Distributed and Collaborative Key Agreement
Protocols with Authentication and Implementation for

Dynamic Peer Groups

Lee, Pak-Ching

A Thesis Submitted in Partial Fulfillment
of the Requirements for the Degree of
Master of Philosophy
in

Computer Science and Engineering

(©The Chinese University of Hong Kong
June, 2003

The Chinese University of Hong Kong holds the copyright of this thesis.
Any person(s) intending to use a part or the whole of the materials in this
thesis in a proposed publication must seek copyright release from the Dean of

the Graduate School.



Abstract

We consider several distributed collaborative key agreement protocols for dy-
namic peer groups. There are several important characteristics which make
this problem different from traditional secure group communication. They are
(1) distributed nature in which there is no centralized key server, (2) collabora-
tive nature in which the group key is contributory (i.e., each group member will
collaboratively contribute its part to the global group key), and (3) dynamic
nature in which existing members may leave the group while new members may
join. Instead of performing individual rekeying operations, i.e., recomputing
the group key after every join or leave request, we discuss an interval-based
approach of rekeying. We consider three interval-based distributed rekeying
algorithms, or interval-based algorithms for short, for updating the group key:
(1) the Rebuild algorithm, (2) the Batch algorithm, and (3) the Queue-batch al-
gorithm. Performance of these three interval-based algorithms under different
stochastic settings, such as different join and leave probabilities, is analyzed.
We show that the interval-based algorithms significantly outperform the indi-
vidual rekeying approach, and that the Queue-batch algorithm performs the
best among the three interval-based algorithms. More important, the Queue-
batch algorithm has the intrinsic property of substantially reducing the com-
putation and communication workload in a highly dynamic environment. To
further enhance our algorithms, we focus on their extensions in two aspects:
authentication and implementation. We incorporated a member authentica-

tion mechanism into the algorithms and hence strengthened their security. We



also implemented the Secure Group Communication Library (SGCL) to realize
the algorithms and to offer a programming interface to software developers for
building their secure group-oriented applications. Our work provides a fun-
damental understanding about establishing a group key via a distributed and

collaborative approach for a dynamic peer group.

i



A%

TEASG AL » el re W Rl RES TR Al Rz e il e S TR E il
L o TRNRH e EE BERLDAE B A 2 BB SR HA T WA T [E1 0y
3 85 (1) ot - EiEfEERn S INE PR A P RS (EHiaR Y
2015 (2) SfFM: - B Sie e b Fraif BUR 20 B A AR
EAR (3) WiEhE - EFERHHLA R AESRE R I A SR ATl e e E &
SREEE AT « RN R H A e s - AR
e PN A SR AR AR ST - MO0 AU A TR = el
= o PR = P eS8 TS (interval-based distributed
rekeying algorithms) » 4352 © (1) JEAREIEE (the Rebuild algorithm) » (2) i
ZRETHE: (the Batch algorithm) + B (3) {7 %L EIEE (the Queue-batch
algorithm) = FAVEARBRERTERE - SUATEINASEERIRFAIAERIE - DA
S RTNRE T YRR TR, - SEFEfS T - TSNS = INEA MR
BT B REREE - iy RN MR E = (AT R
o BEEEERRY » AR SR ST T AR T R R T A
AREAS = B 1 SEEESTES AU - R0 R AR © FIERR
FEBAF » P HERERERE RS (s Sl SR R LU IneEe e et
[EIRF - BB 1 iR aaeF
Library » BRRSFE SGCL) Ll [ AREDEAEEE B iy =4 Ry s Lo atdl
HE RS - B RS A ery HH R A4S, - Shaanfar il
VRS B RN RE S = A T A el -

YR (Secure Group Communication

iii



Acknowledgment

I am glad to take this opportunity to cordially acknowledge a number of people
who provide me with great support in these two years.

First, I would like to thank my advisor Professor John C.S. Lui for his
guidance throughout the research. He taught me not only how to do research
(e.g., how to define research problems, how to devise new solutions, how to
conduct meaningful experiments and how to elaborate findings in words), but
also how to enjoy research. From him, I realized how to appreciate the fun
part of research, and this attitude played the most crucial role in prompting
me to pursue my master research. I feel so lucky that he can be my advisor.

Besides, I would like to thank Professor David K.Y. Yau, from Purdue
University, for his advice in my research. His comments let me make much
important progress.

Furthermore, I would like to thank my friends for their help in solving my
research questions, among them are: Alix Chow, Kwok-Tai Law, Sam Lee,
Richard Sia, Starsky Wong, and Siu-Fung Yeung. I am so pleased that they
can always offer me a hand whenever I have troubles.

Last but not least, I would like to thank my parents and elder sister for
their generous support and encouragement throughout my life. Their kindness

makes my life meaningful.

v



Contents

1 Introduction
2 Related Work
3 Tree-Based Group Diffie-Hellman

4 Interval-Based Distributed Rekeying Algorithms
4.1 Rebuild Algorithm . . . . .. . ... ... oL
4.2 Batch Algorithm . . . . ... ... oo oL
4.3 Queue-batch Algorithm . . . . . ... ... ... . 0oL

5 Performance Evaluation
5.1 Mathematical Analysis . . . . . . . ... ... ... ... .. ..
5.1.1 Analysis of the Rebuild Algorithm . . . ... ... ...
5.1.2  Analysis of the Batch Algorithm . . . . . . .. ... ...
5.1.3 Analysis of the Queue-batch Algorithm . . . . .. .. ..
5.2 Experiments . . . . . ... Lo

5.3 Discussion of the experimental results . . . . . . ... ... ...

6 Authenticated Tree-Based Group Diffie-Hellman
6.1 Description of AA-TGDH . . . ... ... ... ..........
6.2 Security Analysis . . . . ... ... ... oL

7 Implementation and Applications

14
15
16
19

22
22
24
25
30
31
35

43
44
47

50



7.1 Leader and Sponsors . . . . ... ... ... ... ........ 51

711 Leader . . . . . . . . . ... 51

7.1.2 SPOnSOrs . . . ... 53

7.1.3 Rekeying Operation. . . . . . .. ... ... ... ..., 56

7.2 System Architecture . . . . . ... ... o L. o7

7.2.1 System Preliminaries . . . . . .. ... ... ... ..., o7

7.2.2 System Components . . .. ... ... .. ........ 58

7.2.3 Implementation Considerations . . . ... ... ... .. 64

7.3 SGCL APIL. . . . . . 65

7.4 Experiments . . . . . . .. ... 67

7.5 Applications . . . . . ... 72

7.6 Future Extensions . . . . . . . . . ... .. oL Lo 75

8 Conclusions and Future Directions 76

81 Conclusions . . . . . . ... 76

8.2 Future Directions . . . . . . . ... ..o oL 7
8.2.1 Construction of a Hybrid Key Tree with the Physical

and Logical Properties . . . . . . ... ... ... ... 7

8.2.2 Extended Implementation . . . ... ... ........ 79

Bibliography 80

vl



List of Figures

3.1

3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1

5.2

9.3

0.4

3.5

A possible key tree used in the Tree-Based Group Diffie-Hellman

protocol. . . . .. L 10
[lustration of the rekeying operation after a single leave. . . . . 11
[lustration of the rekeying operation after a single join. . . . . . 12
Pseudo-code of the Rebuild algorithm. . . . . .. .. ... ... 16
Example of the Rebuild algorithm. . . . .. ... ... ... .. 16
Pseudo-code of the Batch algorithm. . . . . ... .. ... ... 17
Example 1 of the Batch algorithm where L > J >0.. . . . . .. 18
Example 2 of the Batch algorithm where J > L >0.. . . .. .. 19
Pseudo-code of the Queue-subtree phase. . . . . . .. ... ... 20
Pseudo-code of the Queue-merge phase. . . . . . . .. .. .. .. 20
Example of the Queue-merge phase. . . . . . . .. .. ... ... 21

Performance differences between individual rekeying and Rebuild. 36
Performance differences between individual rekeying and Batch. 36
Performance differences between individual rekeying and Queue-
batch. . . . . .. 36
Performance results of Rebuild, Batch, and Queue-batch at dif-
ferent numbers of joins based on mathematical models. . . . . . 37
Average performance results of Rebuild, Batch, and Queue-

batch at different fixed join probabilities. . . . . . . . .. .. .. 38

vii



2.6

2.7

2.8

2.9

6.1

7.1
7.2

7.3

7.4
7.5
7.6

7.7
7.8
7.9

Instantaneous numbers of exponentiations of Batch and Queue-
batch at different join and leave probabilities. . . . . . . .. ..
Instantaneous numbers of renewed nodes of Batch and Queue-
batch at different join and leave probabilities. . . . . .. .. ..
Average performance results of Queue-batch at different reset
intervals. . . . . . . ...
Average and instantaneous numbers of rounds of Rebuild, Batch,

and Queue-batch at different join and leave probabilities. . . . .
Example of authenticated key agreement involving 4 members. .

Pseudo-code of the sponsors coordination algorithm.. . . . . . .
Example to illustrate the sponsor coordination algorithm in

Fig. 7.1. . . . .
Mlustration of the broadcast-efficient property of the sponsor

coordination algorithm. . . . . . . . . . ... ... ... ...
Formats of the regular packets. . . . . ... ... .. ... ...
Overview of general operations on received packets. . . . . . ..
Overview of leader-specific components and their relationships

with other components. . . . . . .. . ... ... ... ... ...
Flowchart of using the SGCL API. . . ... ... ........
Average analysis at different fixed Tpy’s. . . . . . . . . .. ...

Average analysis at different levels of membership dynamics. . .

7.10 Illustration of Chatter in the graphical mode. . . . . . . .. ..

7.11 Tlustration of Chatter in the text mode. . . . . . . . . . . . ..

8.1

Approaches of updating the key tree. . . . . . .. .. ... ...

viii

78



List of Tables

7.1 Description of components used in SGCL.
7.2 Description of the SGCL API functions.

X



List of Publications

Part of this research work appeared in the following publications:

e Patrick P. C. Lee, John C. S. Lui, and David K. Y. Yau. Distributed
Collaborative Key Agreement Protocols for Dynamic Peer Groups. In
Proceedings of the 10th IEEFE International Conference on Network Pro-
tocols (ICNP), France, November, 2002.

e Patrick Pak Ching Lee, John C. S. Lui, David K. Y. Yau, Distributed
Collaborative Key Agreement and Authentication Protocols for Dynamic
Peer Groups. Technical Report CS-TR-2002-08, Dept of Computer Sci-
ence and Engineering, The Chinese University of Hong Kong, August
2002.

e Patrick Pak Ching Lee, John C. S. Lui, David K. Y. Yau, Distributed
Collaborative Key Agreement Protocols for Dynamic Peer Groups. Tech-
nical Report CS-TR-2002-04, Dept of Computer Science and Engineer-
ing, The Chinese University of Hong Kong, May 2002.



Chapter 1

Introduction

With the emergence of many group-oriented distributed applications such as
tele/video-conferencing and multi-player games, there is a need for security
services to provide group-oriented communication privacy and data integrity.
To provide this form of group communication privacy, it is paramount that
members of the group can establish a common secret key for encrypting group
communication data. To illustrate the utility of this type of application, con-
sider a group of people in a peer-to-peer or ad-hoc network having a closed
and confidential meeting. Since they do not have a previously agreed upon
common secret key, communication between group members is susceptible to
eavesdropping. To solve the problem, we need a secure distributed group key
agreement protocol so that people can establish and a common group key for
secure and private communication. Note that this type of key agreement pro-
tocols is both distributed and contributory in nature: each member of the
group contributes its part to the overall group key.

It is important to point out that the type of distributed group key agree-
ment protocols we study is very different from more traditional centralized
group key agreement protocols. Centralized protocols rely on a centralized
key server to efficiently distribute the group key. An excellent body of work
on centralized key distribution protocols exists in [14, 20, 26, 27]. In those

approaches, group members are arranged in a logical key hierarchy known as



Chapter 1 Introduction 2

a key tree. Using the tree topology, it is easy to distribute the group key to
members whenever there is any change in the group membership (e.g., a new
member joins or an existing member leaves the group). For distributed key
agreement protocols we consider, however, there is no centralized key server
available. This arrangement is justified in many situations — e.g., in a peer-to-
peer or an ad-hoc network where centralized resources are not readily available.
Moreover, an advantage of distributed protocols over the centralized protocols
is the increase in system reliability, because the group key is generated in a
shared and contributory fashion and there is no single-point-of-failure.

For the special case of a communication group having only two members,
these members can create a group key using the Diffie-Hellman key exchange
protocol [5]. In the protocol, members X and Y use a cyclic group G of order
p and a generator . They can generate their secret components ex and ey,
respectively. Member X (resp., Y) can compute its public key a®* mod p
(resp., @® mod p) and send it to Y (resp., X). Since both members know
their own exponent, they can each raise the other party’s public key to the
exponent and produce a common group key, which is equal to a®*® mod p.
Using this common group key, X and Y can encrypt their data to prevent
eavesdropping by intruders.

In this dissertation, we consider a dynamic communication group in which
members are located in a distributed fashion. We extend the Diffie-Hellman
key exchange protocol to more than two members in the communication group.
The membership of the communication group is dynamic so that members can
leave and new members can join the group at any time. The contributions of

our work are:

e The key agreement protocol is distributed and there is no centralized key

server.

e The key agreement protocol is contributory — each member contributes



Chapter 1 Introduction 3

its part to the overall group key.

e Instead of performing individual rekeying operations, we propose to use
an interval-based approach to significantly reduce the computation and
communication costs of maintaining the group key. This interval-based

approach preserves rekeying efficiency in dynamic peer groups.

e We propose three interval-based distributed rekeying algorithms, or interval-
based algorithms for short, and conduct performance evaluation, includ-
ing both analytical and simulation-based analysis, to illustrate their per-

formance merits.

e We propose an authenticated group key agreement protocol and prove

its security strengths.

e We implemented the Secure Group Communication Library (SGCL) to
realize the interval-based algorithms. The library provides a set of API
functions tailored for the development of secure group-oriented applica-

tions.

The balance of the dissertation is organized as follows. In Chapter 2, we
first discuss related work about centralized group key distribution, distributed
group key agreement, authenticated group key agreement, as well as the im-
plementation experience concerning group key management. In Chapter 3, we
provide the background of the Diffie-Hellman protocol. We then explain how it
can be extended to the Tree-Based Group Diffie-Hellman protocol, the group
key agreement protocol that accommodates more than two members in a dy-
namic peer group. In Chapter 4, we present three interval-based algorithms to
reduce the computation and communication costs for maintaining the group
key in a dynamic peer group. In Chapter 5, we conduct mathematical analysis
to quantify the system performance according to the given performance metrics

when the original Diffie-Hellman tree is completely balanced. We also report



Chapter 1 Introduction 4

several experiments that illustrate the system costs under dynamic joins and
leaves using various system parameters (e.g., join and leave probabilities). In
Chapter 6, we describe our proposed authenticated group key agreement proto-
col, known as the Authenticated Tree-Based Group Diffie-Hellman (A-TGDH)
protocol, and provide arguments on whether it satisfies our security goals. In
Chapter 7, we study the implementation details of SGCL and present exper-
iments that evaluate the performance of the interval-based algorithms under
real network settings. Finally, in Chapter 8, we conclude the dissertation and

propose future directions that enrich the research.



Chapter 2

Related Work

In this chapter, we consider a number of group key management schemes pre-
viously developed to protect group communication. These schemes can be
classified into two categories: centralized group key distribution and decentral-
ized group key agreement. In centralized group key distribution, a centralized
key server is set up to generate and distribute group keys to all group mem-
bers. In decentralized group key agreement, however, all group members are
involved in generating the group key and finally agree upon a common group
key. To verify the identities of group members that participate in the key gen-
eration process, several decentralized group key agreement schemes are further
extended to incorporate authentication and they are classified as authenticated
group key agreement schemes. In the following, we review the research work
about group key management in three areas: (1) centralized group key dis-
tribution, (2) decentralized group key agreement, and (3) authenticated key
agreement, as well as the implementation experience regarding group key man-
agement.

Centralized group key distribution, as mentioned above, requires a single
centralized key server to generate and distribute keys to group members. In-
tuitively, the key server can set up a secure unicast channel with each group
member and distribute newly generated keys through these channels. This

method, however, is not scalable when the member pool is very large. To



Chapter 2 Related Work 6

address this scalability issue, Wong et al. [27] and Wallner et al. [26] indepen-
dently proposed the key tree approach to achieve secure group communication.
They suggested to associate keys in a hierarchical tree and perform rekeying
at every join or leave event. Later, the authors in [14, 20, 29| introduced
batch rekeying, meaning that the group key is renewed at regular intervals.
Therefore, the key renewal procedure is independent of membership dynamics
and thus becomes more efficient. In this dissertation, we apply the key tree
approach and the batch rekeying concept to our proposed algorithms.
Decentralized group key agreement requires the participation of all group
members and therefore avoids the single-point-of-failure problem found in cen-
tralized key distribution. Its research is explored in [4, 24, 11, 12], in which
the authors extended the Diffie-Hellman protocol [5] to support secure group
communication in a peer-to-peer network. Burmester and Desmedt [4] pro-
posed a computation-efficient protocol at the expense of high communication
overhead. Steiner et al. [24] developed Cligues, in which every member intro-
duces its key component into the result generated by its preceding member and
passes the new result to its following member. Cliques is efficient in rekeying
for leave or partition events, but imposes a high workload on the last member
in the chain. Kim et al. [11] proposed the Tree-Based Group Diffie-Hellman
(TGDH) to arrange keys in a tree structure. Every member only needs to
hold the keys along its key path, implying that the rekeying workload is dis-
tributed to all members. The authors also suggested a variant of TGDH called
STR which minimizes the communication overhead by trading off the com-
putational complexity [12]. All the above schemes are contributory, meaning
that all group members contribute their own private piece of information to
generate the group key. While the key renewal in [4] is independent of mem-
bership change, the rest of the schemes [24, 11, 12] suggest to perform rekeying
at single join, leave, merge or partition events. One of our research goals is to

enhance TGDH to support rekeying involving a batch of join and leave events.



Chapter 2 Related Work 7

Rather than emphasizing the rekeying efficiency, authenticated group key
agreement focuses on how to efficiently incorporate the certified key compo-
nents of group members into a group key and hence attain a high degree of
security. The authors in [10, 2, 17] developed authenticated group key agree-
ment schemes based on the Burmester-Desmedt model, Cliques, and TGDH
respectively. The one proposed in [17], called AGKA-G, is an extension of the
two-party Giinther scheme [8] to the TGDH protocol. However, the AGKA-
G protocol has several drawbacks. First, the Giinther scheme, and hence
AGKA-G, does not provide perfect forward secrecy. Besides, AGKA-G is not
role-symmetric since sponsors perform more operations in the key generation
and distribution. Furthermore, it is not completely contributory as sponsors
provide more contribution than non-sponsors in the resulting group key. As
described in Chapter 6, we propose an authenticated group key agreement
protocol that resolves these problems and meanwhile achieves desired security
properties.

Up to now, there have not been many implementation projects that at-
tempt to put group key management schemes in practice. The most famous
one is called Secure Spread [25, 1], which implemented the centralized group key
distribution protocol and a number of distributed group key agreement proto-
cols including the Burmester-Desmedt model, Cliques, TGDH, and STR. The
project reflects the features of the group key management schemes under join,
leave, merge, and partition events, and provides a set of function calls suitable
for secure application development. In our research, we implemented a pro-
gramming library based on the interval-based approach and built applications
with the library to demonstrate its strengths and effectiveness.

To summarize, group key management is divided into two categories: cen-
tralized group key distribution and decentralized group key agreement, while
the latter is further extended to authenticated group key agreement. Through
the investigation of batch rekeying under a key tree and the Tree-Based Group



Chapter 2 Related Work 8

Diffie-Hellman protocol, we make several contributions: proposing an interval-
based approach to perform rekeying, designing an authentication mechanism
to secure the algorithms, and implementing a programming library to realize

the algorithms.



Chapter 3

Tree-Based Group
Diffie-Hellman

In this chapter, we introduce the working principle of the Tree-Based Group
Diffie-Hellman (TGDH) protocol [11]' , which substantiates our proposed pro-
tocols discussed in later chapters. In the following explanation, we also bring
out several terminologies that will be used throughout this dissertation.

In TGDH, each member maintains a set of keys, which are arranged in a
hierarchical binary tree. We assign a node ID v to every tree node. For a given
node v, we associate a secret (or private) key K, and a blinded (or public) key
BK,. All arithmetic operations are performed in a cyclic group of prime order
p with the generator a. Therefore, the blinded key of node v can be generated
by

BK, = of'mod p. (3.1)

Each leaf node in the tree represents the individual secret and blinded keys
of a group member, denoted by M;. Every member holds all the secret keys
along its key path starting from its associated leaf node up to the root node.
Therefore, the secret key held by the root node is shared by all the members
and is regarded as the group key. Fig. 3.1 illustrates a possible key tree with

!The journal version of this paper appeared in [13].

9



Chapter 3 Tree-Based Group Diffie-Hellman 10

six members M; to Mg, e.g., member M; holds the keys at nodes 7, 3, 1, and
0. The secret key at node 0 is the group key of this peer group.

Figure 3.1: A possible key tree used in the Tree-Based Group Diffie-Hellman
protocol.

The node ID of the root node is set to 0. Each non-leaf node v consists
of two child nodes, whose node IDs are given by 2v + 1 and 2v + 2. Based
on the Diffie-Hellman protocol [5], the secret key of a non-leaf node v can be
generated by the secret key of one child node of v, and the blinded key of

another child node of v. Mathematically, we have

K, = (BKy,1)** mod p
= (BKapi2)*+ mod p

= ofrFoe mod p. (3.2)

Unlike the keys at non-leaf nodes, the secret key at a leaf node is selected by
its corresponding group member. The key selection can be achieved through
a secure pseudo random number generator [23].

Since the blinded keys are publicly known, every member can compute the
keys along its key path to the root node based on its individual secret key. To
illustrate, consider the group in Fig. 3.1. Every member M; generates its own
secret key and all the secret keys along the path to the root node. For example,
member M, generates the secret key K; and it can request the blinded key
BKjg from M,, BK, from Mj, and BK, from either My, Ms or Mg. Given
M;y’s secret key K7 and the blinded key BKjg, M; can generate the secret key
K3 according to Eq. 3.2. Given the blinded key BK, and the newly generated



Chapter 3 Tree-Based Group Diffie-Hellman 11

secret key K3, M; can generate the secret key K; based on Eq. 3.2. Given
the secret key K; and the blinded key BK,, M; can generate the secret key
K, at the root. From that point on, any communication in the group can be
encrypted based on the secret key (or group key) Kj.

To provide both backward confidentiality (i.e., joined members cannot ac-
cess previous communication data) and forward confidentiality (i.e., left mem-
bers cannot access future communication data), rekeying, which means renew-
ing the keys associated with the nodes of the key tree, is performed whenever
there is any group membership change, including any new member joining or
any existing member leaving the group. Let us first consider individual rekey-
ing, meaning that rekeying is conducted after every single join or leave event.
Before the group membership is changed, a special member called the sponsor
is elected, and the sponsor is responsible for updating the keys held by the new
member (in the join case) or departed member (in the leave case). We use the
convention that the rightmost member under the subtree rooted at the sibling
of the join and leave nodes will take the sponsor role. Note that the existence
of a sponsor does not violate the decentralized requirement of the group key

generation since the sponsor does not add extra contribution to the group key.

Figure 3.2: Tllustration of the rekeying operation after a single leave.

Fig. 3.2 illustrates a member leave event. Suppose that member My leaves
the system. Node 11 is then promoted to node 5, and nodes 2 and 0 become
renewed nodes, which are defined as the non-leaf nodes whose associated keys

in the key tree are renewed. Also, member M, becomes the sponsor. It needs



Chapter 3 Tree-Based Group Diffie-Hellman 12

to renew the secret keys K, and K, and broadcasts the blinded keys BK,
and BKj to all the members. Members M, M,, and Mj3, upon receiving the
blinded key BK,, can compute the new group key K. Similarly, members Mg

and M7, upon receiving BK5, can compute K, and then the new group key

Figure 3.3: Illustration of the rekeying operation after a single join.

Fig. 3.3 illustrates a new member Mg that wishes to join the group. Mg
has to first determine the insertion node under which Mg can be inserted. To
add a node, say v’ (or tree, say T") to the insertion node, a new node, say n', is
first created. Then the subtree rooted at the insertion node becomes the left
child of the node n’, and the node v' (or the root node of the tree 7") becomes
the right child of the node n'. The node n’ will replace the original location
of the insertion node. The insertion node is either the rightmost shallowest
position such that the join does not increase the tree height, or the root node
if the tree is initially well balanced (in this case, the height of the resulting tree
will be increased by 1). Fig. 3.3 illustrates this concept. The insertion node is
node 5 and the sponsor is M,. Mg then broadcasts its blinded key BK15 upon
insertion. Given BK,, M, renews K5, K5, and K, and then broadcasts the
blinded keys BK;5 and BK, to all members in the group. After receiving the
blinded keys from M,, all remaining members can rekey all the nodes along
their key paths and obtain the new group key Kj.

Based on the above leave and join events in Fig. 3.2 and 3.3, we find that
we can reduce one rekeying operation if we can simply change the association

of node 12 from Mj5 to Mg. Interval-based rekeying is thus proposed such that



Chapter 3 Tree-Based Group Diffie-Hellman 13

rekeying is performed on a batch of join and leave requests so as to reduce
the number of rekeying operations. Members carry out rekeying operations at
regular rekeying intervals. In the following chapter, we describe the interval-

based approach to manage rekeying operations.



Chapter 4

Interval-Based Distributed

Rekeying Algorithms

In this chapter, we present three interval-based distributed rekeying algo-
rithms, or interval-based algorithms for short. They are the Rebuild algorithm,
the Batch algorithm, and the Queue-batch algorithm. The aim of interval-based
rekeying is to maintain good rekeying performance which is independent of the
dynamics of joins and leaves. The three interval-based algorithms are devel-

oped based on the following assumptions:
e The key tree of TGDH is used as a foundation of all the algorithms.

e Rekeying operations are carried out at the beginning of every rekeying
interval. There exists a virtual queue holding all join and leave requests

until the beginning of the next rekeying interval.

e When a new member sends a join request, it also includes its individual

blinded key.

e For simplicity, all members know the existing key tree structure and they

also know all the blinded keys within the tree.

e To obtain the blinded keys of the renewed nodes, the key paths of the

sponsors should contain those renewed nodes. Since the interval-based

14



Chapter 4 Interval-Based Distributed Rekeying Algorithms 15

rekeying operations involve nodes lying on more than one key paths, more
than one sponsors may be elected. Also, a renewed node may be rekeyed
by more than one sponsor. Therefore, we assume that the sponsors can
coordinate with one another such that the blinded keys of all the renewed

nodes are broadcast only once.

In the next three sections, we present the interval-based algorithms. We
adopt the following notations in our description. Let 7" denote the existing key
tree. Assume that L > 0 existing members M' = (M!,--- ML) wish to leave
and J > 0 new members M’ = (M],---, M’) wish to join the group within

a rekeying interval.

4.1 Rebuild Algorithm

The motivation for the Rebuild algorithm is to minimize the resulting tree
height so that the rekeying operations for each group member can be reduced.
At the beginning of every rekeying interval, we reconstruct the whole key tree
with all existing members that remain in the communication group, together
with the newly joining members. The resulting tree is a left-complete tree,
where its leaf nodes have depths differed by at most one and those deeper leaf
nodes are located at the leftmost positions. The pseudo-code of the Rebuild
algorithm to be performed by every member is shown in Fig. 4.1.

Fig. 4.2 shows the scenario where members My, M5, and M; wish to leave
and a new member Mg wishes to join the communication group. Based on the
algorithm, the resulting key tree consists of five members and has all non-leaf

nodes renewed. Besides, the sponsors include all the five members.



Chapter 4 Interval-Based Distributed Rekeying Algorithms 16

Rebuild (T, M/, J, M!, L)

1. obtain all members from 7" and store them in M’;

2. remove the L leaving members in M’ from M,

3. add the J new members in M7 to M';

4. create a new binary tree 7' based on members in M’ and set T' = T";
5. elect all members to be sponsors;

6. rekey the key nodes and broadcast the new blinded keys in T’

Figure 4.1: Pseudo-code of the Rebuild algorithm.

M, M, M | eave
M joi ns>

Figure 4.2: Example of the Rebuild algorithm.
4.2 Batch Algorithm

The Batch algorithm is based on the centralized approach in [14], which is
now applied to a distributed system without a centralized key server and all
members contribute to the composition of the group key. The pseudo-code of
the Batch algorithm is given in Fig. 4.3. Notice that the sponsors may have to
wait for the blinded keys on another key path in order to proceed upwards to
rekey the nodes. Finally, all the members obtain the necessary blinded keys
to compute the new group key Kj.

The Batch algorithm is illustrated with two examples. In Fig. 4.4, we show
the case where L > J > 0. Suppose M, Ms, and M7 leave and a new member
Mg wishes to join. The following steps are carried out: (i) Mg broadcasts

its join request, including its individual blinded key. (ii) The leaf node 6



Chapter 4 Interval-Based Distributed Rekeying Algorithms

17

Batch (T, M/, J, M!, L)

1.
2.
3.

oo

15.
16.

17.
18.
19.

20.
21.

if (L ==0) { /* pure join case */
create a new tree 7" based on new members in M7;
either (a) add T" to the shallowest node of T' (which need not be the leaf
node) such that the merge will not increase the height of the result tree, or
(b) add T" to the root node of T if the merge to any node of T' will increase

the tree height;
} else { /* some existing members want to leave */

sort M! in an ascending order of the associated node IDs of the members
and store the results in M»* = (M{’S, e ,Mé’s);
if (L > J) { /* more members want to leave than join */
if (J > 0)
replace the departed nodes of (M{’s, e ,M?s) with J joined nodes;
if (L—J>0){
remove remaining L — J leaving leaf nodes from the parent node;
promote the siblings of the leaving leaf nodes;
}
} else { /* more newly joining members than leaving members */
divide M7 into L subgroups G = (G4, --- ,Gr) such that the first J mod
L subgroups (G1, -+ ,GJmod 1) contain [%J + 1 new members and the
rest contain [%J new members;
create L subtrees (77,--- ,T7}) for the subgroups G;
replace the departed nodes of (MV*, ... ,M‘l]’smoc1 ;) with the roots of
(T1,-++ ;T poq ) and the remaining departed nodes with the roots of

remaining subtrees;

}
}

elect the members to be sponsors if (1) they are new members, or (2) the right-
most members of the subtrees rooted at the siblings of the departed nodes or

replaced nodes in T7
if (sponsor) /* responsibility of the sponsor */

rekey the key nodes and broadcast the new blinded keys;

Figure 4.3: Pseudo-code of the Batch algorithm.



Chapter 4 Interval-Based Distributed Rekeying Algorithms 18

associated with M; is replaced by the node of Mg, and the leaf nodes 8 and
24 are removed. Nodes 7 and 23 are promoted to nodes 3 and 11, respectively.
(iii) My, My, Mg, and Mg are elected to be the sponsors. M; renews secret
keys K; and K,, and M, renews Ks5, K5, and Ky. M; then broadcasts BK/,
and M, broadcasts BK5 and BK;. Mg and Mg, though having the sponsor
role, do not need to broadcast any blinded keys as M, has already broadcast
this information. (iv) Finally, every member can compute the new group key

based on the received blinded keys.

-« M, M, M |eave, -
e . —p

/" M joins

Figure 4.4: Example 1 of the Batch algorithm where L > J > 0.

Fig. 4.5 illustrates the case where J > L > 0. Suppose Mg, My, and M,
join, and M, and M; leave. The rekeying process is: (i) Mg, My, and My
broadcast their join requests together with their own individual blinded key.
(ii) Mg and My form the subtree 7] and Mg is the only member of Tj. The
root, of T replaces node 6 and the root of T} replaces node 8. (iii) The sponsors
are My, Mg, Mg, My, and Myy. Mg and My first need to compute the secret
key Kg, and either one of them computes and broadcasts the new blinded key
BKg. (iv) My (or M) renews K3 and K, and broadcasts BK3 and BK;. Mg
renews K, and broadcasts BKs. (v) Finally, all the members can compute the

new group key Kj.



Chapter 4 Interval-Based Distributed Rekeying Algorithms 19

Figure 4.5: Example 2 of the Batch algorithm where J > L > 0.
4.3 Queue-batch Algorithm

We find that the previous approaches perform all rekeying steps at the begin-
ning of every rekeying interval. This results in a high processing load during
the update instance and thereby delays the start of the secure group com-
munication. Thus, we propose a more effective algorithm which we call the
Queue-batch algorithm. Its intuition is to reduce the rekeying load by pre-
processing the joining members in the virtual queue during the idle rekeying
interval.

The Queue-batch algorithm is divided into two phases, namely the Queue-
subtree phase and the Queue-merge phase. The first phase occurs whenever a
new member joins the communication group during the rekeying interval. In
this case, we append this new member in a temporary key tree T”. The second
phase occurs at the beginning of every rekeying interval and we merge the
temporary tree 7" (which contains all newly joining members) to the existing
key tree T'. The pseudo-codes of the Queue-subtree phase and the Queue-merge
phase are illustrated in Figs. 4.6 and 4.7.

The Queue-batch algorithm is illustrated in Fig. 4.8, where members Mg,
My, and M,y wish to join the communication group, while M, and M; wish
to leave. Then the rekeying process is as follows: (i) In the Queue-subtree
phase, the three new members Mg, Mgy, and Mg first form a tree T”. Mg, in
this case, is elected to be the sponsor. (ii) In the Queue-merge phase, the tree

T’ is added at the highest departed position, which is at node 6. Also, the



Chapter 4 Interval-Based Distributed Rekeying Algorithms 20

Queue-subtree (77)
if (a new member joins) {
if (T" == NULL) /* no new members in T’ */
create a new tree T" with the only one new member;
else { /* there are new members in T’ */
find the insertion node;

add the new member to T";

NS o

elect the rightmost member under the subtree rooted at the sibling of
the joining node to be the sponsor;

if (sponsor) /* responsibility of the sponsor */

© oo

. rekey the key nodes and broadcast the new blinded keys to the group;
10. }
11. }

Figure 4.6: Pseudo-code of the Queue-subtree phase.

Queue-merge (T, T', M', L)

1. if (L ==0) { /* there is no leave */

2. add T" to either (a) the shallowest node (which need not be the leaf node)
of T such that the merge will not increase the resulting tree height, or (b)
the root node of T' if the merge to any locations will increase the resulting
tree height;

} else { /* there are leaves */
add T" to the highest leave position of the key tree T’;

}

elect members to be sponsors if they are (a) the rightmost members of the subtree

S o w

rooted at the sibling nodes of the departed leaf nodes in 7', or (b) they are the
rightmost member of T";

if (sponsor) /* responsibility of the sponsor */

®© N

rekey the key nodes and broadcast the new blinded keys to the group;

Figure 4.7: Pseudo-code of the Queue-merge phase.



Chapter 4 Interval-Based Distributed Rekeying Algorithms 21

~ N!Z’ NL’ MO JSI f"l’
! M, M leave:

Figure 4.8: Example of the Queue-merge phase.

blinded key of the root node of T, which is BKj, is broadcast by Mig. (iii)
The sponsors My, Mg, and M, are elected. M; renews the secret key K; and
broadcasts the blinded key BK;, Mg renews the secret key K, and broadcasts

the blinded key BKj,. (iv) Finally, all members can compute the group key.



Chapter 5

Performance Evaluation

This chapter covers the performance evaluation of the interval-based algo-
rithms, consisting of Rebuild, Batch, and Queue-batch, in two aspects: math-
ematical analysis and simulations. It is important to point out that we only
measure the rekeying performance at the update instance occurring at the be-
ginning of each rekeying interval. Hence, for Queue-batch, we only consider
the Queue-merge phase but not the Queue-subtree phase. The pre-processing
steps in the latter do not influence the underlying communication which is
protected with the current group key except that it introduces slight overhead
of extra key exchange traffic. The measurement reflects the latency of gener-
ating the latest group key for data encryption in order to provide backward
and forward confidentiality.

In the following text, we describe a number of mathematical models and
simulation-based experiments. We also study the performance of the algo-
rithms in terms of their computation and communication costs. At the end of

this chapter, we discuss the implication brought by our evaluation findings.

5.1 Mathematical Analysis

In this section, we present the mathematical analysis of the three proposed

algorithms. We consider two performance measures, namely:

22



Chapter 5 Performance Evaluation 23

1. Number of exponentiation operations: This metric gives a measure of the

computation load of all members in the communication group.

2. Number of renewed nodes: A node is said to be renewed if it is a non-leaf
node and its associated keys are renewed. This metric provides a measure
on the communication cost since new blinded keys of the renewed nodes

have to be broadcast to the whole group.
For simplicity, we assume the following in the analysis:

e The existing key tree is completely balanced prior to the interval-based

rekeying event.
e Each member has a homogeneous leave probability.

e The computation of the blinded group key of the root node is counted
in the blinded key computations. With this assumption, the number of
blinded key computations simply equals the number of renewed nodes,
provided that the blinded key of each renewed node is broadcast only

once.

For the mathematical analysis, let N be the number of members originally
in the system, L (where 0 < L < N) be the number of members that wish to
leave the system, and J > 0 be the number of new members that want to join
the communication group. Let 7' denote the existing tree which contains N
members. The level of a node v is | = |logy(v + 1)|, where v is the node ID,
and the maximum level of T is h. Based on the first assumption, i.e., the key
tree is initially balanced, we know that N = 2". Also, let R4, be the number
of renewed nodes and &, be the number of exponentiations for the particular

algorithm alg. The performance measure &, is composed of two parts:

and 53

S
alg
1g» Which respectively represent the number of exponentiations of calcu-

lating the secret keys (which is done by all members) and that of calculating



Chapter 5 Performance Evaluation 24

the blinded keys (which is done by sponsors only). We have
galg = cflg + gglg' (51)
Also, we know the number of blinded key computations is

b
galg

= Ruy (5.2)

which is simply the mathematical interpretation of the last assumption.

In the following analysis, we only focus on the number of secret key com-

S

putations £, .

5.1.1 Analysis of the Rebuild Algorithm

Given N, L, and J, we can obtain the exact expressions for the two perfor-
mance measures R repuita aNd Erepuirg- It is important to note that the derived
expressions below are valid even if the existing key tree T is not completely
balanced originally.

The resulting number of members is N* = N — L +J > 0. Thus, the

number of renewed nodes (i.e. the number of non-leaf nodes) is

* 0 if N* =0,
Rrebuia(N*) = (5.3)
N* —1 otherwise.

For 5Rebuild(N*)a we find that when N* < ]-a gRebuild(N*) =0. If N* €
(27"=1 2" for B! > 1 where h' = |log,(N* —1)| + 1, we have

Eepuira( V) = (number of members at level A') x h' +
(number of members at level A’ — 1) x (' — 1)
= 2(N*—2loe"=Dl(|log,(N* —1)| + 1) +
(N* —2(N* =218V =00)) logy (N* — 1)

= N*[logy(N* —1)| + 2N* — 2(lleaa(N"=1)]+1) (5.4)



Chapter 5 Performance Evaluation 25

5.1.2 Analysis of the Batch Algorithm

In analyzing the performance of the Batch algorithm, we consider the following
five cases. Note that when L > 0, the performance metrics will depend on the
membership leave positions and exact metrics cannot be obtained. Therefore,
whenever L > 0 (e.g., cases 2 to 5 below), we derive the expected performance
measures. We also define Ry and g4, be the two performance measures
under condition ¢. We adopt the convention that the combination () equals
0ifn < 0,7 <0orn < r. (The following analysis is the extension of the
centralized case in [14] to the distributed case.)

Case 1: J > L =0 (pure join). Since the original key tree T is completely
balanced before the rekeying operations, the subtree 7" of the newly joined
members will be inserted at the root of the existing tree 7. Thus, the number

of renewed nodes is
R Batch,i>1=0 = Rpeetwita(J) +1=(J —1)+1=J. (5.5)

The first term corresponds to the number of renewed nodes for all new
members and the last term is to account for the node renewal cost to the root
node in the resulting tree 7.

The number of secret key exponentiations for the Batch algorithm is
g%atch,J>L:0 = E;{ebuild(‘]) + (N + J) (56)

The first term corresponds to the exponentiation cost of creating a tree for
the J new members. The term (N 4 J) is the secret key computations of the
new root node in the resulting tree performed by the N + J members.

Case 2: L > J = 0 (pure leave). Consider a node v at level I. In a
completely balanced tree, the node v has N/2! descendants. When L > 0, the
node v can be in one of the three different states at the rekeying instances:

no-change, pruned, and renewed. The node v can be in the “no-change” state



Chapter 5 Performance Evaluation 26

if none of its N/2! descendants wish to leave. The probability of being in the

no-change state is
N-N/2!
")

()

The node v is pruned if (1) all descendants of the node v leave, and (2)

P[node v is no-change] = (5.7)

all descendants of either its left or right subtree leave. In the latter case, v is
pruned due to node promotion (please refer to step 11 of the pseudo code of
the Batch algorithm). The number of non-leaf nodes that are pruned due to
the node promotion is L (or L — 1 if all members leave). Thus, the expected

number of renewed nodes can be expressed as

N—N/2!
o [1—( 6 )} ~L ifL<N

0 if L=N.

E[R Batch,1>1=0] = (5.8)

To calculate the expected number of secret key computations, we first de-
rive the probability of renewing a node in terms of the number of departed
descendants. When there is no node promotion, the node v is renewed if at
least one but not all descendants of v leave the communication group. With
node promotion, we have to exclude the counting of the renewed nodes that
are pruned due to the departure of all descendants of their left or right subtree.
The probability is thus given by

N/2'—1 (N/2!\ (N—N/2! Frr—l (N/2iH N-N/2! .
Plnode v is renewed| = Z CE)CLE) L )(L_Z_N/QH)

e D Dl )

L

N
N/2t -1 SFT

= ) pl) - 22 o (i), (5.9)

i=1
where p; () is the probability that ¢ members under the node v leave and po(7)
is the probability that all descendants under the left (or right) subtree of the
node v leave and ¢ members under the right (or left) subtree of the node v

leave.



Chapter 5 Performance Evaluation 27

Let M,(l) be the expected number of members involved in the secret key
computations of the node v. By considering how many members remain under

the node v, the expected number of secret key computations is thus equal to

h—1
E[gzssatch,L>J:0] = ZQle(l), (5.10)
1=0
where M, (l) is given by
N/2t—1 ST —1
N : N . :
M,(l) = Z [i - z] p(i) — 2 Z {W - z] pa(7)- (5.11)
i=1 i=0

Case 3: J = L > 0. Consider again a node v at level [. The probability

that the node v will be renewed is given by

Plnode v is renewed] = 1 — P[no member under node v leaves]
(N—N/2l)
1——£_ 7 (5.12)
(z)

Thus, the expected number of renewed nodes is

h—1 (N—N/2’)
E[RBatch,s=1>0] = ZQl [1 - #] : (5.13)

= ()

Similar to case 2 above, let us consider the expected number of members

that compute the secret key of node v at level [, which is

N/2
M,() = Z P[i members under node v leave][N/2]
i=1
N (N—N/2l) ]
= —|1-~L ], (5.14)
2 (z)

The expected total number of secret key computations is given by

h—1 h—1 (NfN/2l)
E[€Baten,i=1>0] = ZQZMU(Z) = NZ [1 - #] : (5.15)
1=0

(z)

Case 4: J > L > 0. In this case, the L leaving leaf nodes are replaced by

the roots of the subtrees 7}’s consisting of J new members, where 1 <7 < L.



Chapter 5 Performance Evaluation 28

Also, these subtrees will introduce an extra J — L renewed nodes. Using the

result in case 3, the expected number of renewed nodes is

E[RBatch s>1>0] = E 2! [1 - (NET%/Q) + (J = L). (5.16)

Among the L subtrees, the first J mod L subtrees consist of || + 1 new
members and require £§,54(| 2] + 1) secret key computations, and the rest
require Eg,iq(l2]) secret key computations. Let J' = L. The expected

number of secret key computations is

. ) 7
El€Ruenrsr>0] = El€aten.i—r>0l + (J mod L) Rebuild([EJ +1)
J

L

Note that the second to the last term is to subtract the secret key computa-
tions of the leaf node which is now replaced by the root node of the L subtrees.
The last term refers to the extra computations required by new members to
obtain the keys along the key path of the original tree T'.

Case 5: L > J > 0. In this case, we assume that the J newly joining
members will randomly select L leaving leaf nodes for replacement as those
leave positions are at the same level h. Using similar arguments as in case 2,
since the actual number of pruned nodes is L — J, the expected number of

renewed nodes is

- [1 )| (L —J). (5.18)

E[R Bateh,1,>7>0] = Z 2! ~
(2)

1=0
Similar to the analysis in case 2, the probability of a node v being renewed

at level [ is equal to the probability of the node v considered to be renewed
when no node promotion is performed, subtracting the probability of the node

v considered to be renewed without node promotion but pruned with node



Chapter 5 Performance Evaluation 29

promotion. These two probabilities, denoted respectively p; and po, are

p1 = P[node v is renewed when no node promotion]|
N/2t—1 N/2! . . .
_ Z Z p [k members under] % P [k — 4 members l]om}
=0 k=t

node v leave under node v

_p [no member under} % P [no member joins]
node v leave under node v

R N e
- ZZ( W 52 -5

1=0 k=1
N/2' -1 (NfN/Zl)
= O
270 =

A i) 62 (5)

where p/ (i) = Z 5 (5.19)
k=i (N/QI)
pe = Pla renewed node v is pruned due to node promotion]
N 4 N all members under the left k — i members
~ 221& § P (or right) subtree leave and k p join under the
- = members under the right (or right (or left)
- left) subtree leave subtree
N N AN N-N/2 6\ (L—k— N
~ 22z+1 Es! (2k )(L—k—ﬂ%) (k—z)( J—kigl)
= N L
i=0 k=i (L) (J)
_N__4q
ol +1
= 2 pIQ(Z)v
=0
N AN\ N-N/2 L—f—_N_
- PYES] (21;1)(11716721%) (k]iz)( Jfkig—l)
where p, (i) = = - 7 : (5.20)
= (z) ()
Thus, the probability that the node v is renewed is
P[node v is renewed] = p; — po. (5.21)

Hence, the expected number of secret key computations is given by

h—1
E[Egatch,L>J>0] = ZQZMU(Z)’ (522)
=0



Chapter 5 Performance Evaluation 30

where M, (l) is given by

M, (1) = Z(g ~i)al) - 5 (](va)) - 22(2N —i). G)

5.1.3 Analysis of the Queue-batch Algorithm

The main idea of the Queue-batch algorithm exploits the idle rekeying interval
to pre-process some rekeying operations. When we compare its performance
with the Rebuild or Batch algorithms, we only need to consider the rekeying
operations occurring at the beginning of every rekeying interval.

When J = 0, Queue-batch is equivalent to Batch in the pure leave scenario.
For J > 0, the number of renewed nodes in Queue-batch during the Queue-
merge phase is equivalent to that of Batch when J = 1. Thus, the expected

number of renewed nodes is

(

1 it J>0,L=0

h—1 o1 1—(N_iv/2l) .y ifJ=0 L>0
(=0 ) R (5.24)

E [RQueue—batch] = A

bl {1 )

L

}—(L—l) if J>0,L>0.

\
Also, the expected number of exponentiations when J > 0 for Queue-batch

is given by

N+J itJ>0,L=0
E[gQueue—batch] = E[£Batch,L>J:O] if J = 0’ L>0 (525)
E[gBatch,le and L>0] —d + dJ if J> 0, L>0.

For J > 0 and L > 0, assume the new subtree is attached to a node at some
level d. We first decrement d from E[Epatch,s—1 and L>0] to exclude the secret
key computations of the leaf node which is now replaced by the root node of
the new subtree. We then add dJ to account for the secret key computations

done by these new .J members.



Chapter 5 Performance Evaluation 31

The value d is the level of the highest node that has all its descendants
departed. Instead of computing the expected value of d, we can find an up-
per bound value for d, which occurs when the leaving leaf nodes are evenly

distributed in the key tree. Thus, d is given by

logy(N—L)|+1 if N>L
d = L g2( )J (526)
0 if N=L.

5.2 Experiments

In the previous section, we quantified the performance measures by assuming
that the existing tree is completely balanced. In this section, we perform a more
elaborate performance study by investigating the costs of exponentiations and
renewed nodes of the three proposed algorithms under different experimental
settings. Besides, we also consider how many rounds the members take to
generate the group key using different algorithms.

In the experiments, we assume a finite population of size 1024, among
which 512 are originally in the communication group at the beginning of each
experiment. We also assume that potential members outside the group have a
tendency to join the group with the same join probability. Similarly, members
within the group have a fixed leave probability of leaving the group. We let
ps and pr, denote the join and leave probabilities, respectively.

Experiment 1: (Comparison between individual rekeying and
interval-based rekeying algorithms) We first demonstrate through sim-
ulations that interval-based rekeying outperforms individual rekeying. Given
a number of join and leave requests, the individual rekeying approach first
processes one by one the join requests followed by the leave requests. We ran
the simulations over 300 rekeying intervals. Then we discarded the results
of the first 50 rekeying intervals to avoid transient discrepancies. Finally we

computed the average results of the remaining intervals.



Chapter 5 Performance Evaluation 32

Figs. 5.1, 5.2, and 5.3' illustrate the performance measures under different
join and leave probabilities. These figures show that the three interval-based
rekeying algorithms perform much better than the individual rekeying method.
The advantage is even more prominent under high join and high leave prob-
abilities. This implies that the interval-based rekeying algorithms can reduce
the computation and communication costs of the a group is highly dynamic.

Experiment 2: (Evaluation based on mathematical models) This
experiment evaluates the metrics of the three interval-based algorithms based
on the mathematical models presented in the previous section. We started
with a well-balanced key tree involving 512 members and then obtained the
metrics under different values of joins and leaves (i.e., J and L).

Fig. 5.4 illustrates the average number of exponentiations and the average
number of renewed nodes under different numbers of joining and leaving mem-
bers. From these figures, we observe that Queue-batch outperforms the other
two interval-based algorithms in all cases and there is a significant computa-
tion/communication reduction when the peer group is very dynamic (i.e., high
number of members that wish to join or leave the communication group).

Besides, we observe from Fig. 5.4 that the metrics of Batch and Queue-
batch exhibit a left-skewed bell-shaped pattern. To explain this behavior, we
notice that at the beginning, the number of renewed nodes increases with the
number of leaves and hence members have to rekey more nodes. However, as
the number of leaves keeps increasing, the tree depth diminishes and members
can take fewer rekeying steps to compute the group key. It is shown that the
reduction of the tree depth begins to dominate the effect of the increase in the
number of leaves when the number of leaves is around 100 to 200.

Experiment 3: (Average analysis at different fixed join probabil-
ities) The previous experiment studies the case where the original tree is a

balanced key tree. In this experiment, we further examine the case when the

IBecause of the large size of the figures, we present them at the end of this chapter.



Chapter 5 Performance Evaluation 33

key tree becomes unbalanced after many intervals of join and leave events. We
varied the join probability p; to be 0.25, 0.5, and 0.75, and then evaluated
the average performance measures of the three algorithms under various leave
probabilities.

The results are illustrated in Fig. 5.5. We observe that Queue-batch out-
performs the other two algorithms in terms of the costs of exponentiation and
renewed nodes in most cases. The exception is that Queue-batch needs more
exponentiations than Batch when the leave probability is low (smaller than
0.2). The reason is that attaching the subtree of new members to an exist-
ing tree with few leaves may make the key tree unbalanced, leading to more
computations in subsequent rekeying intervals. Moreover, the performance of
Rebuild is the worst when p;, is low, but approaches that of Batch when p;,
is high (e.g., both algorithms have similar average numbers of exponentiations
and renewed nodes when p;, is higher than 0.6 and 0.8, respectively). In most
situations, Queue-batch outperforms the other two algorithms at different join
and leave probabilities. This shows that the pre-processing of the join requests
in Queue-batch can significantly reduce the computation and communication
loads at the rekeying intervals.

Experiment 4: (Instantaneous analysis at different join and leave
probabilities) This experiment compares the instantaneous performance mea-
sures of Batch and Queue-batch over 300 rekeying intervals (we ignore Rebuild
because it performs the worst among the three algorithms). We consider the
cases with different values of p; and py to represent different mobility char-
acteristics of the peer group. In this experiment, we recorded the metrics at
each rekeying interval.

Fig. 5.6 illustrates the instantaneous number of exponentiations at differ-
ent values of p; and py. It is interesting to note that when the group has
a moderate to high leave probability, then Queue-batch significantly outper-

forms the Batch algorithm. Fig. 5.7 illustrates the instantaneous number of



Chapter 5 Performance Evaluation 34

renewed nodes. Queue-batch has a much lower cost in renewing nodes, as
compared to the Batch algorithm. This implies that Queue-batch can reduce
the communication cost significantly.

Experiment 5: (Performance analysis of Queue-batch with differ-
ent reset intervals) Queue-batch does not reconstruct the whole key tree as
Rebuild during the rekeying. Thus the key tree may become unbalanced after
some rekeying intervals. In this experiment, we consider how Queue-batch
performs if we reconstruct the key tree using the Rebuild algorithm every Tg
rekeying intervals, where T is called the reset interval. This approach keeps
the tree balanced at the cost of executing the Rebuild algorithm. We fixed p;
= 0.5 and p;, = 0.25, 0.5, and 0.75, and ran the simulations over 1000 rekeying
intervals. Fig. 5.8 illustrates that the performance of Queue-batch remains ap-
proximately constant even at high reset intervals, meaning that Queue-batch
can still preserve its performance without reconstructing the key tree after a
long period of rekeying. This shows the robustness of the Queue-batch algo-
rithm in maintaining a relatively balanced tree. This property is important
because it can reduce the average costs of exponentiations and renewed nodes
in the system.

Experiment 6: (Analysis in terms of number of rounds) In this
experiment, we investigate the number of “rounds” required for the members
to obtain the group key using different rekeying algorithms. We define one
round as the period during which the group members can compute the secret
keys as far up the key tree as they can. At the end of each round, all spon-
sors have to broadcast the blinded keys of the renewed nodes that have their
secret keys computed so that other members can proceed with the secret key
computations. In the analysis, we assume that rekeying is performed in lock-
step, meaning that the two steps of secret key computations and blinded key
broadcasts do not occur coincidentally.

Fig. 5.9 illustrates the results in both the average and instantaneous cases.



Chapter 5 Performance Evaluation 35

At high leave probabilities, Queue-batch saves 3 to 4 rounds as compared to
Rebuild and Batch. The savings are due to the preprocessing of join requests
at the Queue-subtree stage. A fewer number of rounds is preferred as less mes-
sage overhead is involved in processing rekeying messages and storing message

headers.

5.3 Discussion of the experimental results

The above experiments show that under the stochastic settings, the interval-
based algorithms offer better computation and communication performance
than the individual rekeying approach and Queue-batch is the best among the
three interval-based algorithms. The superior performance of Queue-batch is
more obvious when the occurrences of join and leave events are highly frequent,
and the reason is explained below. Moreover, Queue-batch demonstrates its
robustness in keeping the key tree balanced and its capability in minimizing
the number of rounds required.

To understand why Queue-batch outperforms more than the other two
algorithms when the group is highly dynamic, we consider two cases: frequent
joins and frequent leaves. When the number of join events is high, Queue-batch
gains substantial performance advantages via the pre-processing of the join
events in the Queue-subtree phase. Besides, when the number of leave events
is high, Queue-batch reduces the depths of the existing tree nodes through node
pruning. Batch, however, replaces the leaving leaf nodes with the joining ones
and preserves the depths of the tree nodes. It implies Queue-batch requires
fewer rekeying steps for the members whose associated leaf nodes are promoted
to shallow positions. In combining two cases, Queue-batch can receive higher

performance gains benefited from the frequent membership events.



Chapter 5 Performance Evaluation 36

Average number Average number
of exponentiations of renewed nodes

1.2e+06
1e+06
800000
600000
400000
200000

(a) Average number of exponentiations (b) Average number of renewed nodes

Figure 5.1: Performance differences between individual rekeying and Rebuild.

Individual rekeying -------- Individual rekeying -
Batch Batch

Average number Average number
of exponentiations of renewed nodes

1.2e+06
1e+06
800000
600000
400000
200000

(a) Average number of exponentiations (b) Average number of renewed nodes

Figure 5.2: Performance differences between individual rekeying and Batch.

Individual rekeying -------- Individual rekeying --------

Queue-batch Queue-batch
Average number Average number
of exponentiations of renewed nodes

1.2e+06
1e+06
800000
600000
400000
200000

(a) Average number of exponentiations (b) Average number of renewed nodes

Figure 5.3: Performance differences between individual rekeying and Queue-
batch.



Chapter 5 Performance Evaluation

Average number of exponentiations

7000

Rebuild ——
Batch — — -
Queue-batch ——--

6000
5000

‘.
4000 fr
3000

2000

1000

0

0 100 200 300

Number of leaves

400

(a) Average number of exponentiations

—
o

—
D

< Average number of exponentiations

Average number of exponentiations

~—

at J = 128

9000

Rebuild ——
Batch — — -
Queue-batch ——--

8000
7000
6000 [

so00 p, 7 T
4000
3000 ]
2000 -

1000 \

0

0 100 200 300

Number of leaves

Average number of exponentiations
at J = 256

10000
9000
8000
7000
6000 }/°
5000
4000
3000 N\
2000 ~
1000

0

400

Rebuild ——
Batch — — -
Queue-batch ——-

0 100 200 300

Number of leaves
Average number of exponentiations

at J = 384

400 500

Average number of renewed nodes

37

700 y
Rebuild ——
Batch — — -
Queue-batch —-—--

600
500
400
0f .-"" 777"
200

100

0 100 200 300

Number of leaves

400

(b) Average number of renewed nodes

Average number of renewed nodes

at J =128
800 y
Rebuild ——
Batch — — -
700 Queue-batch —-—--
600
500
400 -
7
300 [/
200 f e—mmmm—ee -
-/'/ T ~.
w00} 7 T~
0 ./ \'\,\r
0 100 200 300 400 500

Number of leaves

(d) Average number of renewed nodes

Average number of renewed nodes

at J = 256
900
Rebuild ——
Batch = — -
800 Queue-batch ——-
700
600 f o m——mm _
500 .7 RN
7/
400
300
200 T
‘/"' """"" -
100 .
7 i~
o -
0 100 200 300 400 500

Number of leaves

(f) Average number of renewed nodes

at J = 384

Figure 5.4: Performance results of Rebuild, Batch, and Queue-batch at differ-
ent numbers of joins based on mathematical models.



Chapter 5 Performance Evaluation

12000
Rebuild ——
Batch = = -

10000 Queue-batch ——-

8000
6000
4000

2000 fj

Average number of exponentiations

0
0O 01 02 03 04 05 06 07 08 09 1
Leave Probability

Average number of exponentiations
at py = 0.25

—_~
o
N

12000 Rebuild ——

Batch — = -

10000 Queue-batch ——-

8000
6000
4000

2000 [j

Average number of exponentiations

0
0O 01 02 03 04 05 06 07 08 09 1

Leave Probability
(c) Average number of exponentiations

at p;y = 0.5

12000 Rebuild ——

Batch — = -

10000 Queue-batch ——-

8000

6000

4000

Average number of exponentiations

2000 fj

0
0O 01 02 03 04 05 06 07 08 09 1
Leave Probability

(e) Average number of exponentiations
at py = 0.75

38

1200

Rebuild ——

4 Batch — = -
‘§ 1000 Queue-batch ——-
°
:
3 800
=
o
S 600
[
o
[S
3 400
()
j=2]
© —
T 200 T TTm—l
= |\ T
< |\, TTmea

0 =

0O 01 02 03 04 05 06 07 08 09 1

Leave Probability
(b) Average number of renewed nodes

at py = 0.25

1200 Rebuild ——

Batch — — -
1000 Queue-batch ——-

800
600
400

200

Average number of renewed nodes

03 04 05 06 07 08 09 1
Leave Probability

(d) Average number of renewed nodes
at p;y = 0.5

1200 Rebuild ——

Batch — — -
1000 Queue-batch ——-

800
600
400

200

Average number of renewed nodes

o -
0O 01 02 03 04 05 06 07 08 09 1

Leave Probability
(f) Average number of renewed nodes

at py = 0.75

Figure 5.5: Average performance results of Rebuild, Batch, and Queue-batch

at different fixed join probabilities.



Chapter 5 Performance Evaluation

number of

Batch
Queue-batch

50 100 150 200
Rekeying interval

250

300

(a) ps = 0.25, pr, = 0.25

number of

7000

6500 i

6000

5500

5000
0

Batch
Queue-batch

50 100 150 200
Rekeying interval

250

300

(d) p;s = 0.5, pr, = 0.25

number of

8500

8000

7500 |}

7000

6500

6000
0

Batch
Queue-batch

50 100 150 200
Rekeying interval

250

300

(g) ps = 0.75, pr, = 0.25

number of

4000

3500

3000

2500

2000

1500
0

Batch
Queue-batch

50

100 150 200
Rekeying interval

250

300

(b) p; = 0.25, pr, = 0.5

number of

number of

6000

2 5500

5000

4500

4000

3500

3000

2500
0

7500

S 7000

6500
6000
5500
5000
4500
4000
3500

3000
0

Batch
Queue-batch

50

100 150 200
Rekeying interval

250

300

(e) py =0.5,p, =0.5

Batch
Queue-batch

50

100 150 200
Rekeying interval

250

300

(h) p; = 0.75, pp, = 0.5

number of

3500

3000

2500

2000

1500

1000

500
0

Batch
Queue-batch -

50 100 150 200
Rekeying interval

250 300

39

(c) py = 0.25, pr, = 0.75

number of

number of

5000
4500
4000
3500
3000
2500
2000
1500

1000
0

7000

6000

5000

4000

3000

2000

1000
0

Batch
Queue-batch ————

50 100
Rekeying interval

(f) py = 0.5, pp, = 0.75

150 200 250 300

Queue-batch ———

50 100 150 200
Rekeying interval

250 300

(i) ps = 0.75, pr, = 0.75

Figure 5.6: Instantaneous numbers of exponentiations of Batch and Queue-
batch at different join and leave probabilities.



Chapter 5 Performance Evaluation

400

Batch
Queue-batch -

350

300

Instantaneous number of renewed nodes

0 50 100 150 200 250 300
Rekeying interval

(a) ps = 0.25, pr, = 0.25

Batch
500 Queue-batch -

Instantaneous number of renewed nodes

4 50 100 150 200 250 300
Rekeying interval

(d) py = 0.5, pr, = 0.25

Batch ——

550 Queue-batch ———
00 WMWMMWWWWWWNM
450

Instantaneous number of renewed nodes

4 50 100 150 200 250 300
Rekeying interval

(g) ps = 0.75, pr, = 0.25

400

Batch
Queue-batch -

Instantaneous number of renewed nodes

50 100 150 200 250 300
Rekeying interval

(b) psy = 0.25, p = 0.5

Batch
500 Queue-batch -

450
400

50 100 150 200 250 300
Rekeying interval

(e) ps = 0.5, pr, = 0.5

Instantaneous number of renewed nodes
w
&
3

650
Batch
600 Queue-batch -

Instantaneous number of renewed nodes

0 50 100 150 200 250 300
Rekeying interval

(h) py = 0.75, p, = 0.5

40

350

Batch
200 Queue-batch

Instantaneous number of renewed nodes

0 50 100 150 200 250 300
Rekeying interval

(c) py = 0.25, pr, = 0.75

Batch
Queue-batch

Instantaneous number of renewed nodes

0 50 100 150 200 250 300
Rekeying interval

(f) ps = 0.5, pr, = 0.75

700

atch ——

Queue-batch

600

Instantaneous number of renewed nodes

0 50 100 150 200 250 300
Rekeying interval

(i) ps = 0.75, pr, = 0.75

Figure 5.7: Instantaneous numbers of renewed nodes of Batch and Queue-batch
at different join and leave probabilities.



Chapter 5 Performance Evaluation 41

8000 T T T T
Leave probability = 0.25 ——
Leave probability =05 — — - |

7000 ¢ Leave probability = 0.75 ——-

6000

5000 f
4000 |- - _ _ _

3000

2000 [~

1000 1

Average number of exponentiations

o L . .
10 20 30 40 50 60 70 80 90 100
Reset interval
(a) Average number of exponentiations at p; = 0.5

350 T T T T T
Leave probability = 0.25 ——
Leave probability =0.5 = — -

300 F Leave probability = 0.75 — ="~

250 1

200 e e PP

150 1

00 T

Average number of renewed nodes

50 + + + + + * + +

10 20 30 40 50 60 70 8 90 100
Reset interval

(b) Average number of renewed nodes at p; = 0.5

Figure 5.8: Average performance results of Queue-batch at different reset in-
tervals.



Chapter 5 Performance Evaluation

12

42

Average number of rounds
e

Average number of rounds
e

Rebuild Rebuild Rebuild
Batch — = Batch — = Batch — -
10 _ﬁ 10 ——l Queue-batch ==+ 10 —— Queue-batch ==
8

Average number of rounds

0 01 02 03 04 05 06 07 08 09 1
Leave Probabilty

(a) ps = 0.25

10
Batch ——

8 Queue-batch
3 8
s
R
E
5
2
g 4
g
2
g
§ 2
%
i

0

0 50 100 150 200 250 300

Rekeying interval

(d) PJ = 0.25, PL = 0.25

Batch ——
Queue-batch -

Instantaneous number of rounds

0
0 50 100 150 200 250 300

Rekeying interval

(g) pr=0.5, pr =0.25

Batch
Queue-batch -

Instantaneous number of rounds

0

0 50 100 150 200 250 300
Rekeying interval

() ps = 0.75, pr, = 0.25

0 01 02 03 04 05 06 07 08 09
Leave Probability

(b) ps =05

10
Batch

8 Queue-batch
3 8
s
2 6|
E
E ¢
2
g 4
8
2
g
§ 2
%
i

0

0 50 100 150 200 250 300

Rekeying interval

(e) p;j =0.25, p, = 0.5

10

Batch
Queue-batch -

Instantaneous number of rounds

0 50 100 150 200 250 300
Rekeying interval

(h) p;j = 0.5, pL = 0.5

10

Batch
Queue-batch -

Instantaneous number of rounds

0 50 100 150 200 250 300
Rekeying interval

(k) ps = 0.75, pr, = 0.5

1

0 01 02 03 04 05 06 07 08 09 1
Leave Probability

(¢) ps =0.75

-
S

Queue-batch -

©

o

IS

~

Instantaneous number of rounds

0

0 50 100 150 200 250 300
Rekeying interval

(f) py = 0.25, p, = 0.75

Queue-batch -

Instantaneous number of rounds

0 50 100 150 200 250 300
Rekeying interval

(i) ps = 0.5, pr, = 0.75

Batch
Queue-batch -

Instantaneous number of rounds

0 50 100 150 200 250 300
Rekeying interval

(1) ps = 0.75, pr, = 0.75

Figure 5.9: Average and instantaneous numbers of rounds of Rebuild, Batch,
and Queue-batch at different join and leave probabilities.



Chapter 6

Authenticated Tree-Based
Group Diffie-Hellman

The Diffie-Hellman protocol [5], which is the basic protocol for constructing
TGDH, is vulnerable to the man-in-the-middle attack. To resolve the problem,
we incorporate an authentication step into the Diffie-Hellman protocol. One
simple approach is to require both parties to sign and certify their blinded
keys; i.e., members exchange with each other a key message containing { BK,
sign(BK)}, where sign(-) is the signature function to be applied to the blinded
key BK. We may assume that both parties have already acquired the certifi-
cate of the other member from a trusted certificate authority (CA) to verify
the signatures. The simple approach, however, incurs high computation cost
in verifying signatures. More important, it is vulnerable to the substitution
attack [6], meaning that an intruder may substitute its own signature for the
signature of the other member.

To provide authentication in group key agreement, we devise an Authen-
ticated Tree-Based Group Diffie-Hellman (A-TGDH) protocol. Our protocol
extends the two-party authenticated Diffie-Hellman protocol proposed in [21],
and our authentication protocol has the following security properties: (i) key
authentication (i.e., all group members are assured that no outsiders can ac-

cess the group key), (ii) key confirmation (i.e. all group members are assured

43



Chapter 6 Authenticated Tree-Based Group Diffie-Hellman 44

that they all possess the same group key), (iii) known-key security (i.e., the
compromise of past short-term keys does not undermine the secrecy of fu-
ture short-term keys), and (iv) perfect forward secrecy (i.e., the compromise
of long-term keys does not undermine the secrecy of past short-term keys).
Each member holds two types of keys: short-term secret and blinded keys, as
well as long-term private and public keys.! Short-term keys (or session keys)
are randomly generated when a member joins the group and becomes expired
when the member leaves, while long-term keys (or permanent keys) remain
static across many sessions and are certified by a trusted CA. Property (i) by
itself provides implicit key authentication. If both properties (i) and (ii) are

satisfied, the group key agreement scheme achieves explicit key authentication.

6.1 Description of A-TGDH

In the following description, we adopt several notations. As stated in Chap-
ter 6, every node v in the key tree is associated with a secret key K, and a
blinded key BK,. We then construct the blinded key set BK,, which, in gen-
eral, refers to a number of copies BK,’s respectively encrypted by the long-
term private component of every descendant group member of node v (the
mathematical formulation of BK] is presented below). The set of the descen-
dant members of node v is given by M ,. The ith member, M;, holds a short-
term secret key rj;, and the corresponding blinded key o mod p, as well as
a long-term private key z,,, and the corresponding public key a**: mod p.
For simplicity, we assume that all group members acquire each other’s
certificates and hence long-term public keys from a trusted CA before the key
agreement process starts. Otherwise, the process should include the steps of

exchanging the certificates.

ITo distinguish between short-term and long-term key pairs, we use “secret key” and
“blinded key” to represent short-term keys and the keys associated with the tree nodes, as
well as “private key” and “public key” to refer to long-term keys.



Chapter 6 Authenticated Tree-Based Group Diffie-Hellman 45

We first review the two-party AK protocol given in [21]. Our presentation is
based on the cyclic group of prime order p with generator oe. Given two parties,
say M; and M,, the AK protocol works as follows (all arithmetic operations
are to be performed mod p, although the convention is omitted for brevity):
M; sends a1 to My and M, sends o2 to M;. M; computes (a"Mz)™1 -
(@M )ran toMy = o ay "My T TMy HTM 0 Analogous operations are performed
by M,. The agreed session key is then given by K = o1 My M TMy T7M %0,

The AK protocol offers a number of advantages. It involves only two passes
and thus saves communication cost. It achieves key authentication and known-
key security [21]. If it is incorporated with key confirmation, it gives perfect
forward secrecy as well [3].

We next extend the two-party AK protocol to our proposed A-TGDH pro-
tocol. In A-TGDH, we associate a node v with K,, and BK] as follows:

e If node v is a non-leaf node (with child nodes 2v + 1 and 2v + 2):

K, = & modp,

where k£ = K2u+1K2v+2 + K211_|_1 Z T M; + K21,_|_2 Z T M, (61)
MiEM2v+2 MiEM2'u+1

if node v is the left child

of its parent

if node v is the right child
of its parent

)
{af*™: mod p: M; € M1}

BK! =<{ {a®*M mod p: M; € M, 1}

if node v is the root node

undefined

L (i.e. v =0)
(6.2)
e If node v is a leaf node (associated with member M;):
K, =ruy; (6.3)
BK, = o™i mod p. (6.4)

Thus, if a given node v needs to be renewed, a sponsor can simply broadcast

BK] according to one of our interval-based rekeying algorithms. Also, any



Chapter 6 Authenticated Tree-Based Group Diffie-Hellman 46

member can still include its short-term blinded key (i.e., the blinded key of its
corresponding leaf node) in its join request.

To achieve key confirmation, each member can broadcast the one-way func-
tion result of the group key after it is generated. However, this involves O(N)
broadcasts, where N is the number of members in the group, and this may be
impractical. In an alternative approach given in [10], each member only needs
to demonstrate its knowledge of the group key to its neighbors, provided that
all the members are arranged in a linear chain. However, such an approach
is vulnerable to the collusion attack [10]. To avoid the collusion attack prob-
lem, we propose the following. We divide a group into subgroups, such that
members only confirm (via broadcasts) the group key with others within the
same subgroup. The subgroups can be disjoint or intersected. The subgroup
size and the number of subgroups are chosen depending on the desired level of
security.

To illustrate how A-TGDH works, we consider a possible key tree formed
after the rekeying process as shown in Fig. 6.1. Nodes 0, 1, and 2 are renewed
nodes. Also, M; and M3 are chosen to be the sponsors. Hence, the members

perform the following steps (key confirmation is ignored):

Ml( S) MB( S)

Figure 6.1: Example of authenticated key agreement involving 4 members.

e Since the blinded keys of leaf nodes are o™i, for 7 = 1, 2,3, and 4, the

secret keys of nodes 1 and 2 are computed as

Kl = oMM +T My T My T My T

K, = QM3 Myt T My T My FT My TMy



Chapter 6 Authenticated Tree-Based Group Diffie-Hellman 47

e The sponsor M; broadcasts of*Ms and o®1#™: and the sponsor M;

broadcasts af?*M1 and f2*Mm: .

e M, and M, can retrieve o2 from a®2?M1 and of2*™: respectively. Simi-
larly, M3 and M, can retrieve o®!. Therefore, the members can compute

the resulting group key, K, as

KO — aK1K2+K1($M3+$M4)+K2($M1 +zM,)

A-TGDH acquires a higher degree of security at the expense of involving
more key exchanges and key computations. The trade-off study between se-
curity and performance is a classic problem and the right answer varies from
applications. However, we point out that secure applications should include
authentication in all situations since the man-in-the-middle attack can bring
catastrophic consequences. Authentication can be achieved through either au-
thenticated key agreement protocols such as A-TGDH or non-authenticated

key agreement protocols that are protected with digital signatures.

6.2 Security Analysis

We argue that A-TGDH satisfies our stated security goals. We assume the
existence of an active adversary E, which can inject, modify, and delete mes-
sages transferred between group members. The following arguments are mainly
based on the Diffie-Hellman problem [5], i.e., given the elements «, p, &® mod
p, and ¥ mod p, it is computationally infeasible to obtain o mod p without

knowing both z and y.

Theorem: A-TGDH satisfies key authentication, key confirmation, known-key
security and perfect forward secrecy.

Proof: We show that the protocol satisfies the following security properties:



Chapter 6 Authenticated Tree-Based Group Diffie-Hellman 48

Kvzm; with a4, for all pos-

1) Key authentication. Suppose E replaces o
sible public components involving node v and member M;. In this case, a
legitimate member M; will compute the secret key of some node v, as K,, =
E, - 5o @ Kavon (assuming that M; holds the secret component Ko, 1),
where F, is the product of the public components obtainable by E. However, it
is known to be computationally infeasible for E to obtain K, without know-
ing Koy, 41 and x, (this is the Diffie-Hellman problem). Hence, A-TGDH
provides the key authentication property.

2) Key confirmation. As stated in the previous sub-section, a group can achieve
different security levels of key confirmation determined by the subgroup size
and the number of subgroups. The larger the subgroup size, the higher the
degree of key confirmation that can be achieved. Also, if there are many
subgroups and all of them intersect, we can obtain a higher level of key con-
firmation.

3) Known-key security. It should be noted that the authenticated group key
K consists of a secret random component equivalent to the group key of the
non-authenticated TGDH. If E' compromises this authenticated group key Ky,
it cannot compute the past group keys as their corresponding secret random
components are composed of the short-term secrets ry,’s offered by different
combinations of members, and doing so will require E to solve the Diffie-
Hellman problem. If any two past group keys refer to the same set of members,
they are still different since each member M; renews rj;, when it re-joins the
group.

4) Perfect forward secrecy. We want to prove that the secret keys of all non-leaf
nodes provide perfect forward secrecy. We prove this property by induction

on the levels of the tree which has the lowest level A.

e Basis. Consider a node v, at level h — 1 whose children are both leaf
nodes associated with members M;; and M;,. Given the long-term

private keys x,;, and zp,,, the adversary E cannot compute K, =



Chapter 6 Authenticated Tree-Based Group Diffie-Hellman 49

Q Mia "Mip FTMi TMip FTMip TMi - gince computing oM™z without knowing

Tm;, and 7y, is the Diffie-Hellman problem.

e Induction hypothesis. Suppose that the keys of nodes 2v + 1 and

2v 4 2 at some level [, where 0 < [ < h — 1, give perfect forward secrecy.

e Induction step. Consider the node v at level [ — 1. Given only the
long-term private keys, we cannot deduce Ky,;; and Ks,.2 (by hypoth-

esis). This implies K, cannot be computed as it contains the component

aK2v+1K2v+2 .

Thus, by induction, £ cannot compute the secret keys of all non-leaf nodes
given only the long-term private keys, i.e., those keys satisfy perfect forward

secrecy.



Chapter 7

Implementation and

Applications

We implemented a Linux-based C language application programming interface
(API) library based on our interval-based algorithms. The API library, called
the Secure Group Communication Library (SGCL)' | provides necessary soft-
ware components for developers to write secure group-oriented applications.
To realize how to use the library, we built two demo applications: Chatter
and Gauger. Chatter is a secure chat-room application which allows group
members to communicate in plain messages that can be encrypted in real-
time. It supports both graphical and text modes. Gauger, on the other hand,
aims to analyze the performance of the interval-based algorithms under real
network settings. It can measure various performance metrics, such as the
rekeying time, the number of exponentiations in the group key generation and
the number of blinded key broadcasts, during a rekeying operation. Both ap-
plications reveal the strengths of using SGCL in the development of secure
group-oriented applications for a peer-to-peer or mobile ad-hoc environment.

This chapter covers the implementation issues regarding SGCL. In Sec-

tion 7.1, we first discuss two special member roles, leader and sponsor, and

For details about SGCL as well as its source codes, please refer to:
http://www.cse.cuhk.edu.hk/~cslui/ ANSRlab/software/SGCL/index.html.

90



Chapter 7 Implementation and Applications 51

explain their functions in facilitating the implementation. In Section 7.2, we
present the system architecture of the library. In Section 7.3, we introduce
the API functions and describe their properties. In Section 7.4, we give ex-
perimental results obtained from Gauger and study the performance of the
interval-based algorithms under a real network environment. In Section 7.5,
we introduce Chatter, a real-life application developed under SGCL, and sug-
gest other potential applications where SGCL fits their development needs.
Finally, in Section 7.6, we discuss possible future extensions that enhance the

security of the implementation.

7.1 Leader and Sponsors

The interval-based algorithms mentioned in Chapter 4 are built upon two im-
portant assumptions. First , all group members are synchronized to conduct
rekeying operations periodically. Second, the sponsors know how to coordinate
with each other so that they refrain from broadcasting the same blinded key
more than once. In this section, we consider how to implement these assump-
tions. We begin with the introduction of a new role, called the leader, whose
responsibility is to notify members to start a rekeying operation synchronously.
We describe how a leader is elected to carry out its designated duties. Also,
we discuss how sponsors are elected and coordinate with each other to mini-
mize the number of communication rounds required for broadcasting renewed
blinded keys. At the end of this section, we summarize the working idea of a

rekeying operation in the presence of the leader and sponsors.

7.1.1 Leader

The leader is the single member that is responsible for periodically notifying
all group members to start a rekeying operation at regular rekeying intervals,

for instance, via the broadcast of a rekeying message to all group members.



Chapter 7 Implementation and Applications 52

Such a role is necessary because of two reasons. First, the members may not
share a global clock to synchronize on performing rekeying operations. Second,
new members do not know the rekeying information including the present join
and leave events as well as the existing key tree when they join the group.
Although the leader can provide such rekeying information specifically for each
new joining member, the processing load of the leader will become significant
when the number of joining members is very high. To address both issues
simultaneously, not only should the leader periodically broadcast a rekeying
message to notify others to start a rekeying operation, but the leader also
needs to include in the rekeying message the join and leave events as well as
the structure of the current key tree that are to be manipulated in the rekeying
operation. In order to achieve both purposes, we elect the member that stays
in the communication group for the longest time to be the leader.

A group member carries out leader election in two scenarios: (1) when
the group member newly joins the group and (2) when the leader leaves the
group. In either scenario, the group member first decides if it is the leader by
checking if it stays the longest in the group. Assume that a group member
recognizes the current membership when it joins the group. Then it can make
the decision by checking if it is the first member in the group (for scenario
1)or if all other members that are initially in the group have departed (for
scenario 2). If it is the leader, it starts periodically broadcasting rekeying
messages to notify others to start a rekeying operation. Otherwise, it waits
for the first incoming rekeying message and concludes that the sender of the
received rekeying message to be the leader.

It is possible that a newly elected leader does not know the current key
tree structure. This occurs when it has joined the group for some time and
has not started any rekeying operation. In this case, the leader should include
only an empty tree and the join events in the rekeying notification. The leave

events, however, are not required as they do not take effect in an empty tree.



Chapter 7 Implementation and Applications 53

7.1.2 Sponsors

Sponsors, as previously stated, refer to the group members that need to broad-
cast the blinded keys associated with the nodes in a key tree during a rekeying
operation. To determine which blinded keys each sponsor should broadcast, we
first set an implementation requirement: each member only holds the blinded
keys along its co-path [11], which is defined as the sequence of nodes whose sib-
lings belong to the key path of the member. This implementation requirement
is tighter than the assumption stated in our performance evaluation analysis
in Chapter 5, that is, each group member holds all the blinded keys within the
key tree. Thus, members can be benefited from less storage overhead for the
blinded keys. As each member holds the blinded keys along its own co-path,
the sponsors have to broadcast the blinded keys of the non-renewed nodes
which are the children of the renewed nodes so that members can compute the
secret keys of the renewed nodes. Broadcasting non-renewed blinded keys is
essential for the new members which know nothing before they join the group
as well as for the existing members whose co-path does not include the non-
renewed nodes prior to the rekeying operation (we will later illustrate how it
helps the existing members with an example). Therefore, in our implementa-
tion, we appoint the sponsors to broadcast the blinded keys of two types of
nodes: (1) all renewed nodes and (2) the non-renewed nodes whose parents
are renewed nodes.

In order that the group members only need to store the blinded keys in their
co-paths, we refine the sponsor election criterion: in each rekeying interval, a
member becomes a sponsor if it is the rightmost member of the subtree whose
root is a non-renewed node but the parent of the root is a renewed node (note
that if the member is the only member in the group, no sponsor is elected).
It should be noted that all new members are elected to be sponsors based on

this criterion.



Chapter 7 Implementation and Applications 54

After being elected, the sponsors have to decide the exact nodes whose
corresponding blinded keys need to be broadcast. For efficiency, this decision-
making process, which we call sponsor coordination, should satisfy three prop-
erties: (1) self-computable, i.e., the sponsors need not communicate with other
sponsors to make the decision, (2) lightweight, i.e., the process itself is simple,
and (3) broadcast-efficient, i.e., the process leads to a minimum number of
broadcasts of blinded keys. These properties ensure that sponsor coordination
introduces little processing overhead to rekeying operations.

Fig. 7.1 presents the pseudo-code of the sponsor coordination algorithm.
To illustrate, consider Fig. 7.2, in which the key tree contains a number of
renewed nodes (i.e., nodes 0, 1, 2, and 6). Based on our sponsor election
criterion, My, My, Ms, M7, and My are elected to be sponsors. According
to the algorithm in Fig. 7.1, member M; broadcasts BKj3, M, broadcasts
BK, and BK;, Ms broadcasts BK5, M; broadcasts BK;3, and Mg broadcasts
BKy,, BKg, BK,, and BK,. Furthermore, Fig. 7.2 illustrates the need of
broadcasting the blinded keys of non-renewed nodes (i.e., nodes 3, 4, 5, 13,
and 14) to existing members. For example, Mg and M7 do not hold the blinded
key of node 14 if it is promoted from one of its child nodes since the node is
not originally on their co-paths. Therefore, they have to obtain the blinded
key from the sponsors.

The sponsor coordination algorithm satisfies the three properties, i.e., self-
computable, lightweight and broadcast-efficient. It is self-computable because
it does not involve any communication between sponsors to determine which
blinded keys to be broadcast. Also, it is lightweight because it only requires
a member to traverse its key path once. Finally, it is broadcast-efficient since
it broadcasts the keys in a minimum number of rounds. To elaborate the
last property, we consider Fig. 7.3 in which a renewed node v, is the root of
a subtree and has two child nodes, v; and v,, whose corresponding sponsors

are M) and M,,), respectively. To decide which sponsor is to be selected



Chapter 7 Implementation and Applications 55

Sponsor_Coordination (T')

/* T is the updated key tree with a number of renewed nodes */

1. broadcast_list = NULL;
2. if (sponsor) { /* responsibility of the sponsor */
3. k_node = leaf node of the member’s key path;
4. while (k_node is not T’s root and k_node’s parent is not renewed)
9. k_node = k_node’s parent;
6. insert k_node into broadcast_list;
7. while (k_node != T’s root) {
8. if (both k_node and k_node’s sibling are not renewed or
both k_node and k_node’s sibling are renewed) {
9. if (k_node is the right child)
10. insert k_node’s parent into broadcast_list;
11. else
12. break the while loop;
13. } else if (k_node is not renewed and k_node’s sibling is renewed) {
14. break the while loop;
15. } else if (k_node is renewed and k_node’s sibling is not renewed) {
16. insert k_node’s parent into broadcast_list;
17. }
18. k_node = k_node’s parent;

19. } /* end of while loop */
20. } /* end of if (sponsor) condition */

21. return broadcast_list;

Figure 7.1: Pseudo-code of the sponsors coordination algorithm.

M broadcasts BK,

M broadcasts BK, and BK;

M broadcasts BKg

M broadcasts BK

M, broadcasts BK,, BK;, BK,, and BK,

Figure 7.2: Example to illustrate the sponsor coordination algorithm in
Fig. 7.1.



Chapter 7 Implementation and Applications 56

to broadcast the blinded key of v,, we consider two cases. First, if only one
child node is renewed, say v; is renewed but v, is not, M) can compute the
secret key of v, based on the unchanged blinded key of v,. This implies that
M5y can broadcast the blinded keys of v; and v, in one round. We therefore
select M) to broadcast the blinded key of v,. Second, if both child nodes
are renewed, i.e., v; and v, are renewed nodes, both sponsors have to wait for
the updated blinded keys of v; and v, to compute the secret key of v,. They
need two rounds to broadcast the blinded key of v,. We can therefore select
any one sponsor, say the sponsor M, under the right child node, to take this
responsibility. Combining two cases, we can apply similar arguments when
v; is not a renewed node but v, is and when both v; and v, are not renewed
nodes. Therefore, we conclude that the sponsor coordination algorithm is self-
computable, lightweight and broadcast-efficient and is adequate to be put into
implementation.

Either M, or M,
can take the
responsi bility

of broadcasting
BK,,, W% choose M.

M(s takes the
responsibility
of broadcasting

BK,y-

(a) case 1: one child node is renewed. (b) case 2: both child nodes are renewed.

Figure 7.3: Illustration of the broadcast-efficient property of the sponsor co-
ordination algorithm.

7.1.3 Rekeying Operation

We summarize how the leader and sponsors co-operate with all group members
in conducting a rekeying operation. At regular rekeying intervals, the leader
broadcasts a rekeying message to signal all group members to start a rekeying
operation. Upon receiving the rekeying message, all group members update

their key tree based on the agreed interval-based algorithm. They then elect



Chapter 7 Implementation and Applications 57

the corresponding sponsors, which broadcast renewed blinded keys to all group

members. Consequently, every group member can compute the group key.

7.2 System Architecture

In this section, we provide an architectural overview of SGCL in three areas:
(1) preliminary requirements for the library, (2) description of the software

components, and (3) implementation considerations.

7.2.1 System Preliminaries

SGCL is implemented in C under Linux and requires two toolkits: Spread [22]
and OpenSSL [16]. Spread is a group communication model incorporated with
reliable and ordered message delivery. It offers the view synchrony feature [7]
that ensures all messages from a communication group are delivered error-free
and in sequence under the same membership view. In our implementation,
we require that SGCL first connects to a Spread daemon, which maintains
the reliable and ordered group communication, and then uses the exported
API functions from Spread to send or receive packets through the daemon.
OpenSSL, on the other hand, is a security toolkit offering a cryptography
library and a certificate generation tool. We use it to implement cryptographic
algorithms, such as Diffie-Hellman, as well as to create public-key certificates
for the authentication of group members. Both toolkits are the pre-requisites
of the SGCL development.

We provide an optional member authorization feature, which is known as
the SIGNATURE mode, to indicate that group members need to apply digital
signatures to the packets to be sent. Prior to enabling the SIGNATURE
mode, a group member should first obtain its public-key certificate and the
corresponding long-term (or permanent) private key from a trusted certificate

authority (CA). Then the member signs the packets with its long-term private



Chapter 7 Implementation and Applications 58

key before the packets are sent over the network. In our implementation, we
select the X509 certificate standard [9] and the 1024-bit RSA [18] with SHA-
1 [15] signature scheme. If the transmission channel is authentic itself, the
non-SIGNATURE mode can be used to eliminate the costs of the signature
and verification operations. In most cases, however, the SIGNATURE mode
should be activated.

The implementation of SGCL contains several requirements. First, we
require SGCL to support reliable and ordered message delivery in view syn-
chrony and to implement cryptographic protocols, and hence both Spread
and OpenSSL should be pre-installed in a Linux system. Besides, the Diffie-
Hellman parameters, which are 1024-bit long in our implementation, should
have been initialized and stored in the SGCL source directory before SGCL
starts running. In addition, each group member should have a configuration
file stating the unique member identifier, the membership details of all possi-
ble communication groups, and the connectivity information specifying which
Spread daemon is to be connected. Furthermore, in the SIGNATURE mode,
each group member should beforehand obtain its long-term private key and
the certificates of other group members from a trusted CA. For consistency, a
central repository can be set up to provide all necessary information related

to the requirements.

7.2.2 System Components

SGCL is composed of four types of components: (1) engines, the entities which
hold variables and methods for various functionalities, (2) queues, the linked-
list structures which store and dispatch packets in the first-in-first-out manner,
(3) threads, the processes which handle all protocol operations, and (4) packets,
the information which is exchanged between group members. Details of the

components are summarized in Table 7.1.



Chapter 7 Implementation and Applications 59

Types

Components

Synopsis

Engines

certkey_engine

It holds the long-term private key of the corresponding
group member and the certificates of all group members.
It also provides function calls for the signature and veri-
fication operations on the packets. It is used only if the
SIGNATURE mode is activated.

keytree_engine

It holds the key tree. In every rekeying operation, it up-
dates the key tree based on the agreed interval-based algo-
rithm and returns the resultant renewed nodes and spon-
SOrs.

leader_engine

It stores the current leader in the group and performs
leader election if necessary. It also holds the rekeying se-
quence number, which is used to identify the REKEY pack-
ets to be sent.

member_engine

It holds the current membership information, including the
existing members in the group, as well as the joining and
leaving members to be processed in the next rekeying in-
terval.

packet_engine

It creates packets according to the given parameters and
sends packets to the network.

sesskey_engine

It represents the session key structure, which stores the
Diffie-Hellman parameters, the secret and blinded keys
along the key path of the corresponding member, as well
as the group key.

Queues

message_queue

Tt stores the MESSAGE packets to be retrieved by the
application.

packet_queue

Tt stores all types of packets received from the group.

rekey_queue

It stores the rekeying signals, which are later transformed
to the REKEY packets to be sent to the group. It is used
by the leader only.

Threads

receive_thread

It receives packets from the group and adds them to the
packet queue.

process_thread

It retrieves packets from the packet_queue and processes
them.

rekey _send_thread

It retrieves the REKEY packets from the rekey_queue and
sends them to the group. It is used by the leader only.

rekey_poll_thread

It periodically inserts a rekeying signal to the rekey_queue
so that the rekey send_thread can retrieve the signal and
send a REKEY packet. It is used by the leader only.

Packets

JOIN packet

It indicates a joining member.

LEAVE packet

It indicates a leaving member that gracefully leaves the

group.
DISCONNECT It indicates a leaving member that ungracefully leaves the
packet group.

REKEY packet

It denotes the rekeying message signaling the group mem-
bers to start a rekeying operation. It stores the rekeying
sequence number for identifying the current rekeying op-
eration, the rekeying algorithm to be used, the joining and
leaving members, as well as the key tree that is to be up-
dated in the rekeying operation.

BKEY packet

It holds a sequence of blinded keys of part of the key tree
nodes in a key path.

MESSAGE packet

It represents the application-level data to be processed by
the application. It also includes the rekeying sequence
number to specify which group key is used for encryption.

Table 7.1: Description of components used in SGCL.




Chapter 7 Implementation and Applications 60

The SGCL packets are classified into two categories: membership packets
and regular packets. Membership packets, including the JOIN, LEAVE, and
DISCONNECT packets, are defined in the Spread specification [22]. They
store the membership information essential for SGCL and the Spread daemons.
Regular packets, however, are defined by SGCL. They are used by SGCL for
rekeying operations and by underlying group-oriented applications for secure
group communication. They include the REKEY, BKEY, and MESSAGE
packets. Fig. 7.4 illustrates how SGCL defines the formats of the regular

packets.
| . |
I si gned |
rekeyi ng rekeyi ng key nunber | nunber key { of ni ng | eaving
Soaeear® | algorithm tSIr e j ooifns | egfles tree menber s menbers |signature

(a) REKEY packet

| i |
I si gned |
rekeyi ng rekeyi ng number of a list of
Sﬁﬂnge al gori t hm blkler;dsed bli nded keys signature

(b) BKEY packet

|<— encrypted —>|
|<— si gned —>|

rekeyi ng
sequence
nurber

message

l'ength nmessage signature

(c) MESSAGE packet

Figure 7.4: Formats of the regular packets.

SGCLs residing in the group-oriented applications operate and exchange
packets with one another in order to achieve their functions. The general opera-
tions on the received packets can be summarized into several steps (assume that
the SIGNATURE mode is activated): (1) The received_thread receives packets
from the connected Spread daemon and adds them into the packet_queue. (2)
The process_thread retrieves packets from the packet_queue if the queue is non-
empty. (3) The process_thread verifies the signatures attached to the packets.

(4) Based on the packet types, the process_thread carries out the corresponding



Chapter 7 Implementation and Applications 61

operations with the member_engine, the leader_engine, the keytree_engine, the
sesskey_engine, and the message_queue. (5) If the process_thread needs to send
packets, it creates packets with the packet_engine. (6) The process_thread signs
the packets with the certkey engine. (7) Finally, the process_thread sends the
packets via the packet_engine to the connected Spread daemon and then to the
communication group. Fig. 7.5 illustrates the general idea of the operations

on the received packets.

Network

\ 4
( Spread Daemon )

(5) create packets

receive process Packet
7) send packets i i
thread thread WLELCES Engine

(1) add (2) retrieve
packets packets
(4) process

pecke

(3) verify packets {1
= Certkey
Engine

(6) sign packets

ember | Leader | Keytree | Sesske!
ngine | Engine | Engine | Engine

Figure 7.5: Overview of general operations on received packets.

Let us take a more detailed look into the operations on how the pro-

cess_thread responds to the received packets according to different packet types:

e Operations on a received JOIN/LEAVE /DISCONNECT packet:
The process_thread inserts the joining or leaving member into the mem-
ber_engine. Also, depending on the membership events, it performs
leader election, and creates the leader-specific components if the member
becomes the leader (the operations of the leader-specific components are
described later in this subsection). It should be noted that the operations
on the LEAVE and DISCONNECT packets are both identical.

e Operations on a received REKEY packet: The process_thread first



Chapter 7 Implementation and Applications 62

retrieves the rekeying information including the rekeying sequence num-
ber (the identifier of a REKEY packet and hence a rekeying operation),
the joining and leaving members, as well as the key tree, from the received
REKEY packet. The process_thread then starts the rekeying operation,
which consists of (1) specifying the leader’s identity in the leader_engine;
(2) synchronizing the joining and leaving members with those in the
member_engine; (3) updating the key tree in the keytree_engine based on
the selected interval-based algorithm; and (4) updating the secret and
blinded keys of the key path in the sesskey_engine and broadcasting any

blinded keys if the group member becomes a sponsor.

e Operations on a received BKEY packet: The process_thread obtains
the blinded keys from the packet, which is composed of a sequence of
blinded keys of some key tree nodes in a key path. If the blinded keys
help the group key generation, the process_thread computes the secret
keys along the key path, which is maintained by the sesskey_engine.
Besides, if the group member is a sponsor and the sesskey_engine contains
the new blinded keys to be broadcast, the process_thread will broadcast
a BKEY packet consisting of the blinded keys.

e Operations on a received MESSAGE packet: The process_thread
inserts the MESSAGE packet, which contains the application-level mes-
sages, into the message_queue. The enqueued packets will later be re-
trieved by the SGCL_recv() function (described in the next subsection)

and processed by the application.

If a group member is elected to be leader, the process_thread will cre-
ate the leader-specific components, composed of the rekey_poll_thread, the
rekey_send_thread, and the rekey_queue. To send a rekeying message to the
group, the leader performs the following procedures: (1) The rekey_poll_thread

periodically issues a rekeying signal (the indicator of performing a rekeying



Chapter 7 Implementation and Applications 63

operation) into the rekey queue and notifies the rekey send thread to send
REKEY packets. The rekeying signal also specifies the interval-based algo-
rithm to be performed. (2) When the rekey_send_thread is notified, it removes
the rekeying signal from the rekey_queue. (3) The rekey send_thread gathers
the rekeying sequence number from the leader_engine, the joining and leav-
ing members from the member_engine, and the existing key tree from the
keytree_engine. (4) Then the rekey send_thread constructs the REKEY packet
based on the gathered details. (5) The rekey_send_thread signs the REKEY
packet with the certkey_engine. (6) Finally, the rekey_send_thread sends the

packet over the network.

Network

( Spread Daemon )

(4) create REKEY packets
rekey rekey
poll send (6) send REKEY packets
thread thread
(5) sign REKEY packets

(1) add (2) retrieve
REKEY REKEY
signals III signals

rekey
queue

L eader-specific

(3) retrieve
components

information
for REKEY packets

Member | Leader | Keytree
Engine | Engine | Engine

Figure 7.6: Overview of leader-specific components and their relationships with
other components.

To ensure that the REKEY packet contains the updated information, the
rekey_send_thread should retrieve the next rekeying signal from the rekey_queue
and sends its corresponding REKEY packet only after all engines are updated
regarding the previous rekeying operation. Fig. 7.6 illustrates the leader-

specific components and their interactions with other components.



Chapter 7 Implementation and Applications 64

7.2.3 Implementation Considerations

In this subsection, we consider several implementation issues and suggest their

possible solutions. These considerations are described as follows:

e Message encryption/decryption: Application-level messages are em-
bedded in the MESSAGE packets, which are encrypted before being sent.
The message encryption and decryption are based on Triple-DES-CBC
[19]. In most cases, the latest group key is used for data encryption.
However, if communication happens during a rekeying operation, the
group key formed in the previous rekeying interval is used instead. If the
SIGNATURE mode is activated, the approach “signature before encryp-
tion” should be adopted [19], as shown in Fig. 7.4.

e Key confirmation: Key confirmation [2] refers that every member as-
sures other members actually obtain the group key. Providing complete
key confirmation incurs high communication cost since it requires all
members to demonstrate their knowledge of the group key to other mem-
bers. In our implementation, we adopt a weaker key confirmation ap-
proach, in which we designate a sponsor to broadcast the blinded group
key (i.e., the blinded key of the root of the key tree) which lets other
members verify if their computed blinded group key is identical to the

one they receive.

e Robustness: It is possible that group members may leave the group or
encounter system failures during a rekeying operation. If one of those
members is a sponsor and fails to broadcast the necessary blinded keys,
the group key cannot be computed. To resolve the problem, our imple-
mentation requires the leader to broadcast a rekeying message for a new
rekeying operation if a sponsor leaves the group and the blinded group

key for the current rekeying operation is not received, that is, the group



Chapter 7 Implementation and Applications 65

key is not yet confirmed. The new rekeying operation should reflect the
leave event of the departed sponsor. It should be noted that the re-
newed nodes that are supposed to be broadcast by the departed sponsor
in the previous rekeying operation remain renewed in the new one since
they are on the key path of the departed sponsor and the blinded keys
of those renewed nodes will be broadcast by other sponsors. This so-
called self-stabilizing property, which is discussed in [11], is realized in

our implementation.

e Defense mechanisms: We identify several possible adversary attacks
that can happen in our implementation. They include: (1) joining the
communication group without valid certificates; (2) corrupting signed
messages; (3) pretending to be the leader; and (4) disrupting rekeying
operations via various means, say, via broadcasting forged blinded keys
or replaying signed blinded keys from previous rekeying operations. Our
implementation combats these attacks respectively through the follow-
ing: (1) checking the existence of the certificate of every joining member;
(2) verifying signatures; (3) checking if the claimed leader joins the group
later than some members; and (4) validating the group key via key con-
firmation. If attacks do exist, warning messages are displayed, and if

attacks are (2) to (4), the system aborts.

7.3 SGCL API

SGCL comprises a number of API functions that enables developers to imple-
ment the interval-based algorithms in their secure group-oriented applications.
The operations of the API functions rely on an SGCL session object, which
holds all the components constituting the system architecture of SGCL. Details
of the API functions are described in Table 7.2.

Fig. 7.7 presents the flowchart of using the SGCL API in a typical secure



Chapter 7 Implementation and Applications 66

Functions Synopsis Return values
SGCL._init() It creates and initializes an SGCL ses- | An  initialized
sion object for subsequent SGCL opera- | session  object

tions. on success and

NULL on failure

SGCL_set_passwd() It sets the password, critical for access- | 1 on success and

ing the long-term private key, inside the | 0 on failure
SGCL session object. It takes no effect
if member authentication (i.e., the SIG-
NATURE mode) is disabled.
SGCL_join() It connects to the Spread daemon | 1 on success and
and joins the specified communication | 0 on failure
group. It also initializes all components
inside the SGCL session object.
SGCL_send() It encrypts the application messages | 1 on success and
with the current group key and sends | 0 on failure
them to the communication group.
SGCL_recv() It receives the application messages | 1 on success and
from the communication group and de- | 0 on failure
crypts them with the current group key.
SGCL_read_membership() | It reports the current group member- | 1 on success and
ship status including the existing mem- | 0 on failure
bers, the joining members and the leav-
ing members.

SGCL_ leave() It disables any operations and frees the | 1 on success and
resources of all components inside the | 0 on failure
SGCL session object. It then leaves the
communication group and disconnects
from the Spread daemon.
SGCL_destroy() It destroys the SGCL session object and | 1 on success and
free its resources. 0 on failure

Table 7.2: Description of the SGCL API functions.

group-oriented application. The flow is described as follows: (1) the applica-
tion creates and initializes an SGCL session object with SGCL_init(); (2) it
opens the file of the long-term private key, which should be password-protected,
with SGCL_set_passwd(), provided that member authentication is enabled; (3)
it requests to join the specified communication group with SGCL_join(); (4)
it implements its application protocols with SGCL_send(), SGCL_recv() and
SGCL_read_membership() in order to send messages, receive messages, and
read membership status, respectively; (5) it leaves the group with SGCL_leave();
and (6) it either joins another or the same group with SGCL_join(), or destroys
the SGCL session object with SGCL_destroy() and ends.



Chapter 7 Implementation and Applications 67

SGCL_init()

Y

SGCL_set_passwd()
(optional)

y

- SGCL_join()

A

SGCL_send()
SGCL_recv()
SGCL_read_membership()

(for application protocols)

y

——— SGCL_leave()

—— e ————————————

Y

SGCL_destroy()

Figure 7.7: Flowchart of using the SGCL APIL.
7.4 Experiments

Motivated by the performance study in Chapter 5, we used Gauger, a per-
formance testing tool developed with SGCL, to evaluate the performance of
different interval-based algorithms under real network settings. In this section,
we investigate two experiments, in which we are interested in the following

metrics for a particular rekeying operation:

o Rekeying time: It measures the duration from starting a rekeying oper-

ation till confirming the correctness of the updated group key.

o Number of exponentiations: 1t measures the computation cost involving
the exponentiation operations in the secret key and blinded key compu-

tations.

o Number of broadcast blinded keys: It measures the communication cost

involving the number of blinded keys that are broadcast during a rekeying



Chapter 7 Implementation and Applications 68

operation.

o Number of broadcast packets of blinded keys: It measures the communi-
cation cost involving the number of broadcast packets of blinded keys
during a rekeying operation. If the SIGNATURE mode is used, it also
accounts for the computation cost in signing or verifying the broadcast
packets. This metric is equivalent to the number of BKEY packets de-
fined in Table 7.1. It should be noted each packet can contain more than

one blinded key if they can be computed in one round.

The experiments were carried out under the following configurations. We
fixed the group population to 40 Gauger applications, each of which corre-
sponds to a group member that stays either inside or outside the same commu-
nication group for some time lengths. We assigned the group members evenly
to eight Pentium 4/2.5GHz machines running Linux, that is, each machine had
five Gauger applications installed. All eight machines were interconnected in
a single local area network, so they were reachable from each other through
broadcasts. A Spread daemon with configured parameters was running in
each machine, and each Gauger application connected to the Spread daemon
in the same local machine when it started execution. These configurations are
assumed throughout the experiments.

The time lengths for which a Gauger application stays inside and outside
the group are respectively given by 13, + ¢ and 7,,; + ¢, where T}, and 7,,; are
exponentially distributed and ¢ denotes a constant period. The reason that
we add a constant to the time lengths is to avoid a particular member joining
or leaving the communication group abruptly and hence we can guarantee a
sufficient amount of time for the resources to be re-allocated between member-
ship events. For accuracy, we pre-generated pattern files stating the occurrence
times of join and leave events based on the distributions with various exponen-

tial averages of T;, and T,,;, and then examined the performance of different



Chapter 7 Implementation and Applications 69

algorithms for a particular set of average parameters using the same pattern
file.

The experiments assume several constant parameters. We let the rekeying
interval, the regular period of performing rekeying operations, be 15 seconds,
and the constant ¢, the minimum interval between two membership events for
a group member, be 10 seconds. With the pre-generated pattern files, we ran
the experiments for two hours, and then collected the recorded metrics for
analysis.

Experiment 1: (Average analysis at different fixed 7,,’s) This
experiment evaluates the performance metrics of Rebuild, Batch and Queue-
batch. We fixed T,,; to be 30, 60, and 90 seconds, as well as varied T}, when
conducting the experiment. Similar to the performance evaluation experiments
in Chapter 5, the motivation of adopting fixed 7,,;’s is to control the rate that
members join the communication group. After the experiment, we averaged
the metrics over the number of existing members in the group at each rekeying
interval.

The results are presented in Fig. 7.8. Among all T,,;’s, we note that the
metric costs are the largest at T,,; = 30 seconds. It is because with a smaller
T,,+ members tend to stay longer in the group and more members participate
in a rekeying operation. This implies the key tree is bigger and therefore
more operations are required to generate a group key. Besides, we observe
Queue-batch outperforms the other two algorithms in all metrics. This shows
the performance gain of Queue-batch in its dispersing the rekeying workload
throughout the rekeying interval.

Experiment 2: (Average analysis of Batch and Queue-batch at
different levels of membership dynamics) This experiment examines how
the performance of the interval-based algorithms varies with respect to the
frequencies of the join and leave occurrences. We only considered Batch and

Queue-batch since they both demonstrate better performance than Rebuild.



Chapter 7 Implementation and Applications

Average number of exponentiations Average rekeying time (in sec)

Average number of broadcast blinded keys

Average number of broadcasts packets of blinded keys.

Rebuild —— Rebuild —X—

Batch =+ - Batch =+ -

18 Queue-batch —%-- 14 Queue-batch =%
16
14
12

Average rekeying time (in sec)

06
0.4
30 40 50 60 70 80 % 30 40 50 60 70 80 %
Tou(in sec) Tou(in sec)
13 1
Rebuild —*— Rebuild —*—
12 atch =+ - atch =+ -
Queue-batch =¥ 10 Queue-batch =¥
11

Average number of exponentiations

Average rekeying time (in sec)

Average number of exponenti

70

Rebuild —%—
11 Batch -+ -
Queue-batch —¥--

04
30 40 50 60 70 80 %
Tou(in sec)
Rebuild —%—
Batch = + -
Queue-batch —%--
8
7

4
30 40 50 60 70 80 9% 30 0 50 60 7 80
Ty (in sec) Ty (in sec) Tau (in sec)
Rebuild —%— 70 Rebuild —%— Rebulld ——
100 Batch = + - Baich =+ - €0 Baich =+ -
Queue-batch =% Queue-batch =% Queue-baich —%-~
60 .
50
40
40
30

Average number of broadcast blinded keys

Average number of broadcast blinded keys

0 0
40 50 60 70 80 % 30 40 50 60 70 80 % 30 40 50 60 70 80 %0
Tou(in sC) T (in se) To(in seC)
Rebuild —%— H Rebuild —%— 2 Rebuild —%—
100 Batch —+ - ERG Batch -+ - 3 60 atch - + -
Queue-batch =% H Queue-baich =% H Queue-baich -
5 60 2
5 5 50
80 H 2
2 50 g
g 140
60 g 40 g
£ EIEY
€ 30 g
40 H 3
5 ]
“““ el Sl < :
g g
0 g o g o
20 20 50 0 20 80 %0 < a0 40 50 60 70 80 % < a0 2 50 60 70 80 %0
Tou (in sec) Tou(in sec) Tou(in sec)

(a) Tour = 30 seconds

Figure 7.8:

(b) Tpyt = 60 seconds

(¢) Tout = 90 seconds

Average analysis at different fixed T,,;’s.



Chapter 7 Implementation and Applications 71

Here, we set T;, equal to T,,, and changed the pair of T}, and T, from
30 seconds to 90 seconds. Then we recorded the number of exponentiations,
the number of broadcast blinded keys and the number of broadcast packets
of blinded keys after the experiment. We did not consider the rekeying time
since it is less stable and more machine-dependent compared to the other two
metrics and results in a high deviation. Finally, we averaged the recorded
metrics over the group size in each rekeying interval.

Fig. 7.9 illustrates the results. It shows that Queue-batch outperforms more
than Batch when T}, and T,,; are smaller. In other words, Queue-batch is more
superior than Batch when the group is more dynamic. This conforms to the
results presented in Chapter 5, which stated that the superior performance of
Queue-batch becomes more obvious when the join and leave events occur more

frequently and explained the reasons behind.

7

Batch —>—
Queue-batch - -+ -

o
[ ]

o
o

&
o

IS

w
o

Average number of exponentiations
@

3
30 40 50 60 70 80 90

Tin = Tou (in sec)

(a) Average number of exponentiations

w
S

w
S

Batch —%—
Queue-batch - -+ -

Batch —>—
Queue-batch - -+ -

N
a

N

o

N
S

-
o

N
o

Average number of broadcast blinded keys

Average number of broadcast packets of blinded keys
N
S

=
15

w

S
i
5]

40 50 60 70 80 90
Tin = Tou (in sec)

w
S

40 50 60 70 80 920
Tin = Tou (in sec)

(b) Average number of broadcast (c) Average number of broadcast
blinded keys packets of blinded keys

Figure 7.9: Average analysis at different levels of membership dynamics.



Chapter 7 Implementation and Applications 72

7.5 Applications

To demonstrate how SGCL can be realized in real-life applications, we deployed
SGCL on a secure chat-room application called Chatter. Chatters allow indi-
viduals to participate in a communication group and to send communication
messages securely to group members. The messages being sent undergo encryp-
tion with the group key and hence they are confidential against eavesdroppers
when being transmitted over the network.

We implemented Chatter in both graphical and text modes, and its screen-
shots are illustrated in Figs. 7.10 and 7.11. The graphical mode lets users
enjoy a colorful interface, but its implementation requires the presence of the
X Window system in Linux. The text mode, therefore, is built to provide
users with a text-based command console without the need of any graphical-
compliant platform. Both interface modes are compatible and can be used
together within the same communication group.

Apart from the chat-room applications, we envision that SGCL is feasible

in a number of potential applications consisting of:

e Audio/video conferencing systems: Business parties may hold au-
dio/video conferences with their laptop or desktop computers. The con-
ferencing systems usually transfer massive streaming data among which
there can be confidential business information. They can hence use SGCL

to agree upon a secret group key to encrypt the streaming data.

e File sharing tools: File sharing is prevalent in peer-to-peer networks.
Most shared files usually do not involve sensitive information, but some
do. Therefore, if a file sharing application intends to distribute a private

file to a group of users, SGCL will help protect the file data.

¢ Router communication paradigms: Routers may form a commu-

nication group in some situations. For instance, in defending against



Chapter 7 Implementation and Applications 73
= Password ]
Enter yvour passwaord
1*******
2k Cancel |
£ | Chatter (patrick) [=ll=if]
i Inpt -
[nput kessage: IThank YOU...e Zend
klessage | ilembership
[patrick at 10:53): Excellent!! alice
{alice at 10:33); I'm fine! dave
(dawve at 10:53): How are you today? patrick

Clear

Enter Your Group Eelow:

|mygroup

I Join Leave

Status

Status: You have successfully joined a group.

Exit Application

Figure 7.10: Tllustration of Chatter in

the graphical mode.



Chapter 7 Implementation and Applications 74

e ==X
Start,...

Enter your passwords:

UID: patrick

SPREAD TPy 127,0,0,1

SPREAD PORT: 4803

CHATTER>join mygroup

Status: You have successfully joined a group,
CHATTER>member:

Current membership information:

1 alice
2 dawe
3 patrick

CHATTER>mzg How are you doing?
CHATTER*Hessage received (patrick at 10:47): How are you doing?

CHATTER»Message received (dave at 10:47): I'm fine.

CHATTER

Figure 7.11: Illustration of Chatter in the text mode.

distributed denial-of-service (DDoS) attacks, routers may exchange in-
formation in order to pinpoint the location of attackers. Such exchanged
information should be inaccessible to the attackers so that the detection

succeeds. In this case, the exchanged information can be protected with

SGCL.

e Network games in strategy planning: In network games, players
may co-operate with each other in deciding the winning strategies over
other competitors. This type of interaction involves numerous message
exchanges. Thus, the games can use SGCL to encrypt the messages
against any cheating attacks, such as eavesdropping and modification of

the transmitted game data.

In short, SGCL implements the interval-based algorithms that achieves
group key agreement without any centralized key server, and hence is adequate
for any secure group-oriented applications in decentralized environments such

as peer-to-peer networks or mobile ad hoc networks.



Chapter 7 Implementation and Applications 75

7.6 Future Extensions

Several enhancements can be made to enrich the current implementation.
First, it is likely that we can achieve a higher degree of identity protection
through A-TGDH (Authenticated Tree-Based Group Diffie-Hellman), the au-
thenticated key agreement protocol presented in Chapter 6, by incorporating
the long-term private key components of the group members into the group
key. Second, our implementation aborts the operations when certain attacks
are encountered. This approach, however, is not always desirable as it results
in denial-of-service. Better recovery procedures are therefore needed to make
the implementation more robust. Third, the current membership information
is not protected in its transmission. In other words, when the Spread daemon
reports the membership status to group members or other participating Spread
daemons, the information is sent in plain and thus allows outsiders to recog-
nize which are the existing members in a communication group. Although the
exposure of such information may not be a critical security concern, it would
be better to encrypt all data transmitted among Spread daemons and group
members. Finally, we only explore the periodic interval-based approach for
rekeying operations. Instead, we can switch to the threshold-based approach,
for example, rekeying starts when the number of join and leave events exceeds
a certain limit. Both approaches, in fact, can be incorporated into the system.
Recall that a rekeying operation is sparked when the group leader broadcasts
a rekeying message (represented as a REKEY packet in our implementation).
We can define a set of policy rules stating when rekeying should start, such
as after a fixed period or after the number of membership events reaches a
threshold, and require the leader to issue the rekeying message to notify oth-
ers to start rekeying when these conditions are met. We expect that putting
these extensions into the implementation can make it more feasible for being

used in practice.



Chapter 8

Conclusions and Future

Directions

This chapter provides the conclusions for this dissertation and suggests some

future directions for this research.

8.1 Conclusions

We considered several distributed collaborative key agreement protocols for
dynamic peer groups. The key agreement setting is carried out such that
there is no centralized key server maintaining and distributing the group key.
We show that one can use the TGDH protocol to achieve such distributed and
collaborative key agreement. To reduce the rekeying complexity, we proposed
to use the interval-based distributed rekeying algorithms that allow us to group
multiple join and leave requests and to process them at the same time. In
particular, we showed that the Queue-batch algorithm can significantly reduce
both computation and communication costs. This reduction can lead to a
more efficient way to manage secure group communication. We also proposed
an authenticated group key agreement scheme which offers protection against
various attacks, as well as implemented SGCL to study the interval-based

algorithms in a real network environment and to support the development of

76



Chapter 8 Conclusions and Future Directions 77

secure group-oriented applications for dynamic peer groups.

8.2 Future Directions

We explore future directions that may enrich this research. We focus on two
areas: constructing a hybrid key tree with the physical and logical properties

and extending the implementation.

8.2.1 Construction of a Hybrid Key Tree with the Phys-

ical and Logical Properties

The key tree approach has been adopted by a number of centralized and de-
centralized group key management schemes [26, 27, 17, 20, 28, 11, 14, 12, 29],
as well as our interval-based algorithms. Its intuitive idea is to maintain a key
tree hierarchy for a number of keys that finally constitute the group key. Dur-
ing a rekeying operation, the key tree and hence the group key are updated in
response to the dynamic join and leave events. The major advantage of using
this approach is that the key tree itself is logical, and hence the rekeying oper-
ations do not rely on the support of intermediate routers and network devices
while attaining a good rekeying efficiency.

In updating the key tree, all the proposed tree-based group key manage-
ment schemes emphasize to preserve a balanced tree, yet do not take account
of the underlying physical proximity. However, the rekeying performance may
not be optimized in some circumstances. Consider Fig. 8.1 (a), which illus-
trates a wide area network (WAN)-based communication group dispersed in
four different local area networks (LANs). Those LANs are assumed to be
interconnected with low-bandwidth links. According to the classic rekeying
approach, members can be located randomly under the key tree as long as

the key tree is balanced. This implies that the sponsors are distributed in



Chapter 8 Conclusions and Future Directions 78

different local area networks and have to exchange new blinded keys across
the low-bandwidth links in each round. We therefore expect that those links
will suffer heavy traffic load caused by a lot of blinded key transfers.

". Goup Key

(a) classic approach (b) new approach

Figure 8.1: Approaches of updating the key tree.

To remedy the overhead in the low-bandwidth links, we change the arrange-
ment of the key tree as follows. A communication group first divides itself into
clusters, each of which is composed of members that are close together or that
are interconnected with high-bandwidth links. In each cluster, the members
can use a classic rekeying algorithm to form a subtree, as balanced as possible,
and agree upon a subgroup key. The members then merge the subtree to form
the key tree and finally use the subgroup keys to compute the resultant group
key. When a new member joins the group, its associated leaf node should be
put under the subtree of the cluster to which it belongs. Fig. 8.1(b) illustrates
the new approach. In the figure, members in the same LAN are grouped to
form a cluster. In other words, there are four clusters, each of which cor-
responds to a single LAN. The members in the same LAN first construct a
subtree and obtain the subgroup key based on a classic rekeying algorithm.
They they create the key tree with other clusters and obtain the final group
key. When a new member, say M, joins the group, it should be put under
the subtree in LAN A and the rekeying operation is then performed. With the
new approach, we cut the loads of the low-bandwidth links by deferring the



Chapter 8 Conclusions and Future Directions 79

blinded key transfers over them to the last few rounds. Hence we can achieve a
better rekeying performance by combining the physical and logical properties
in the update of the key tree.

To effectively realize both physical and logical properties, we need to re-
solve several questions: (1) “How many clusters are needed?”; (2) “How many
members a cluster should contain?”; (3) “Can we define clusters with formal
models?”; and (4) “What network environments are adequate for this hybrid
rekeying approach?”. These questions can help derive a thorough solution

regarding this problem.

8.2.2 Extended Implementation

In terms of implementation, we expect that there is room for expansion. In
Section 7.6, we drafted a number of extensions aiming to improve the security
of the implementation. Besides, it would be interesting to study the imple-
mentation performance in a different network environment, such as a wireless
ad hoc network where the resources are constrained in the bandwidth of com-
munication links and the computation power of mobile handsets. With the
implementation extensions, we can have a better comprehension about the
distributed and collaborative group key agreement protocols for a dynamic

peer group.



Bibliography

1]

2]

3]

[4]

[5]

[6]

Y. Amir, Y. Kim, C. Nita-Rotaru, and G. Tsudik. On the performance
of group key agreement protocols. In Proceedings of the 22th IEEE Inter-
national Conference on Distributed Computing Systems, Vienna, Austria,

July 2002.

G. Ateniese, M. Steiner, and G. Tsudik. Authenticated group key agree-
ment and friends. In Proc. of 5th ACM Conference on Computer and

Communications Security, pages 17-26, November 1998.

S. Blake-Wilson and A. Menezes. Authenticated diffie-hellman key agree-
ment protocols. In Proc. of the 5th Annual Workshop on Selected Areas
in Cryptography, pages 339-361, 1998.

M. Burmester and Y. Desmedt. A secure and efficient conference key dis-
tribution system. Advances in Cryptology — EUROCRYPT ’94, 950:275—
286, 1995.

W. Diffie and M. Hellman. New directions in cryptography. IEEE Trans-
actions on Information Theory, 1T-22(6):644-654, 1976.

W. Diffie, P. C. van Oorschot, and M. J. Wiener. Authentication and
authenticated key exchanges. Designs, Codes and Cryptography, 2(2):107—-
125, June 1992.

80



[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

A. Fekete, N. Lynch, and A. Shvartsman. Specifying and using a par-
tionable group communication service. In ACM PODC’97, pages 53-62,
August 1997.

C. G. Giinther. An identity-based key exchange protocol. In EURO-
CRYPT 89, 1989.

ITU-T Recommendation X.509. Information Technology—Open Systems
Interconnection—-The Directory: Authentication Framework, November

1993.

M. Just and S. Vaudenay. Authenticated multi-party key agreement.
In Advances in Cryptology ASIACRYPT ’96, pages 36-49. LNCS 1163,
Springer-Verlag, 1996.

Y. Kim, A. Perrig, and G. Tsudik. Simple and fault-tolerant key agree-
ment for dynamic collaborative groups. In Proc. of 7th ACM Conference
on Computer and Communications Security, pages 235244, November

2000.

Y. Kim, A. Perrig, and G. Tsudik. Communication-efficient group key
agreement. Information Systems Security, Proceedings of the 17th Inter-

national Information Security Conference IFIP SEC’01, November 2001.

Y. Kim, A. Perrig, and G. Tsudik. Tree-based group key agreement. In

submission, 2002.

X. S. Li, Y. R. Yang, M. G. Gouda, and S. S. Lam. Batch rekeying
for secure group communications. In Proceedings of Tenth International

World Wide Web Conference (WWW10), Hong Kong, China, May 2001.

National Institute of Standards and Technology. The secure hash algo-
rithm (SHA-1). NIST FIPS PUB 180-1, U.S. Department of Commerce,
April 1995.

81



[16]

[17]

18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

OpenSSL  Project Team. OpenSSL: The Open Source toolkit for
SSL/TLS. http://www.openssl.org.

A. Perrig. Efficient collaborative key management protocols for secure
autonomous group communication. In International Workshop on Cryp-
tographic Techniques and E-Commerce (CrypTEC ’99), pages 192-202,
July 1999.

R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public key cryptosystems. Communications of the ACM,

February 1978.
B. Schneier. Applied Cryptography. Wiley, 1996.

S. Setia, S. Koussih, and S. Jajodia. Kronos: A scalable group re-keying
approach for secure multicast. In Proc. of IEEE Symposium on Security

and Priwacy 2000, May 2000.

B. Song and K. Kim. Two-pass authenticated key agreement protocol
with key confirmation. In Proc. of Indocrypt2000, volume LNCS vol.
1977, pages 237249, December 2000.

Spread Concepts. The Spread Toolkit. http://www.spread.org.

W. Stallings. Cryptography and Network Security: Principles and Prac-
tice. Prentice Hall, 2nd edition, 1999.

M. Steiner, G. Tsudik, and M. Waidner. CLIQUES: A new approach to
group key agreement. In IEEFE International Conference on Distributed

Computing Systems, pages 380-387, May 1998.

The Center for Networking and Distributed Systems (CNDS). The Secure
Spread Project. http://www.cnds.jhu.edu/research/group/secure_spread.

82



[26] D. M. Wallner, E. J. Harder, and R. C. Agee. Key management for
multicast: Issues and architectures. Internet draft draft-wallner-key-arch-

00.txt, Internet Engineering Task Force, July 1997.

[27] C. K. Wong, M. Gouda, and S. S. Lam. Secure group communications
using key graphs. Proc. of ACM SIGCOMM’98, September 1998.

[28] C. K. Wong and S. S. Lam. Keystone: A group key management ser-
vice. In Proceedings International Conference on Telecommunications,

Acapulco, Mexico, May 2000.

[29] Y. R. Yang, X. S. Li, X. B. Zhang, and S. S. Lam. Reliable group rekeying:
A performance analysis. Proc. of ACM SIGCOMM’01, August 2001.

83



