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MapReduce Recap
Design patterns

IN-mapper combing
pairs and stripes
order inversion

value-to-key conversion
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MapReduce Recap

Input and output: each a set of key/value pairs.
Tow functions implemented by users.
Map (k1, v1) -> list(k2, v2)
takes an input key/value pair
produces a set of intermediate key/value pairs
Reduce (k2, 1list(v2)) -> list(k3, v3)
takes a set of values for an intermediate key

produces a set of output value

MapReduce framework guarantees that all values associated with
the same key are brought together in the reducer
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MapReduce Recap

Optional functions:

Partition (k’, number of partitions) ->
partition for k’

dividing up the intermediate key space and assigning intermediate
key-value pairs to reducers

often a simple hash of the key, e.g., hash(k’) mod n
Combine (k2, list(v2)) -> list(k2’, v2?)
mini-reducers that run in memory after the map phase

used as an optimization to reduce network traffic

will be discuss later
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MapReduce Recap
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Key guestion: MapReduce provides an elegant
programming model, but how should we recast a multitude

of algorithms into the MapReduce model?

-+ Goal of this lecture: provide a guide to MapReduce
algorithm design:

- design patterns, which form the building blocks of may problems
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Challenges

MapReduce execution framework handles most complicated
detalls

e.g., copy intermediate key-value pairs from mappers to reducers
grouped by key during the shuffle and sort stage

Programmers have little control over MapReduce execution:

W
W
W
W

nere a mapper or reducer runs

nen a mapper or reduce begins or finishes

NIC

NIC

N input key-value pairs are processed by a specific mapper

N intermediate key-value pairs are processed by a specific

reducer
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Challenges

Things that programmers can control:

Construct complex data structures as keys and
values to store and communicate partial results

Execute user-specified initialization/termination code in a map or
reduce task

Preserve state in both mappers and reducers across multiple input
or intermediate keys

Control sort order of intermediate keys, and hence the order of how
a reducer processes keys

Control partitioning of key space, and hence the set of keys
encountered by a reducer
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Challenges

What we really want...
No inherent bottlenecks as algorithms are applied to
increasingly large datasets

linear scalability: an algorithm running on twice the amount of data
should take only twice as long

an algorithm running on twice the number of nodes should only take
half as long
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Design Patterns

Combiners and in-mapper combining

aggregate map outputs to reduce data traffic being shuffled from
mappers to reducers

Paris and stripes

keep track of joint events

Order inversion

sort and control the sequence of computation

Value-to-key conversion

allow secondary sorting
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Local Aggregation

In Hadoop, intermediate results (i.e., map outputs) are
written to local disk before being sent over the network

network and disk latencies are expensive

Local aggregation of intermediate results reduces the
number of key-value pairs that need to be shuffled from the
mappers to the reducers

Default combiner:

provided by the MapReduce framework

aggregate map outputs with the same key

acts like a mini-reducer
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Word Count: Baseline

1: class MAPPER

2: method MAP(docid a,doc d)
3: for all term ¢ € doc d do
4: EMIT(term ¢, count 1)

1: class REDUCER

2 method REDUCE(term ¢, counts |c, ca, . . .|)
3 sum < (

4: for all count ¢ € counts [c1, ¢, ...] do

5 SUM <— SuUMm + ¢

6 EMIT(term ¢, count sum)

What is the number of records being shuffled?
without combiners?

with combiners?
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Implementation in Hadoop

public class WordCount {

public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{

private final static IntWritable one = new IntWritable(l);
private Text word = new Text();

public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);

}
}
}
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Implementation in Hadoop

public class WordCount {

public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();

public void reduce(Text key, Iterable<IntWritable> values,

Context context
) throws IOException, InterruptedException {

int sum = 0;

for (IntWritable val : values) {

sum += val.get();

¥

result.set(sum);

context.write(key, result);
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Implementation in Hadoop

public class WordCount {

public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "word count");
job.setJarByClass (WordCount.class) ;
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
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- Environment

export JAVA_HOME=/usr/java/default
export PATH=$JAVA_HOME/bin:S$SPATH
export HADOOP_CLASSPATH=$JAVA_HOME/lib/tools.jar

- Compile & Package

$ bin/hadoop com.sun.tools.javac.Main WordCount.java
$ jar cf wc.jar WordCount*.class

- Run

$ bin/hadoop jar wc.jar WordCount /user/joe/wordcount/
input /user/joe/wordcount/output
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Word Count; Version |

1: class MAPPER

2 method MAP(docid a,doc d)
3: H «— new ASSOCIATIVEARRAY
4
5

for all term ¢ € doc d do counts for entire document
H{t} — H{t} 1 S

—

6: for all term ¢ € H do
T: EMIT(term t,count H{t})

iIN-mapper combining

emits a key-value pair for each unique term per document

Mingshen Sun (CUHK) MapReduce & Hadoop 17



Word Count: Version 2

class MAPPER Setup() in Java

1:

2 method INITIALIZE

3 H < new ASSOCIATIVEARRAY
4 method MAaP(docid a, doc d)

5: for all term ¢t € doc d do
6

7

8

9

counts across documents

H{t) — H{t} +1 o
method CLOSE T

for all term ¢t € H do Slesiup() 0 Jeve
EMIT(term ¢, count H{t})

iIN-mapper combining

recall a map object is created for each map task

aggregate all data appearing in the input block processed by the
map task
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Combiners v.s. In-Mapper Combiners

Advantages of in-mapper combiners:

Provide control over where and how local aggregation takes place.
In contrast, semantics of default combiners are underspecified in

MapReduce.

In-mapper combiners are applied inside the code. Default
combiners are applied inside the map outputs (after being emitted

by the map task).

Disadvantages:

States are preserved within mappers -> potentially large memory
overhead.

algorithmic behavior may depend on the order in which input key-
value pairs are encountered - > potential order-dependent bugs.
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Combiner Design

Combiner and reducer must share the same signature
combiner is treated as mini-reducer

combiner input and output key-value types must match reducer
iInput key-value type

Remember: combiner are optional optimizations
with/without combiner should not affect algorithm correctness

may be run 0, 1, or multiple times, determined by the MapReduce
execution framework

In Java, you can specify the combiner class as:

public void setCombinerClass(Class<? extends Reducer> cls)

exactly the Reducer type
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Computing the Mean: Version |

1: class MAPPER
2: method MAP(string ¢, integer r)

3: EMIT(string t, integer )
Pseudo-code for the basic
1: class REDUCER _
2 method REDUCE(string ¢, integers |rq, 72, .. .]) MapReduce algorithm that
3 sum «— 0 computes the mean of
4: ent «— 0 values associated with the
5: for all integer r € integers [r{,72,...| do same key_
6 SUMmM <— sum —+r
7 cnt <— cnt + 1
8 Favg < Sum/cnt
9 EMIT(string ¢, integer 74,,)

-+ Any drawback?
- Can we use reducer as combiner?

l.e., set combiner class to be reducer class
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Computing the Mean: Version |

Mean of the means is not the original mean.
- e.g.,
- mean(l, 2, 3, 4, 5) != mean(mean(1l, 2), mean(3, 4, 5))

It’s not a problem for Word Count problem, but it’s a
problem here.
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Computing the Mean: Version 2

1: class MAPPER

1: class REDUCER
2: method MAP(string ¢, integer 7) 2 method REDUCE(string ¢, pairs [(s1,¢1), (S2,¢2) - ..])
3: EMIT(string ¢, integer r) 3 sum «— 0
1: class COMBINER 4 cent «— 0 . .
2 method COMBINE(string ¢, integers [ri,72,...]) for all pair (s,c) € pairs [(s1,¢1), (52,¢2) ...] do
3 sum «— 0 6: SUm <— sum + s
4 ent «— 0 7 cnt «<— cnt + ¢
5: for all integer r € integers [rq,75,...] do 8 Favg < Sum/cnt
6 sum — sum + r 9 EMIT(string ¢, integer r4,,)
7 cnt < cnt + 1
8 EMIT(string t, pair (sum, cnt))

- Does it work? Why?

recall that combiners must have the same input and output key-
value type

Why?

combiners are optimizations that cannot change the correctness of
the algorithm
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Computing the Mean: Version 3

: class MaPPER - Does it work? Why?
2: method MAP(string ¢, integer )

3: EMIT(string ¢, pair (r, 1))

class COMBINER
method COMBINE(string ¢, pairs [(s1,¢1), (S2,¢2)...])
sum «— 0
cnt «— 0
for all pair (s, c) € pairs [(s1,¢1), (S2,¢2) ...] do
sum «— sum + S
cnt <— cnt + ¢

EMIT(string t, pair (sum, cnt))

. class REDUCER
method REDUCE(string ¢, pairs [(s1,c¢1), (S2,¢2) .. .])
sum <« 0
cnt < 0
for all pair (s,c) € pairs [(s1,¢1), (S2,¢2) ...] do
sSum <— sum + s
cnt «— cnt + ¢
Tavg < Sum/cnt
EMIT(string t, integer 7,.,)
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Computing the Mean: Version 4

1: class MAPPER

2 method INITIALIZE

3 S+ new ASSOCIATIVEARRAY

4 C' «+— new ASSOCIATIVEARRAY

5: method MAP(string ¢, integer r)

6 S{t} «— S{t} +r

7 C{t} — C{t} +1

8 method CLOSE

9: for all term ¢t € S do

10: EMIT(term t, pair (S{t}, C{t}))

- Does it work?
- Do we need a combiner?
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Pairs and Stripes

- To illustrate how constructing complex keys and values
improves the performance of computation.
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A New Running Example

Problem: building a word co-occurrence matrix over a text
collection

M = n * n matrix (n = number of unique words)

m[i][j] = number of times word wli] co-occurs with word w[j] within a
specific context (e.g., same sentence, same paragraph, same
document)

it is easy to show that m[i][j] == m{[j][i]
Why this problem is interesting?
distributional profiles of words
information retrieval

statistical natural language processing
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Challenge

Space requirement: O(n"2).

too big if we simply store the whole matrix with billions of words in
memory

a single machine typically cannot keep the whole matrix

How to use MapReduce to implement this large counting
problem?

Our approach:
mappers generate partial counts

reducers aggregate partial counts

Mingshen Sun (CUHK) MapReduce & Hadoop



Each mapper:

Emits intermediate key-value pairs with each co-occurring word pair
and integer 1

Each reducer:
Sums up all values associated with the same co-occurring word pair

MapReduce execution framework guarantees that all values
associated with the same key are brought together in the reducer

Mingshen Sun (CUHK) MapReduce & Hadoop 29



1:
2
3:
4
5

1
2
3
4:
5
6

class MAPPER
method MAaP(docid a, doc d)
for all term w € doc d do

for all term v € NEIGHBORS(w) do
EMIT(pair (w,u),count 1)

. class REDUCER

method REDUCE(pair p, counts |cy, ca, . .

s <+ 0

for all count ¢ € counts |cq, ¢o,...] do

S« S+c
EMIT(pair p, count s)

Can we use the default combiner here?

Mingshen Sun (CUHK)
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Stripes

Each mapper:

For each particular word, stores co-occurrence information in an
associative array

Emits intermediate key-value pairs with words as keys and
corresponding associative arrays as values

Each reducer:
Sums all the counts in the associative arrays

MapReduce execution framework guarantees that all associative
arrays with the same key are brought together in the reducer
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Stripes

(a, b) > 1
(a, c) > 2
(a, d) -> 5 a > {b: 1, c: 2, d: 5, e: 3, f: 2}
(a, e) > 3
(a, f) —> 2

Each mapper emits
a —> {b: count(b), c: count(c), d: count(d) ..}
Reducers perform element-wise sum of associative arrays

a —> {b: 1, , di 5, e: 3 }
+ a -> {b: 1, c: 2, d: 2, f: 2}

a -—> {b: 2, c: 2, d: 7, e: 3, f: 2}

Mingshen Sun (CUHK) MapReduce & Hadoop



Stripes

1: class MAPPER

2 method Map(docid a,doc d)

3 for all term w € doc d do

4: H < new ASSOCIATIVEARRAY

5 for all term v € NEIGHBORS(w) do

6 H{u} «— H{u} +1 > Tally words co-occurring with w
7

EMiT(Term w, Stripe H)
1: class REDUCER
2 method REDUCE(term w, stripes [Hy, Hy, Hs,...])
3: H¢ «— new ASSOCIATIVEARRAY
4
5

for all stripe H € stripes |Hy, Hy, H3,...| do
SuM(Hy, H) > Element-wise sum

6: EMIT(term w, stripe H)

*+ pseudo-code of stripes approach
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Pairs v.s. Stripes

Pairs:
Pro: Easy to understand and implement
Con: Generate many key-value pairs
Stripes:
Pro: Generate fewer key-value pairs
Pro: Make better use of combiners

Con: Memory size of associative arrays in mappers could be huge

Both pairs and stripes can apply in-mapper combining
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Pairs v.s. Stripes

4000

| |
"stripes" approach =
"pairs" approach e

3500 -
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2000
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Running time (seconds)

1000
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0 20 40 60 80 100
Percentage of the APW corpus

- stripes much faster than pairs
- linearity is maintained
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Relative Frequencies

Drawback of co-occurrence counts

absolute counts doesn’t consider that some words appear more
frequently than others

e.g., “Is” occurs very often by itself
doesn’t imply “is good” occurs more frequently than “Hello World”

Estimate relative frequencies instead of counts

count (A, B) count (A, B)

J(B|A)=

count (A) > count (A,B') marginal

B

How do we apply MapReduce to this problem?

Mingshen Sun (CUHK) MapReduce & Hadoop



Relative Frequencies

Computing relative frequencies with the stripes approach is
straightforward

Sum all the counts in the associative array for each word
Why is it possible in MapReduce?
Drawback: assuming that each associative array fits into memory

How to compute relative frequencies with the pairs
approach?

Mingshen Sun (CUHK) MapReduce & Hadoop



Relative Frequencies with Pairs

reducer holds this value in

memory
(a, *x) -> 32 1

(a, bl) -> 3 (a, bl) -> 3/32

(a, b2) -> 12 (a, b2) -> 12/32
(a, b3) —> 7 :::>. (a, b3) -> 7/32

(a, b4) —> 1 (a, b4) -> 1/32

Mapper emits (a, *) for every word being observed

Mapper makes sure same word goes to the same reducer
(use partitioner)

Mapper makes suer (a, *) comes first, before individual
counts (how?)

Reducer holds state to remember the count of (a, *), until all
pairs with the word “a” have been computed
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Order Inversion

Why order inversion?
Computing relative frequencies requires marginal counts
But marginal cannot be computed until you see all counts

Buffering is a bad idea!

Trick: getting the marginal counts to arrive at the reducer before the
joint counts

MapReduce allows you to define the order of keys being
processed by the reducer

shuffle and sort

Mingshen Sun (CUHK) MapReduce & Hadoop



Order Inversion: ldea

How to use the design pattern of order inversion to compute
relative frequencies via the pair approach?

Emit a special key-value pair for each co-occurring word for the
computation of marginal

Control the sort order of the intermediate key so that the marginal
count comes before individual counts

Define a custom partitioner to ensure all pairs with the same left
word are shuffled to the same reducer

Preserve state in reducer to remember the marginal count for each
word

Mingshen Sun (CUHK) MapReduce & Hadoop



Secondary Sorting

MapReduce sorts input to reducers by key

values may be arbitrarily ordered
What if want to sort value also?
Scenario:

sensors record temperature over time

each sensor emits (id, time t, temperature v)

Mingshen Sun (CUHK) MapReduce & Hadoop



Secondary Sorting

Naive solution
each sensor emits
id -> (t, v)
all readings of sensor id will be aggregated into a reducer

buffer values in memory for all id, then sort
Why is this a bad idea?

Mingshen Sun (CUHK) MapReduce & Hadoop



Secondary Sorting

Value-to-key conversion
each mapper emits
(id, t) -> v

let execution framework do the sorting

preserve state across multiple key-value pairs to handle processing
anything else?

Main idea: sorting is offloaded from the reducer (in naive
approach) to the MapReduce framework

Mingshen Sun (CUHK) MapReduce & Hadoop



Tools for Synchronization

Cleverly-constructed data structures
Bring data together

Sort order of intermediate keys

Control order in which reducers process keys

Partitioner

Control which reducer processes which keys

Preserving state in mappers and reducers

Capture dependencies across multiple keys and values

Mingshen Sun (CUHK) MapReduce & Hadoop



Issues and Tradeoffs

Number of key-value pairs
Obiject creation overhead

Time for sorting and shuffling pairs across the network

Size of each key-value pair

De/serialization overhead

Local aggregation
Opportunities to perform local aggregation varies
Combiners make a big difference
Combiners vs. in-mapper combining

RAM vs. disk vs. network

Mingshen Sun (CUHK) MapReduce & Hadoop



Debugging at Scale

Works on small datasets, won’t scale... why?

Memory management issues (buffering and object
creation)

Too much intermediate data

Mangled input records

Real-world data is messy!
Word count: how many unique words in Wikipedia?
There’s no such thing as “consistent data”
Watch out for corner cases

Isolate unexpected behavior, bring local

Mingshen Sun (CUHK) MapReduce & Hadoop



Summary

Design patterns
IN-mapper combing
pairs and stripes
order inversion
value-to-key conversion
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MapReduce Application

Text retrieval

inverted indexing

Data mining
TF-IDF

Graph algorithm

parallel breadth-first search

parallel dijkstra’s algorithm

PageRank
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Web Search Problem

Web search is to retrieve relevant web objects
e.g., web pages, PDFs, PPT slides

Web search problem G() gle

crawling: gathering web content
iIndexing: constructing search indexing structure

retrieval: ranking documents given a query

Challenge YAHOO’

the web is huge

billions of web objects, terabytes of information
Performance goals

guery latency needs to be small

scalable for a large number of documents
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Inverted Indexes

Inverted Index

A data structure that given a term provides access to the list of
documents that contain the term

Used by most full-text search engines today

By documents, we mean web objects

Retrieval engine uses the inverted index to score documents
that contain the query terms based on some ranking model

e.g., based on term matches, term proximity, term attributes, etc.

Mingshen Sun (CUHK) MapReduce & Hadoop



Inverted Indexes

terms postings

term, |d, || p—21ds|| P —2ds|| P 2d|| P
term, |dy | P 21| P 2| dse|| P [ desf P
terms | dy || p 21 dy|| P 21y || P | dsg| P

Simple illustration of an inverted index.

Each term is associated with a list of postings.

Each posting is comprised of a document id and a payload, denoted
by p in this case.

An inverted index provides quick access to documents ids that
contain a term.

Mingshen Sun (CUHK) MapReduce & Hadoop



Inverted Indexes

Given a query, retrieval involves fetching postings lists
associated with query terms and traversing the postings to
compute the result set.

Simple Boolean retrieval:
Apply union (OR) or intersection (AND) of posting lists
General retrieval:

Document scores are ranked

Top k documents are returned

Mingshen Sun (CUHK) MapReduce & Hadoop



Inverted Indexes

Doc 1 Doc 2 Doc 3 Doc 4
one fish, two fish red fish, blue fish cat in the hat green eggs and ham

2 3
blue 1| ] blue  —» 2
cat | | I | cat — 3
w [ ] ] w ol
fish 1| ] fish —> | 2
green | | | green  —» 4
ham | | | ham  —» 4
hat | |1 ] hat ~ — 3
one | | | one  —» |
red 11| ] red  —» 2
two | | | two — |

Mingshen Sun (CUHK)
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Inverted Indexes: Construction

How to construct an inverted index?
Naive approach:

For each document, extract all useful terms, and exclude all

stopwords (e.g., “the”, “a”, “of”) and remove affixes (e.g., “dogs” to
“dog”)

For each term, add the posting (document, payload) to an existing
list, or create a posting list if the term is new

Clearly, naive approach is not scalable if the document
collection is huge and each document is large

Can we use MapReduce?

Mingshen Sun (CUHK) MapReduce & Hadoop



Baseline Implementation

Our goal: construct an inverted index given a document
collection

Main idea:

Input to each mapper:
Document IDs (keys)

Actual document content (values)

What each mapper does:
Analyze each document and extract useful terms

Compute term frequencies (per document)
Emit (term, posting)
What each reducer does

Aggregates all observed postings for each term

Construct the posting list

Mingshen Sun (CUHK) MapReduce & Hadoop



Baseline Implementation

1: class MAPPER

2 method MAP(docid n, doc d)

3 H +— new ASSOCIATIVEARRAY
4: for all term ¢ € doc d do

5 H{t} — H{t} +1

6 for all term ¢t € H do

7 EMiT(tuple (t,n),tf H{t})

1: class REDUCER

2 method INITIALIZE

3 tprev < 0

4: P < new POSTINGSLIST

5: method REDUCE(tuple (t,n),tf |f])
6 if ¢ % tprew A lprev # () then

7 EMIT(term ¢, postings P)
8 P.ReseT()

9 P.App((n, f))

10: tprev — 1

11: method CLOSE

12: EMIT(term ¢, postings P)
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Baseline Implementation

doc 1 doc 2 doc 3
one fish, two fish red fish, blue fish one red bird
[ mapper ] [ mapper ] [ mapper J
' fish [d, | 2| 1+ !blue |dyf| 1| + ! bird |dyf 1|
" one [d, | 1|t ! fish |[dy 2| ' ! one |dy| 1|
E two | d, || 1 : i red |d,| 1 : E red |d;| 1 :
b e o] b o] b e o]

Shuffle and Sort: aggregate values by keys

[ reducer ] [ reducer ]
' fish | d, || 2 d, || 2 1 bird | d; | 1 !
. one |dy|| 1 {[dsf 1| 11 blue |dyf 1
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Baseline Implementation

In the shuffle and sort phase, MapReduce framework forms
a large, distributed group by the postings of each term

From reducer’s point of view

Each input to the reducer is the resulting posting list of a term

Reducer may sort the list (if needed), and writes the final output to
disk

The task of each reducer is greatly simplified! MapReduce
framework has done most heavy liftings.

Mingshen Sun (CUHK) MapReduce & Hadoop



Positional Indexes

Doc | Doc?2 Doc3
one fish, two fish red fish, blue fish cat in the hat
one | T red 2 T cat 3 _I
Map two I I blue 2 I hat 3 I
fish [ 12 fish |22

Shuffle and Sort: aggregate values by keys

cat 3 _I -

o blue |2 |

Reduce fish |1 2|2 2 —
I hat |3 |

one | | —

T two | |

red p o
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Scalability Issue

Scalability problem in baseline implementation

1: class MAPPER

2 procedure MaP(docid n,doc d)

3 H < new ASSOCIATIVEARRAY

4: for all term ¢t € doc d do

5 H{t} — H{t} +1

6 for all term ¢t € H do

7 EMIT(term t, posting (n, H{t}))

1: class REDUCER

2 procedure REDUCE(term t, postings [(n1, f1), (n2, f2)...])
3: P «— new LIST

1 for all posting (a, f) € postings [(n1, f1), (ne, f2)...] do

Any problem?
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Scalability Issue

Assumption of baseline implementation:

Reducer has sufficient memory to hold all postings associated with
the same term

Why?

The MapReduce framework makes no guarantees about the
ordering of values associated with the same key.

The reducer first buffers all postings (line 5) and then performs an
iIn-memory sort before writing the postings to disk
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Scalability Issue

How to solve? Key idea is to let MapReduce framework do
sorting for us

Instead of emitting
(term t, posting <docid, f>)
Emit
(tuple <t, docid>, f)
- Value-to-key conversion!!
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Revised Implementation

- With value-to-key conversion, the MapReduce framework
ensures the postings arrive in sorted order (based on <term
t, docid>)

Results can be written to disk directly

- Caution: you need a customized partitioner to ensure that all
tuples with the same term are shuffled to the same reducer
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Revised Implementation

1: class MAPPER

2 method MAP(docid n,doc d)

3: H < new ASSOCIATIVEARRAY
4 for all term ¢ € doc d do

5 H{t} — H{t} +1

6: for all term ¢t € H do

7: EMIT(tuple (t,n),tf H{t})

results are directly written to
disk

1: class REDUCER

2 method INITIALIZE

3 tpres <

4: P «— new POSTINGSLIST

5: method REDUCE(tuple (t,n), tf [f])
6 if ¢ £ty Alprew # ) then

7 EMIT(term ¢, postings P) I
8 P.REseT()

9 P.App((n, [))

10 lprev < 1

11: method CLOSE

12: EMIT(term ¢, postings P)
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TF-IDF

Term Frequency — Inverse Document Frequency (TF-IDF)

Answers the guestion “How important is this term in a document”
Known as a term weighting function

Assigns a score (weight) to each term (word) in a document
Very commonly used in text processing and search
Has many applications in data mining
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TF-IDF Motivation

Merely counting the number of occurrences of a word in a
document is not a good enough measure of its relevance

If the word appears in many other documents, it is probably less
relevance

Some words appear too frequently in all documents to be relevant

Known as ‘stopwords’

TF-IDF considers both the frequency of a word in a given
document and the number of documents which contain the
word
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TF-IDF: Definition

- Term Frequency (TF)

Number of times a term appears in a

- document (i.e., the count)

Inverse Document Frequency (IDF)

idf = log (g)
n

N: total number of documents
 n: number of documents that contain a term
- TF-IDF

- TF x IDF
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Computing TF-IDF With MapReduce

- Overview of algorithm: 3 MapReduce jobs
- Job 1: compute term frequencies

- Job 2: compute number of documents each word
occurs In

- Job 3: compute TD-IDF
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Graph: Real-World Problems

Finding shortest paths

Routing Internet traffic and UPS trucks
Finding minimum spanning trees
Telco laying down fiber
Finding Max Flow

Airline scheduling

ldentify “special” nodes and communities

Breaking up terrorist cells, spread of avian flu

Bipartite matching

Monster.com, Match.com

PageRank
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Graphs and MapReduce

Graph algorithms typically involve:

Performing computations at each node: based on
node features, edge features, and local link structure

Propagating computations: “traversing” the graph
Challenge:

Algorithms running on a single machine and putting
the entire graph in memory are not scalable

Key questions:

How do you represent graph data in MapReduce?

“How do you traverse a graph in MapReduce?

Mingshen Sun (CUHK) MapReduce & Hadoop



Graph Representations

- Two common representations | easyto manipulate with linear algebra
+ easy algorithmic implementation

adjacency matrix - large memory space, esp. for sparse
: : graph
adjacency list //
n,

n, n, n; n, n;

n,1 0111011110 n, [n, n/]

n,{ 0| 0(1]0]|1 n, [ns ng

n, | OO0 0] 1]|O0 n; [n,]

ng,| O[O0 ] 0] 0|1 n, [ng]

s ng; | 1 1 11010 ns [ny, Ny ng

n, adjacency matrix adjacency lists /\
How ever, the shuffle and sort ‘> * much more compact representation
mechanism in MapReduce provides easy to compute over out-links
an easy way to group edges by + much more difficult to compute over
destination nodes. J ~in-links
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Single-Source Shortest Path

Problem: find shortest paths from a source node to all other
nodes in the graph

Shortest mean smallest hop counts or lowest weights

Algorithm:
Breadth-first-search: for finding minimum hop counts

Dijkstra’s algorithm: for finding minimum-cost paths for general
graphs
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Dijkstra’s Algorithm

Figure 5.3: Example of Dijkstra’s algorithm applied to a simple graph with five nodes, with n;
as the source and edge distances as indicated. Parts (a)—(e) show the running of the algorithm
at each iteration, with the current distance inside the node. Nodes with thicker borders are
those being expanded; nodes that have already been expanded are shown in black.
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Dijkstra’s Algorithm

Dijkstra’s algorithm is designed as a sequential algorithm
Key to Dijkstra’s algorithm

Priority queue that maintains a globally sorted list of nodes by
current distance

Not possible in MapReduce, which doesn’t provide a mechanism for
exchanging global data

Solution:

Brute-force approach: parallel breadth first search

Brute force: Try to revisit many nodes that have been visited
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Parallel BFS

Consider simple case of equal edge weights

Solution to the problem can be defined inductively

Here’s the intuition:

Define: b is reachable from a if b is on adjacency list of a
DistanceTo(s) =0

~or a

~or a

nodes p reac

nodes n reac

nable from s, DistanceTo(p) = 1

nable from some other set of nodes M,

DistanceTo(n) = 1 + min(DistanceTo(m), m \in M)
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Visualizing Parallel BFS
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From Intuition to Algorithm

Data representation:
Key: node n

Value: d (distance from start), adjacency list (nodes reachable from
n)

Initialization: for all nodes except for start node, d = infinity
Mapper:

exit m in adjacency list: emit (m, d + 1)
Sort/Shuffle

Groups distances by reachable nodes
Reducer:

Selects minimum distance path for each reachable node

Additional bookkeeping needed to keep track of actual path
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Multiple Iterations Needed

Each MapReduce iteration advances the “frontier” by one
hop

Subsequent iterations include more and more reachable nodes as
frontier expands

Multiple iterations are needed to explore entire graph
Preserving graph structure:

Problem: Where did the adjacency list go?

Solution: mapper emits (n, adjacency list) as well
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BFS Pseudo-Code

1: class MAPPER

2: method Map(nid n,node N)

3: d — N.DISTANCE

4: EMIT(nid n, N) > Pass along graph structure

5: for all nodeid m € N.ApJACENCYLIST do

6: EMiT(nid m,d + 1) > Emit distances to reachable nodes

1: class REDUCER

2: method REDUCE(nid m, [dy,d,,. . .])

3: drm’.n — O

4: M—0

5: for all d € counts [dy,d,,...] do

6: if IsNoDE(d) then

T: M —d > Recover graph structure
else if d < d,,,;,, then > Look for shorter distance

9: drm'. n d

10: M.DISTANCE «— d,,;,. > Update shortest distance

11: EmiT(nid m.node M)

Mingshen Sun (CUHK) MapReduce & Hadoop



Stopping Criterion

How many iterations are needed in parallel BFS (equal edge
weight case)?

Convince yourself: when a node is first “discovered”, we've
found the shortest path

In practice, we iterate the algorithm until all node distances
are found (i.e., no more infinity)

How?

Maintain a counter inside the MapReduce program (i.e., count how
many node distances are found)

Require a non-MapReduce driver program to submit a MapReduce
job to iterate the algorithm

The driver program checks the counter value before submitting
another job
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Extend to General Weights

Difference?
How many iterations are needed in parallel BFS?
How do we know that all shortest path distances are found?
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Other Graph Algorithms

PageRank
+ Subgraph pattern matching
- Computing simple graph statistics
Degree vertex distributions

- Computing more complex graph statics
Clustering coefficient

Counting triangles
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Random Walks Over the Web

Random surfer model:

User starts at a random Web page

User randomly clicks on links, surfing from page to page
PageRank

Characterizes the amount of time spent on any given page

Mathematically, a probability distribution over pages
PageRank captures notions of page importance

Correspondence to human intuition?

One of thousands of features used in web search (query-
independent)
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PageRank: Definition

-+ Given page x with inlinks t1...tn, where

-+ C(t) i1s the out-degree of t

+ v IS probability of random jump

N is the total number of nodes in the graph

PR(x) =« <%> + (1 — «) PC}?S;)

1=1
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Computing PageRank

Properties of PageRank
Can be computed iteratively
Effects at each iteration are local
Sketch of algorithm:
Start with seed PRi values
Each page distributes PRI “credit” to all pages it links to

Each target page adds up “credit” from multiple in-bound links to
compute PRi+1

lterate until values converge
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Simplified PageRank

First, tackle the simple case:
No random jump factor
No dangling nodes

Then, factor in these complexities...
Why do we need the random jump?

Where do dangling nodes come from?
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Sample PageRank Iteration (1)

Iteration 1 n, (0.2) n, (0.166)

n, (O'ZM 0.1 n, (o.oM7

0///'”5(0.>)/ s (0.2) //Iio/m// s (0.166)

Mingshen Sun (CUHK) MapReduce & Hadoop



Sample PageRank Iteration (2)

Iteration 2 n, (0.166) n, (0.133)

n, (o.ow7 0.083 n, (0.1 /

£ (0.3) s 5(0.383

n n

n, (0.3) n, (0.2)

Mingshen Sun (CUHK) MapReduce & Hadoop 88



PageRank in MapReduce

Ny [Ny, Nyl ny [n3, Ngl nz [ny] ny [ns] ns [n4, Ny, N3l
map /' N/ \ ' VO /1N
no Ny ns Ns Ny Ns ny no ns
ny no no ns ns ny ny Nns Ns
Reduce y 4 / 4/ N\ ¢ Ny
nyg [Ny, N4 Ny [n3 ng Nz [ny] ny [ns] ns [n4, Ny, N3l
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PageRank Pseudo-code

1: class MAPPER

2: method MApP(nid n,node N)

3: p «— N.PAGERANK/|N.ADJACENCYLIST|

4: EmiT(nid n, N) > Pass along graph structure
B: for all nodeid m € N.ApJACENCYLIST do

6: EMIiT(nid m, p) > Pass PageRank mass to neighbors
1: class REDUCER

2: method REDUCE(nid m, [py,po,...])

4: for all p € counts [py,ps,...| do

5 if IsNoDE(p) then

6: M —p > Recover graph structure
T: else

8: S— S+p > Sums incoming PageRank contributions
9: M.PAGERANK « s

10: EmiT(nid m.node M)
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PageRank in MapReduce

Map phase:

For each node, computes how much PageRank mass is emitted as
value

Shuffle and sort phase:

Group values passed along the graph edges by destination nodes

Reduce phase:

PageRank mass contributions from all incoming edges are summed
to arrive at the updated PageRank value for each node
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Complete PageRank

Two additional complexities
What is the proper treatment of dangling nodes?

How do we factor in the random jump factor?

Solution:

Second pass to redistribute “missing PageRank mass” and account
for random jumps

p-a(k) 0w o

p is PageRank value from before, p' is updated PageRank value
N Is the number of nodes in the graph

m is the missing PageRank mass

Additional optimization: make it a single pass!
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PageRank Convergence

Alternative convergence criteria

lterate unti

Page

lterate unti

Page

Rank values don’t change

Rank rankings don’t change

Fixed number of iterations

Convergence for web graphs?

Not a straightforward question

Watch out for link spam:

Link farms

Spider traps
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