with decreasing immunity. In the two pertussis
models, there are three or four levels of infectivity and 32 age groups, so that not
all infectives are equally effective in creating new infectives [106]. Infectives in those
age groups that mix more with other age groups are more effective transmitters than
those in age groups that mix less. Thus it might seem necessary in considering R0 to
define a “typical infective” by using some type of average over all infectivities and age
groups, so that R0 would be the average number of secondary cases produced when a
“typical infective” is introduced into a completely susceptible population. In the next
paragraph, we explain why averaging over age groups is necessary, but averaging over
classes with different infectivities is not appropriate.

The occurrence of the first infection in a fully susceptible population seems to be
an unpredictable process, because it depends on random introductions of infectious
outsiders into the host population. The probability that a first infection occurs in the
host population depends on the infectivity of the outside invader, on how the invader
(with a mixing activity level based on its age group) mixes in the host population,
and the length of time that the invader is in the population. It is clear that outside
invaders from high infectivity classes and high mixing activity age groups are more
likely to create a first new infection in a host population, especially if they are in
the population for their entire infectious period. We believe that the definition of R0

should not depend on the circumstances under which an outsider creates a first case,
but on whether or not an infection with a first case can persist in a fully susceptible
population.

After the first infection in the host population, the infected people in the next
generations could be less effective transmitters, so that the infection would die out.
Thus the definition of R0 should be based on the circumstances under which a disease
with a first case would really invade a fully susceptible host population more exten-
sively. In order for an infection to survive the first 10 or 20 generations, so that it
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really does invade and persist in the new host population, the number of secondary
cases produced by infectious members of the host population must exceed 1. Thus R0
should be the number of secondary cases produced by averaging over all age groups of
the infectives that have not been previously infected. Because all of the cases in the
first generations of an invasion occur in fully susceptible people, only infectives who
were previously fully susceptible are relevant. Thus R0 is calculated for the SIR4
part of the pertussis models and it is not necessary to average over the classes with
various infectivity levels. Although the SIR model formula (6.8) for R0 works for
the pertussis models, the formula (6.7) for the constant k in the forces of infection
λi = kbi at the endemic equilibrium does not work, because the pertussis models have
temporary immunity and classes with different infectivities.

The fertilities fj , death rate constants dj , and transfer rate constants cj are
determined in the demographic model. The average infectious period is 21 days, so
that the rate constant γ is 1/21. The form of separable mixing used in the pertussis
model is proportionate mixing, which has activity levels lj in each of the 32 age
groups. The activity levels lj are found from the forces of infection λj and the infective
fractions ij , as explained in Appendix C of [105]. Then bj = b̃j = lj/D

1/2, where
D =

∑32
j=1 ljPj is the total number of people contacted per unit time. Using the SIR

model formula (6.8) for R0 in the pertussis computer simulation programs with the
baseline parameter sets, the values of the basic reproduction number R0 are 5.4 for the
pertussis model in [105, 106] and 3.7 for the second pertussis model in [106]. In the first
model each pertussis booster moves the individual back up one vaccinated or removed
class, but for those in the second model who have had a sequence of at least four
pertussis vaccinations or have had a previous pertussis infection, a pertussis booster
raises their immunity back up to the highest level. Thus the second model incorporates
a more optimistic view of the effectiveness of pertussis booster vaccinations. Note that
the R0 values here of 5.4 and 3.7 are much lower than the estimates of R0 between
10 and 18 cited above.

Neither of the two methods used to find approximations of R0 for measles in Niger
works for the pertussis models. The replacement number R at the pertussis endemic
equilibrium depends on the fractions infected in all of the three or four infective
classes. For example, in the first pertussis model

R ∼=
∑32

j=1 λj(sj + r1j + r2j)Pj/(γ + dj)∑32
j=1(ij + imj + iwj)Pj

,

where ij , imj , and iwj are the infective prevalences in the full-, mild-, and weak-disease
classes I, Im, and Iw. In the computer simulations for both pertussis models, R is 1
at the endemic equilibrium. If the expression for R is modified by changing the factor
in parentheses in the numerator to 1, which corresponds to assuming that all contacts
are with susceptibles, then we obtain the contact number

σ ∼=
∑32

j=1 λjPj/(γ + dj)∑32
j=1(ij + imj + iwj)Pj

,

which gives the average number of cases due to all infectives. At the endemic equilib-
rium in the pertussis simulations, σ = 3.0 using the first model and σ = 1.8 using the
second model. Thus the basic reproduction number R0 is not equal to the contact
number σ at the endemic equilibrium, because the forces of infection λj in the ap-
proximation of σ are due to the contacts of the infectives in the I, Im, and Iw classes
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instead of just the contacts of those in the I class. Thus it is not possible to use the
estimate of the contact number σ during the computer simulations as an approxima-
tion for R0 in the pertussis models. Since the age distribution of the population in
the United States is poorly approximated by a negative exponential and the force of
infection is not constant, the second method used for measles in Niger also does not
work to approximate R0 for pertussis in the United States.

The ultimate goal of a pertussis vaccination program is to vaccinate enough people
to get the replacement number less than 1, so that pertussis fades away and herd
immunity is achieved. Because the mixing for pertussis is not homogeneous and the
immunity is not permanent, we cannot use the simple criterion for herd immunity
that the fraction with vaccine-induced or infection-induced immunity is greater than
1 − 1/R0. Indeed, the low numerical R0 values of 5.4 and 3.7 for a disease like
pertussis with waning immunity do not indicate that herd immunity for pertussis is
easy to achieve. None of the vaccination strategies, including those that give booster
vaccinations every five years, has achieved herd immunity in the pertussis computer
simulations [105, 106].

9. Other Epidemiology Models with Thresholds. The results presented in this
paper provide a theoretical background for reviewing some previous results. In this
section we do not attempt to cite all papers on infectious disease models with age
structure, heterogeneity, and spatial structure, but primarily cite sources that con-
sider thresholds and the basic reproduction number R0. The cited papers reflect the
author’s interests, but additional references are given in these papers and in the books
and survey papers listed in the introduction. We refer the reader to other sources
for information on stochastic epidemiology models [18, 20, 56, 59, 66, 81, 128, 167],
discrete time models [2, 3], models involving macroparasites [12, 59, 90], genetic het-
erogeneity [12, 90], plant disease models [137, 194], and wildlife disease models [90].

Age-structured epidemiology models with either continuous age or age groups are
essential for the incorporation of age-related mixing behavior, fertility rates, and death
rates, for the estimation of R0 from age-specific data, and for the comparison of vac-
cination strategies with age-specific risk groups and age-dependent vaccination rates.
Indeed, some of the early epidemiology models incorporated continuous age structure
[24, 136]. Modern mathematical analysis of age-structured models appears to have
started with Hoppensteadt [114], who formulated epidemiology models with both con-
tinuous chronological age and infection class age (time since infection), showed that
they were well posed, and found threshold conditions for endemicity. Expressions for
R0 for models with both chronological and infection age were obtained by Dietz and
Schenzle [68]. In age-structured epidemiology models, proportionate and preferred
mixing parameters can be estimated from age-specific force of infection data [103].
Mathematical aspects such as existence and uniqueness of solutions, steady states,
stability, and thresholds have now been analyzed for many epidemiology models with
age structure; more references are cited in the following papers. These SIS and SIR
models with continuous age structure have included vertical transmission [33, 34, 72],
age-dependent disease transmission [14, 61, 91, 189], infection class age [186, 197],
cross immunity [40], intercohort transmission [35, 36, 53, 124, 125], short infectious
period [15, 16], and optimal vaccination patterns [86, 87, 94, 135, 165, 175].

Age-structured models have been used in the epidemiology modeling of many dis-
eases [12]. Dietz [61, 64], Hethcote [98], Anderson and May [10, 11], and Rouderfer,
Becker, and Hethcote [174] used continuous age-structured models for the evaluation
of measles and rubella vaccination strategies. Tudor [192] found threshold conditions
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for a measles model with age groups. Hethcote [99] considered optimal ages of vacci-
nation for measles on three continents. Halloran et al. [93], Ferguson, Anderson, and
Garnett [78], and Schuette and Hethcote [179] used age-structured models to study the
effects of varicella (chickenpox) vaccination programs. Grenfell and Anderson [89] and
Hethcote [105, 106] have used age-structured models in evaluating pertussis (whooping
cough) vaccination programs. Irregular and biennial oscillations of measles incidences
have led to various mathematical analyses including the following seven modeling ex-
planations, some of which involve age structure. Yorke and London [200] proposed
SEIR models with seasonal forcing in delay differential equations. Dietz [62] proposed
subharmonic resonance in a seasonally forced SEIR model using ordinary differential
equations. Schenzle [177] used computer simulations to show that the measles out-
break patterns in England and Germany could be explained by the primary school
yearly calenders and entry ages. Olson and Schaffer [169] proposed chaotic behav-
ior in simple deterministic SEIR models. Bolker and Grenfell [27] proposed realistic
age-structured models with seasonal forcing and stochastic terms. Ferguson, Nokes,
and Anderson [79] proposed finely age-stratified models with stochastic fluctuations
that can shift the dynamics between biennial and triennial cycle attractors. Earn et
al. [71] proposed a simple, time-forced SEIR model with slow variation in the average
rate of recruitment of new susceptibles.

In recent years HIV, which leads to AIDS, has emerged as an important new
infectious disease. Many age-structured models have been developed for HIV/AIDS.
May and Anderson [154] found R0 for some simple HIV transmission models. Bon-
gaarts [28] and May, Anderson, and McLean [156] used models with age structure
to examine the demographic effects of AIDS in African countries. The book [39]
by Castillo-Chavez contains a review of HIV/AIDS modeling papers including single-
group models, multiple-group models, and epidemiologic-demographic models. It also
contains papers on AIDS models with HIV class age, variable infectivity, distributions
for the AIDS incubation period, heterogeneity, and structured mixing. Busenberg and
Castillo-Chavez [32] found an R0 expression for an HIV model with variable infec-
tivity and continuous chronological and HIV class age structure and proportionate
mixing. Hyman, Li, and Stanley [120] generalized these results on R0 to HIV models
with nonproportionate mixing and discrete or continuous risk.

For many infectious diseases the transmission occurs in a diverse population, so
the epidemiological model must divide the heterogeneous population into subpopula-
tions or groups, in which the members have similar characteristics. This division into
groups can be based not only on mode of transmission, contact patterns, latent pe-
riod, infectious period, genetic susceptibility or resistance, and amount of vaccination
or chemotherapy, but also on social, cultural, economic, demographic, or geographic
factors. For these models it is useful to find R0 from the threshold conditions for
invasion and endemicity and to prove stability of the equilibria. For the SIS model
with n groups, the threshold was first found in terms of whether s(A) ≤ 0 or s(A) > 0,
where s(A) is the largest real part of the eigenvalues of the Jacobian matrix A at the
disease-free equilibrium. The seminal paper [140] of Lajmanovich and Yorke found
this threshold condition and proved the global stability of the disease-free and en-
demic equilibria using Liapunov functions. This approach has been extended to SIR,
SEIR, and SEIRS models with n groups [97, 187, 188]. For these models R0 can be
shown to be the spectral radius of a next generation matrix that is related to the
Jacobian matrix A [103, 110]. This next generation operator approach has also been
used for epidemiology models with a variety of features such as proportionate mix-
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ing, preferred mixing, heterosexual transmission, host-vector groups, multiple mixing
groups, vaccination, and age structure [58, 59]. For proportionate mixing models with
multiple interacting groups, the basic reproduction number R0 is the contact number
σ, which is the weighted average of the contact numbers in the groups [103, 110, 113].
The sexual transmission of diseases often occurs in a very heterogeneous population,
because people with more sexual partners have more opportunities to be infected
and to infect others. The basic reproduction number R0 has been determined for
many different models with heterogeneous mixing involving core, social, and sexual
mixing groups [113, 129, 131, 138, 139, 184]. It has been shown that estimates of
R0, under the false assumption that a heterogeneously mixing population is homoge-
neously mixing, are not greater than the actual R0 for the heterogeneous population
[1, 103]. Many models with heterogeneity in the form of competing strains of infectious
agents have been considered for diseases such as influenza, dengue, and myxomatosis
[17, 40, 41, 42, 63, 70, 73, 74, 76, 155, 160].

HIV/AIDS is spread in a very heterogeneous population by heterosexual inter-
course, homosexual intercourse, and sharing of needles by injecting drug users. Be-
cause of the great diversity and heterogeneity among those at risk of HIV/AIDS,
modeling this disease is a challenging task [6, 12, 39, 104, 115, 118, 119, 126, 130].
For HIV/AIDS models with a continuous distribution of sexual activity levels and
with various preference mixing functions, the proportionate mixing has been shown
to be the only separable solution, and expressions for the basic reproduction number
R0 in the proportionate mixing case have been found [26, 32]. Expressions for R0 have
also been found for HIV/AIDS models using groups of people based on their sexual
behavior, e.g., homosexual men, bisexual men, heterosexual women, and heterosexual
men, with further subdivisions based on their numbers of sexual or needle-sharing
partners. For staged progression models for HIV/AIDS with many infectious classes
with different infectivities, the basic reproduction number R0 is often the weighted
average of the basic reproduction numbers in the infectious classes, where the weights
involve the fraction of contacts (or partners) that result in an infection and the prob-
ability of reaching that infectious stage [111, 121, 122, 132, 146].

There is clear evidence that infectious diseases spread geographically and maps
with isodate spread contours have been produced [12, 55, 158, 166]. Some estimated
speeds of propagation are 30–60 kilometers per year for fox rabies in Europe starting in
1939 [166], 18–24 miles per year for raccoon rabies in the Eastern United States start-
ing in 1977 [49], about 140 miles per year for the plague in Europe in 1347–1350 [166],
and worldwide in one year for influenza in the 20th century [176]. Epidemiology mod-
els with spatial structures have been used to describe spatial heterogeneity [12, 96, 110]
and the spatial spread of infectious diseases [38, 54, 59, 90, 166, 193]. There seem to
be two types of spatial epidemiology models [163, 193]. Diffusion epidemiology mod-
els are formulated from nonspatial models by adding diffusion terms corresponding
to the random movements each day of susceptibles and infectives. Dispersal-kernel
models are formulated by using integral equations with kernels describing daily con-
tacts of infectives with their neighbors. For both types of spatial epidemiology models
in infinite domains, one often determines the thresholds (sometimes in terms of R0)
above which a traveling wave exists, finds the minimum speed of propagation and the
asymptotic speed of propagation (which is usually shown to be equal to the minimum
speed), and determines the stability of the traveling wave to perturbations [161, 172].
For spatial models in finite domains, stationary states and their stability have been
investigated [38]. For stochastic spatial models there is also a threshold condition, so
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that the disease dies out below the threshold and approaches an endemic stationary
distribution above the threshold [69].

10. Discussion. Mathematical epidemiology has now evolved into a separate area
of population dynamics that is parallel to mathematical ecology. Epidemiology models
are now used to combine complex data from various sources in order to study equally
complex outcomes. In this paper we have focused on the role of the basic reproduction
number R0, which is defined as the average number of people infected when a typical
infective enters an entirely susceptible population. We have illustrated the significance
of R0 by obtaining explicit expressions for R0 and proving threshold results which
imply that a disease can invade a completely susceptible population if and only if
R0 > 1. Using the SIR endemic model without age structure, the estimates of R0 for
various diseases in section 2.5 show that some diseases are more easily spread than
others, so that they are more difficult to control or eradicate. These differences are
verified for six diseases in section 2.6.

For the basic endemic models without age structure, the expressions for the basic
reproduction number R0 are intuitively obvious as the product of the contact rate,
the average infectious period, and the fraction surviving the latent period (provided
there is an exposed class in the model). But for more complicated models, expressions
for R0 must be derived from threshold conditions for the stability of the disease-free
equilibrium or the existence of an endemic equilibrium in the feasible region. This
approach was used in section 3 for the MSEIR model without age structure, but with
an exponentially changing population size. Many epidemiology models now used to
study infectious diseases involve age structures, because fertilities, death rates, and
contact rates all depend on the ages of the individuals. Thus the basic reproduction
number R0 must be found for these epidemiologic-demographic models. For MSEIR,
MSEIRS, SEIR, SEIRS, and SEIS models, expressions for R0 are given by (5.9) and
(6.6) when the demographic structures are continuous age and age groups, respec-
tively. Analogous expressions for R0 for the SIR, SIRS, and SIS models are given by
(5.11) and (6.8). These expressions for R0 are found by examining when there is a
positive (endemic) equilibrium in the feasible region, and then it is verified that the
disease persists if and only if R0 > 1.

To illustrate the application of the theoretical formulas for R0 in models with age
groups, two applications have been included in this paper. Based on demographic
and epidemiologic estimates for measles in Niger, Africa, the value of the basic repro-
duction number found from (6.6) in section 7 is R0 = 18.8. The interesting aspect of
this measles application is that R0 is found for a very rapidly growing population. In
contrast, the current fertility and death data in the United States suggests that the
population is approaching a stable age distribution with constant total size. Using
previously developed models for pertussis (whooping cough) in which the immunity
is temporary [105, 106], the basic reproduction numbers are estimated in section 8 to
be R0 = 5.4 and R0 = 3.7 for two pertussis models. It is interesting that these basic
reproduction numbers are found using the R0 expression derived for an SIR model,
even though pertussis immunity is temporary.

Recall from section 2.2 that the contact number σ is the average number of ad-
equate contacts of a typical infective during the infectious period. The interesting
aspect of the pertussis calculations is that new types of infectives with lower infectiv-
ity occur after the invasion, because infected people who previously had pertussis have
lower infectivity when reinfected. Thus typical infectives after the invasion include
those who have lower infectivities than the infectives who had been fully suscepti-
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ble. Although the contact number σ is equal to R0 when pertussis first invades the
population, the new broader collection of typical infectives implies that σ < R0 after
the invasion. Using numerical approximations during the computer simulations, the
contact numbers at the endemic equilibrium are estimated in section 8 to be σ = 3
for the first age group pertussis model and σ = 1.8 for the second pertussis model.
This phenomenon that σ < R0 at the endemic equilibrium also holds for three rela-
tively simple pertussis models based on ordinary differential equations [108]. For the
pertussis model with four removed groups in [108], the three infective classes with
decreasing infectivity are I, Im, and Iw, where the infective classes Im and Iw are
nonempty as soon as pertussis has invaded. For this model the contact number σ
satisfies

σ = R0[I + ρmIm + ρwIw]/[I + Im + Iw] < R0,

because the relative infectivities ρm and ρw are less than 1. As pointed out in section
2.2 the basic reproduction number R0, the contact number σ, and the replacement
number R are all equal at the time when the disease invades the population. For
nearly all models R0 = σ > R after the invasion, but for the pertussis models,
R0 > σ > R after the invasion. Thus the pertussis models have led to an entirely new
way of thinking about the differences between the contact number σ and the basic
reproduction number R0.
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