
Nonlinear Optimization Benny Yakir

These notes are based on ???. No originality is claimed.

1



Contents

1 The General Optimization Problem 4

2 Basic MATLAB 4
2.1 Starting and quitting MATLAB . . . . . . . . . . . . . . . . . 5
2.2 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Scripts and functions . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6 More about functions . . . . . . . . . . . . . . . . . . . . . . 9
2.7 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Basic properties of solutions and algorithms 9
3.1 Necessary conditions for a local optimum . . . . . . . . . . . 9
3.2 Convex (and concave) functions . . . . . . . . . . . . . . . . 11
3.3 Global convergence of decent algorithms . . . . . . . . . . . 11
3.4 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Basic descent methods 13
4.1 Fibonacci and Golden Section Search . . . . . . . . . . . . . 13
4.2 Newton’s method . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Applying line-search methods . . . . . . . . . . . . . . . . . . 14
4.4 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.5 Quadratic interpolation . . . . . . . . . . . . . . . . . . . . . 15
4.6 Cubic fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.7 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 The method of steepest decent 17
5.1 The quadratic case . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Applying the method in Matlab . . . . . . . . . . . . . . . . . 18
5.3 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6 Newton and quasi-Newton methods 20
6.1 Newton’s method . . . . . . . . . . . . . . . . . . . . . . . . 20
6.2 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.3 The Davidon-Fletcher-Powell (DFP) method . . . . . . . . . 21
6.4 The Broyden-Flecher-Goldfarb-Shanno (BFGS) method . . . 22
6.5 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2



7 Constrained Minimization Conditions 22
7.1 Necessary conditions (equality constraints) . . . . . . . . . . 23
7.2 Necessary conditions (inequality constraints) . . . . . . . . . 24
7.3 Sufficient conditions . . . . . . . . . . . . . . . . . . . . . . . 25
7.4 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.5 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

8 Lagrange methods 27
8.1 Quadratic programming . . . . . . . . . . . . . . . . . . . . . 27

8.1.1 Equality constraints . . . . . . . . . . . . . . . . . . . 28
8.1.2 Inequality constraints . . . . . . . . . . . . . . . . . . 28

8.2 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

9 Sequential Quadratic Programming 29
9.1 Newton’s Method . . . . . . . . . . . . . . . . . . . . . . . . 29
9.2 Structured Methods . . . . . . . . . . . . . . . . . . . . . . . 29
9.3 Merit function . . . . . . . . . . . . . . . . . . . . . . . . . . 30
9.4 Enlargement of the feasible region . . . . . . . . . . . . . . . 30
9.5 The Han–Powell method . . . . . . . . . . . . . . . . . . . . 31
9.6 Constrained minimization in Matlab . . . . . . . . . . . . . . 31
9.7 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

10 Penalty and Barrier Methods 33
10.1 Penalty method . . . . . . . . . . . . . . . . . . . . . . . . . . 33
10.2 Barrier method . . . . . . . . . . . . . . . . . . . . . . . . . . 34
10.3 A final project . . . . . . . . . . . . . . . . . . . . . . . . . . 35
10.4 An exercise in Matlab . . . . . . . . . . . . . . . . . . . . . . 35

11 Stochastic Approximation 37

3



Nonlinear Optimization Benny Yakir

1 The General Optimization Problem

The general optimization problem has the form:

min
x∈Rn

f(x)

subject to:

gi(x) = 0 i = 1, . . . ,me

gi(x) ≤ 0 i = me + 1, . . . ,m
xl ≤ x ≤ xu

In particular, if m = 0, the problem is called an unconstrained optimization
problem. In this course we intend to introduce and investigate algorithms for
solving this problem. We will concentrate, in general, in algorithms which
are used by the Optimization toolbox of MATLAB.

We intend to cover the following chapters:

1. Basic MATLAB.

2. Basic properties of solutions and algorithms.

3. Basic descent methods.

4. Quasi-Newton methods.

5. Least squares optimization.

6. Sequential Quadratic Programming.

7. The REDUCE algorithm.

8. Stochastic approximation.

2 Basic MATLAB

The name MATLAB stands for matrix laboratory. It is an interactive system
for technical computing whose basic data element is an array that does not
require dimensioning.

4



2.1 Starting and quitting MATLAB

Starting: double-click on the MATLAB icon.
Quitting: File/Exit MATLAB or write quit in the command line.
Help: Help/Help Window, click on the ? icon or type help.

2.2 Matrices

MATLAB is case sensitive. Memory is allocated automatically.

>> A = [16 3 2 13; 5 10 11 8; 9 6 7 12; 4 15 14 1]
A =

16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

>> sum(A)
ns =

34 34 34 34
>> sum(A’)
ns =

34 34 34 34
>> sum(diag(A))
ns =

34
>> A(1,4) + A(2,3) + A(3,2) + A(4,1);
>> sum(A(1:4,4));
>> sum(A(:,end));
>> A(~isprime(A)) = 0
A =

0 3 2 13
5 0 11 0
0 0 7 0
0 0 0 0

>> sum(1:16)/4;
>> pi:-pi/4:0
ns =

3.1416 2.3562 1.5708 0.7854 0
>> B = [fix(10*rand(1,5));randn(1,5)]

5



B =
4.0000 9.0000 9.0000 4.0000 8.0000
0.1139 1.0668 0.0593 -0.0956 -0.8323

>> B(2:2:10)=[]
B =

0 3 8 0 1
>> s = 1 -1/2 + 1/3 - 1/4 + 1/5 - 1/6 + 1/7 ...
-1/8 + 1/9 -1/10
s =

0.6456
>> A’*A
ns =
378 212 206 360
212 370 368 206
206 368 370 212
360 206 212 378

>> det(A)
ns =

0
>> eig(A)
ns =
34.0000
8.0000
0.0000

-8.0000
>> (A/34)^5
ns =

0.2507 0.2495 0.2494 0.2504
0.2497 0.2501 0.2502 0.2500
0.2500 0.2498 0.2499 0.2503
0.2496 0.2506 0.2505 0.2493

>> A’.*A
ns =
256 15 18 52
15 100 66 120
18 66 49 168
52 120 168 1

>> n= (0:3)’;
>> pows = [n n.^2 2.^n]
pows =

6



0 0 1
1 1 2
2 4 4
3 9 8

2.3 Graphics

>> t = 0:pi/100:2*pi;
>> y = sin(t);
>> plot(t,y)
>> y2 = sin(t-0.25);
>> y3 = sin(t-0.5);
>> plot(t,y,t,y2,t,y3)
>> [x,y,z]=peaks;
>> contour(x,y,z,20,’k’)
>> hold on
>> pcolor(x,y,z)
>> shading interp
>> hold off
>> [x,y] = meshgrid(-8:.5:8);
>> R = sqrt(x.^2 + y.^2) + eps;
>> Z = sin(R)./R;
>> mesh(x,y,Z)

2.4 Scripts and functions

M-files are text files containing MATLAB code. A text editor can be ac-
cessed via File/New/M File. M-files end with .m prefix. Functions are
M-files that can accept input argument and return output arguments. Vari-
ables, in general, are local. MATLAB provides many functions. You can
find a function name with the function lookfor.

>> lookfor inverse
INVHILB Inverse Hilbert matrix.
...
INV Matrix inverse.
...
INVHESS Inverse of an upper Hessenberg matrix.

7



Or you can write a function in an M-file:

function h = falling(t)
global GRAVITY
h = 1/2*GRAVITY*t.^2;

save it and run it from MATLAB:

>> global GRAVITY
>> GRAVITY = 32;
>> y = falling((0:.1:5)’);
>> falling(0:5)
ans =

0 16 64 144 256 400

2.5 Files

The MATLAB environment includes a set of variables built up during the
session — the Workplace — and disk files containing programs and data
that persist between sessions. Variables can be saved in MAT-files.

>> save B A
>> A = 0
A =

0
>> load B
>> A
A =

16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

>> save mydata A -ascii
>> dir
. libut.dll msvcirt.dll
.. license.dat msvcopts.bat
b.mat lmgr325a.dll msvcrt.dll
bccengmatopts.bat matfopts.bat mwoles05.dll
bccopts.bat matlab.exe mydata
cmex.bat medit.exe patchmat.exe
....

8



2.6 More about functions

To obtain the most speed it’s important to vectorize the computations.
Write the M-file logtab1.m:

function t = logtab1(n) x=0.01; for k=1:n
y(k) = log10(x);
x = x+0.01;

end t=y;

and the M-file logtab2.m:

function t = logtab2(n) x = 0.01:0.01:(n*0.01); t = log10(x);

Then run in Matlab:

>> logtab1(1000);
>> logtab2(1000);

2.7 Homework

1. Let f(x) = ax2 − 2bx + c. Under which conditions does f has a
minimum? What is the minimizing x?

2. Let f(x) = x′Ax−2b′x+c, with A an n×n matrix, b and c n-vectors.
Under which conditions does f has a minimum? a unique minimum?
What is the minimizing x?

3. Write a MATLAB function that finds the location and value of the
minimum of a quadratic function.

4. Plot, using MATLAB, a contour plot of the function f with A =
[1 3;−1 2], b = [5 2]′ and c = [1 3]′. Mark, on the plot, the location
of the minimum.

3 Basic properties of solutions and algorithms

3.1 Necessary conditions for a local optimum

Assume that the function f is defined over Ω ⊂ R.

9



Definition: A point x∗ ∈ Ω is said to be a relative minimum point or a local
minimum point of f if there is an ε > 0 such that f(x∗) ≤ f(x) for all
x such that ‖x−x∗‖ < ε. If the inequality is strict for all x 6= x∗ then
x∗ is said to be a strict relative minimum point.

Definition: A point x∗ ∈ Ω is said to be a global minimum point of f if
f(x∗) ≤ f(x) for all x ∈ Ω. If the inequality is strict for all x 6= x∗

then x∗ is said to be a strict global minimum point.

In practice, the algorithms we will consider in the better part of this
course converge to a local minimum. We may indicate in the future how the
global minimum can be attained.

Definition: Given x ∈ Ω, a vector d is a feasible direction at x if there
exists an ᾱ > 0 such that x + αd ∈ Ω for all 0 ≤ α ≤ ᾱ.

Theorem 1 (First-order necessary conditions.) Let f ∈ C1. If x∗ is a
relative minimum, then for any d which is feasible at x∗, we have ḟ(x∗)′d ≥
0.

Corollary 1 If x∗ is a relative minimum and if x∗ ∈ Ω0 then ḟ(x∗) = 0.

Theorem 2 (Second-order necessary conditions.) Let f ∈ C2. Let x∗

be a relative minimum. For any d which is feasible at x∗, if ḟ(x∗)′d = 0
then d′f̈(x∗)d ≥ 0.

Corollary 2 If x∗ is a relative minimum and if x∗ ∈ Ω0 then ḟ(x∗)′d = 0
and d′f̈(x∗)d ≥ 0 for all d.

Theorem 3 (Second-order sufficient conditions.) Let f ∈ C2. As-
sume x∗ ∈ Ω0. If ḟ(x∗) = 0 and f̈(x∗) is positive definite then x∗ is a
strict relative minimum.

10



3.2 Convex (and concave) functions

Definition: A function f on a convex set Ω is said to be convex if

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2),

for all x1,x2 ∈ Ω, 0 ≤ α ≤ 1.

Theorem 4 If f1 and f2 are convex and a > 0 then f1 + f2 and af1 are
also convex.

Theorem 5 Let f be convex. Then Γc = {x ∈ Ω : f(x) ≤ c} is a convex
set.

Corollary 3 If f1, . . . , fm are convex then the set of points that simultane-
ously satisfy

f1(x) ≤ c1, . . . , fn(x) ≤ cn
is convex.

3.3 Global convergence of decent algorithms

The algorithms we consider are iterative descent algorithms.

Definition: An algorithm A is a mapping that assigns, to each point, a
subset of the space.

Iterative algorithm: The specific sequence is constructed by choosing a
point in the subset and iterating the process. The algorithm generates
a series of points. Each point being calculated on the basis of the points
preceding it.

Descent algorithm: As each new point is generated, the corresponding
value of some function decreases in value. Hence, there is a continuous
function Z such that if A is the algorithm and Γ is the solution set then

1. If x 6∈ Γ and y ∈ A(x), then Z(y) < Z(x).

2. If x ∈ Γ and y ∈ A(x), then Z(y) ≤ Z(x).

11



Definition: An algorithm is said to be globally convergent if, for any start-
ing point, it generates a sequence that converges to a solution.

Definition: A point-to-set map A is said to be closed at x if

1. xk → x and

2. yk → y,yk ∈ A(xk), imply

3. y ∈ A(x).

The map A is closed if it is closed at each point of the space.

Theorem 6 If A is a decent iterative algorithm which is closed outside of
the solution set Γ and if the sequence of points is contained in a compact set
then any converging subsequence converges to a solution.

3.4 Homework

1. To approximate the function g over the interval [0, 1] by a polynomial p
of degree n (or less), we use the criterion

f(a) =
∫ 1

0
[g(x)− p(x)]2dx,

where a ∈ Rn+1 are the coefficients of p. Find the equations satisfied by
the optimal solution.

2.(a) Using first-order necessary conditions, find the minimum of the function

f(x, y, z) = 2x2 + xy + y2 + yz + z2 − 6x− 7y − 8z + 9.

(b) Varify the point is a relative minimum by checking the second-order
conditions.

3. Let {fi : i ∈ I} be a collection of convex functions definned over a convex
set Ω. Show that the function g = supi∈I f is convex on the region where
it is finite.

4. Define the point-to-set mapping on Rn by

A(x) = {y : y′x ≤ b},

where b is a fixed constant. Is A closed?

12



4 Basic descent methods

We consider now algorithms for locating a local minimum in the optimiza-
tion problem with no constraints. All methods have in common the basic
structure: in each iteration a direction dn is chosen from the current location
xn. The next location, xn+1, is the minimum of the function along the line
that passes through xn in the direction dn. Before discussing the different
approaches for choosing directions, we will deal with the problem of finding
the minimum of a function of one variable — “line search”.

4.1 Fibonacci and Golden Section Search

These approaches assume only that the function is unimodal. Hence, if
the interval is divided by the points x0 < x1 < · · · < xN < xN+1 and we
find that, among these points, xk minimizes the function then the over-all
minimum is in the interval (xk−1, xk+1).

The Fibonacci sequence (Fn = Fn−1 + Fn−2, F0 = F1 = 1) is the basis
for choosing altogether N points sequentially such that the xk+1 − xk−1 is
minimized. The length of the final interval is (xN+1 − x0)/FN .

The solution of the Fibonacci equation is FN = AτN1 +BτN2 , where

τ1 =
1 +
√

5
2

= 1/0.618, τ2 =
1−
√

5
2

.

It follows that FN−1/FN ∼ 0.618 and the rate of convergence of this line
search approach is linear.

4.2 Newton’s method

The best known method of line search is Newton’s method. Assume not
only that the function is continuous but also that it is smooth. Given the
first and second derivatives of the function at xn, one can write the Taylor
expansion:

f(x) ≈ q(x) = f(xn) + f ′(xn)(x− xn) + f ′′(xn)(x− xn)2/2.

The minimum of q(x) is attained at

xn+1 = xn −
f ′(xn)
f ′′(xn)

.

13



(Note that this approach can be generalized to the problem of finding the
zeros of the function g(x) = q′(x).)

Theorem 7 Let the function g have a continuous second derivative and
let x∗ be such that g(x∗) = 0 and g′(x∗) 6= 0. Then the Newton method
converges with an order of convergence of at least two, provided that x0 is
sufficiently close to x∗.

4.3 Applying line-search methods

In order for Matlab to be able to read/write files in disk D you should use
the command

>> cd d:

Now you can write the function:

function y = humps(x)
y = 1./((x-0.3).^2 + 0.01)+ 1./((x - 0.9).^2 + 0.04) -6;

in the M-file humps.m in directory D.

>> fplot(’humps’, [-5 5])
>> grid on
>> fplot(’humps’, [-5 5 -10 25])
>> grid on
>> fplot(’[2*sin(x+3), humps(x)]’, [-5 5])
>> fmin(’humps’,0.3,1)
ans =

0.6370
>> fmin(’humps’,0.3,1,1)
Func evals x f(x) Procedure

1 0.567376 12.9098 initial
2 0.732624 13.7746 golden
3 0.465248 25.1714 golden
4 0.644416 11.2693 parabolic
5 0.6413 11.2583 parabolic
6 0.637618 11.2529 parabolic
7 0.636985 11.2528 parabolic
8 0.637019 11.2528 parabolic
9 0.637052 11.2528 parabolic

ans =
0.6370

14



4.4 Homework

1. Consider the iterative process

xn+1 =
1
2

(
xn +

a

xn

)
,

where a > 0. Assuming the process converges, to what does it converge?
What is the order of convergence.

2. Find the minimum of the function -humps. Use different ranges.

3.(a) Given f(xn), f ′(xn) and f ′(xn−1), show that

q(x) = f(x) + f ′(xn)(x− xn) +
f ′(xn−1)− f ′(xn)

xn−1 − xn
· x− xn)2

2
,

has the same derivatives as f at xn and xn−1 and is equal to f at xn.

(b) Construct a line search algorithm based on this quadratic fit.

4.5 Quadratic interpolation

Assume we are given x1 < x2 < x3 and the values of f(xi), i = 1, 2, 3, which
satisfy

f(x2) < f(x1) and f(x2) < f(x3).

The quadratic passing through these points is given by

q(x) =
3∑
i=1

f(xi)
∏
j 6=i(x− xj)∏
j 6=i(xi − xj)

.

The minimum of this function is attained at the point

x4 =
1
2
β23f(x1) + β31f(x2) + β12f(x3)
γ23f(x1) + γ31f(x2) + γ12f(x3)

,

with βij = x2
i − x2

j and γij = xi − xj . An algorithm A : R3 → R3 can
be defined by such a pattern. If we start from an initial 3-points pattern
x = (x1, x2, x3) the algorithm A can be constructed in such a way that
A(x) has the same pattern. The algorithm is continuous, hence closed. It
is descents with respect to the function Z(x) = f(x1) + f(x2) + f(x3). If
follows that the algorithm converges to the solution set Γ = {x∗ : f ′(x∗i ) =
0, i = 1, 2, 3.}. It can be shown that the order of convergence to the solution
is (approximately) 1.3.

15



4.6 Cubic fit

Given x1 and x2, together with f ′(x1), f ′′(x1), f ′(x2) and f ′′(x2), one can
consider a cubic polynom of the form

q(x) = a0 + a1x+ a2x
2 + a3x

3.

The local minimum is determined by the solution of the equation

q′(x) = a1 + 2a2x+ 3a3x
2 = 0,

which satisfies
q′′(x) = 2a2x+ 6a3x > 0.

It follows that the appropriate interpolation is given by

x3 = x2 − (x2 − x1)
f ′(x2) + β2 − β1

f ′(x2)− f ′(x1) + 2β2
,

where

β1 = f ′(x1) + f ′(x2)− 3
f(x1)− f(x2)

x1 − x2

β2 = (β2
1 − f ′(x1)f ′(x2))1/2.

The order of convergence of this algorithm is 2.

4.7 Homework

1. What conditions on the values and derivatives at two points guarantee
that a cubic fit will have a minimum between the two points? Use the
answer to develop a search scheme that is globally convergent for unimodal
functions.

2. Suppose the continuous real-valued function f satisfies

min
0≤x

f(x) < f(0).

Starting at any x > 0 show that, through a series of halving and doubling
of x and evaluation of the corresponding f(x)’s, a three-point pattern can
be determined.

16



3. Consider the function

f(x, y) = ex(4x2 + 2y2 + 4xy + 2y + 1).

Use the function fmin to plot the function

g(y) = min
x
f(x, y).

5 The method of steepest decent

The method of steepest decent is a method of searching for the minimum of
a function of many variables f . In in each iteration of this algorithm a line
search is performed in the direction of the steepest decent of the function at
the current location. In other words,

xn+1 = xn − αnḟ(xn),

where αn is the nonnegative scalar that minimizes f(xn − αḟ(xn)). It can
be shown that relative to the solution set {x∗ : ḟ(x∗) = 0}, the algorithm is
decending and closed, thus converging.

5.1 The quadratic case

Assume

f(x) =
1
2
x′Qx− bx′b =

1
2

(x− x∗)′Q(x− x∗)− 1
2
x∗′Qx∗,

were Q a positive definite and symmetric matrix and x∗ = Q−1b is the
minimizer of f . Note that in this case ḟ(x) = Qx− b. and

f(xn − αḟ(xn)) =
1
2

(xn − αḟ(xn))′Q(xn − αḟ(xn))− (xn − αḟ(xn))′b,

which is minimized at

αn =
ḟ(xn)′ḟ(xn)
ḟ(xn)′Qḟ(xn)

.

It follows that
1
2

(xn+1 − x∗)′Q(xn+1 − x∗) ={
1− (ḟ(xn)′ḟ(xn))2

ḟ(xn)′Qḟ(xn)ḟ(xn)′Q−1ḟ(xn)

}
× 1

2
(xn − x∗)′Q(xn − x∗).

17



Theorem 8 (Kantorovich inequality) Let Q be a positive definite and
symmetric matrix and let 0 < a = λ1 ≤ λ2 ≤ · · · ≤ λn = A be the eigenval-
ues. Then

(x′x)2

(x′Qx)(x′Q−1x)
≥ 4aA

(a+A)2 .

Theorem 9 For the quadratic case

1
2

(xn+1 − x∗)′Q(xn+1 − x∗) ≤
(
A− a
A+ a

)2 1
2

(xn − x∗)′Q(xn − x∗).

5.2 Applying the method in Matlab

Write the M-file fun.m:

function f=fun(x)
f = exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1);

In the Matlab session:

>> x=[-1,1];
>> x=fminu(’fun’,x)
x =

0.5000 -1.0000
>> fun(x)
ans =
1.3029e-010

>> x=[-1,1];
>> options(6)=2;
>> x = fminu(’fun’,x,options)
x =

0.5000 -1.0000

Write the M-file fun1.m:

function f = fun1(x)
f = 100*(x(2)-x(1)^2)^2 + (1 - x(1))^2;

and in the Matlab session:

18



>> x=[-1,1];
>> options(1)=1;
>> options(6)=0;
>> x = fminu(’fun1’,x,options)
f-COUNT FUNCTION STEP-SIZE GRAD/SD

4 4 0.500001 -16
9 3.56611e-009 0.500001 0.0208

14 7.36496e-013 0.000915682 -3.1e-006
21 1.93583e-013 9.12584e-005 -1.13e-006
24 1.55454e-013 4.56292e-005 -7.16e-007

Optimization Terminated Successfully
Search direction less than 2*options(2)
Gradient in the search direction less than 2*options(3)
NUMBER OF FUNCTION EVALUATIONS=24

x =
1.0000 1.0000

>> x=[-1,1];
>> options(6)=2;
>> x = fminu(’fun1’,x,options)
f-COUNT FUNCTION STEP-SIZE GRAD/SD

4 4 0.500001 -16
9 3.56611e-009 0.500001 0.0208

15 1.11008e-012 0.000519178 -4.82e-006

Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = 1.931503e-017.

> In c:\matlab\toolbox\optim\cubici2.m at line 10
In c:\matlab\toolbox\optim\searchq.m at line 54
In c:\matlab\toolbox\optim\fminu.m at line 257

....

192 4.56701e-013 -4.52912e-006 -1.02e-006
195 4.5539e-013 2.26456e-006 -4.03e-007
198 4.55537e-013 -1.13228e-006 -1.02e-006
201 4.55336e-013 5.66141e-007 -4.03e-007

Maximum number of function evaluations exceeded;
increase options(14).

x =
1.0000 1.0000

19



5.3 Homework

1. Investigate the function

f(x, y) = 100(y − x2)2 + (1− x)2.

Why doesn’t the steepest decent algorithm converge?

6 Newton and quasi-Newton methods

6.1 Newton’s method

Based on the Taylor expansion

f(xn) ≈ f(xn) + ḟ(xn)′(x− xn) +
1
2

(x− xn)′f̈(xn)(x− xn)

one can derive, just as for the line-search problem, Newton’s method:

xn+1 = xn − (f̈(xn))−1ḟ(xn).

Under the regularity conditions it can be shown that local rate of conver-
gence of this method is 2. A modification of this approach is to set

xn+1 = xn − αn(f̈(xn))−1ḟ(xn),

where αn minimizes the function f(xn − α(f̈(xn))−1ḟ(xn)).

6.2 Extensions

Consider the approach of choosing

xn+1 = xn − αnSnḟ(xn),

where Sn is some symmetric and positive-definite matrix and αn is the non-
negative scalar that minimizes f(xn − αSnḟ(xn)). It can be shown that
since Sn is positive-definite the algorithm is descending.

Assume

f(x) =
1
2
x′Qx− bx′b =

1
2

(x− x∗)′Q(x− x∗)− 1
2
x∗′Qx∗,

20



were Q a positive definite and symmetric matrix and x∗ = Q−1b is the
minimizer of f . Note that in this case ḟ(x) = Qx− b. and

f(xn−αSnḟ(xn)) =
1
2

(xn−αSnḟ(xn))′Q(xn−αSnḟ(xn))−(xn−αSnḟ(xn))′b,

which is minimized at

αn =
ḟ(xn)′Snḟ(xn)

ḟ(xn)′SnQSnḟ(xn)
.

It follows that

1
2

(xn+1 − x∗)′Q(xn+1 − x∗) ={
1− (ḟ(xn)′Snḟ(xn))2

ḟ(xn)′SnQSnḟ(xn)ḟ(xn)′Q−1ḟ(xn)

}
× 1

2
(xn − x∗)′Q(xn − x∗).

Theorem 10 For the quadratic case

1
2

(xn+1 − x∗)′Q(xn+1 − x∗) ≤
(
Bn − bn
Bn + bn

)2 1
2

(xn − x∗)′Q(xn − x∗),

where Bn and bn are the largest and smallest eigenvalues of SQ.

6.3 The Davidon-Fletcher-Powell (DFP) method

This is a rank-two correction procedure. The algorithm starts with some
positive-definite algorithm S0, initial point x0:

1. Minimizes f(xn)−αSnḟ(xn) to obtain xn+1, ∆kx = xn+1−xn = −αnSnḟ(xn),
ḟ(xn+1) and ∆nḟ = ḟ(xn+1)− ḟ(xn).

2. Set

Sn+1 = Sn +
∆kx′∆kx
∆kx′∆kḟ

− Sn∆kḟ∆kḟ
′Sn

∆kḟ ′Sn∆kḟ
.

3. Go to 1.

It follows, since ∆kx′ḟ(xn+1) = 0, that if Sn is positive definite then so
is Sn+1.

21



6.4 The Broyden-Flecher-Goldfarb-Shanno (BFGS) method

In this method the Hessian is approximated. This is a rank-two correction
procedure as well. The algorithm starts with some positive-definite algo-
rithm H0, initial point x0:

1. Minimizes f(xn) − αH−1
n ḟ(xn) to obtain xn+1, ∆kx = xn+1 − xn =

−αnH−1
n ḟ(xn), ḟ(xn+1) and ∆nḟ = ḟ(xn+1)− ḟ(xn).

2. Set

Hn+1 = Hn +
∆kḟ

′∆kḟ

∆kḟ ′∆kx
− Hn∆kx∆kx′Hn

∆kx′Hn∆kx
.

3. Go to 1.

6.5 Homework

1. Use the function fminu with options(6)=0 (BFGS), options(6)=1 (DFP)
and options(6)=2 (steepest descent) to compare the performance of the
algorithms. Apply the function to minimize f(x) = x′Qx, here Q is a
diagonal matrix. Use different ratios between the smallest and the largest
eigenvalues different dimensions.

2. Investigate the rate of convergence of the algorithm

xn+1 = xn − [δI + (f̈(xn))−1]ḟ(xn).

What is the rate if δ is larger than the smallest eigenvalue of (f̈(x∗))−1?

3. Use the formula

[A+ ba′]−1 = A−1 − A−1ab′A−1

1 + b′A−1a
,

in order to get a direct updating formula for the inverse of Hn in the
BFGS method.

7 Constrained Minimization Conditions

22



The general (constrained) optimization problem has the form:

min
x∈Rd

f(x)

subject to:

gi(x) = 0 i = 1, . . . ,me

gi(x) ≤ 0 i = me + 1, . . . ,m
xl ≤ x ≤ xu

The first me constraints are called equality constraints and the last m−me

constraints are the inequality constraints.

7.1 Necessary conditions (equality constraints)

We assume first that me = m — all constraints are equality constraints.
Let x∗ be a solution of the optimization problem. Let g = (g1, . . . , gm).
Note that g is a (non-linear) transformation from Rd into Rm. The set
{x ∈ Rn : g(x) = 0} is a surface in Rn. This surface is approximated near
x∗ by x∗ +M , where

M = {y : ġ(x∗)′y = 0}.

In order for this approximation to hold, x∗ should be a regular point of the
constraint, i.e. (ġ1(x∗), . . . , ġm(x∗)) should be linearly independent.

Theorem 11 (Lagrange multipliers) Let x∗ be a local extremum point
of f subject to the constraint g = 0. Assume that x∗ is a regular point of
these constraints. Then there is a λ ∈ Rm such that

ḟ(x∗) + ġ(x∗)λ = ḟ(x∗) +
m∑
j=1

λj ġj(x∗) = 0.

Given λ, one can consider the Lagrangian:

l(x, λ) = f(x) + g(x)λ.

The necessary conditions can be formulated as l̇ = 0. The matrix of partial
second derivatives of l (with respect to x) at x∗ is

l̈x(x∗) = f̈(x∗) + g̈(x∗)λ = f̈(x∗) +
m∑
j=1

g̈j(x∗)λj

23



We say that this matrix is positive semidefinite over M if x′ l̈x(x∗)x ≥ 0, for
all x ∈M .

Theorem 12 (Second-order condition) Let x∗ be a local extremum point
of f subject to the constraint g = 0. Assume that x∗ is a regular point of
these constraints, and let λ ∈ Rm be such that

ḟ(x∗) + ġ(x∗)λ = ḟ(x∗) +
m∑
j=1

λj ġj(x∗) = 0.

Then the matrix l̈x(x∗) is positive semidefinite over M .

We now consider the case where me < m. Let x∗ be a solution of
the constrained optimization problem. A constraint gj is active at x∗ if
gj(x∗) = 0 and it is inactive if gj(x∗) < 0. Note that all equality constraints
are active. Denote by J the set of all active constraints.

7.2 Necessary conditions (inequality constraints)

For the consideration of necessary conditions when inequality constraints
are present the definition of a regular point should be extended. We say
now that x∗ is regular if {ġj(x∗) : j ∈ J} are linearly independent.

Theorem 13 (Kuhn-Tucker Conditions) Let x∗ be a local extremum
point of f subject to the constraint gj(x) = 0, 1 ≤ j ≤ me and gj(x) ≤ 0,
me + 1 ≤ j ≤ m. Assume that x∗ is a regular point of these constraints.
Then there is a λ ∈ Rm such that λj ≥ 0, for all j > me, and

ḟ(x∗) +
m∑
j=1

λj ġj(x∗) = 0

m∑
j=me+1

λjgj(x∗) = 0.

Let

l̈x(x∗) = f̈(x∗) +
m∑
j=1

λj g̈j(x∗).

24



Theorem 14 (Second-order condition) Let x∗ be a local extremum point
of f subject to the constraint gj(x) = 0, 1 ≤ j ≤ me and gj(x) ≤ 0,
me+ 1 ≤ j ≤ m. Assume that x∗ is a regular point of these constraints, and
let λ ∈ Rm be such that λj ≥ 0, for all j > me, and

ḟ(x∗) +
m∑
j=1

λj ġj(x∗) = 0.

Then the matrix l̈x(x∗) is positive semidefinite on the tangent subspace of
the active constraints.

7.3 Sufficient conditions

Sufficient conditions are based on second-order conditions:

Theorem 15 (Equality constraints) Suppose there is a point x∗ satisfy-
ing g(x∗) = 0, and a λ ∈ Rm such that

ḟ(x∗) +
m∑
j=1

λj ġj(x∗) = 0.

Suppose also that the matrix l̈x(x∗) is positive definite on M . Then x∗ is a
strict local minimum for the constrained optimization problem.

Theorem 16 (Inequality constraints) Suppose there is a point x∗ that
satisfies the constraints. A sufficient condition for x∗ to be a strict local
minimum for the constrained optimization problem is the existence of a λ ∈
Rm such that λj ≥ 0, for me < j ≤ m, and

ḟ(x∗) +
m∑
j=1

λj ġj(x∗) = 0 (1)

m∑
j=me+1

λjgj(x∗) = 0, (2)

and the Hessian matrix l̈x(x∗) is positive on the subspace

M ′ = {y : ġj(x∗)′y = 0, j ∈ J}

where J = {j : gj(x∗) = 0, λj > 0}

25



7.4 Sensitivity

The Lagrange multipliers can be interpreted as the price of incremental
change in the constraints. Consider the class of problems:

minimize f(x)
subject to g(x) = c.

For each c, assume the existence of a solution point x∗(c). Under appropriate
regularity conditions the function x∗(c) is well behaved with x∗(0) = x∗.

Theorem 17 (Sensitivity Theorem) Let f,g ∈ C2 and consider the fam-
ily of problem defined above. Suppose that for c = 0 there is a local solution
x∗ that is a regular point and that, together with its associated Lagrange mul-
tiplier vector λ, satisfies the second-order sufficient conditions for a strict
local minimum. Then for every c in a neighborhood of 0 there is x∗(c),
continuous in c, such that x∗(0) = x∗, x∗(c) is a local minimum of the
constrained problem indexed by c, and

ḟ(x∗(c)) | c=0 = −λ.

7.5 Homework

1. Read the help file on the function fminu. Investigate the effect of sup-
plying the gradients with the parameter grad on the performance of the
procedure. Compare, in particular the functions bilinear and fun1.

2. Consider the constraints x1 ≥ 0, x2 ≥ 0 and x2−x1− 1)2 ≤ 0. Show that
(1, 0) is feasible but not regular.

3. Find the rectangle of given perimeter that has greatest area by solving
the first-order necessary conditions. Verify that the second-order sufficient
conditions are satisfied.

4. Three types of items are to be stored. Item A costs one dollar, item B costs
two dollars and item C costs 4 dollars. The demand for the three items
are independent and uniformly distributed in the range [0, 3000]. How
many of each type should be stored if the total budget is 4,000 dollars?

26



5. Let A be an n×m matrix of rank m and let L be an n× n matrix that
is symmetric and positive-definite on the subspace M = {y : Ay = 0}.
Show that the (n+m)× (n+m) matrix[

L A′

A 0

]
is non-singular.

6. Consider the quadratic program

minimize x′Qx− 2b′x

subject to Ax = c.

Prove that x∗ is a local minimum point if and only if it is a global minimum
point.

7. Maximize 14x− x2 + 6y − y2 + 7 subject to x+ y ≤ 2, x+ 2y ≤ 3.

8 Lagrange methods

The Lagrange methods for dealing with constrained optimization problem
are based on solving the Lagrange first-order necessary conditions. In par-
ticular, for solving the problem with equality constraints only:

minimize f(x)
subject to g(x) = 0,

the algorithms look for solutions of the problem:

ḟ(x) +
m∑
j=1

λj ġj(x) = 0

g(x) = 0,

8.1 Quadratic programming

An important special case is when the target function f is quadratic and
the constraints are linear:

minimize (1/2)x′Qx + x′c

subject to a′ix = bi, 1 ≤ i ≤ me

a′ix ≤ bi, me + 1 ≤ i ≤ m

27



with Q a symmetric matrix.

8.1.1 Equality constraints

In the particular case where me = m the above becomes

minimize (1/2)x′Qx + x′c

subject to Ax = b.

and the Lagrange necessary conditions become

Qx +A′λ+ c = 0

Ax− b = 0.

This system is nonsingular if Q is positive definite on the subspace M =
{x : Ax = 0}. and the solution becomes:

x = Q−1A′(AQ−1A′)−1[AQ−1c + b]−Q−1c

λ = −(AQ−1A′)−1[AQ−1c + b].

8.1.2 Inequality constraints

In the general quadratic programming problem the method of active set is
used. A working set of constraints Wn is updated in each iteration. The set
Wn contains all constraints that are suspected to satisfy an equality relation
at the solution point. In particular, it contains the equality constraints. An
algorithm for solving the general quadratic problem is:

1. Start with a feasible point x0 and a working set W0. Set n = 0

2. Solve the quadratic problem

minimize (1/2)d′Qd + (c +Qxn)′d
subject to a′id = 0, i ∈Wn.

If d∗n = 0 go to 4.

3. Set xn+1 = αnd∗n, where

αn = min
a′id
∗
n>0

{
1,
bi − a′ixn

a′id∗n

}
.

If αn < 1, adjoin the minimizing index above to Wn to form Wn+1. Set
n = n+ 1 and return to step 2.

28



4. Compute the Lagrange multiplier in step 3 and let λn = min{λi : i ∈
Wn, i > me}. If λn ≥ 0, stop; xn is a solution. Otherwise, drop λn from
Wn to form Wn+1 and return to step 2.

8.2 Homework

1. Read about the function constr.

2. Investigate the properties of the function for quadratic programming.

9 Sequential Quadratic Programming

Let us go back to the general problem

minimize f(x)
subject to gi(x) = 0, i = 1, . . . ,me

gi(x) ≤ 0, i = me + 1, . . . ,m.

The SQP method solves this problem by solving a sequence of QP problems
where the Lagrangian function l is approximated by a quadratic function
and the constraints are approximated by a linear hyper-space.

9.1 Newton’s Method

Consider the case of equality constraints only. At each iteration the problem

minimize (1/2)d′ l̈x(xn, λn)d + l̇(xn, λn)′d
subject to ġi(xn)′d + gi(xn) = 0, i = 1, . . . ,m

is solved. It can be shown that the rate of convergence of this algorithm
is 2 (at least) if the starting point (x0, λ0) is close enough to the solution
(x∗, λ∗). A disadvantage of this approach is the need to compute Hessian.

9.2 Structured Methods

29



These methods are modifications of the basic Newton method, with approx-
imations replacing Hessian. One can rewrite the solution to the Newton step
in the form [

xn+1
λn+1

]
=
[

xn
λn

]
−
[
l̈n ġ′n
ġn 0

]−1[ l̇n
gn

]
.

Instead, one can use the formula[
xn+1
λn+1

]
=
[

xn
λn

]
− αn

[
Hn ġ′n
ġn 0

]−1[ l̇n
gn

]
,

with αn and Hn properly chosen.

9.3 Merit function

In order to choose the αn and to assure that the algorithm will converge
a merit function is associated with the problem such that a solution of
the constrained problem is a (local) minimum of the merit function. The
algorithm should be descending with respect to the merit function.

Consider, for example, the problem with inequality constraints only:

minimize f(x)
subject to gi(x) ≤ 0, i = 1, . . . ,m.

The absolute-value merit function is given by

Z(x) = f(x) + c
m∑
i=1

gi(x)+.

The parameter α is chosen by minimizing the merit function in the direction
chosen by the algorithm.

Theorem 18 If H is positive-definite and if c > max1≤i≤m λi then the
algorithm is descending with respect to the absolute-value merit function.

9.4 Enlargement of the feasible region

Consider, again, the problem with inequality constraints only:

minimize f(x)
subject to gi(x) ≤ 0, i = 1, . . . ,m.

30



and its solution with a structural SQP algorithm.
Assume that at the current iteration xn = x and Hn = H. Then one

wants to consider the QP problem:

minimize (1/2)d′Hd + ḟ(x)
subject to ġi(x)′d + g(x) ≤ 0, i = 1, . . . ,m.

However, it is possible that this problem is infeasible at the point x. Hence,
the the original method breaks down. However, one can consider instead
the problem

minimize (1/2)d′Hd + ḟ(x) + c
m∑
i=1

ξi

subject to ġi(x)′d + g(x) ≤ ξi, i = 1, . . . ,m.
−ξi ≤ 0, i = 1, . . . ,m,

which is always feasible.

Theorem 19 If H is positive-definite and if c > max1≤i≤m λi then the
algorithm is descending with respect to the absolute-value merit function.

9.5 The Han–Powell method

The Han–Powell method is what is used by Matlab for SQP. It is a Quasi-
Newton method, where Hn is updated using the BFGS approach:

Hn+1 = Hn +
(∆l)(∆l)′

(∆x)′(∆l)
− Hn(∆x)(∆x)′Hn

(∆x)′Hn(∆x)
,

where
∆x = xn+1 − xn, ∆l = l(xn+1, λn+1)− l(xn, λn).

It can be shown that Hn+1 is positive-definite if Hn is and if (∆x)′(∆l) > 0.

9.6 Constrained minimization in Matlab

Write the M-file fun2.m:

function [f,g]=fun2(x)
f = exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1);
g(1,1) = 1.5 + x(1)*x(2) - x(1) - x(2);
g(2,1) = -x(1)*x(2) - 10;

31



and run the Matlab session:

>> x0 = [-1,1];
>> x = constr(’fun2’, x0)
x =

0.1956 1.0910
>> x = constr(’fun2’, x0)
x =

-9.5474 1.0474
>> [f,g] = fun2(x)
f =

0.0236
g =
1.0e-015 *
-0.8882

0
>> options = [];
>> vlb = [0,0];
>> vlu = [];
>> x = constr(’fun2’, x0, options, vlb, vlu)
x =

0 1.5000
>> [f,g] = fun2(x)
f =

8.5000
g =

0
-10

Write the M-file grodf2.m:

function [df,dg]=grudf2(x)
f = exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1);
df = [f + exp(x(1))*(8*x(1) + 4*x(2)),

exp(x(1))*(4*x(1) + 4*x(2) + 2)];
dg = [x(2) - 1, -x(2);

x(1) - 1, -x(1)];

and run the session:

>> vlb = [];
>> x = constr(’fun2’, x0, options, vlb, vlu, ’grudf2’)

32



x =
-9.5474 1.0474

9.7 Homework

1. Let H be a positive-definite matrix and assume that throughout some
compact set the quadratic programing has a unique solution, such that
the Lagrange multipliers are not larger than c. Let {xn : n ≥ 0} is a
sequence generated by the recursion bxn+1 = xn + αndn, where d is the
direction found by solving the QP centered at xn and with H fixed and αn
is determined by minimizatin of the function Z. Show that any limit point
of {bxn} satisfies the first order necessary conditions for the constrained
minimization problem.

2. Extend the result in 1 for the case where H = Hn changes but yet ε‖x‖2 ≤
x′Hnx ≤ c‖x‖2 for some 0 < ε < c <∞ and for all x and n.

10 Penalty and Barrier Methods

The basic approach in these methods is to solve a sequence of unconstrained
problems. The solutions of these problems converge to the solution of the
original problem.

10.1 Penalty method

Consider the problem

minimize f(x)
subject to gi(x) ≤ 0, i = 1, . . . ,m.

Choose a continuous penalty function which is zero inside the feasible set
and positive outside of it. For example,

P (x) = (1/2)
m∑
i=1

max{0, gi(x)}2.

Minimize, for each c, the problem

q(c,x) = f(x) + cP (x).

33



When c is increased it expected that the solution x∗(c) converges to x∗.

Lemma 1 Let cn+1 > cn, then

q(cn,x∗n) ≤ q(cn+1,x∗n+1) (3)
P (x∗n) ≥ P (x∗n+1) (4)
f(x∗n) ≤ f(x∗n+1). (5)

Lemma 2 Let x∗ be the solution of the original problem. Then for each n

f(x∗) ≥ q(cn,x∗n) ≥ f(x∗n).

Theorem 20 Let {xn} be a sequence generated by the penalty method. Then,
any limit point of the sequence is a solution to the original problem.

10.2 Barrier method

Consider again the problem

minimize f(x)
subject to gi(x) ≤ 0, i = 1, . . . ,m,

and assume that the feasible set is the closure of its interior. A barrier
function is a continuous and positive function over the feasible set which
goes to ∞ as x approaches the boundary. For example,

B(x) =
m∑
i=1

1
gi(x)

.

Minimize, for each c, the problem

minimize r(c,x) = f(x) +
1
c
B(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m.

Note that a method of unconstrained minimization can be used because
the solution is in the interior of the feasible set. When c is increased it is
expected that the solution x∗(c) converges to x∗.

Theorem 21 Let {xn} be a sequence generated by the barrier method. Then,
any limit point of the sequence is a solution to the original problem.

34



10.3 A final project

Choose an algorithm for minimization of a non-linear programming problem.
Program the steps of the algorithms using Matlab. Apply your program to a
specific example and compare the results to those of the appropriate built-in
function. Submit the program + plots and outputs that demonstrate the
steps of the algorithm.

10.4 An exercise in Matlab

Use the M-files fun1.m, const1.m and Z.m:

function f = fun1(x)
f = 100*(x(2)-x(1)^2)^2 + (1 - x(1))^2;

function g = cons1(x)
g = x(1)^2 + x(2)^2 - 1.5;

function a = Z(t,x,d)
y = x + t*d;
if cons1(y) >= 0

a = fun1(y) + 2*cons1(y);
else

a = fun1(y);
end

and write the M-file myconstr.m:

function x = myconstr(x0,H,n)
x = x0;
for i = 1:n
c = grudfun1(x);
A=grudcons1(x);
b=-cons1(x);
d = qp(H,c,A,b);
a = fmin(’Z’,0,2,[],x,d);
x = x + a*d;
end

function f = fun1(x)

35



f = 100*(x(2)-x(1)^2)^2 + (1 - x(1))^2;

function g = cons1(x)
g = x(1)^2 + x(2)^2 - 1.5;

function df = grudfun1(x)
df1 = -400*(x(2) - x(1)^2)*x(1) + 2*x(1) - 2;
df2 = 200*(x(2) - x(1)^2);
df = [df1;df2];

function dg=grudcons1(x);
dg = [2*x(1), 2*x(2)];

Run the Matlab session:

>> x0 = [0;0];
>> constr(’f = fun1(x); g = cons1(x);’,x0)
ans =

0.9072
0.8227

>> H=[1,0;0,1];
>> myconstr(x0,H,1000)
ans =

0.9131
0.8329

>> x0 = [0.9;0.8];
>> myconstr(x0,H,10)
ans =

0.9072
0.8228

>> x =constr(’f = fun1(x); g = cons1(x);’,x0);
>> (-400*(x(2) - x(1)^2)*x(1) + 2*x(1) - 2)/(2*x(1))
ans =

-0.0387
>> 200*(x(2) - x(1)^2)/(2*x(2))
ans =

-0.0386
>> 100*(grudcons1(x+[0.01;0])-grudcons1(x))
ans =

2.0000 0
>> 100*(grudcons1(x+[0;0.01])-grudcons1(x))

36



ans =
0 2.0000

>> 100*(fun1grad(x+[0.01;0])-fun1grad(x))
ans =
>>
671.5124 -364.8935

>> 100*(fun1grad(x+[0;0.01])-fun1grad(x))
ans =
-362.8935 200.0000

>> H = [672,-364;-364,200] + 0.386*[2,0;0,2];
>> x0 = [0.7;0.5];
>> xx = x0;
>> for n=1:12
x0 = myconstr(x0,H,1);
xx=[xx,x0];
end
>>[x1,x2]=meshgrid(-1.5:0.1:1.5);
>> t = 0:pi/20:2*pi;
>> contour(x1,x2,fun12(x1,x2),30)
>> hold on
>> plot(sqrt(1.5)*exp(i*t))
>> plot(xx(1,:),xx(2,:),’*-’)

11 Stochastic Approximation

Let h be a monotone function from the interval [a, b] to R. Let θ be the
(unique) solution of the equation h(x) = 0. Assume that h′(θ) > 0. Un-
fortunately, for a given point x, one cannot evaluate h(x) but we observe
Y = h(x) + ε, where ε is a random variable with Eε = 0 and Eε2 = σ2 <∞,
independent of how x is selected. The Robbins-Monroe scheme involves an
infinite sequence of positive constants {cn : n = 0, 1, 2, . . .} which satisfy the
conditions ∑∞

n=0 cn =∞,
∑∞
n=0 c

2
n <∞. (6)

The recursion is given by

xn = xn−1 − cn−1Yn−1, a < x0 < b. (7)

37



Theorem 22 For the recursion defined in (7), with constants cn satisfy-
ing (6), it can be shown that E(xn − θ)2 −→n→∞ 0.

Theorem 23 For the recursion defined in (7), with constants cn satisfy-
ing (6), it can be shown that n1/2(xn − θ) converges to a zero-mean normal
random variable.

38


	The General Optimization Problem
	Basic MATLAB
	Starting and quitting MATLAB
	Matrices
	Graphics
	Scripts and functions
	Files
	More about functions
	Homework

	Basic properties of solutions and algorithms
	Necessary conditions for a local optimum
	Convex (and concave) functions
	Global convergence of decent algorithms
	Homework

	Basic descent methods
	Fibonacci and Golden Section Search
	Newton's method
	Applying line-search methods
	Homework
	Quadratic interpolation
	Cubic fit
	Homework

	The method of steepest decent
	The quadratic case
	Applying the method in Matlab
	Homework

	Newton and quasi-Newton methods
	Newton's method
	Extensions
	The Davidon-Fletcher-Powell (DFP) method
	The Broyden-Flecher-Goldfarb-Shanno (BFGS) method
	Homework

	Constrained Minimization Conditions
	Necessary conditions (equality constraints)
	Necessary conditions (inequality constraints)
	Sufficient conditions
	Sensitivity
	Homework

	Lagrange methods
	Quadratic programming
	Homework

	Sequential Quadratic Programming
	Newton's Method
	Structured Methods
	Merit function
	Enlargement of the feasible region
	The Han--Powell method
	Constrained minimization in Matlab
	Homework

	Penalty and Barrier Methods
	Penalty method
	Barrier method
	A final project
	An exercise in Matlab

	Stochastic Approximation

