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Abstract
Circuit placement is a crucial process in physical design that encompasses multiple objectives and

constraints. With the continuous scaling of technology, placement has become increasingly challenging
and critical as it significantly impacts the overall circuit performance. Analytical placement is an
essential component of this process due to its high efficiency and reliability. This thesis focuses on
advanced analytical placement algorithms that can efficiently produce high-quality solutions in terms
of objective modeling and optimization.

Wirelength-driven global placement is the widely adopted strategy in analytical placement, which
aims to minimize the total wirelength and thus has the potential to optimize power and delay in
subsequent steps of the design flow. Analytical placers formulate the global placement problem as
mathematical programming with certain constraints on legality and apply numerical optimization
approaches after appropriate problem relaxations. To apply gradient-based numerical optimization
approaches, the wirelength model must be differentiable everywhere. This thesis proposes a new dif-
ferentiable wirelength model using the Moreau envelope to approximate the half-perimeter wirelength
(HPWL). The proposed model is superior to conventional models in terms of numerical stability,
convexity, and approximation error. Additionally, this thesis proposes algorithms to compute the
objective and corresponding gradients, with dedicated theoretical analysis.

Optimizing realistic industrial objectives is of paramount importance to the design closure of
integrated circuits, in addition to wirelength. However, most existing placement algorithms based on
wirelength optimizations do not directly consider realistic objectives, implying potential unpredictable
quality degradation. Timing, one of the most crucial metrics in integrated circuit design, has become
a formidable challenge to optimize due to its timeconsuming nature. In this thesis, we propose a
timing-driven analytical placement engine with momentum-based net weighting to optimize timing in
global placement. The net-based approach is applied because of its scalability to global perturbation
of cells in global placement.

With technology scaling nearing its physical limits, the 3D integrated circuit (3D-IC) has emerged
as a promising solution for extending Moore’s Law. By vertically stacking multiple dies, 3D-IC can
achieve higher transistor density and replace long 2D interconnects with shorter inter-die connec-
tions, leading to improved circuit performance. In this thesis, we further extend the algorithms from
2D scenarios to 3D. We present a new analytical 3D placement framework with a bistratal wire-
length model for face-to-face (F2F) bonded 3D ICs with heterogeneous technology nodes based on
the electrostatic-based density model. The proposed framework, which enables GPU acceleration,
is capable of efficiently determining node partitioning and locations simultaneously, leveraging the
dedicated 3D wirelength model and density model. Moreover, it is a comprehensive expression of
analytical placement in terms of modeling and optimization.
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摘要
電路佈局是物理設計領域中的一個關鍵過程，涵蓋了多個目標和約束。隨著製程處理規模的持續

增大，佈局變得越來越具有挑戰性和關鍵性，因為它對整體電路性能有顯著影響。解析佈局由於其高
效性和可靠性，成為這個過程中的一個重要組成部分。本論文關注能在目標建模和優化方面高效生成
高質量解的先進解析佈局算法。
基於線長的全局佈局是目前解析佈局中廣泛採用的策略。這種策略旨在最小化電路總線長，因此

有潛力在設計流程的後續步驟中優化功耗和延時。解析佈局器將全局佈局問題定義為數學規劃，並在
適當的鬆弛後應用數值優化方法進行求解。為了應用基於梯度的數值優化方法，線長模型必須是處
處可微的。本論文提出了一種新的可微線長模型，使用 Moreau 包絡對半週長線長（HPWL）進行近
似。所提出的模型在數值穩定性、凸性和近似誤差方面都優於傳統模型。此外，本論文還提出了計算
目標及相應梯度的算法，並進行了專門的理論分析。
當設計集成電路時，優化實際工業目標除了線長之外至關重要。然而，大多數現有的基於線長優

化的佈局算法並未直接考慮實際目標，這意味著可能會出現難以估量的質量損失。在集成電路設計
中，時序是最關鍵的指標之一，由於其顯著的耗時性質，優化時序已成為一個艱巨的挑戰。在這篇論
文中，我們提出了一個時序驅動的解析佈局引擎，採用基於動量的線網加權方法來優化全局佈局中的
時序。採用基於線網加權的方法是因為它對全局佈局中單元的全局干擾具有可擴展性。
隨著規模持續增大以接近其物理極限，三維集成電路（3D-IC）已成為擴展摩爾定律的一個有前途

的解決方案。通過垂直堆疊多個芯片，三維集成電路可以實現更高的晶體管密度，並用較短的芯片間
連接取代較長的二維互連，從而提高電路性能。在這篇論文中，我們進一步將二維情境之算法擴展到
三維。我們提出了全新的三維解析佈局框架，使用基於靜電密度模型的面對面（F2F）鍵合三維集成
電路的雙層線長模型。此框架支持 GPU 加速，能夠高效地利用專用的 3D 線長模型和密度模型來同
時確定劃分和佈局。此外，它是解析佈局方法在建模和優化方面的全面展現。
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CHAPTER 1
INTRODUCTION

Along with the torrent of computing power revolution, the rise of artificial intelligence, and the ever-
shrinking size of advanced technology nodes, the community of electronic design automation (EDA)
has witnessed great innovation in the design of very-large scale integrated (VLSI) circuits. The design
process comprises a series of consecutive tasks, each becoming more complicated and challenging for
designers to accomplish due to the increasing complexity.

Placement is a crucial step in physical design, where movable instances are mapped into a layout
with optimized positions under specific constraints. The fundamental unit to be placed is typically
modeled by a rectangle, and millions of rectangles seek their best planar locations in terms of different
objectives. Modern placers must be capable of efficiently placing extremely large-scale circuits. There-
fore, designing placement algorithms with high performance and quality becomes a great challenge.
Common academic and engineering works separate the placement problem into global placement
(GP) and detailed placement (DP). Global placement algorithms are responsible for finding rough
planar locations from scratch, ensuring that instances are roughly spread out over the die area. This
is followed by a legalization step to strictly satisfy legality constraints. Detailed placement algorithms
optimize locations incrementally based on a reliable legal initial placement. In contrast to detailed
placement, which is usually handled discretely, global placement algorithms relax the complicated
constrained optimization problem, making them more flexible to customize. Moreover, since global
placement must efficiently find suitable locations for millions of instances from scratch, it encourages
and inspires more analytical optimization approaches.

The analytical approaches for global placement require differentiable modeling of main objectives
(wirelength, timing, congestion, etc.) and density constraints. The difficulty of modeling different
objectives varies with analytical methods. For instance, realistic objectives are typically intractable
to evaluate, model, and optimize. Simultaneously, the non-convex density models are critical to the
solution quality of analytical global placement. Hence, mathematical approaches for modeling and
optimization are eagerly desired to establish, enhance, and improve the current analytical techniques
both in theory and in practical engineering efforts.

In this thesis, we focus on some advanced analytical placement techniques for VLSI circuits. We
will cover wirelength modeling in both 2D and 3D scenarios, timing-driven optimization, and 3D
placement optimization with heterogeneous technologies. This thesis is organized as follows:

In Chapter 2, the literature review is discussed. It contains an overview of previous works related
to the covered topics.

2



Chapter 3 proposes a differentiable wirelength model based on the theoretical foundations of the
proximal operator and Moreau envelope of HPWL. It is worth mentioning that we will rigorously
analyze its theoretical properties, and use Water-Filling algorithm to efficiently compute the cor-
responding backward pass. Given the special structure and properties of HPWL, we will show that
the general Moreau-Yosida approximation can be directly applied in the numerical optimization of
analytical global placement.

In Chapter 4, we will discuss the timing-aware optimization techniques in global placement, an
example of optimizing realistic objectives through analytical placement. To better incorporate timing
optimization in the gradient-based numerical optimization, we dynamically update the net weights so
that critical nets would become tight and thus reduce corresponding net delays, resulting in a better
timing quality.

Chapter 5 focuses on the analytical 3D placement with heterogeneous technologies considered. 3D
placement is not only an extension of 2D placement but also faces a new challenge of partitioning, as
the realistic fabrication only allows two or more dies to vertically stack together. We propose a bistratal
wirelength model that fits the die-to-die wirelength objective better. To tackle the differentiability
and even convexity issue, we devise the gradient scheme with finite difference approximation, enabling
differentiability and GPU parallelism. The proposed framework significantly outperforms existing 3D
analytical placers in both solution quality and end-to-end runtime.

3



CHAPTER 2
LITERATURE REVIEW

2.1 Wirelength Models in Analytical Placement
In order to find suitable locations for circuit components, circuit placement is an essential step in
physical design with various objectives and constraints. Different objectives may induce different
problem formulations. The widely adopted strategy is to perform wirelength-driven global placement
first, which directly minimizes the total wirelength of the entire circuit. Typically, the global placement
quality is evaluated by the total routed wirelength after a subsequent routing procedure. However,
it could not be easily evaluated during placement, leading to a significant difficulty for analytical
approaches.

The current state-of-the-art placers like [Lin+20a] usually apply nonlinear algorithms [Lu+15a]
which requires differentiability of the objective function. However, the differentiability of objective
functions depends on the detailed formulation of the wirelength models we apply. The Steiner tree
wirelength is the most accurate model to the routed wirelength, which is based on the construction
of Rectilinear Steiner Minimum Tree (RSMT). However, we do not have a general closed-form repre-
sentation for Steiner tree wirelength as the well-known RSMT problem is NP-complete [GJ77]. The
research discussions on the Steiner’s problem can be traced back to the first half of the 19th cen-
tury [CR41; Mel61; Han66]. It is demonstrated in [Han66] that the search of optimal RSMT of n

planar points can be reasonably restricted to the grid points constructed by horizontal and vertical
lines of all vertices, known as the Hanan grid. The optimal solution for n ≤ 5 has also been proposed
and analyzed [Han66]. Some fascinating research works on solving RSMT problem have discussed the
exact [YW72; Hwa76; SW93; GC94] and approximated algorithms [Hwa79; KR92; Gri+94; War98;
KMZ03; CW07; LCY21; Kah+24] in detail.

Accelerated algorithms of approximated Steiner tree wirelength [GGL22] may resolve the runtime
performance issue to a certain degree, however, it is still apparently inconsistent with the philosophy
of analytical approaches, due to its intractable differentiability issue. As a result, modern analytical
placers formulate the global placement problem as mathematical programming with certain constraints
on legality [Cha+07; KW06; KLM11; VPC07; BSV08; LP08; SSJ08b; Che+08; Hua+17; KM12;
Kim+12], using heavily relaxed wirelength models. The common practice suggests the half-perimeter
wirelegth (HPWL) as the target objective in analytical global placement, which simply calculates
max1≤i≤n xi−min1≤i≤n xi of a point set {(xi, yi)}ni=1 as its horizontal part of wirelength. The closed-
form representation helps to design analytical algorithms for a parallelized implementation of global
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placement.
In order to apply gradient-based numerical optimization approaches, we require the wirelength

model to be differentiable everywhere. However, the most popular half-perimeter wirelength model
(HPWL) function containing maximum and minimum coordinates is not everywhere differentiable [MHK15].
Therefore, modern placement algorithms heavily rely on differentiable approximations of the HPWL
model. There are two main categories, quadratic approximations and nonlinear approximations.

Quadratic models like [BSV08; LP08; SSJ08b; KLM11; VPC07; KM12; Kim+12] approximate
every edge cost with the squared length, which gives a strictly convex objective that is very convenient
for us to optimize. The general form of quadratic objective has closed-form minimizers which can be
found by solving linear systems. However, quadratic models have poor approximation error bounds.
To better approximate HPWL with quadratic models, some linearization techniques [SDJ91] have
been proposed. They integrate certain net weights inversely proportional to net length so that the
weighted squared term can be closer to HPWL. The Bound2Bound (B2B) model [SSJ08b; EJ98]
decomposes larger nets by selecting boundary pins and connecting them to each internal node.

Commonly, nonlinear analytical placers use differentiable functions, like the log-sum-exp [NDS01]
model and the weighted-average [HCB11; HBC13] model, to approximate HPWL to arbitrary preci-
sion by controlling some hyperparameters. The state-of-the-art placers [Cha+07; KW06; Che+08;
Hua+17; Lu+15a; Che+18; Lin+19] adopt nonlinear analytical models as they approximate HPWL
more accurately, have closed-form gradient representations, and can be naturally optimized by gradi-
ent descent.

Some research works have been seeking new ways to optimize HPWL. The Bivariate-Gradient-
Based (BiG) model [SC19], inspired by [LK07], calculates gradients with respect to coordinates by
applying bivariate functions that approximate bivariate maximum or minimum to improve numerical
stability and CPU runtime. Subgradient-based approaches [Zhu+15] directly optimize the non-smooth
ℓ1 wirelength objective with the B2B model [SSJ08b; EJ98], using the Polak-Ribière-Polyak conjugate
subgradients method [PR69; Zhu+15].

The WA model [HCB11; HBC13] typically has a lower approximation error bound than the LSE
model [NDS01], but it still have to face numerical stability and non-convexity issue. In comparison,
the BiG model [SC19] has the advantages of numerical stability and cheap computation, but it relies
on a bivariate wirelength model that needs to be specified. Non-smooth optimization approaches
do not require any differentiable approximations, but they may encounter an issue of slow and poor
convergence.

2.2 Timing-Driven Placement
In most modern circuit placement frameworks, the interconnect cost to be optimized is modeled by the
total wirelength of all nets, which is estimated by half-perimeter wirelength (HPWL) or other derived
approximations, as mentioned in Section 2.1. Besides being only an approximation, total wirelength
pays equal attention to all nets instead of focusing on timing-critical nets and paths. This is contrast
to timing-driven placement that specifically targets wires on timing-critical paths which often yields
immediate circuit performance benefits. Optimizing a more realistic objective in analytical global
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placement may heavily affect the final solution quality of the overall design flow in terms of power,
performance and area.

Placement can be divided into a global placement stage and a detailed placement stage, and timing
optimization can be applied to both stages. The goal of timing-driven global placement is to achieve
both roughly good worst negative slack (WNS) and total negative slack (TNS). Later, timing-driven
detailed placement pays more attention to WNS optimization by perturbing the current placement
solution locally around critical paths. There are two types of timing-driven placement optimization:
net-based and path-based approaches.

In net-based approaches, optimization are done on nets within the design. These approaches
translate timing analysis feedbacks into changes of net weights and other constraints in order to op-
timize critical circuit regions. The weights of nets can be computed statically once before placement
optimization based on either slack [BY85; Dun+84; Cha+02; Kon02] or sensitivity [HCS00; WTC04;
XR05] statistics. The drawback of such approaches is that the timing analysis at earlier placement
iterations are unreliable due to frequently-changing cell locations, leading to less effective and rep-
resentative net weights. Such drawback is remedied by updating net weights dynamically across
all placement iterations [BY85; EJ98; RE95; OJ04]. In addition to net weighting, timing analysis
results can also be used to limit the maximum net lengths, which are called net constraint-based
approaches [Kah+11; Luk91; GVL92; TK91; Raj+03]. The formulation of net constraints varies from
particular placers [MHK15].

Contrast to net-based approaches, path-based approaches focus on direct optimization of critical
timing paths [Cho+05; JK89; SS95; HCC93]. They move cells on selected critical paths to explicitly
reduce the delay of these paths. Such path-based objective is often formulated as a mathematical pro-
gramming problem to optimize, and can usually outperform net-based approaches in terms of solution
quality. However, as the number of paths can grow near exponentially with the growth of design size,
such path-based approaches are poor in their runtime scalability. Both the net-based and the path-
based approaches have strengths and weaknesses regarding different targets such as solution quality
and turnaround time, which involve inevitable trade-off during any timing optimization. Generally,
we prefer less constrained approaches with knowledge of different placement iterations and more run-
time scalability to large designs, especially considering the flexible cell placement formulation during
global placement. Recent advances on timing-driven placement have greatly improved the interaction
between the placer and timer, so that the entire timing optimization can be processed in a direct way
by making the TNS and WNS objective completely differentiable [GL22], despite a possible divergence
issue.

2.3 3D Placement
With technology scaling nearing its physical limits, the 3D integrated circuit (3D-IC) has emerged
as a promising solution for extending Moore’s Law. Vertically stacking multiple dies enables 3D-IC
to achieve higher transistor density and replace long 2D interconnects with shorter inter-die connec-
tions, leading to improved circuit performance. Leveraging advanced packaging technology, chiplets
with heterogeneous technology nodes can be integrated to achieve leading cost-effective performance.
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Prominent examples of such technology adoption are Intel’s Meteor Lake [Gom+22] and AMD’s Zen
4 [Mun+23], which have resulted in significant performance gains and cost savings.

Conventionally, 3D-ICs are fabricated using through-silicon vias (TSVs) with large pitches and
parasitics, which may limit the total number of global interconnects to avoid performance degra-
dation [DZX10]. As an alternative approach, monolithic 3D (M3D) integration has been proposed,
where tiers are fabricated sequentially and connected using monolithic inter-tier vias (MIVs) [Bat+12;
Sam+16; Pan+17; KCL18]. In contrast to TSVs with microscale pitches, MIVs exhibit nanoscale
dimensions [Sam+16], allowing for higher integration density with significantly reduced space require-
ments. Nevertheless, it is still necessary to allocate certain white space on placement regions to
accommodate MIVs. Face-to-face (F2F) bonding is another approach that bonds ICs using face sides
for both dies [Mor+06; Jun+14; Pan+14; Son+15]. F2F-bonded 3D ICs do not require additional
silicon area for 3D connections [Jun+14], eliminating the need to reserve white space for vias and
allowing much higher integration density. The silicon-space overhead-free property of F2F-bonded 3D
ICs provides significant advantages in numerous applications [KCL18].

Algorithms to solve 3D placement evolve with die-stacking technologies. Conventional discrete
solutions handle multiple tiers discretely. T3Place [Con+07] transforms 2D placement solutions
into 3D with several folding techniques and local refinement. Early TSV-based research on partition-
based approaches [DM01; DCR03; GS07; KAL09] first partitions the netlist to minimize specific
targets, e.g., vertical connections, followed by a simultaneous 2D placement on all tiers. The “pseudo-
3D” flows utilize optimization techniques of existing 2D engines to work with projected 3D designs.
Cascade2D [Cha+16] implements an M3D design using 2D commercial tools with a design-aware
partitioning before placement. Recent partitioning-based approaches [Cha+16; Pan+17; KCL18;
Par+20] suggest that partitioning first may not sufficiently leverage physical information and thus
perform partitioning-last strategies after 2D pre-placement. Shrunk-2D [Pan+14; Pan+17] is a
prominent example that performs partitioning according to a 2D pre-placement. Shrunk-2D requires
geometry shrinking of standard cells and related interconnects by 50% during its 2D pre-placement
for F2F-bounded 3D ICs [Pan+14] or M3D [Pan+17]. Compact-2D [KCL18] adopts placement
contraction without geometry shrinking to obtain the 2D pre-placement, followed by a bin-based FM-
mincut tier partitioning [FM82]. Pin-3D [Pen+20] proposes pin projection to incorporate inter-die
physical information by projecting pins to other dies with fixed locations and transparent geometries,
which is first applicable to heterogeneous monolithic 3D ICs. Snap-3D [VI+21] for F2F bonded 3D
ICs shrinks the height of standard cell layouts by one half and labels footprint rows top vs. bottom to
indicate partitioning. However, the bin-based min-cut partitioning algorithm lacks an understanding
of the impact of partitioning on placement quality. TP-GNN [Lu+20], an unsupervised graph-
learning-based tier partitioning framework, is proposed to address this drawback for M3D ICs using
graph neural networks (GNNs). Considering that discrete algorithms are particularly sensitive to
partitioning [Mur+22] and can potentially lead to performance degradation, analytical 3D placement
is considered to be more promising to produce solutions with higher quality.

Analytical 3D solutions relax discrete tier partitioning and solve continuous 3D optimization prob-
lems accordingly. Typical analytical approaches include quadratic programming [KOB03; Hen+06],
nonlinear programming [Tan00], and force-directed methods [GS03]. In addition, NTUPlace3-
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3D [HCB11; HBC13] performs 3D analytical placement based on a bell-shaped [KW04] smooth density
considering TSV insertion, and mPL6-3D [LSC13] utilizes a Huber-based local smoothing technique
working with a Helmholtz-based global smoothing approach. Based on mPL6-3D [LSC13], ART-
3D [Mur+22] improves placement quality using reinforcement learning-based parameter tuning. The
state-of-the-art analytical placement is the ePlace family [Lu+13; Lu+15a; Lu+15b; Lu+16] where
the density constraint is modeled by an electrostatic field. Lu et al. proposes a general 3D eDensity
model in ePlace-3D [Lu+16] achieving analytically global smoothness along all dimensions in 3D do-
main. Remarkably, the ePlace family has achieved substantial success in wirelength-driven analytical
placement, and their adoption of fast Fourier transform (FFT) for solving the 3D numerical solution
has inspired quality enhancement [Che+18] and GPU-accelerated ultra-fast implementations [Lin+19;
Liu+22].

Unfortunately, the aforementioned previous works have difficulties in considering heterogeneous
technologies and specific utilization constraints, and thus lead to poor performance when applied to
heterogeneous 3D placement problems. Recently, Chen et al. [Che+23a] have proposed a 3D analytical
placement algorithm to optimize wirelength considering F2F-bonded 3D ICs with multiple manufac-
turing technologies. They devise a multi-technologies weighted-average (MTWA) wirelength model
using sigmoid-based functions for pin offset transition, and establish their framework based on ePlace-
3D [Lu+16]. A 2D analytical placement, considering the accurate wirelength, is employed after the
3D global placement to further refine the solution. The aforementioned works, including [Che+23a],
adopt the 3D net bounding box as the wirelength model which is not capable of capturing enough
information of the impact of partition on wirelength.
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CHAPTER 3
WIRELENGTH MODEL

In this chapter, we propose a new differentiable wirelength model using the Moreau envelope [Mor65]
to approximate HPWL. The proposed model is superior to previous models in numerical stability,
convexity, and approximation error. We will also propose algorithms to compute the objective and
gradients. To make such computation possible, we build upon the proximal mapping of the HPWL
model. The major contributions are summarized as follows.

• We derive the explicit representations of proximal mapping of the non-smooth HPWL function
and propose a water-filling algorithm similar to that in communication systems [Sha48; Wyn66;
YC01; Yeu08] to solve the proximal mapping and Moreau envelope problem.

• We provide theoretical and experimental analysis to compare the proposed wirelength model
and the widely-used weighted-average model [HCB11; HBC13] and verify its feasibility.

• Experimental results show that the proposed wirelength model can achieve up to 5.4% HPWL
improvements and over 1% on average for the ISPD2006 contest benchmarks [Nam06]. In
addition, we also achieve up to 3.0% HPWL improvements and over 1.5% on average on the
recent ISPD2019 contest benchmarks [Liu+19].

The rest of the chapter is organized as follows. Section 3.1 introduces some preliminaries, including
foundations of nonlinear placement, wirelength models, and the Moreau envelope. Section 3.2 presents
the algorithms of the proposed methods. Then, Section 3.3 gives some theoretical properties of our
wirelength model. Section 3.4 presents experimental results and some related analysis on the adopted
benchmarks, followed by the conclusion in Section 3.5.

3.1 Preliminaries
In this section, we review the foundations of analytical global placement and then introduce the
general form of the Moreau envelope applied to non-smooth functions. Besides, we will briefly compare
properties of the weighted-average [HCB11] and the Moreau envelope.

3.1.1 Analytical Global Placement

Circuit placement usually consists of three steps: global placement, legalization, and detailed place-
ment. At the global placement stage, we aim to find good cell locations with small total wirelength

9



such that the overlaps are controlled at a low level. The overlap penalty is a density term D(x,y)

modeled in an electrostatic system [Lu+15a], where variables x and y are the horizontal and vertical
cell locations, respectively. A typical nonlinear global placement problem is formulated as

min
x,y

∑
e∈E

We(x,y) + λD(x,y), (3.1)

where E is the net set, We(·) is the net wirelength function of net e ∈ E, D(x,y) models the cell
density penalty, and λ is the corresponding density weight in the objective.

The wirelength model is the detailed representation of the total-wirelength function We(x,y). For
example, a rectilinear minimum Steiner tree (RMST) wirelength is accurate to approximate the routed
wirelength but does not have an explicit closed-from representaion. For simplicity, we also use x,y

to represent corresponding pin coordinates ignoring pin offsets in this Section 3.1. Then, the most
widely-adopted HPWL model is defined as W (x,y) =

∑
e∈E We(x,y), where the net HPWL of e ∈ E

is
We(x,y) = max

i∈e
xi −min

i∈e
xi +max

i∈e
yi −min

i∈e
yi. (3.2)

The HPWL function defined in Equation (3.2) is convex and continuous but not everywhere
differentiable. Fortunately, it has a simple and clean formulation. Therefore, many approximation
models have been proposed. Here we focus on the nonlinear models.

3.1.2 Nonlinear Differentiable Models

Since most analytical placement algorithms expect to optimize HPWL, we are going to discuss nonlin-
ear differentiable HPWL-based wirelength models. Consider a net containing n pins with horizontal
coordinates x ∈ Rn. There are two widely-used exponential approximations, the log-sum-exp (LSE)
model [NDS01] and the weighted-average (WA) model [HCB11; HBC13],

We(x) ≈W γ
e,LSE(x) = γ ln

n∑
i=1

exp

(
xi

γ

)
+ γ ln

n∑
i=1

exp

(
−xi

γ

)
,

We(x) ≈W γ
e,WA(x) =

∑n
i=1 xi exp

(
xi

γ

)
∑n

i=1 exp
(

xi

γ

) −

∑n
i=1 xi exp

(
−xi

γ

)
∑n

i=1 exp
(
−xi

γ

) ,

(3.3)

where γ is a hyperparameter to control the tradeoff between the accuracy and differentiability. When
γ → 0+, the approximation will be arbitrarily close to the real HPWL function. Usually at the earlier
stages of global placement, γ is set to a large value so that the objective can be very smooth, and
decreases as the number of iterations increases.

3.1.3 Moreau Envelope

The general Moreau envelope [Mor65] is defined for functions satisfying specific constraints on a real
Hilbert space. In our placement applications, we only consider lower bounded closed convex functions
h(x) defined in Rn to simplify the notations. For any t > 0, let H(u,x) = h(u) + 1

2t∥u − x∥22, then
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the Moreau envelope ht and the proximal operator are defined by

ht(x) = min
u∈Rn

H(u,x), proxth(x) = argmin
u∈Rn

H(u,x). (3.4)

Hence, the objective value of the Moreau envelope can be naturally obtained as long as the proximal
mapping of h(·) is inexpensive to calculate. Note that the proximal mapping may or may not have
a closed-form representation, and it may or may not be easy to calculate, up to the form of function
h(·). Also, we do not require function h to be smooth.

Under the constraints of h(·) specified above, the Moreau envelope ht is a natural differentiable
approximation of h, and its gradient is globally Lipschitz continuous. More specifically, the envelope
theorem [Afr71] states that

∇ht(x) =
1

t
(x− proxth(x)) . (3.5)

Since limt→0+ ht(x) = h(x) converges pointwise, t is considered to be the approximation precision,
similar to γ in LSE [NDS01] and WA [HCB11].

The interesting point is that, in global placement, we are inspired to consider the net HPWL
function We, which has a clean and straightforward formulation. In this chapter, we propose an
algorithm to compute its Moreau envelope W t

e and use W t
e + t as the approximated wirelength model

so that the entire objective is everywhere differentiable. In Section 3.2, we are going to show the
representation of proxtWe

for the HPWL function We and the water-filling algorithm to solve it
inexpensively.

Additionally, if the learning rate in gradient descent is equal to the smoothing parameter t in the
Moreau envelope, i.e., the update rule is x(k+1) = x(k) − t∇W t(x), we can interpret it as a proximal
point method, as

x(k+1) = x(k) − t∇W t(x(k)) = proxtW t(x(k)). (3.6)

However, we also have to consider the effect of the density term, and may use a different learning rate
determined by Nesterov accelerated gradient method. The real application is much more complicated.

3.1.4 Comparison with WA

In this subsection, we will briefly compare WA [HCB11] and the Moreau envelope model. Equa-
tion (3.3) uses exponential terms to assign weights to each coordinate. A larger coordinate xi has a
large weight in the smooth maximum, as exp(xi

γ ) would occupy a larger proportion.

Numerical Stability: The exponential terms are sensitive to the coordinate. Note that the ∆x will
usually be hundreds or even over thousands in actual placement, so the γ should not be very small,
as a small γ will be likely to result in a numerical overflow. This phenomenon is also stated in [SC19].
Nearly all exponential models like the LSE [NDS01] and WA [HCB11] models have to face such an
issue.

Non-Convexity: There is no theoretical or experimental guarantee of convexity of the WA [HCB11]
model. Let us take a 3-pin net as an example and conduct a toy experiment on its horizontal pin
coordinate x ∈ R3. Assume that we fix the ∆x = 100, i.e., let x = (0, x, 100)⊤ without loss of

11



0 20 40 60 80 100

92

94

96

98

100

102
WA [HCB11], γ = 12.5

WA [HCB11], γ = 20

(a)

0 10 20 30 40 50

0

5

10

15

20
%

LSE [NDS01]
WA [HCB11]
Ours

(b)

Figure 3.1: (a) The non-convexity of WA [HCB11] on a simple 3-pin net to approximate ∆x =
max{xmin, x, xmax} − min{xmin, x, xmax}. (b) The average approximation error of different models
LSE [NDS01], WA [HCB11] and Moreau Envelope against the smoothing parameter γ or t for 4-pin nets,
under fixed ∆x = 200.

generality where x ∈ [0, 100]. We plot the function curve of W γ
e,WA({0, x, 100}) for some γ values

in Figure 3.1(a). As shown in the figure, even for the 3-pin net, the WA model can be non-convex.
For high-degree nets, it will get more complicated. Although the optimization process of real placement
problems is far more obscure than imagined, a convex wirelength model is usually preferred. As a
comparison, the Moreau envelope approximation is always convex [Mor65] for HPWL.

Approximation Error: The net wirelength models can be high-dimensional and thus extremely
difficult to analyze. We conduct a toy experiment on the smoothing parameters γ (for LSE [NDS01]
and WA [HCB11]) and t. Given a fixed range ∆x = xmax − xmin = 200, we randomly generate hori-
zontal coordinates x ∈ R4 for different smoothing parameters 3000 times, calculate the approximated
∆x using different wirelength models, take the average, and draw curves in Figure 3.1(b).

Although the smoothing parameters here have different mathematical meanings in different wire-
length models, the advantage of our proposed model on the approximation error is still well-illustrated
in Figure 3.1(b). It is worth mentioning that a lower approximation error does not always imply better
solution quality after placement, as the optimization procedure is so complicated that it can be easily
influenced by various hidden factors. In addition to the approximation error, the gradient properties
should also be carefully considered, which will be discussed in Section 3.3.

3.2 Algorithm
We adopt the Moreau envelope model as a differentiable approximation of net HPWL, which requires
the proximal mapping of HPWL. In this chapter, we use the rectified linear unit (ReLU) activation
function η+ = max{η, 0} to represent the positive part of η ∈ R.
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Algorithm 1 Gradient Algorithm
Require: The horizontal (or vertical) pin coordinates x ∈ Rn, the smoothing parameter t > 0.

1: Sort pin coordinates x such that x1 ≤ · · · ≤ xn;
2: Apply the Water-Filling Algorithm described in Algorithm 2 to solve equations

n∑
i=1

(xi − τ2)
+ =

n∑
i=1

(τ1 − xi)
+ = t

to obtain water-filling parameters τ1 and τ2;
3: if τ1 > τ2 then
4: Calculate average pin coordinate x̄ = 1

n

∑n
i=1 xi;

5: Assign τ1 ← x̄;
6: Assign τ2 ← x̄;
7: Given τ1 and τ2, calculate gradient g = ∇W t

e(x) according to Corollary 1;
8: return the required gradient g;

3.2.1 The Gradient of Moreau Envelope

Without loss of generality, consider a single net e connecting n pins p1, · · · , pn with horizontal coor-
dinates x ∈ Rn. The horizontal part of HPWL function is represented by

We(x) = max
1≤i≤n

xi − min
1≤i≤n

xi. (3.7)

The horizontal and vertical directions are symmetric, so we only focus on the horizontal direction for
analysis.

We give an overview of the gradient computation of the Moreau envelope model here. At each
placement iteration, we are required to calculate the gradient of the wirelength model w.r.t. the pin
coordinates x. The overall algorithm to calculate gradient g of the Moreau envelope W t

e(x) under the
smoothing parameter t is decribed in Algorithm 1. The following Theorem 1 states the representation
of the proximal mapping proxtWe

(x). Then Corollary 1 extends Theorem 1 and tells us how to
calculate gradient g given parameters τ1 and τ2. The detailed algorithm of calculating parameters τ1

and τ2 is described in Algorithm 2.

Theorem 1. The proximal mapping of t ·We for a positive real number t > 0 is given by proxtWe
(x) =

u∗ where

u∗
i =


τ2, if xi > τ2

xi, if τ1 ≤ xi ≤ τ2

τ1, otherwise
(3.8)

is defined for any i = 1, · · · , n, such that
n∑

i=1

(xi − τ2)
+ =

n∑
i=1

(τ1 − xi)
+ = t, (3.9)

if the solution τ1, τ2 to Equation (3.9) satisfy τ1 ≤ τ2, otherwise u∗ is determined by the average
coordinate u∗

i = 1
ne

⊤x for any index i = 1, · · · , n.

Theorem 1 discusses the explicit representation of the horizontal part of HPWL w.r.t. pin locations.
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This is the core of the approximation. Note that it is NOT a complete closed-form representation, as
we still need to solve Equation (3.9) for τ1 and τ2. The water-filling algorithm to solve these equations
will be discussed in Section 3.2.2. Before that, we state the following corollary.

Corollary 1. Consider the horizontal part of the net HPWL We(x) = max1≤i≤n xi − min1≤i≤n xi,
its Moreau envelope function W t

e is everywhere differentiable. The gradient is g = ∇W t
e(x) where

gi =


1
t (xi − τ2), if xi > τ2;

0, if τ1 ≤ xi ≤ τ2;
1
t (xi − τ1), otherwise

(3.10)

is defined for any i = 1, · · · , n, such that
n∑

i=1

(xi − τ2)
+ =

n∑
i=1

(τ1 − xi)
+ = t, (3.11)

if the solution τ1, τ2 to Equation (3.11) satisfy τ1 ≤ τ2, otherwise g = ∇W t
e(x) is determined by the

average coordinate: gi =
1
txi − 1

tn

∑n
k=1 xk for any index i = 1, · · · , n.

This corollary can be directly verified by the Moreau envelope gradient∇W t
e(x) =

1
t (x−proxtW t

e
(x))

according to Equation (3.5), where the proximal mapping proxtW t
e
(x) is given in Theorem 1.

3.2.2 Water-filling Algorithm

Equation (3.8) and Equation (3.9) give an explicit representation of the proximal mapping, where
the values of τ1 and τ2 are not represented in closed-form. Therefore, we must solve equations
in Equation (3.9) first to obtain the exact value of proxtWe

(x).
We take τ1 as an example, i.e., we are going to solve the equation

∑n
i=1(τ1 − xi)

+ = t. Suppose
we have a 4-pin net with pin coordinate x1, x2, x3, x4, illustrated in Figure 3.2(a). We use a bar graph
to illustrate the distribution, with a symbolic horizontal axis. Assume that each bar has width 1 and
height xi for i = 1, 2, 3, 4, then we are going to find a value τ1 such that the blue region has a total
area t.

The process for obtaining the exact value of τ1, similar to that in the communication engineering,
is called water-filling. One can simply imagine that we have an amount t of water in total, and want
to pour it into a reservoir with an uneven bottom [Yeu08]. The final level τ1 the water rise to is the
target we desire.

To solve the water-filling, we first sort the pin coordinates. The statistics of sorted pin coordinates is
illustrated in Figure 3.2(b). On the surface, there seems to be no difference compared to Figure 3.2(a).
However, once we have the sorted value of pin coordinates, or sorted indices, the process can be solved
in O(n) time where n stands for the number of pins connected by this net. The detailed algorithm to
solve the equation

∑n
i=1(τ1 − xi)

+ = t is described in Algorithm 2.
The process of water-filling in Algorithm 2 is very intuitive. Assume that we have sorted the pin

coordinates such that x1 ≤ x2 ≤ · · · ≤ xn. Since we have n pins in this net, we have n − 1 bottoms
x1, · · · , xn−1 to fill in before we make the bottoms of this “reservoir” even. Therefore, we create a
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Figure 3.2: The illustration of water-filling to solve τ1 in Equation (3.9).

Algorithm 2 Water-Filling Algorithm
Require: The sorted coordinates x ∈ Rn such that x1 ≤ x2 ≤ · · ·xn.

1: Initialize water trial q = 0, the bottom index k = 1;
2: while k < n do
3: Calculate the amount of water we need to fill in one bottom q′ ← xk+1 − xk;
4: Accumulate water trial q ← q + kq′ because we need to fill in k bottoms;
5: if q > t then
6: Break the loop;
7: Proceed to the next bottom k ← k + 1;
8: if q < t then
9: Calculate τ1 ← xn + 1

n (t− q);
10: else
11: Calculate τ1 ← xk+1 − 1

k (q − t);
12: return the required level value τ1;

trial and fill in each bottom one by one to check whether the current total trial is larger than the
target amount t of water. More specifically, we will find k such that xk ≤ τ1 < xk+1 in Algorithm 2.

Another interpretation of this algorithm is the Abel transformation for discrete sequences [Abe26]:

k∑
i=1

(τ1 − xi) = k(τ1 − xk) +

k−1∑
i=1

i(xi+1 − xi), (3.12)

where k is taken such that xk ≤ τ1 < xk+1, or k = n if τ1 ≥ xn. Clearly, we have k(τ1 − xk) ≤
k(xk+1 − xk) if τ1 < xn, indicating

k−1∑
i=1

i(xi+1 − xi) ≤
n∑

i=1

(τ1 − xi)
+ <

k∑
i=1

i(xi+1 − xi), (3.13)

when x are sorted. Therefore, given t > 0, we are supposed to find the index k such that either

k−1∑
i=1

i(xi+1 − xi) ≤ t <

k∑
i=1

i(xi+1 − xi) (3.14)
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or t ≥
∑n−1

i=1 i(xi+1 − xi) is satisfied (k = n for this case). After sorting the pin coordinates, Equa-
tion (3.14) can be solved in O(n) time with a single traversal. The part of solving τ2 given t is
similar.

Generally speaking, Algorithm 2 can be super fast as it visits n pins at most. The bottleneck is the
sorting before each water-filling. Since we may have millions of pins in a design, an efficient sorting
algorithm is critical.

3.2.3 Nonlinear Optimization

The update schemes of the precision γ in WA [HCB11] and t in ours are also essential to the so-
lution quality. The ePlace [Lu+15a] algorithm and related placers [Lin+19] use a form of γ(ϕ) =

γ0

(
w

(x)
bin + w

(y)
bin

)
·10kϕ+b to update the parameter γ according to overflow ϕ. Higher overflow requires

a large γ to sacrifice precision for better differentiability. To better adapt to the proposed wirelength
model, we use the following tangent-based update scheme

t(ϕ) =
t0
2

(
w

(x)
bin + w

(y)
bin

)
tan

(π
2
ϕ− δ

)
, (3.15)

where t0 is the initial value, ϕ is the density overflow, w
(x)
bin and w

(y)
bin stand for the horizontal and

vertical bin size, respectively, and δ is a small positive number to avoid numerical overflow. For
example, a configuration that δ = 10−4 and t0 = 4 will normally give a good result for most cases.

We follow a moderate scheme similar to that of DreamPlace 3.0 [Gu+20] and elfPlace [LLP19]
to update density weight λ in Equation (3.1) iteratively:

λk+1 = λk + αk,

αk =

(
αH −

αH − αL

1 + ln(1 + βDk

D0
)

)
αk−1,

(3.16)

where Dk is the density at the k-th iteration. The parameters αH ≥ αL > 1 depict how fast the density
weight increases. The parameter pair (αL, αH) is set to (1.01, 1.02) by default. The hyper-parameter
β is set to 2000 in our experiments. Note that we do not use the quadratic penalty in our formulation,
so β is simply a tunable parameter to adjust the step size αk of density weight without any physical
meaning. Here α0 is (αL − 1)λ0, and λ0 is determined according to ePlace [Lu+15a].

3.3 Wirelength Model Analysis
The HPWL model has specific properties. By controlling the precision, the approximation models
should also preserve similar properties.

3.3.1 Approximation Bound

In this subsection, we give some theoretical results of the approximation bound of the Moreau envelope
wirelength model. Besides, we also make comparison with the weighted-average model [HCB11].
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Theorem 2. Consider the net HPWL We(x) = max1≤i≤n xi − min1≤i≤n xi of net e. The Moreau
envelope function W t

e increases pointwise to We as t decreases to 0.

Proof. The Moreau envelope is upper bounded by

W t
e(x) = min

u∈Rn

{
We(u) +

1

2t
∥u− x∥22

}
≤We(x), (3.17)

because function We(u)+
1
2t∥u−x∥22 takes value We(x) when u is x. Additionally, we have W t1

e (x) ≤
W t2

e (x) if 0 < t2 < t1. By the monotone convergence theorem, we know that the limit limt→0+ W t
e(x)

exists and it is non-positive. Now it only remains to show that limt→0+ W t
e(x) = We(x).

Before that, we first show the Lipschitz property of We. Taking arbitray two vectors x,y ∈ Rn,
we have

|We(x)−We(y)| =
∣∣∣max

i
xi −max

i
yi −min

i
xi +min

i
yi

∣∣∣
≤
∣∣∣max

i
xi −max

i
yi

∣∣∣+ ∣∣∣min
i

xi −min
i

yi

∣∣∣
(∗)
≤ 2∥x− y∥∞ ≤ 2∥x− y∥2.

The inequality marked (∗) can be clearly explained by the symmetry property of maximum and
minimum functions. Now, we have shown that We is 2-Lipschitz over Rn with respect to norm ∥ · ∥2,
although the constant L = 2 is a large estimation actually.

When u takes proxtWe
(x), the minimum is attained. Besides, we know that 1

t (x− proxtWe
(x)) ∈

∂We(proxtWe
(x)) is a subgradient. Therefore, taking any subgradient g ∈We(x), we have

W t
e(x)−We(x)

= We(proxtWe
(x))−We(x) +

1

2t

∥∥We(proxtWe
(x))− x

∥∥2
2

(a)
≥ − g⊤(x− proxtWe

(x)) +
1

2t

∥∥We(proxtWe
(x))− x

∥∥2
2

(b)
≥ − ∥g∥2∥x− proxtWe

(x)∥2
(c)
≥ −4t.

The inequality marked (a) comes from the fundamental property of subgradients. The inequality
marked (b) is true according to the Cauchy-Schwarz inequality. The inequality marked (c) is from
Lemma 2.6 in [SS12].

From inequalities −4t ≤ W t
e(x) −We(x) ≤ 0, we have the desired point-wise convergence result

limt→0+ W t
e(x) = We(x).

Theorem 2 gives a rough bound that describes how well the Moreau envelope function generally
approximates the original one. Similar to the log-sum-exp [NDS01] and the weighted-average [HCB11;
HBC13] models, the Moreau envelope function we use here also can approximate HPWL in arbitrary
precision. The following theorem gives a better bound.

Theorem 3. Consider the net HPWL We(x) = max1≤i≤n xi −min1≤i≤n xi of net e. We have

−t ≤W t
e(x)−We(x) ≤ 0, (3.18)
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for any positive parameter t > 0.

Proof. Without loss of generality, let x1 ≤ x2 ≤ · · · ≤ xk < τ1 ≤ · · · ≤ τ2 < xn−r+1 ≤ · · · ≤ xn. Then
we have the water-filling equation

∑k
i=1(τ1 − xi) = t, since we have

W t
e(x) = τ2 − τ1 +

1

2t

k∑
i=1

(τ1 − xi)
2 +

1

2t

r∑
i=1

(xn−i+1 − τ2)
2, (3.19)

we consider the minimum approximation part only, and the maximum approximation part is similar.
Let ai = τ1 − xi for i = 1, · · · , k and amax = max1≤i≤n ai = a1. If k ≥ 2, we obtain

1

2t

k∑
i=1

(τ1 − xi)
2 + min

1≤i≤n
xi =

1

2t

k∑
i=1

a2i − amax + τ1

=

∑k
i=1 a

2
i

2t
− amax + τ1 =

a21 +
∑k

i=2 a
2
i

2t
− a1 + τ1

(∗)
≥

a21 +
1

k−1

(∑k
i=2 ai

)2
2t

− a1 + τ1 =
ka21 − 2kta1 + t2

2(k − 1)t
+ τ1,

(3.20)

under constraint ka1 ≥ t, where the inequality marked (∗) is the Cauchy-Schwarz inequality. The
rightmost representation is quadratic with respect to a1, so we have

1

2t

k∑
i=1

(τ1 − xi)
2 + min

1≤i≤n
xi ≥ −

t

2
+ τ1. (3.21)

If k = 1, the left-hand side of Equation (3.20) is directly a2
1

2t − a1 + τ1 ≥ − t
2 + τ1. The equality

of Equation (3.21) holds when k = 1 and a1 = τ1 − xmin = t.
Similarly, we obtain another part

1

2t

r∑
i=1

(xn−i+1 − τ2)
2 − max

1≤i≤n
xi ≥ −

t

2
− τ2. (3.22)

Combining Equation (3.21) and Equation (3.22), we obtain the desired result−t ≤W t
e(x)−We(x) ≤ 0.

The equality of the left-hand side holds when τ1 − xmin = xmax − τ2 = t and k = r = 1.

Obviously, Theorem 3 provides a better bound with a smaller constant. This bound is clearly at-
tainable when there is only one maximum coordinate and one minimum coordinate, and the parameter
t is small enough such that only these two related pins have gradients.

Theorem 4. Assume that there are nmax ≥ 1 pins sharing the maximum coordinates, and nmin ≥ 1

pins sharing the minimum coordinates. Then, we have

− t

2

(
1

nmax
+

1

nmin

)
≤W t

e(x)−We(x) ≤ 0, (3.23)

for any positive parameter t > 0.
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Proof. Similar to the proof to Theorem 3, we have

1

2t

k∑
i=1

(τ1 − xi)
2 + min

1≤i≤n
xi =

1

2t

k∑
i=1

a2i − amax + τ1

≥ nmin

2t
a21 +

1

2(k − nmin)t
(t− nmina1)

2 − a1 + τ1

=
nminka

2
1 − 2kta1 + t2

2(k − nmin)t
+ τ1 ≥ −

t

2nmin
+ τ1.

The maximum part is similar. The lower bound is − t
2nmax

−τ2. Therefore, combining them, we obtain
the desired result.

Theorem 4 gives a lower bound that describes how well the Moreau envelope function generally
approximates the original one. Similar to LSE [NDS01] and WA [HCB11], the Moreau envelope we
use here can also approximate HPWL in arbitrary precision. The proof is complicated and out of
scope, and thus not attached due to page limit.

Theorem 4 indicates that the lower bound is irrelevant to the total degree of the net. Instead, for
a fixed t > 0, more pins share the maximum or minimum coordinate, the lower bound will get closer
to zero, i.e., the model will be more accurate. However, we may also need to pay attention to earlier
stages of global placement when the smoothing parameter t or γ is very large.

Theorem 5. Let ∆x = We(x) = maxi xi −mini xi be the coordinate range. When the parameter t

is large enough, e.g., t ≥ 1
2

∑n
i=1 |xi − x̄|, the Moreau envelope model W t

e is a variance model. More
specifically, we have W t

e(x) = 1
2t

∑n
i=1(xi − x̄)2, where x̄ = 1

ne
⊤x is the average coordinate. The

corresponding error bound is given by

(∆x)2

4t
−∆x ≤W t

e(x)−We(x) ≤ −
∆x

2
. (3.24)

W t
e(x) tends to zero as t increases to infinity.

Proof. When t is large enough, the approximation W t
e(·) = 1

2t

∑n
i=1(xi − x̄)2 is a variance model.

Assume that the coordinates are sorted, i.e. x1 ≤ x2 ≤ · · · ≤ xn. By Cauchy-Schwarz inequality, we
have

2tW t
e(x) =

n∑
i=1

|xi − x̄|2 ≥ |x1 − x̄|2 + |xn − x̄|2

≥ 1

2
(|xmin − x̄|+ |xmax − x̄|)2 =

1

2
(∆x)2.

(3.25)

Then, we have the lower bound W t
e(x) − We(x) ≥ (∆x)2

4t − ∆x. The equality holds if and only if
x2 = · · · = xn−1 = 1

2 (x1 + xn) or there are only two pins in this net. As for the upper bound
part, it is obvious that

∑
i:xi≤x̄ |xi − x̄| =

∑
i:xi>x̄ |xi − x̄| ≤ t (Since t is chosen large such that
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t ≥ 1
2

∑n
i=1 |xi − x̄|). We have

W t
e(x) =

1

2t

n∑
i=1

|xi − x̄|2 =
1

2t

∑
i:xi≤x̄

|xi − x̄|2 + 1

2t

∑
i:xi>x̄

|xi − x̄|2

≤
∑

i:xi≤x̄ |xi − x̄|2

2
∑

i:xi≤x̄ |xi − x̄|
+

∑
i:xi>x̄ |xi − x̄|2

2
∑

i:xi>x̄ |xi − x̄|

≤ 1

2
max
i:xi≤x̄

|xi − x̄|+ 1

2
max
i:xi>x̄

|xi − x̄| = 1

2
∆x.

(3.26)

The equality holds if and only if t = 1
2

∑n
i=1 |xi − x̄| and there exists an k such that x1 = · · · = xk ≤

xk+1 = · · · = xn. The theorem is proved.

At the earlier stages of global placement, the smoothing parameter is set to a extremely large
number for better smoothness. In ePlace [Lu+15a] algorithm, even at the later stages when cells have
already spread out, the smoothing parameter is also not an “epsilon” value.

As a comparison, we also list the bound of the weighted-average model [HCB11; HBC13] (n∆x)(n+

e
1
γ ∆x)−1 for W γ

e,WA(x) in Equation (3.3). It may be hard to verify its correctness when the smoothing
parameter γ is smaller than some thresholds due to the non-convexity issue shown in Figure 3.1(a).
Since the convexity of W γ

e,WA(x) is tedious to analyze, we decide not to compare them in a theoretical
way. However, it can still be observed that when n is large, the lower bound given by [HCB11; HBC13]
is very rough. Although this lower bound is not tight, we may imagine that the approximation error
goes large for high-degree nets using the weighted-average model.

3.3.2 Gradient Properties

Differentiable approximations can be arbitrarily close to the HPWL function We. Ideally, when
the smoothing parameter tends to zero, the gradient of any differentiable model should tend to a
subgradient of We.

Theorem 6. Consider the weighted-average model W γ
e,WA(x) defined by Equation (3.3) of a net with

xmax > xmin. Assume that there are nmax pins sharing the maximum coordinates, and nmin pins
sharing the minimum. Then, the gradient limit g = limγ→0+ ∇W γ

e,WA exists and it is determined by

gi =


1

nmax
, if xi = xmax;

0, if xmin < xi < xmax;

− 1
nmin

, if xi = xmin.

(3.27)

Besides, g(x) ∈ ∂We(x) is a subgradient of We.

Proof. The WA model W γ
e,WA(·) is differentiable. Consider the smooth maximum in Equation (3.32).

It is easy to verify that, for any i we have

∂Sγ
max

∂xi
=

exp
(

xi

γ

)
∑n

j=1 exp
(

xj

γ

) (1 + 1

γ
(xi − Sγ

max(x))

)
. (3.28)
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If xi = xmax, there is no doubt that we have limγ→0+
exp( xi

γ )∑n
j=1 exp(

xj
γ )

= 1
nmax

, and

lim
γ→0+

xi − Sγ
max(x)

γ
= lim

γ→0+

∑
j:xj<xmax

xmax−xj

γ exp
(

xj−xmax

γ

)
nmax +

∑
j:xj<xmax

exp
(

xj−xmax

γ

) = 0. (3.29)

Then we have limγ→0+
∂Sγ

max

∂xi
= 1

nmax
in this case. If xi < xmax, we re-order Equation (3.28) in the

following form

∂Sγ
max

∂xi
=

exp
(

xi

γ

)
∑n

j=1 exp
(

xj

γ

) +

1
γ exp

(
xi

γ

)
∑n

j=1 exp
(

xj

γ

) (xi − Sγ
max(x)) , (3.30)

where limγ→0+ (xi − Sγ
max(x)) = xi−xmax ̸= 0. The other two limits are both 0, so we naturally have

limγ→0+
∂Sγ

max

∂xi
= 0 in this case. We then establish similar results for the minimum part Sγ

min(x). Note
that xi cannot equal to both xmax and xmin as xmax > xmin. Combining the maximum and minimum
parts, the theorem is proved.

Theorem 7. Consider the Moreau envelope W t
e(x). Then, we always have ∇W t

e = g when t is small
enough, where g is determined by Equation (3.27).

Proof. We only need to show the limit of each component. Assume that there are nmax pins sharing
the maximum coordinate xmax, and let x̃ be the second largest coordinate. Obviously, when t <

nmax(xmax − x̃), we have
τ2 = xmax −

t

nmax
> x̃, (3.31)

which indicates that only these nmax pins with maximum coordinate have gradients, and each gradient
is exactly equal to g = 1

t (xmax−τ2) = 1
nmax

. The minimum part is similar, and then we have completed
the proof.

If we only consider the maximum part, the subgradients of max(x) form a convex hull: conv{ei :
xi = xmax}, where ei is the unit vector with the i-th entry being one. The components of any
subgradient should sum to 1. The differentiable approximation models should also satisfy such a
property.

Theorem 8. The smooth maximum in the weighted-average model defined as

Sγ
max(x) =

∑n
i=1 xi exp

(
xi

γ

)
∑n

i=1 exp
(

xi

γ

) (3.32)

has a gradient whose components sum to 1.

Proof. Consider the smooth maximum in Equation (3.32) and its gradient in Equation (3.28), then
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we obtain
n∑

i=1

∂Sγ
max

∂xi
=

n∑
i=1

exp
(

xi

γ

)
∑n

j=1 exp
(

xj

γ

) (1 + 1

γ
(xi − Sγ

max(x))

)

= 1 +
1

γ

 n∑
i=1

xi exp
(

xi

γ

)
∑n

j=1 exp
(

xj

γ

) − Sγ
max(x)


= 1 +

1

γ
(Sγ

max(x)− Sγ
max(x)) = 1.

(3.33)

The theorem is proved.

Corollary 2. The weighted-average wirelength W γ
e,WA(x) defined by Equation (3.3) has a gradient

whose components sum to 0.

Similar to Equation (3.32), we can define the smooth minimum Sγ
min(x). Then it is trivial to

obtain the result as we always have W γ
e,WA(x) = Sγ

max(x) − Sγ
min(x). We are going to show that the

Moreau envelope model also preserve the properties in Theorem 8 and Corollary 2.

Theorem 9. Let g be the gradient of Moreau envelop ∇W t
e(x), then we have

∑
i:xi≥τ2

gi = 1 and∑
i:xi≤τ1

gi = −1.

Proof. From Equation (3.10), we know that gi = 1
t (xi−τ2) when xi ≥ τ2, therefore, it is almost trivial

that ∑
i:xi≥τ2

gi =
1

t

∑
i:xi≥τ2

(xi − τ2) =
1

t

n∑
i=1

(xi − τ2)
+ = 1, (3.34)

where we use the constraint of τ2 in Equation (3.11). Similarly, we can easily verify
∑

i:xi≤τ1
gi = −1.

The theorem is proved.

Corollary 3. The Moreau envelope model W t
e(x) has a gradient whose components sum to 0.

Corollary 3 indicates that W t
e(x) preserves the gradient properties like Corollary 2. No matter

what wirelength model is adopted, the total gradients w.r.t. all pins should sum to zero.

3.4 Experimental Results
We use benchmarks from the ISPD2006 [Nam06] and ISPD2019 [Liu+19] contests. The circuit statis-
tics are shown in Table 3.1. Compared to the ISPD2006 contest [Nam06] targeting at wirelength
only, recent contest benchmarks may focus more on other objectives like routability, timing, and
region-constrained.

We implemented our model in C++/CUDA based on the open-source analytical placer Dream-
Place [Lin+19]. The following experiments are conducted on a 64-bit Linux workstation with Intel
Xeon 2.90GHz CPUs and an NVIDIA GeForce RTX 3090 GPU.

We compare wirelength and runtime results using BiG_CHKS [SC19], LSE [NDS01], and WA [HCB11]
on ISPD2006 benchmarks [Nam06] in Table 3.2 and on ISPD2019 benchmarks [Liu+19] in Table 3.3.
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Table 3.1: The statistics of ISPD2006 [Nam06] and ISPD2019 [Liu+19] contest benchmarks.

Bench. #Movable #Fixed #Nets #Pins

ISPD2006
[Nam06]

adaptec5 842482 646 867798 3433359
newblue1 330137 337 338901 1223165
newblue2 440239 1277 465219 1761069
newblue3 482833 11178 552199 1881267
newblue4 642717 3422 637051 2455617
newblue5 1228177 4881 1284251 4849194
newblue6 1248150 6889 1288443 5200208
newblue7 2481372 26582 2636820 9971913

ISPD2019
[Liu+19]

ispd_test1 8879 0 3153 17203
ispd_test2 72090 4 72410 318245
ispd_test3 8208 75 8953 30271
ispd_test4 146435 7 151612 436707
ispd_test5 28914 8 29416 80757
ispd_test6 179865 16 179863 793289
ispd_test7 359730 16 358720 1584844
ispd_test8 539595 16 537577 2376399
ispd_test9 899325 16 895253 3957481
ispd_test10 899325 79 895253 3957499

In our experiments, we use the ePlace [Lu+15a] algorithm to perform analytical placement and
DreamPlace [Lin+19] as the placer because it has enabled high-performance GPU-accelerated tech-
niques to obtain high-quality results extremely fast. For a fair comparison on wirelength optimization,
we follow the settings of [SC19] on ISPD2006 benchmarks [Nam06]. Considering that the reported
wirelength and runtime results of BiG_CHKS and BiG_WA in [SC19] are roughly equal, we re-
implement the BiG model proposed in [SC19] with CHKS bivariate function [CH93] in Dream-
Place [Lin+19]. The CHKS function [CH93] is more representative of bivariate functions.

After global placement, legalization [SSJ08a], and detailed placement, we evaluate the results and
list them in Table 3.2. We incorporate ABCDPlace [Lin+20b] as our detailed placement engine to fully
leverage the GPU resources. Since the original binary of BiG in [SC19] is unavailable, as notified by
the author, so we cite the performance directly from [SC19], listed in the column named “BiG_CHKS
Reported in [SC19]” in Table 3.2. There exists a quality gap between their reported results and
ours, so we also list the results of executing the binary of NTUPlace3 [Che+08] on our machine
for reference. The wirelength results in Table 3.2 are evaluated by NTUPlace3 [Che+08] for a fair
comparison. Table 3.2 shows that we can achieve more than 1% improvements on ISPD2006 [Nam06]
after detailed placement. It is worth mentioning that the maximum improvement is over 5% on
newblue1 which has large movable macros. Table 3.2 indicates that the wirelength improvements are
preserved after detailed placement.

We also test our wirelength model on the recent ISPD2019 benchmarks [Liu+19]. Since NTU-
Place3 [Che+08] and NTUplace4dr [Hua+17] binary executable files currently do not support
ISPD2019 [Liu+19], we only compare different models incorporated in DreamPlace [Lin+19] in Ta-
ble 3.3. As shown in the table, the achieved improvement is more than 1.5% and almost 2% on
ISPD2019 benchmarks [Liu+19].

To visualize the trend of wirelength during global placement, we take newblue1 in ISPD2006 [Nam06]
and ispd19_test10 in ISPD2019 [Liu+19] as examples and plot the curves in Figure 3.3. We can
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Figure 3.3: (a) The wirelength curve against density overflow during global placement for ISPD2006
newblue1. (b) The wirelength curve against density overflow during global placement for ISPD2019
ispd19_test10. The overflow decreases as the nodes spread out.

achieve approximately 5.4% and 1.6% improvement, respectively, compared to WA [HCB11] after
detailed placement.

We set the stop overflow to ϕ′ = 0.1 for all experiments. From Figure 3.3, we can observe
that all of them can successfully converge to placement solutions with low overflow. The weighted-
average [HCB11] and BiG_CHKS [SC19] behave similarly, while the overflow decreases slower using
our model. Nevertheless, our wirelength model reduces the overflow to a lower value at the end.

From Figure 3.3, we can observe that the wirelength result obtained with our model is better at
the same density overflow during global placement on the adopted cases. The density overflow roughly
reflects the overall cell overlap. Therefore, a smaller wirelength at the same density overflow implies
better placement quality.

3.5 Summary
In this chapter, we propose a novel HPWL-based differentiable wirelength model. We have made both
theoretical and experimental comparisons of the widely-used WA model [HCB11] and our Moreau
envelope model. It has been shown that our model has the advantage of numerical stability and
convexity, which is preferred in numerical optimization. Moreover, our model has a better approxi-
mation error bound. Experimental results show that our model can rapidly produce better placement
solutions achieving up to 5.4% HPWL improvement and more than 1% improvement on average com-
pared to the most widely-used nonlinear wirelength models with GPU acceleration. Since further
improvement on HPWL is challenging, our future work shall focus on novel optimizers to generally
improve the analytical placement quality.
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CHAPTER 4
TIMING-DRIVEN PLACEMENT

Timing optimization is critical to integrated circuit (IC) design closure. In this chapter, we propose a
timing-driven global placement engine with momentum-based net weighting. We choose the net-based
approach for its scalability to global perturbation of cells in global placement. The major contributions
are summarized as follows.

• Momentum-based net weighting. The weighting scheme plays an important role in our
timing-driven global placement algorithm. At each timing iteration, we expect to assign weights
to different nets by incorporating the current slacks within the existing criticality information.
The net weights will be updated gradually by considering the new weights, computed according
to slacks, to be a momentum term, which is analogous to the momentum method that is widely
used in backpropagation learning [RHW86].

• Preconditioning technique for net weighting. The preconditioner proposed by the original
ePlace [Lu+15a] algorithm does not consider different net weights. Considering that we may
assign very different net weights to different nets to optimize timing, the numerical stability
may get negatively affected, especially for those cells incident to critical paths. We enhance our
preconditioner to adapt different net weights when optimizing cell locations.

• Experimental results on the ICCAD2015 contest benchmark suites [Kim+15] show that on
average we can achieve 46.83% improvements on TNS, and 30.27% improvements on WNS,
compared to the state-of-the-art placer [Lin+20a] after global placement and legalization.

The rest of this chapter is organized as follows. Section 4.1 provides some preliminaries including
brief foundations of nonlinear placement, static timing analysis, and timing optimization. Section 4.2
presents the overall flow of our timing-driven global placement algorithms and the detailed explana-
tions. Section 4.3 demonstrates the experimental results and some related analysis, followed by Sec-
tion 4.4 summarizing the whole paper.

4.1 Preliminary

4.1.1 Nonlinear Global Placement

At the global placement stage, a given circuit is considered to be a graph where vertices model
gates. Placers are expected to place millions of instances to appropriate locations such that the total
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wirelength can be minimized. The netlist N = (E, V ) consists of a net set E and a node (cell) set
V . Suppose that we have n nodes in the design (i.e. |V | = n), the global placement seeks locations
(x,y) ∈ Rn×Rn that minimize the total half-perimeter wirelength W (x,y). If we assign a net weight
we for each net e ∈ E, the optimization formulation can be modified to minimizing the weighted sum

min
x,y

∑
e∈E

weW (e;x,y). (4.1)

There are many modern techniques to smoothly approximate the half-perimeter wirelength model
W (e;x,y). Nonlinear placement adopts a nonlinear differentiable approximation of W (e;x,y). A
widely-used approximation is the weighted-average (WA) model [HCB11; HBC13],

W̃x(e, γ;x,y) =

∑
i∈e xie

xi
γ∑

i∈e e
xi
γ

−
∑

i∈e xie
− xi

γ∑
i∈e e

− xi
γ

,

W̃ (e, γ;x,y) = W̃x(e, γ;x,y) + W̃y(e, γ;x,y),

(4.2)

where W̃x(e, γ;x,y) and W̃y(e, γ;x,y) are the net wirelength along horizontal and vertical direction,
respectively. γ is a hyperparameter to control the precision of this approximation. A typical non-linear
placement problem can be formulated as

min
x,y

∑
e∈E

weW (e;x,y) + λD(x,y), (4.3)

where E is the net set, W (e; ·, ·) is the wirelength function that calculates the total wirelength of
a specific net e ∈ E, function D(·, ·) indicates the total density penalty and λ is the corresponding
density weight. This is a typical unconstrained optimizatin problem with arguments x,y being the
cell locations.

The objective function (4.3) is required to be everywhere differentiable so that we can use gradient-
based methods to optimize the variables. Additionally, the term W (e;x,y) is a nonlinear approxima-
tion of the net wirelength.

4.1.2 Static Timing Analysis

The timing-driven placement has to be guided by timing analysis. Static timing analysis (STA) eval-
uates the setup/hold timing performance of a circuit under best-case and worst-case scenarios based
on its delay-annotated timing graph [MS99; Hit82]. It performs forward and backward propagation
to compute the arrival time and the required arrival time for each node in the graph, respectively
[PHR08].

More specifically, we model the given circuit as a directed acyclic graph (DAG). Each node in the
DAG corresponds to a pin in the circuit, and each edge in this graph represents a directed pin-to-pin
connection. A complete STA process evaluates the delays of nets and cells, and then computes the
arrival time and required arrival time of pins through propagation. For a specific pin p, assume that
we have its arrival time tat(p) and required arrival time trat(p), then the slack of p is defined as the
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difference of its required arrival time minus arrival time,

s(p) = trat(p)− tat(p). (4.4)

Slack is an important metric to evaluate the timing quality of a placement solution. The worst negative
slack (WNS) is the most commonly used timing metric, defined as the worst one among all negative
slacks of timing endpoints,

swns = min
t∈Pend

s(t), (4.5)

where Pend indicates the set of all timing endpoints, and swns is the worst negative slack. We assume
that there exists at one t ∈ Pend such that s(t) < 0, otherwise the timing constraints are perfectly
satisfied. Another well-known timing closure objective is the total negative slack (TNS), defined as
the sum of all negative slacks of timing endpoints,

stns =
∑

t∈Pend,s(t)<0

s(t), (4.6)

where stns stands for the total negative slack [Raj+03].

4.1.3 Timing Optimization

Timing-driven placement pays more attention to timing optimization. Rather than the total wire-
length of the circuit design, we prefer objectives that are more suitable to reflect timing metrics.
TNS and WNS are both well-adopted timing metrics, however, they may emphasize different aspects.
Intuitively, WNS may only provide timing information of a single critical path, while TNS gives the
overall timing information of multiple or even a large number of critical paths. Empirically, TNS
should be more important to guide the timing optimization during global placement, as it can inte-
grate information of all critical paths. On the contrary, WNS should be a more important metric
when optimizing timing precisely in detailed placement.

The complete formulation of timing-driven global placement can be summarized as follows.

max s(x,y)

s.t. ρb(x,y) ≤ ρt, ∀b ∈ B,
(4.7)

where B is the set of m×m planar grids (bins) for a positive integer m, ρb(x,y) denote the density of
a bin b ∈ B, ρt represents the target placement density of each bin, and the objective function s(x,y)

stands for a negative slack function. Typically, the objective function s(x,y) can be TNS stns(x,y)

or WNS swns(x,y). Equation (4.7) shares the same cell constraints but uses a completely different
objective function from that of wirelength-driven analytical placement. Unlike wirelength functions
that usually have closed-form representations with respect to cell locations directly, slack functions
cannot be represented explicitly. That is the reason why we decide to optimize timing indirectly by
implementing net weighting schemes in the wirelength optimization.
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Converge?

Yes

No

Legalization

Figure 4.1: Our overall flow with timing optimization.

4.2 Algorithms
In this chapter, we expect to integrate static timing analysis into the iterations of cell location updates
during analytical global placement, so that the placement solution can be optimized in terms of timing.
More specifically, we expect the timing analysis tool to provide us with detailed information about
how good the current placement is, which paths have intensive impact in terms of timing and how
such it can affect the cell locations during the placement.

The overall flow of our placement framework with timing analysis is illustrated in Figure 4.1.
Compared to modern gradient-based analytical placers, we must determine whether to perform timing
analysis at each gradient-based iteration.

4.2.1 RC Tree Construction

We must construct RC trees for nets manually at every timing iteration, as the cell locations are going
to be changed in every backward step. Given a possibly illegal placement solution, we are provided
with all pin locations for each net.

For a specific net, we start with the pin locations it contains. A flute [CW07] call will be per-
formed to construct the rectilinear Steiner minimal tree of this net. This Steiner tree generally reflects
how the timing propagation will be performed internally inside the timer we use. We take a simple
4-pin net as an example to illustrate how to construct the RC tree for a certain net in Figure 4.2(a)
and Figure 4.2(b). The abstract RC tree hierarchy is shown in Figure 4.2(b). To construct RC in-
formation from interconnects, we require the resistance value per unit length r′ and the capacitance
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Figure 4.2: A 4-pin net example of Steiner tree and the corresponding RC tree constructed for net delay
calculation.
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Figure 4.3: The Elmore delay model for the above 4-pin net example.

value per unit length c′, which should be pre-determined for the given design.

4.2.2 Delay Calculation

We can enrich details on Figure 4.2(b) by adding some abstract resistors and capacitors for edges in
the RC tree, illustrated in Figure 4.3. Here the Elmore delay model [Elm48] is used to approximate
actual delays. More specifically, we use Π−model to break wires into RC sections. After we fill the RC
information into the RC tree initialized by the timer, we then naturally proceed to the static timing
analysis.

4.2.3 Momentum-based Net Weighting

Net weights are assigned to all nets in the design so that some prior knowledge of how much contribu-
tion to the objective function these nets will make can be fed into the placer during global placement.
A net with a higher weight will be more sensitive to the updates of cell locations, as a perturbation to
its total wire-length will lead to a greater impact on the objective we are optimizing. The optimizer
will implicitly get a stronger will to place cells containing pins included in nets with higher weights
closer. Without any doubt, critical nets should be reasonably assigned higher weights to remind the
placer to place cells related to them closer.

Net Criticality. Our placement database considers criticality value as a guide to update net
weights. Let ce and swns denote the criticality value of a specific net e and the worst negative slack,
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respectively. We can define the momentum of criticality value of a net e as

cmom,e =


0, if swns ≥ 0;

max

{
0,

se
swns

}
, otherwise,

(4.8)

where se is the net slack of e. If the worst negative slack swns is non-negative, everybody should be
satisfied and we will do nothing to the net weights. Otherwise, swns < 0 is negative, and the criticality
value is defined as the maximum value between 0 and the slack ratio se/swns.

If a net e has a non-negative slack se ≥ 0, its criticality momentum will be set to cmom,e = 0,
otherwise, it will be the ratio se

swns
= |se|

|swns| . For net e, The higher slack value |se| we obtain, the higher
criticality momentum cmom,e it will have.

Intuitively, the criticality indicates the probability of net e to be critical. Since we may obtain
different timing-critical paths reported by the timer at each iteration, the criticality values should also
be updated iteratively. A critical net may be related to multiple critical paths, and different nets may
have different negative slacks. Hence, we are supposed to handle different critical nets in different
ways. Nets with more negative slacks are considered to be more sensitive to timing metrics, and we
should assign higher weights to them accordingly.

Define the criticality value of a net e at the m-th iteration as c
(m)
e . From Equation (4.8), we know

that s(m)
e and s

(m)
wns, which represent the net slack and the WNS at the m-th iteration respectively, can

be re-calculated at each timing iteration. Then we obtain a criticality value c
(m)
e of net e at the m-th

iteration, which corresponds to the criticality updates.
Net weighting Scheme. We introduce a momentum-based net weighting scheme. For a specific

net e, let w̃
(m)
e = lnw

(m)
e and ∆w̃

(m)
e be the logarithmic net weight of we and its increment at the

m-th timing iteration, respectively.

w̃(m+1)
e = w̃(m)

e +∆w̃(m)
e , m ∈ N. (4.9)

The increment value ∆w̃
(m)
e is treated as the gradient determined by the timing metrics. Considering

that we will obtain a new criticality momentum at each timing iteration. We expect the net weight
w

(m)
e to be emphsized by its criticality c

(m)
e . For integer m ∈ N, the increment relationship can be

modeled by
∆w̃(m)

e = c̃(m)
e ,

∆w̃(m+1)
e = α∆w̃(m)

e + (1− α)c̃(m)
mom,e,

(4.10)

where c̃(m)
e = ln(1+c

(m)
e ), c̃(m)

mom,e = ln(1+c
(m)
mom,e) are the transformed criticality values and increments.

The decay coefficient α ∈ [0, 1] is a hyperparameter. The term ∆w̃
(m)
e can be considered as the velocity,

from Equation (4.9).
The scheme in Equations (4.9) and (4.10) is inspired by the momentum-based gradient descent

algorithm on backpropagation during neural network training. In backpropagation, the momentum
term should be the negative gradient of the objective, so that the actual gradient increment value can
be guided while remembering the history update at each iteration. Here we apply the momentum step
to the update of criticality value. If a net has a positive criticality value instead of zero, its weight
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Figure 4.4: A simple example illustrating how the momentum step vectors will affect the actual gradients.

should be increased according to the magnitude of criticality. Besides, if a net is reported to be critical
at most timing iterations, it may have a large net weight. The weight differences are acceptable as
long as no value overflow is reported.

We adopt the annotations in matrix calculus, then the scheme illustrated in Equations (4.9)
and (4.10) can be reformulated as

∆w̃(m+1) = α∆w̃(m) + (1− α)c̃(m)
mom, (4.11)

where w̃(m) , ∆w̃(m), and c̃
(m)
mom indicate the logarithmic net weights, their increments, and the

transformed momentum vector calculated by Equation (4.8), respectively, at the m-th timing iteration.
All these vectors have the same size that is exactly the total number of nets in the design. More
specifically, the i-th entry of each of these vectors indicates an attribute of the net with index i. A
simple example illustrating how momentum-based net weighting works is shown in Figure 4.4.

If the momentum increment c̃
(m)
mom,e has a very small magnitude in the late period of global place-

ment, the vector ∆w̃(m) will approximately decay by the factor α with the increment of iteration m,
and correspondingly the net weight w(m) will gradually stabilize. Therefore, we will keep emphasizing
those nets that remain critical during placement.

Unlike [EJ98] or other similar dynamic net weighting schemes, we work on all nets instead of those
only on critical paths. Every net is assigned a non-trivial criticality value related to its slack at a
timing iteration, and then proceeds to the net weighting.

4.2.4 Preconditioning

In numerical optimization, preconditioning is a very important step to reduce the condition number
of an optimization problem. For a general unconstrained problem minx f(x), conventional precon-
ditioning approaches aim at solving the inverse matrix of the Hessian H−1

f . Considering that the
industrial designs may contain millions of instances, and such computation will have a huge overhead,
the real implementation will become extremely unbearable.

The ePlace [Lu+15a] preconditioner only considers diagonal entries of the Hessian matrix. The
objective function f is set to Equation (4.3) by default. Without loss of generality, we only consider
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the horizontal direction here. Vector x ∈ Rn represents the horizontal cell locations. The i-th diagonal
entry of the Hessian matrix H−1

f will be

∂2f

∂x2
i

=
∑
e∈E

we
∂2W (e;x,y)

∂x2
i

+ λ
∂2D(x,y)

∂x2
i

. (4.12)

In the ePlace [Lu+15a] algorithm, for any net e ∈ E, the term ∂2W (e;x,y)
∂x2

i
is simply binary. We also

adopt this approximation. More specifically, only if the i-th node is incident to net e will the term be
set to 1. This very rough evaluation will approximate the first term in Equation (4.12) as

∑
e∈E

we
∂2W (e;x,y)

∂x2
i

≈
∑
e∈Ei

we, (4.13)

where Ei is the net subset incident to the i-th node. Our net weighting scheme will not affect the
density term, therefore we adopt the same approximation as [Lu+15a] for preconditioning.

∂2D(x,y)

∂x2
i

= qi
∂2ϕi(x,y)

∂x2
i

≈ qi, (4.14)

where qi is the quantity of electrical charge of the i-th node. The approximate preconditioning matrix
on single horizontal direction will be

H̃fx,x = diag

(∑
e∈E1

we + λq1, · · · ,
∑
e∈En

we + λqn

)
. (4.15)

When net weights are all equal to 1,
∑

e∈Ei
we will be degraded to |Ei| which stands for the total

number of nets incident to the i-th node. Together with the vertical direction, the preconditioned
gradient vector will be ∇fprecond = H̃−1

f ∇f .

4.3 Experimental Results

4.3.1 Experimental Setup

We conduct the experiments on the ICCAD 2015 contest benchmark suites [Kim+15]. Table 4.1
shows the parameters of the circuit designs. All the cases are relatively large and most of them
contain millions of cells and nets. No movable macros are included in the benchmark suites. Our
algorithm is implemented in C++ based on the open-source placer DreamPlace [Lin+20a] and the
open-source timer OpenTimer [HW15]. Remarkably, we manage to make full use of GPU resources
in both core placement [Lin+20a] and timing analysis [GHL20]. For a fair comparison, we follow the
exact default hyperparameter settings of DreamPlace [Lin+20a].

4.3.2 TNS and WNS Improvement

It is important to determine when we should set up observation, perform timing analysis and update
net weights. it is impossible to perform timing analysis at each iteration, as it will introduce huge
overhead. Empirically, cell locations at the earlier stages are highly overlapped, and thus unreliable
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Table 4.1: Statistics of the ICCAD2015 contest benchmarks [Kim+15].

case name #cells #nets #pins #rows

superblue1 1209716 1215710 3767494 1829
superblue3 1213253 1224979 3905321 1840
superblue4 795645 802513 2497940 1840
superblue5 1086888 1100825 3246878 2528
superblue7 1931639 1933945 6372094 3163
superblue10 1876103 1898119 5560506 3437
superblue16 981559 999902 3013268 1788
superblue18 768068 771542 2559143 1788

for timing analysis. A possibly appropriate time to perform timing analysis is when the cells are
roughly even out by density forces. In our experiments, we evaluate timing metrics and update
net weights every 15 iterations after the 500th iteration of the global placement. Additionally, we use
hyperparameters manually customized in Equation (4.11) to update net weights. We use the evaluation

Table 4.2: Comparison among DreamPlace [Lin+20a], DreamPlace [Lin+20a]+[EJ98], and our algo-
rithm. The best results are emphasized with boldface, and the second-best results are colored in brown. The
TNS (105 ps) and WNS (103 ps) stand for the total negative slack and the worst negative slack, respectively.
RT (s) represent the end-to-end runtime.

Bench. DreamPlace [Lin+20a] DreamPlace [Lin+20a]+[EJ98] Ours
TNS WNS RT TNS WNS RT TNS WNS RT

superblue1 -252.359 -18.5414 164.69 -121.963 -13.1548 1320.73 -85.0315 -14.1031 977.56
superblue3 -88.4701 -33.2509 153.95 -61.2222 -15.6518 1247.24 -54.7427 -16.4341 952.11
superblue4 -196.498 -21.4654 112.33 -177.800 -11.8600 910.77 -144.380 -12.7808 610.26
superblue5 -208.943 -48.4825 202.87 -108.019 -47.7110 1758.97 -95.7820 -26.7602 1343.46
superblue7 -161.989 -20.3957 249.32 -84.3107 -19.9126 1968.70 -63.8629 -15.2163 1537.42
superblue10 -839.134 -33.7599 308.81 -786.359 -29.0470 1871.55 -768.748 -31.8796 1288.63
superblue16 -438.267 -16.8146 102.88 -175.543 -18.5297 875.13 -124.181 -12.1115 542.15
superblue18 -90.4280 -20.1261 104.06 -69.4700 -11.7831 887.29 -47.2458 -11.8705 657.47

Avg. 2.150 1.539 0.177 1.267 1.167 1.395 1.000 1.000 1.000

script provided by the ICCAD 2015 contest to evaluate our placement result. The results are listed
in Table 4.2. All the results are evaluated after Abacus legalization [SSJ08a]. As shown in the table,
we can achieve a significant improvement on both TNS (46.83% on average) and WNS (30.27% on
average), compared to the DreamPlace [Lin+20a] without any timing-aware optimization.

Also, we implement the classic dynamic net weighting scheme in [EJ98]. Originally, this net
weighting scheme is designed for timing-driven quadratic placement. We integrate the net weighting
part for timing optimization into our implementation and make a comparison. The results are listed
in the second column of Table 4.2. We use boldface to emphasize the best one among the three
results, and color the second one with brown. As shown in the table, our net weighting scheme can
outperform [EJ98] a lot on TNS. This result brings us very positive enlightenment that it is absolutely
useful to consider timing-aware optimization at the global placement stage. Both TNS and WNS can
be improved a lot compared to DreamPlace without any timing optimization.
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Figure 4.5: The TNS and WNS values at each placement iteration after the 300th iteration for superblue18.

4.3.3 Visualization

To visualize the impact of net weighting on TNS and WNS, we take superblue18 as an example and
plot the TNS and WNS values after the 300th iteration in Figure 4.5. Starting from the 300th iteration,
the cells have begun repelling each other, and therefore the wirelength keeps increasing, which also
decreases TNS and WNS. The blue curves correspond to the results without timing optimization,
while the red curves illustrate how the objectives vary with net weighting. We scatter red squares to
emphasize the timing iterations.

• At nearly every timing iteration, marked with red color in Figure 4.5, TNS can get improved at
once, especially when starting to break the balance of net weights.

• WNS will quickly and significantly be optimized after one or two net weighting steps. After
that, it almost remains stable during the later stages of global placement.

Providing that our net weighting algorithm works on every net instead of those only on some critical
paths at a timing iteration, it is quite reasonable to be effective when optimizing TNS, which may
incorporate numerous critical or nearly critical paths. As for WNS, which may only give information
about the worst path, it will be quickly optimized when first applying net weighting. At later stages,
other critical or nearly critical paths will be taken more into consideration, and that is an important
reason why it is hard to further optimize WNS during global placement.

4.3.4 Runtime Breakdown

Compared to DreamPlace[Lin+20a] which is very powerful to optimize cell locations with GPUs,
timing-driven placement must take extra costs to perform STA and translate the feedbacks to cer-
tain operations. Hence, it is unavoidable to significantly sacrifice runtime performance for timing
optimization.
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Figure 4.6: The runtime breakdown on ICCAD2015 contest benchmark superblue18.

The runtime results are listed in the third column of Table 4.2, with column name RT. Our
weighting scheme is faster than [Lin+20a] + [EJ98], as we do not need to explicitly extract critical
paths.Compared to [Lin+20a] without any timing-aware optimization, we roughly take 5 times runtime
to optimize negative slacks.

Figure 4.6 plots the runtime breakdown for superblue18. We are still facing the runtime bottleneck
dominated by the RC tree construction. It is accomplished on CPUs and thus time-consuming,
especially for large nets. Considering that STA must be called multiple times to incorporate changes of
cell locations, the overhead of RC tree construction and STA should be the main focus for acceleration.

4.4 Summary
In this chapter, we propose a momentum-based net weighting scheme for timing-driven global place-
ment and improve the preconditioner accordingly. The evaluation results on ICCAD2015 contest
benchmarks show that we can achieve a significant improvement on both TNS and WNS. The results
of this paper enlighten us that, although most timing-aware optimization methods are performed at
incremental stages, it is still very effective to consider timing at the earlier stages of physical design,
especially global placement.
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CHAPTER 5
ANALYTICAL 3D PLACEMENT

The emergence of 3D-IC presents challenges to traditional 2D electronic design automation methods in
producing high-quality 3D circuit layouts, and the heterogeneous technology nodes further complicates
the problem. Placement plays a dominant role on the overall quality of physical design, and innovations
of 3D-IC placement are required to fully benefit from the 3D integration technologies. Within the
context of 3D placement, 3D-IC placers are responsible for solving the optimal 3D node locations to
optimize specific objectives. Such a very large-scale combinatorial optimization problem can be solved
in either discrete or analytical algorithms. An analytical 3D placement algorithm is characterized by
employing “true-3D” flows that handle tier partitioning continuously and devise 3D solutions directly.

Despite the various research achievements mentioned above, existing discrete and analytical 3D
flows are hardly applicable to F2F-bonded 3D ICs with heterogeneous technology nodes. The dis-
crete solutions typically fail to utilize the advantages of 3D ICs sufficiently as most of them rely on
the FM-mincut tier partitioning [FM82]. However, the total cutsize is not the primary placement
objective in F2F-bonded 3D ICs due to the silicon-space overhead-free property [Jun+14], resulting
in sub-optimal partitioning for discrete solutions. Conventional analytical 3D placement algorithms
adopt continuous optimization but they do not support heterogeneous technology nodes during global
placement. Additionally, previous wirelength-driven analytical placement algorithms use inaccurate
wirelength models [Lu+16] for numerical optimization, which is inconsistent with F2F-bonded sce-
narios. Some recent work [Che+23a] on wirelength models supports heterogeneous technology nodes
in analytical placement. However, it still pays no attention to the wirelength reduction introduced by
inter-die connections, remaining unsolved inaccurate estimation in 3D analytical placement.

In this chapter, we propose a new analytical 3D placement framework for F2F-bonded 3D ICs with
heterogeneous technology nodes utilizing a novel and precise bistratal wirelength model. Based on the
proposed placement framework, we efficiently determine the node locations along with partitioning in
a single run. The main contributions are summarized as follows.

• We design a bistratal wirelength model, including computation strategies of the wirelength ob-
jective and gradients, that significantly outperforms the widely-used models for F2F-bonded 3D
ICs.

• We propose an ultra-fast analytical 3D placement framework that leverages the bistratal wire-
length model and eDensity-3D [Lu+16] with GPU acceleration, considering heterogeneous tech-
nology nodes.
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• Experimental results show that our results achieved the best results on the ICCAD 2022 Contest
Benchmarks [Hu+22] with up to 6.1% wirelength improvement and 4.1% on average, compared
to the first-place winner. Remarkably, we also outperform the state-of-the-art (SOTA) ana-
lytical 3D placer [Che+23a] for heterogeneous F2F-bonded 3D ICs by up to 3.3% wirelength
improvement and 2.1% on average. The usage of vertical interconnects are also significantly
reduced.

The rest of this chapter is structured as follows. Section 5.1 provides some preliminaries, including
previous works and foundations of analytical placement. Section 5.2 discusses the problem statement
and problem formulation. Section 5.3 presents the overall flow of the proposed placement framework
for heterogeneous F2F-bonded 3D ICs. Then, Section 5.4 depicts the theoretical details of the bistratal
wirelength model. Section 5.5 presents experimental results and some related analysis on the adopted
benchmarks, followed by the conclusion in Section 5.6.

5.1 Preliminaries

5.1.1 Analytical Placement

Global placement is performed on a netlist (V,E), where V = {c1, · · · , cn} and E = {e1, · · · , em}
are the node set and the net set, respectively. We are asked to determine the node locations v =

(x,y, z) from scratch during global placement to minimize the total wirelength with little overlap
allowed. A typical 3D analytical global placement problem is formulated as the following unconstrained
optimization problem

min
v

∑
e∈E

We(v) + λD(v), (5.1)

where v = (x,y, z) indicates the node location variables, We(·) is the net wirelength model of net
e ∈ E, D(·) is the density model of the entire placement region evaluating the overall overlap, and λ

is the density weight introduced as the Lagrangian multiplier of the density constraint. In analytical
placement, we expect to make the objective differentiable and then apply numerical methods to solve
Equation (5.1).

The wirelength model We(·) in the above Equation (5.1) is usually a differentiable approxima-
tion [NDS01; HCB11; HBC13; Lia+23] to the conventional net HPWL defined below.

Definition 1 (3D HPWL). Given node positions x,y, z, the 3D HPWL of any net e ∈ E is given by

We(x,y, z) = pe(x) + pe(y) + αpe(z), (5.2)

where pe(u) = maxci∈e ui − minci∈e ui denote the range or peak-to-peak function that evaluates the
difference of maximum minus minimum in a net, and α ≥ 0 is a weight factor.

pe(·) denotes partial HPWL along one axis. In real applications, it is approximated by a differen-
tiable model, e.g. the weighted-average [HBC13] model given a smoothing parameter γ > 0,

pe,WA(u) =

∑
ci∈e uie

1
γ ui∑

ci∈e e
1
γ ui

−
∑

ci∈e uie
− 1

γ ui∑
ci∈e e

− 1
γ ui

. (5.3)
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Other differentiable models [NDS01; Lia+23] are also applicable. Note that the z-dimension is usually
defined manually, as tiers are discretely distributed in 3D scenarios. The corresponding weight factor
α ≥ 0 is determined in accordance with specific objectives in real applications.

The state-of-the-art density model D(·) is the eDensity family [Lu+13; Lu+15a; Lu+15b; Lu+16]
based on electrostatics field, where every node ci ∈ V is modeled by an electric charge. We implement
eDensity-3D [Lu+16] as our density model with GPU acceleration in the proposed framework.

The optimization formulation in Equation (5.1) is general and thus can be applied in both 2D and
3D analytical global placement. In conventional 2D cases, the variable v = (x,y) is optimized to find
planar cell coordinates [Lu+15a; Lin+19; Liu+22]. In 3D cases, the framework is well-established in
ePlace-3D [Lu+16] where the z-direction coordinates is considered to optimize v = (x,y, z).

5.2 Problem Formulation

5.2.1 Problem Statement

In this chapter, we focus on the 3D placement problem with die-to-die (D2D) connections, specified
in the ICCAD 2022 Contest [Hu+22]. The general requirement is to partition the given standard
cells into two dies with different technologies, create vertical interconnections named hybrid bonding
terminals (HBTs) for split nets, and determine the locations of all nodes including standard cells and
HBTs so that the following constraints are satisfied:

• Utilization Constraints. The utilization requirements of the top die and the bottom die are
provided separately, leading to different area upper bound for two dies.

• Technology Constraints. The cells may be fabricated using different technologies on different
dies, i.e., the cell characteristic, cell height, cell width, and the cell layout would be different.

• Vertical Interconnection Constraints. For any net e split to two dies, an HBT should be
created to connect pins on two dies. All HBTs share the same size.

• Legality Constraints. All standard cells on both dies should be placed without overlap and
aligned to rows and sites. HBTs should be placed to satisfy the spacing constraint, i.e., the
distance between each pair of HBTs and the distance to boundaries are lower bounded.

The objective of this 3D placement problem is the total wirelength of all nets in the given design
defined in Definition 3. In short, we focus on minimizing the sum of HPWL on the two dies. The
center points of the HBTs are included in the HPWL calculation for each die. We will give rigorous
mathematical formulations in Section 5.2.2.

5.2.2 Problem Formulation

Consider a netlist (V,E) where V = {c1, · · · , cn} is the node set and E = {e1, · · · , em} is the net set.
A partition is determined by a 0-1 vector δ ∈ Zn

2 = {0, 1}n, where δi = 0 indicates that cell ci ∈ V

is placed on the bottom die, otherwise top die. In the 3D placement with D2D vertical connections,
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the partition determines the total number of hybrid bonding terminals. In this section, we use x,y to
represent both node coordinates and corresponding pin coordinates ignoring pin offsets for simplicity.

Definition 2 (Net Cut Indicator). The cut indicator of a net e ∈ E is a function of partition
δ ∈ {0, 1}n defined by

Ce(δ) = max
ci∈e

δi −min
ci∈e

δi. (5.4)

It is also a binary value in {0, 1}. If there exist two nodes incident to net e placed on two different
dies, the cut Ce(δ) = 1, otherwise it is 0.

Given a partition δ ∈ {0, 1}n, if a net e ∈ E is a split net, i.e., Ce(δ) = 1, a hybrid bonding
terminal (HBT) should be inserted for this net as a vertical connection. Otherwise, all nodes incident
to e ∈ E are placed on either the top or the bottom die. Different from TSVs and MIVs going through
silicon substrates, HBTs do not require silicon space. If we have Cei(δ) = 1 for a net ei ∈ E, one and
only one HBT ti should be assigned to ei accordingly, otherwise ti will be discarded. We denote the
set of HBTs by T = {t1, · · · , tm} with planar coordinates x′,y′.

Denote the top and bottom partial nets by e+(δ) = {ci ∈ e : δi = 1} and e−(δ) = {ci ∈ e : δi = 0},
respectively. Correspondingly, the complete nets on top and bottom dies are ẽ+i = e+i ∪ {ti} and
ẽ−i = e−i ∪ {ti}, respectively, including HBTs. The die-to-die (D2D) wirelength [Hu+22] of net e ∈ E

is defined as follows.

Definition 3 (D2D Net Wirelength). Given partition δ, the die-to-die (D2D) wirelength of net e is
defined by We = Wẽ+i

+Wẽ−i
. More specifically, we have

Wẽ+i
= max

cj∈ẽ+i

xj − min
cj∈ẽ+i

xj + max
cj∈ẽ+i

yj − min
cj∈ẽ+i

yj ,

Wẽ−i
= max

cj∈ẽ−i

xj − min
cj∈ẽ−i

xj + max
cj∈ẽ−i

yj − min
cj∈ẽ−i

yj .
(5.5)

If Cei(δ) = 0, it degrades to the ordinary net HPWL without HBT considered.

The D2D net wirelength in Definition 3 simply sums up the half-perimeter wirelength on two dies,
demonstrating equivalence to pẽ+i

(x) + pẽ−i
(x) + pẽ+i

(y) + pẽ−i
(y). Since the center point of HBT ti is

included, We is a function of node locations x,y, HBT locations x′,y′, and partition δ. Our problem
is formulated as follows.

min
x,y,δ,x′,y′

∑
e∈E

We(x,y, δ,x
′,y′)

s.t.

n∑
i=1

δia
+
i ≤ a+req,

n∑
i=1

(1− δi)a
−
i ≤ a−req,

legality constraints,

(5.6)

where a+i , a
−
i stand for the node area of ci on the top and bottom die, respectively. The area require-

ments are set to a+req, a
−
req correspondingly. Besides of the legality constraints of standard cells, all

HBTs have a specific legality rule that the distance between each other is lower bounded. It worth
mentioning that HBTs are on the top-most metal layer and thus would not occupy any placement
resources on both dies.
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Figure 5.1: The overall placement flow of our framework.

5.3 Overall Placement Flow
The overall placement flow of our proposed framework is illustrated in Figure 5.1. We adopt a 3D
analytical global placement to find node locations with three dimensions. After global placement, we
assign HBTs and legalize all nodes including HBTs. At last, we perform detailed placement on each
die to further refine the solution. The optimized circuit placement results will be output after detailed
placement. Note that we do not apply 2D placement after 3D global placement and HBT assignment,
as we are confident enough of our proposed 3D global placement which effectively handles partitioning
and planar placement together.

5.3.1 Global Placement

In 3D placement, we assign coordinates x,y, z ∈ Rn to all nodes. Given the top die [x+
min, x

+
max] ×

[y+min, y
+
max] and the bottom die [x−

min, x
−
max]× [y−min, y

−
max], we have to make a necessary and realistic

assumption that they differ very little so that the entire placement region is well-defined and the 3D
placement framework makes sense under this scenario.

Assumption 1. The die sizes of two dies are almost the same. Specifically, we have die width
x+
min = x−

min = 0, x+
max = x−

max, and die height y+min = y−min = 0,
∣∣∣y+

max

y−
max
− 1
∣∣∣ < ϵ, where ϵ > 0 is a small

tolerance.

Under Assumption 1, our 3D global placement region is set to a cuboid Ω = [0, x+
max]× [0, y+max]×

[0, zmax] by default, with a properly determined depth zmax. For each node ci ∈ V , along with its
width and height provided by the input files, it will also be assigned a unified depth d.

Different from the 2D cases, the partition values δ are restricted to take very discrete values in
3D placement to determine node partition. More specifically, δ must be constrained to take binary
values in {0, 1}n in our placement problem, described in Section 5.2.2, so that each node ci ∈ V has
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an assigned partition indicator. We equally split the placement cuboid Ω into two parts by the plane
z = 1

2zmax, each of which represents a die:

Ω+ = [0, x+
max]× [0, y+max]×

[
zmax

2 , zmax

]
Ω− = [0, x+

max]× [0, y+max]×
[
0, zmax

2

]
.

(5.7)

The unified node depth is d = 1
2zmax. Ideally, we expect every node ci ∈ V to be placed inside either

the top part Ω+ or the bottom part Ω− at the end of 3D global placement. Note that every node
should not be placed out of boundary, therefore zi, which stands for the corner point coordinate of
node ci, should take values within interval [0, 1

2zmax]. We determine the tentative node partition δ as
a function of z coordinates P (z), by rounding the normalized value 2

zmax
z at every iteration, i.e., we

have
δi =

⌈
2zi
zmax

− 1

2

⌉
, (5.8)

for every ci ∈ V .
An example of partition mapping δ = P (z) is depicted in Figure 5.2(a). Node ci is partitioned to

the bottom die, i.e., δi = 0 as its corner coordinate zi <
1
4zmax. The other node cj in Figure 5.2(a)

is partitioned to the top die, i.e., δi = 1 as its corner coordinate zj > 1
4zmax. The exact value of the

cuboid depth zmax should be determined properly to avoid ill-condition in numerical optimization.
We manually set the bin size of z dimension to the mean of bin sizes of the other two dimensions.

More specifically, suppose the placement region is uniformly decomposed into Nx × Ny × Nz grids,
then we set

zmax =
Nz

2

(
xmax

Nx
+

ymax

Ny

)
(5.9)

in our analytical placement.

Heterogeneous Technologies. Different from ordinary analytical placement, we have to face a
challenge of heterogeneous technologies that the node attributes including node sizes and pin offset
values are different on the two dies.

Assume that each node ci ∈ V has width w+
i and height h+

i on the top die and w−
i , h

−
i on the

bottom die. At each iteration of 3D global placement, we should determine the exact node size for
every node according to tentative partition δ = P (z). More specifically, if the tentative partition
δi = 1, w+

i , h
+
i will be adopted for node ci, otherwise it will use w−

i , h
−
i . In other words, the planar

node size for node ci ∈ V is calculated as

wi = δiw
+
i + (1− δi)w

−
i ,

hi = δih
+
i + (1− δi)h

−
i

(5.10)

where the tentative partition δi determined by Equation (5.8) is a binary value. The node depth
remains d = 1

2zmax in the entire process of 3D global placement.
In addition to the node size, we also have two sets of pin offset values, although they are ignored

for simplicity in previous wirelength notations. Denote all pins by P = {p1, · · · , pl}, and Pi is the set
of all pins on the node ci ∈ V . Now, let xoffset,yoffset, zoffset ∈ Rl be the pin offset vectors on three
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Figure 5.2: The partition mapping P (z) : [0, zmax] → {0, 1} and the update of node attributes for heteroge-
neous technologies. (a) At one iteration during 3D global placement, node ci has tentative partition δi = 0
indicating the bottom die, while node cj with δj = 1 is assigned to the top die. (b) The node size and pin offset
values of node ci ∈ V will change if moved to the other die.

dimensions. For any pj ∈ Pi, we have

xoffset,j = δix
+
offset,j + (1− δi)x

−
offset,j ,

yoffset,j = δiy
+
offset,j + (1− δi)y

−
offset,j ,

(5.11)

and zoffset,j = 1
4zmax is fixed. In other words, the pin offset values of every pin is determined by the

tentative partition of the node it belongs to. Besides, we have a fact that, for any pj ∈ Pi, node ci’s
tentative partition δi = 1 if and only if pin pj is on the top part Ω+: zi + zoffset,j ≥ zmax

2 .
In accordance with Equation (5.10) and Equation (5.11), we update the node attributes including

node size and pin offset at every iteration during 3D global placement. An example of updating node
attributes is illustrated in Figure 5.2(b) where node ci is moved from zi =

1
2zmax to zi = 0.

Electrostatics-Based 3D Density. As mentioned and discussed in Section 5.1.1, eDensity [Lu+15a]
is the state-of-the-art academic density model which analogizes every node ci to a positive electric
charge qi. It expects an electric equilibrium so that movable objects can be evened out to reduce
the overall node overlap. Extending the density model in [Lu+15a], ePlace-3D [Lu+16] computes the
potential map by solving the 3D Possion’s equation under Neumann boundary condition,

∆ϕ = −ρ, in Ω

n̂ · ∇ϕ = 0, on ∂Ω,
(5.12)

where ρ = ρ(x, y, z) is the current density map in placement region Ω = [0, xmax] × [0, ymax] ×
[0, zmax] computed using node locations. The second line in Equation (5.12) is the boundary condition
specifying that the electric force on the boundary is zero.

Suppose the placement region Ω is uniformly decomposed into Nx × Ny × Nz grids, the solution
to Equation (5.12) under constraint

∫
Ω
ϕ dΩ = 0 is given by

ϕ =
∑
j,k,l

ajkl
ω2
j + ω2

k + ω2
l

cos(ωjx) cos(ωky) cos(ωlz), (5.13)
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where the tuple (ωj , ωk, ωl) = ( jπ
xmax

, kπ
ymax

, lπ
zmax

) stands for frequency indices. The density coefficients
ajkl is defined by

ajkl =
1

N

∑
x,y,z

ρ cos(ωjx) cos(ωky) cos(ωlz). (5.14)

where the denominator N = NxNyNz denotes the total number of bins. Note that the DC component
of density map ρ has been removed, i.e.,

∫
Ω
ρ dΩ = 0 is satisfied by removing a000 = 1

N

∑
x,y,z ρ(x, y, z)

which equals to the average density of all bins. The electric field E(x, y, z) = (Ex, Ey, Ez) can be
directly derived from Equation (5.13) by taking partial derivatives of ϕ,

Ex =
∑
j,k,l

ajklωj

ω2
j + ω2

k + ω2
l

sin(ωjx) cos(ωky) cos(ωlz),

Ey =
∑
j,k,l

ajklωk

ω2
j + ω2

k + ω2
l

cos(ωjx) sin(ωky) cos(ωlz),

Ez =
∑
j,k,l

ajklωl

ω2
j + ω2

k + ω2
l

cos(ωjx) cos(ωky) sin(ωlz),

(5.15)

Equation (5.13) and Equation (5.15) are well-established in [Lu+16], demonstrating that these spectral
equations can be solved efficiently using FFT with O(N logN) time complexity.

Different from the general scenarios in [Lu+16] where they may have multiple tiers, we only have
two dies in our specific problem. To help the 3D electrostatic filed even out the standard cells to
different dies, the node depth is set to d = 1

2zmax by default, as mentioned above. Through the
numerical optimization of 3D global placement, standard cells are expected to be roughly distributed
within either Ω+ or Ω−, so that the tentative partition δ = P (z) does not introduce significant
wirelength degradation after 3D global placement.

5.3.2 HBT Assignment

During 3D global placement, we do NOT insert HBTs as any HBT is allowed to have overlap with
standard cells. After 3D global placement, we first obtain a partition δ = P (z) ∈ Zn

2 according
to Equation (5.8). The convergence of global placement implies a very low overflow indicating that
zi should be close to either 0 or 1

2zmax to determine the partition solution. Since the partition δ and
x,y is already determined, we proceed to the 2D scenario with the top die layout and the bottom die
layout. Every split net e should be assigned precisely one HBT.

Consider a split net e ∈ E. Ignoring pin offset values for simplicity, define x-dimension coordinates
x+

low = minci∈e+ xi, x+
high = maxci∈e+ xi and vertical coordinates y+low, y

+
high for the top partial net e+,

and similarly define corresponding variables for the bottom partial net e−. Then, we denote the
bounding box of partial nets e+ and e− by

B+
e = [x+

low, x
+
high]× [y+low, y

+
high],

B−
e = [x−

low, x
−
high]× [y−low, y

−
high],

(5.16)

respectively.
After 3D global placement, the x,y coordinates and partition δ = P (z) of nodes are already

determined, and thus B+
e and B−

e are determined for every split net e. As illustrated in Figure 5.3,
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Figure 5.3: The optimal region B∗
e,HBT of an HBT for a split net e ∈ E with cut Ce(δ) = 1 under several

different scenarios. (a) The top net bounding box B+
e and the bottom net bounding box B−

e overlap on both the
x dimension and the y dimension. (b) B+

e and B−
e overlap only on the x dimension. (c) B+

e and B−
e overlap

only on the y dimension. (d) B+
e and B−

e have no overlap on both two dimensions.

for any split net e, its HBT has a specific optimal region, i.e., the net wirelength We is minimized
only when its HBT is placed within this optimal region.

Theorem 10. For a split net e ∈ E, the optimal region of its HBT is defined by B∗
e,HBT = [x′

low, x
′
high]×

[y′low, y
′
high] where

x′
low = min

{
max

{
x+

low, x
−
low
}
,min

{
x+

high, x
−
high

}}
,

x′
high = max

{
max

{
x+

low, x
−
low
}
,min

{
x+

high, x
−
high

}}
,

(5.17)

and y′low, y
′
high are defined similarly. Equivalently, coordinates x′

low, x
′
high are the two median numbers

of x+
low, x

−
low, x

+
high, x

−
high and the same for y′low, y

′
high.

Theorem 10 enlightens us that the total net wirelength will be minimized when every split net
e has its HBT placed within the optimal region B∗

e,HBT. Therefore, we intuitively assign an HBT
t(e) ∈ T for each split net such that the center point of t locates exactly at the center point of B∗

e,HBT.
Note that after this HBT assignment step, it is likely that HBTs may overlap with each other, re-

quiring a subsequent legalization process. To control the total number of HBTs and mitigate potential
wirelength degradation caused by legalization, we carefully regulate the weight α in the objective func-
tion described in Definition 1. This enables us to mitigate wirelength degradation while minimizing
the number of HBTs.

5.3.3 Legalization

After the partitioning δ = P (z) and the HBT assignment, the mission of 3D global placement is
completed. The rest is to legalize all nodes including HBTs and further refine the solution from
2D perspective. We legalize the standard cells on the top die and the bottom die separately with
Tetris [Hil02] and Abacus [SSJ08a]. The HBTs are legalized similarly by treating them as ordinary
standard cells with a specific terminal size.

Note that in our problem definition, HBTs share the same square size w′ × w′ and every pair of
HBTs must satisfy the spacing constraint that the distance of boundaries should be no less than s′.

45



Hence, we pad every HBT to a square with size w′ + s′ and legalize them as ordinary standard cells
with row height w′ + s′.

5.3.4 Detailed Placement

We further improve the total wirelength by applying ABCDPlace [Lin+20b] with several techniques
including global swap [PVC05; Pop+14], independent set matching [Che+08], and local reorder-
ing [PVC05; Che+08] die by die. When we are performing detailed placement on one die, all other
nodes on the other die and HBTs remain fixed. After the detailed placement of two dies, the optimal
regions of HBTs may get affected. Therefore, we can continue to map HBTs to their updated optimal
regions, followed by a new round of HBT legalization and detailed placement. While this process can
be iterated infinitely, we find that only the initial few rounds yield significant benefits. Therefore, we
perform one additional round of this process during the detailed placement.

5.4 Bistratal Wirelength Model
The analytical wirelength model is critical to the numerical optimization of Equation (5.1) in this
problem. Previous works [HCB11; HBC13; Lu+16] use the 3D HPWL model defined in Definition 1
with the peak-to-peak function to describe the net wirelength. Chen et al. [Che+23a] propose MTWA
model to consider heterogeneous technologies, but it is still based on 3D HPWL without considering
the D2D wirelength. Note that pe(z) roughly reflects the cut size of net e and does not contribute
to the planar net wirelength. The plain HPWL W̃e is defined as follows such that We(x,y, z) =

W̃e(x,y) + αpe(z).

Definition 4 (Plain HPWL). Given node positions x,y, the plain HPWL of any net e ∈ E is given
by

W̃e(x,y) = max
ci∈e

xi −min
ci∈e

xi +max
ci∈e

yi −min
ci∈e

yi, (5.18)

which does not care node position z at all.

Obviously, Equation (5.18) in the above definition is equivalent to the separable representation
W̃e(x,y) = pe(x) + pe(y) using the peak-to-peak function defined in Equation (5.2).

Unfortunately, 3D HPWL model in Definition 1 based on the plain HPWL is inaccurate as the
exact wirelength defined in Definition 3 and Equation (5.5) sums up the HPWL on the top die and
bottom die. Equation (5.18) only considers the entire bounding box with the top die and the bottom
die together, neglecting the pin partition and the potential presence of HBTs. Additionally, the
conventional 3D HPWL wirelength model is NOT able to capture the wirelength variation resulting
from different node partition.

Consider a net e ∈ E connecting four pins p1, p2, p3, p4. Fix all planar locations of these pins and
tentative partition of p2, p3, p4. Figure 5.4(a) shows e+ and e− when p3 is on the bottom die and the
corresponding HBT is placed optimally. It is clear that the total wirelength of net e is We = W̃ẽ++W̃ẽ−

which exactly equals to the plain HPWL of the entire net e. By contrast, Figure 5.4(b) shows the
case when p3 is on the top die. The HBT with the same coordinates preserves optimality, but the
true wirelength We = W̃ẽ+ + W̃ẽ− is larger than the plain HPWL of net e.
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Figure 5.4: An example where changing partition of one pin does not affect the net bounding box but
increases the exact net wirelength. (a) The exact wirelength equals to the HPWL of the entire net. (b) The
exact wirelength is strictly larger than the HPWL of the entire net.

Theorem 11. Given any partition δ and any net e ∈ E, let pe(u) = maxci∈e ui −minci∈e ui be the
peak-to-peak function defined in Equation (5.2). Then, we always have

pe ≤ min
x′

Wex(x
′) ≤ 2pe, (5.19)

where Wex(x
′) is the x-dimension part of the exact net wirelength defined in Equation (5.5) with HBT

coordinate x′ under tentative partition δ.

The equality of the left part of Equation (5.19) holds if and only if B+
e and B−

e defined in Equa-
tion (5.16) has no overlap on the x dimension. The equality of the right part holds if and only if
B+

e and B−
e are the same on the x dimension. The conclusion on the y dimension can be similarly

established. We will give a more detailed representation of minx′ Wex(x
′) in Theorem 12.

Corollary 4. Given any partition δ and any net e ∈ E, let the ordinary plain HPWL be W̃e defined
in Definition 4. Then, we always have

W̃e ≤ min
x′,y′

We(x
′, y′) ≤ 2W̃e, (5.20)

where We(δ, x
′, y′) is the exact net wirelength defined in Equation (5.5) with HBT coordinate (x′, y′).

The equality of the left part of Equation (5.20) holds if and only if B+
e and B−

e defined in Equa-
tion (5.16) has no overlap on both x and y dimensions. The equality of the right part holds if
and only if B+

e and B−
e are the same. Corollary 4 indicates that the HPWL model used in previous

works [HCB11; HBC13; Lu+16] is just a lower bound of the exact bistratal wirelength in our problem.
Apparently, optimizing W̃e does not necessarily benefit the exact wirelength as the error bound may
get as large as the lower bound, according to Equation (5.20). We will give a precise representation
of minx′,y′ We(x

′, y′) for every net e in Theorem 12.
We propose a novel bistratal wirelength model that can handle planar coordinates and partitioning

together. Instead of optimizin the plain HPWL W̃e, we try to minimize minx′,y′ We(x,y, δ,x
′,y′)

at every iteration according to the tentative partition. Besides of the wirelength estimation, the
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computation of gradients is more critical to the numerical optimization process. In this section, we
will discuss the proposed model theoretically in detail.

5.4.1 Wirelength Objective

In the forward pass of numerical optimization [Lu+15a; Lin+19], we calculate the exact or approx-
imated wirelength. Different from 3D HPWL in Definition 1, we must consider partition for more
precise wirelength estimation.

According to Corollary 4, we should approximate the exact wirelength We defined in Equation (5.5)
as precisely as possible. Considering that HBTs are not inserted in the 3D global placement as
the tentative partition δ may vary at every iteration, we assume that each split net is assigned a
dummy HBT placed within its optimal region according to the tentative partition. In other words, we
target at optimizing minx′,y′ We(x,y, δ,x

′,y′) where the tentative partition δ = P (z) is updated at
every iteration. The following theorem reveals the explicit representation of our wirelength forward
computation without any HBT inserted.

Theorem 12. The minimal precise net wirelength on the x dimension with respect to the HBT
coordinate x′ of net e is given by

min
x′

Wex(x
′) = max {pe, pe+ + pe−} , (5.21)

as a function of node positions (x) under partition δ, where the peak-to-peak function pe is defined by
pe(u) = maxci∈e ui −minci∈e ui for any u.

Theorem 12 gives an accurate estimation of the minimum exact net wirelength on the x dimension
for split nets at every iteration during 3D global placement. Note that the right-hand side of Equa-
tion (5.21) also indicates the exact wirelength for any non-split net e as either pe+ or pe+ is zero. The
corresponding theorem on the y dimension can be similarly established.

Given any partition δ and any split net e ∈ E, let B+
e = [x+

low, x
+
high] × [y+low, y

+
high] and B−

e =

[x−
low, x

−
high]× [y−low, y

−
high] be the bounding boxes of partial nets e+, e−, respectively, defined in Equa-

tion (5.16). Define

Wex =

 max
ci∈e

xi −min
ci∈e

xi, if xhigh ≤ xlow,

x+
high − x+

low + x−
high − x−

low, otherwise.
(5.22)

where xlow = max{x+
low, x

−
low}, xhigh = min{x+

high, x
−
high}, and similary define Wey. Then, the minimal

precise net wirelength considering both x, y dimensions with respect to the HBT coordinates (x′, y′)

of net e ∈ E defined in Theorem 12 is equivalent to

min
x′,y′

We(x
′, y′) = Wex +Wey, (5.23)

More intuitively, Equation (5.23) first checks whether the boxes B+
e and B−

e overlap. If they
overlap on one dimension, we optimize the HPWL of the top partial net e+ and the bottom partial
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net e− on this dimension separately, as we have

x+
high − x+

low = pe+(x) = max
ci∈e+

xi − min
ci∈e+

xi,

x−
high − x−

low = pe−(x) = max
ci∈e−

xi − min
ci∈e−

xi,
(5.24)

otherwise the target degrades to the ordinary HPWL function W̃e on this dimension.
For a non-split net e ∈ E with Ce(δ) = 0, i.e., it is completely within either the top or the bottom

die, we treat it as an ordinary 2D net and evaluate its ordinary plain wirelength W̃e with Equa-
tion (5.18). Then, we propose the bistratal wirelength (BiHPWL) as follows.

Definition 5 (Bistratal Wirelength). Given 3D node position (x,y, z), the bistratal half-perimeter
wirelength of any net e is defined as

We,Bi(x,y, z) = max {pe(x), pe+(x) + pe−(x)}+max {pe(y), pe+(y) + pe−(y)} (5.25)

where the peak-to-peak function pe(·) is defined by pe(u) = maxci∈e ui − minci∈e ui for any u. The
partial nets e+(δ) and e−(δ) are determined by the tentative partition δ = P (z).

Definition 5 gives a much accurate wirelength estimation in our probelm. Combining the regular-
ization of cut size, In our 3D global placement, we use

W (x,y, z) :=
∑
e∈E

We,Bi(x,y, z) + α
∑
e∈E

pe(z) (5.26)

as the wirelength objective where the bistratal net wirelength We,Bi is defined by Equation (5.25).
Note that We,Bi is also a function of z as the tentative partition δ at every iteration is determined
by z. The second term with α weight is integrated to limit the total number of HBTs as we always
expect fewer HBTs if possible. Moreover, a large number of HBTs would degrade the solution quality
after legalization.

Optimizing Equation (5.26) resolves the issue that 3D HPWL approximates the true wirelength
poorly when the top box B+

e and the bottom box B−
e overlap, illustrated in Figure 5.4(b). However, the

objective in Equation (5.26) is highly non-differentiable. Therefore, we should establish the gradient
approximation in detail to enable numerical optimization of 3D global placement. In the following of
this section, we will discuss the gradient computation including the subgradient approximation to the
planar gradients and the finite difference approximation to the depth gradient.

5.4.2 Gradient Computation

The optimization of Equation (5.26) itself is difficult as it is non-differentiable and even discontinuous
with respect to z. In this subsection, we will discuss our proposed strategy to find the “gradients”
that percept the objective change with respect to variables.

Since the representations in Equation (5.22) are always in a peak-to-peak form, we use the
weighted-average model [HCB11; HBC13] in Equation (5.3) to approximate them, so that We in Equa-
tion (5.21) is differentiable where xhigh ̸= xlow and yhigh ̸= ylow when calculating gradients. It is
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straght-forward to derive the closed-form representation of gradients of the WA model[HCB11] de-
scribed in Equation (5.3),

∂pe,WA
∂ui

=
e

ui
γ (γ + ui − Smax)

γ
∑

ci∈e e
ui
γ

− e−
ui
γ (γ + Smin − ui)

γ
∑

ci∈e e
−ui

γ

, (5.27)

where the smooth maximum Smax = Smax(u) and the smooth minimum Smin = Smin(u) are defined
by

Smax =

∑
ci∈e uie

1
γ ui∑

ci∈e e
1
γ ui

, Smin =

∑
ci∈e uie

− 1
γ ui∑

ci∈e e
− 1

γ ui
, (5.28)

such that pe,WA = Smax − Smin. The variable u can be x,y, z to derive the detailed gradients of the
smooth peak-to-peak on corresponding dimensions. More details of differentiable approximations are
discussed in [NDS01; HCB11; HBC13; Lia+23].

Adaptive Planar Gradients. In the numerical optimization, we are supposed to derive the
“gradients” of Equation (5.26) with respect to coordinates x,y, z. The gradients w.r.t planar coor-
dinates x,y guide the optimizer to find optimal placement on each die, while the gradients w.r.t z

handle the partition correspondingly. It is clear that the planar gradients are determined by ∇xWe,Bi

and ∇yWe,Bi. Unfortunately, We,Bi in Equation (5.25) is non-differentiable, forcing us to consider
subgradients instead.

Without loss of generality, we focus on the x dimension. Consider function set F = {pe, pe+ +

pe−} for a given tentative partition, then the x-dimension part of wirelength We,Bi is Wex,Bi(x) =

maxf∈F f(x). The corresponding active function set is

I(x) = {f ∈ F : f(x) = Wex,Bi(x)}. (5.29)

According to the subgradient calculus rule, we know that the subdifferential of We,Bi is a convex hull

∂Wex,Bi(x) = conv
⋃

f∈I(x)

∂f(x). (5.30)

We expect to legitimately take one subgradient g ∈ ∂Wex,Bi(x) for optimization.
A non-split net is trivial as Wex,Bi(x) degrades to pe(x) directly. Consider a split net e ∈ E. When

B+
e and B−

e have overlap on x dimension, i.e. pe+(x) + pe−(x) > pe(x), pe+(x) + p−e (x) ∈ I(x) is
active in Equation (5.29) and we have Wex,Bi(x) = pe+(x)+pe−(x). According to Equation (5.30), it is
straight-forward to take any subgradient in ∂pe+(x)+∂pe−(x) for numerical optimization. Empirically,
differentiable approximations of pe may be preferred to work with smooth optimizers, and thus we take
∇xpe+,WA + ∇xpe−,WA as the “gradient” ∇xWex,Bi, where we leverage the weighted-average model
pe,WA [HCB11; HBC13] defined in Equation (5.3). When B+

e and B−
e do not overlap on x dimension,

i.e., pe+(x) + pe−(x) < pe(x), pe(x) is active in Equation (5.29), so we have Wex,Bi(x) = pe(x) and
treat e as a non-split net, then apply the approximation pe,WA. When I(x) is not a singleton, i.e.,
pe+(x) + pe−(x) = pe(x), we can take any element in the convex hull in Equation (5.30). Through
this way, we define the “gradient” ∇We,Bi.

Definition 6 (Planar Gradient). Consider the bistratal wirelength We,Bi. The planar gradient

50



∇xWe,Bi = g is defined as follows

g =

 ∇pe+,WA +∇pe−,WA, if pe+ + pe− > pe,

∇pe,WA, otherwise.
(5.31)

which is an approximation of a subgradient, where the gradient of pe,WA is given by Equation (5.27).

The gradient ∇yWe,Bi can be defined similarly. Note that we still use ∇We,Bi to denote such a
subgradient approximation in Equation (5.31) although We,Bi itself is non-differentiable.

We consider Equation (5.31) to be the adaptive planar gradients w.r.t. x,y coordinates. The
term “adaptive” is named after the overlap illustrated in Figure 5.4. More specifically, we check
whether B+

e and B−
e overlap on x (and y) dimensions under tentative δ for every net e at every global

placement iteration. If they overlap on the x (or y) dimension, we have pe+ + pe− > pe and use the
first representation of ∇We,Bi in Equation (5.31) and the second otherwise. Equation (5.31) is applied
in our numerical optimization during the 3D global placement. With no doubt, it takes into account
the physical information of pin coordinates on both dies, making it much more accurate than the 3D
HPWL model.

Finite Difference Approximation of Depth Gradients. In addition to the planar gradients
w.r.t. x and y, we are also supposed to derive how to correctly define “gradients” w.r.t. z which
is far more tricky. Finding a way to optimize z is critical to the entire optimization, as it directly
determines the quality of partition.

The density gradient ∇zD(x,y, z) drives placer to separate nodes with depth 1
2zmax to be dis-

tributed on two dies so that we can obtain a valid partition at last, neglecting wirelength optimization.
The gradient

∑
e∇zpe,WA(z) in Equation (5.26) with the weighted-average model [HBC13] tends to

optimize the total cutsize of the design so that the total number of HBTs is limited, but there is
no theoretical guarantee that a small cutsize would benefit the D2D wirelength. Hence, the most
important task is to find how We,Bi(x,y, z) gets affected by z to evaluate the quality of partitioning.
Considering that We,Bi(x,y, z) is even discontinuous with respect to z, the gradient ∇zWe,Bi does
not exist at all. To tackle this problem, we leverage finite difference to approximate the impact of z
on the bistratal wirelength.

Finite difference [Tay15; BM60; Jor56; MT00] has been widely used in a large number of applica-
tions in numerical differentiation to approximate derivatives. We follow the definitions and notations
in [MT00] and denote the difference quotient by

∆
h
f(x) =

f(x+ h)− f(x)

h
(5.32)

using the Nörlund’s operator ∆
h

[MT00; N2̈4] for any function f on R and x, h ∈ R. In the classical
infinitesimal calculus, the first-order derivative of f is defined by limh→0 ∆

h
f(x) if f is differentiable.

Both difference and derivative estimate how the function value would change with its variables, but
derivative is in a continuous view while difference depends on the step size h.

Taking a net e ∈ E and ci ∈ e, consider the impact of zi to the bistratal wirelength We,Bi. For
simplicity, we use We,Bi(zi) to represent the bistratal wirelength of net e ∈ E as a function of zi and
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fix all other variables. Given step size h, the difference quotient of We,Bi at zi is

∆
h
We,Bi(zi) =

We,Bi(zi + h)−We,Bi(zi)

h
, (5.33)

combining both the forward/advancing difference (h > 0) and the backward/receding difference (h <

0). Since We,Bi is discontinuous with respect to variable zi, the limit limh→0 ∆
h
We,Bi(zi) does not

exist. However, we could consider Equation (5.33) with a large h as we only have two dies. More
specifically, we set h = 1

4zmax if δi = P (zi) = 0 and h = − 1
4zmax otherwise, so that the difference

quotient in Equation (5.33) will always be non-zero. Providing that We,Bi(zi) is a step function that
only takes two possible values We,Bi(0) and We,Bi(

1
2zmax), Equation (5.33) can be summarized as

follows.

Definition 7 (Finite Difference Approximation). Consider the bistratal wirelength We,Bi. The finite
difference approximation (FDA) ∇zWe,Bi = g is defined by

gi = ∆
1
4zmax

We,Bi(zi) =
4

zmax

(
We,Bi

(zmax

2

)
−We,Bi(0)

)
, (5.34)

where zmax is the total depth of our placement region, defined in Equation (5.7).

Equation (5.34) is intuitive that it actually evaluates the wirelength change when moving a pin
to the other die. It provides a local view of benefits we can obtain when changing node partition.
Note that we still use the term ∇zWe,Bi to denote the finite difference approximation in Definition 7,
although We,Bi itself is non-differentiable.

From Equation (5.34), any node ci ∈ V accumulates depth gradients ∇zWe,Bi from all related nets
e, therefore the finite difference approximation locally evaluates the impact of every node to the total
circuit wirelength. We apply

∑
e∇zWe,Bi in Equation (5.34) with cutsize gradient

∑
e∇zpe,WA(z)

and density gradient ∇zD(x,y, z) to numerical optimization in 3D global placement to obtain a
good partition with an acceptable number of HBTs. Combining with the adaptive planar gradients
in Definition 6, we have defined the detailed gradient computation of the proposed bistratal wirelength
model.

5.5 Experimental Results

5.5.1 Experimental Setup

We conducted experiments on ICCAD 2022 contest benchmark suits [Hu+22]. The detailed design
statistics are shown in Table 5.1. Note that each HBT in a specific design has a size of w′ × w′, and
the minimum spacing s′ on x and y directions between each pair of HBTs is also equal to w′. Movable
macros are not included in the benchmark suits.

We implemented the proposed 3D analytical placement framework in C++ and CUDA based on the
open-source placer DreamPlace [Lin+19]. All the experiments were performed on a Linux machine
with 20 Intel Xeon Silver 4210R cores (2.40GHz), 1 GeForce RTX 3090Ti graphics card, and 24 GB of
main memory. We compared our framework with the state-of-the-art (SOTA) placers from the top-3
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Table 5.1: The statistics of the ICCAD 2022 Contest [Hu+22] Benchmark Suites where u+, u− stand for the
utilization constraints on the top die and the bottom die, respectively. RH+ and RH− represent the row height
on the top and bottom die. w′ means the size of hybrid bonding terminals.

Bench. #Nodes #Nets #Pins u+ u− RH+ RH− w′

case2 2735 2644 8118 0.70 0.75 176 252 100
case2h 2735 2644 8118 0.79 0.79 252 252 114
case3 44764 44360 142246 0.78 0.78 115 115 50
case3h 44764 44360 142246 0.68 0.78 92 115 46
case4 220845 220071 773551 0.66 0.70 92 115 62
case4h 220845 220071 773551 0.66 0.76 103 115 66

teams in ICCAD 2022 contest and recent work [Che+23a], and the reported results were evaluated
by the official evaluator provided by the contest.

5.5.2 Comparison with SOTA Placers

Table 5.2 shows the experimental results of the top-3 teams, SOTA analytical 3D placer [Che+23a],
and ours on the contest benchmark suites [Hu+22]. We compared the exact D2D wirelength (WL),
the total number of hybrid bonding terminals (HBTs), and runtime of each case with the baselines
in Table 5.2. The wirelength is evaluated using the provided official evaluator from the benchmark
suites. For a fair comparison, we acquired their binary executable files and evaluated the end-to-end
runtime of the baselines on our machine using their default settings.

It worths mentioning that the ICCAD 2022 Contest [Hu+22] evaluates WL as the final score.
Hence, the contestants only target at optimizing WL and may not consider HBT costs explicitly.
However, realistic requirements oftern expect to limit the HBT usage as well. Our framework explicitly
considers the cutsize optimization as a scondary goal in the objective function in Definition 5 to find
a “proper” cutsize, as simply reducing cutsize may also degrade the performance [PL22].

As illustrated in Table 5.2, our analytical 3D placement framework consistently obtained the best
WL results for all the cases, demonstrating the significant advantage of our 3D placement paradigm
with the dedicated bistratal wirelength model. Compared to the top-3 teams, our placer achieved
4.1%, 5.7%, and 7.2% shorter wirelength on average, respectively.

Thanks to the global optimization view of our 3D analytical approach, our placer utilized fewer
HBTs and achieved better wirelength. Our framework reduced 52.3%, 21.1%, 2.0% number of HBTs
on average compared to the top-3 contest winners. Our framework achieved up tp 49.2% HBT
number reduction than the first place on the large cases, making our framework more competitive to
reduce the hybrid bonding terminal fabrication cost for large designs in real scenarios. Leveraging
the computation power of modern GPUs, our placer demonstrates better runtime scalability than
the baselines, achieving 4.300× and 5.320× speedup over the first place and the second place for
end-to-end placement, and achieving up to 2.925× speedup over the third place on the large cases.

We also compared our framework with the SOTA analytical 3D placer [Che+23a] on the same
ICCAD 2022 benchmarks [Hu+22]. Chen et al. [Che+23a] proposed an MTWA wirelength model
based on 3D HPWL in Definition 1, considering heterogeneous technologies with a weight factor
α that correlates positively with net degrees. They aimed to guide the optimizer to split more
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low-degree nets for wirelength reduction, which resulted in notable improvements compared to the
first-place winner. However, their wirelength model in 3D analytical placement is still inaccurate and
thus requires an additional 2D placement to refine node locations. Moreover, MTWA [Che+23a] is
not directly partitioning-aware. The experimental results in Table 5.2 show that we achieve up to
3.4% wirelength improvement and 2.1% on average compared to [Che+23a]. Remarkably, we are
confident enough of our placement framework in numerical optimization, and thus do not require a
2D placement to further refine node locations after 3D placement. In addition, we require 25% fewer
HBTs and can efficiently accomplish the placement task with GPU resources. In modern VLSI design,
the performance on large cases is most critical. We considered two large cases containing more than
220K standard cells in the ICCAD 2022 Contest benchmark suites [Hu+22]. As shown in Table 5.2,
we significantly outperform the baseline by 1.8% and 2.5% wirelength improvement on the largest two
cases case4 and case4h, respectively, with more than 8× runtime acceleration, proving the scalability
of our framework.

5.5.3 3D Global Placement Analysis

Our 3D analytical placement framework enables the simultaneous node partitioning and placement in
the global placement stage, forming a larger solution space than previous separate partitioning and
placement works [Cha+16; Pan+17; KCL18; Par+20]. Unlike previous 3D analytical placer [Lu+16]
targets on multiple tiers and leverages subsequent 2D placement to refine the placement solution,
our framework assigns the nodes to exact two dies and place them in a single run. Our 3D global
placement is visualized in Figure 5.5.

In Figure 5.5, fillers, nodes on the top die, and nodes on the bottom die are denoted by gray,
brown, and blue rectangles, respectively. The node depth is omitted for better visualization. All
standard cells are randomly initialized around the center point of the design from a normal distribu-
tion, shown in Figure 5.5(a). Note that fillers are already inserted according to the given utilization
requirements and uniformly initialized on two dies. During the 3D global placement, the optimizer
tends to move nodes according to the gradients of wirelength (including cutsize with weight α) and
density. The tentative partition δ is updated at every intermediate iteration of global placement,
shown in Figure 5.5(b) and Figure 5.5(c), until the convergence is detected. At last, the placer will
find a 3D placement solution with optimized wirelength, shown in Figure 5.5(d). When the conver-
gence is attained, most standard cells ci with coordinate zi satisfying | 2zi

zmax
− δi| < ϵ for a sufficiently

small positive number ϵ > 0, implying that our framework is confident enough to partition every stan-
dard cell. The 3D global placement produces a solution with overflow 0.07, shown in Figure 5.5(d),
therefore we apply the tentative partition at the 1769th iteration as the final partition δ and proceed
to the later steps including legalization and detailed placement.

In addition to the convergence visualization of our 3D global placement in Figure 5.5, we also plot
the 2D placement of two dies in Figure 5.6, together with the hybrid bonding terminals. As shown
in Figure 5.6(b), our HBT placement is sparse after legalization and detailed placement.
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(d) Iteration 1769, Wirelength 1.71×106,
Cut Size 646, Overflow 0.07

Figure 5.5: 3D global placement on case2 with heterogeneous technologies. Fillers, nodes on the top die, and
nodes on the bottom die are denoted by gray, brown, and blue rectangles, respectively. The node depth is omitted
for better visualization. The nodes are initialized at the center point, and the fillers are randomly distributed
on the two dies as shown in (a). The 3D density force combined with the wirelength force progressively drive
all the nodes to the specific die, leading to a placement solution with almost perfect node partition as shown in
(d).

5.5.4 Ablation Studies on Wirelength Models

We evaluated the effectiveness of our proposed bistratal wirelength model by using different wire-
length models in our framework on the ICCAD 2022 Contest Benchmarks [Hu+22]. The detailed
experimental results are shown in Table 5.3.

Plain HPWL stands for the conventional HPWL model W̃e defined in Definition 4. It is integrated
in 3D HPWL adopted in many previous analytical placers [LSC13; HCB11; HBC13; Lu+16]. This
wirelength model is very classical and has been proved to be effective in analytical 3D placement.
Notably, the gradients of differentiable approximations to W̃e w.r.t. z only focus on optimization
on cutsize. Hence, it achieves the best results of cutsize, with only 55.5% HBTs of ours, shown
in Table 5.3. However, the wirelength reported by the evaluator is 16.9% larger than ours, as plain
HPWL model could not comprehend the impact of partitioning on the exact D2D wirelength. We
now validate the effectiveness of the adaptive planar gradient defined in Definition 6 and the finite
difference approximation (FDA) of depth gradients in Definition 7.
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(a) The general view of the solution to case2
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(b) The hybrid bonding terminals of the solution to case2
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(c) The top die layout of the solution to case2
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(d) The bottom die layout of the solution to case2

Figure 5.6: The placement results of case2 using our proposed method. (b) illustrates how hybrid bonding
terminals are placed to connect cells on different dies. (c) and (d) plot the top die placement and the bottom
die placement, respectively.

BiHPWL in the second main column of Table 5.3 represents the bistratal wirelength in Definition 5
equipped with the adaptive planar gradient. “BiHPWL model without FDA” is equivalent to “plain
HPWL with adaptive planar gradient” in terms of gradient computation. As shown in Table 5.3,
the BiHPWL model without FDA achieves 3.5% wirelength improvements on average with little
degradation of cutsize, compared to plain HPWL. It is intuitively rational as the adaptive planar
gradient tries to figure out when the plain HPWL is inaccurate compared to the exact D2D wirelength
and switches a different strategy accordingly. However, it is still far inferior to the results with FDA,
as the adaptive planar gradient in Definition 6 focuses on optimizations of planar coordinates x,y

without comprehension of partitioning.
In the third main column of Table 5.3, the plain HPWL is equipped with FDA, which means that

we use W̃e to replace We,Bi in Definition 7. However, the plain HPWL W̃e is irrelevant to z and thus
insensitive to different partitioning. Therefore, nonzero gradients occur only because of changes of
node attributes given heterogeneous technologies, resulting in less than 3% wirelength improvements
with significant cutsize degradation. By contrast, BiHPWL is evidently sensitive to partitioning,
leading to 13.4% wirelength improvement when FDA is enabled, as shown in the last main column
in Table 5.3. Note that we utilize much more resources of vertical interconnects to optimize wirelength
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Figure 5.7: The runtime breakdown of our proposed analytical 3D placement framework on the ICCAD 2022
Contest benchmark case4h [Hu+22]. Our global placement and detailed placement are both GPU-accelerated.

versus plain HPWL, fully taking advantage of the benefits of F2F-bonded 3D ICs. Meanwhile, our
framework still significantly outperforms the first-place winner on cutsize, preserving advantages on
wirelength.

5.5.5 Runtime Breakdown

Figure 5.7 plots the runtime breakdown on case4h for our 3D analytical placement framework. The
GPU-accelerated 3D global placement takes 82.59% of the total runtime, while the GPU-accelerated
detailed placement takes 15.07%.

Similar to [Lin+19], the density and its gradients are computed with a GPU-accelerated imple-
mentation of 3D FFT in the 3D global placement. Given the ultra-fast density computation, we
set the number of bins Nz = 32 by default for all nontrivial cases in [Hu+22] so that the discrete
grids can model the 3D electric field more precisely and thus produce better results. The proposed
bistratal wirelength model is also implemented based on weighted-average [HCB11; HBC13] with
GPU-acceleration techniques in [Lin+19]. The computation of wirelength and density with their gra-
dients take up the main part of runtime in global placement. It is worth mentioning that we can
achieve 9.807× and 7.506× runtime speedup for the largest two designs case4 and case4h over the
first-place winner, demonstrating that our placement framework is scalable.

5.6 Summary
This paper proposes a new analytical 3D placement framework for face-to-face (F2F) bonded 3D
ICs with heterogeneous technologies, incorporating a novel bistratal wirelength model. The pro-
posed framework leverages high-performance GPU-accelerated implementations of both the wirelength
model and the electrostatic-based density model. The experimental results on ICCAD 2022 Contest
benchmarks demonstrate that our framework significantly surpass the first-place winner and the SOTA
analytical 3D placer by 4.1% and 2.1% on wirelength, respectively, with much fewer vertical intercon-
nections and conspicuous acceleration. The 3D placement framework accomplishes partitioning and
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placement in a single run, proving that true 3D analytical placement can effectively handle partition-
ing with respect to wirelength optimization for F2F-bonded 3D ICs and thus inspire more explorations
and studies on 3D analytical placement algorithms.

58



T
ab

le
5.

2:
T

he
ex

pe
ri

m
en

ta
l

re
su

lts
on

th
e

IC
C

A
D

20
22

C
on

te
st

[H
u+

22
]

B
en

ch
m

ar
ks

co
m

pa
re

d
to

th
e

to
p-

3
wi

nn
er

s
an

d
th

e
SO

TA
an

al
yt

ic
al

3D
pl

ac
er

[C
he

+
23

a]
.

W
L

in
di

ca
te

s
th

e
ex

ac
t

D
2D

wi
re

le
ng

th
ev

al
ua

te
d

by
th

e
pr

ov
id

ed
offi

ci
al

ev
al

ua
to

r.
H

B
Ts

re
pr

es
en

ts
th

e
cu

ts
iz

e,
i.e

.,
th

e
to

ta
ln

um
be

r
of

hy
br

id
bo

nd
in

g
te

rm
in

al
s.

R
T

(s
)

st
an

ds
fo

r
th

e
to

ta
lr

un
tim

e.

B
en

ch
.

1s
t

P
la

ce
2n

d
P

la
ce

3r
d

P
la

ce
[C

he
+

23
a]

O
ur

s
W

L
H

B
Ts

RT
W

L
H

B
Ts

RT
W

L
H

B
Ts

RT
W

L
H

B
Ts

RT
W

L
H

B
Ts

RT

ca
se

2
20

72
07

5
11

31
47

20
80

64
7

47
7

7
20

97
48

7
16

3
5

20
11

44
7

78
4

33
19

44
65

6
64

6
38

ca
se

2h
25

55
46

1
10

83
45

27
35

15
8

68
7

8
26

44
79

1
15

1
5

25
14

59
7

89
1

32
24

62
55

3
34

5
40

ca
se

3
30

58
03

36
16

82
0

34
2

30
96

90
11

11
25

7
23

4
33

06
35

68
14

78
8

68
30

30
26

43
81

69
14

1
30

06
27

13
80

17
92

ca
se

3h
27

65
03

29
16

41
4

22
4

27
75

64
92

89
53

24
3

28
37

25
67

11
21

1
63

27
13

56
02

77
27

15
5

26
72

73
27

88
87

93
ca

se
4

28
13

15
66

9
84

06
9

13
24

27
40

26
68

7
51

48
0

16
75

28
13

78
04

9
46

46
8

39
1

27
23

27
37

0
53

26
4

11
89

26
74

00
69

4
42

76
3

13
5

ca
se

4h
30

11
93

37
4

84
72

8
10

96
30

83
59

15
9

59
89

6
20

40
30

73
99

56
5

58
86

0
42

7
29

66
55

07
5

49
61

6
11

90
28

92
45

47
2

47
71

2
14

6

Av
g.

1.
04

1
2.

09
6

4.
30

0
1.

05
7

1.
26

7
5.

32
0

1.
07

2
1.

01
9

1.
24

9
1.

02
1

1.
32

8
3.

63
9

1.
00

0
1.

00
0

1.
00

0

59



Table 5.3: The ablation study results on the ICCAD 2022 Contest [Hu+22] Benchmarks using different
wirelength models with the same experimental settings. WL indicates the exact D2D wirelength evaluated by
the provided official evaluator. HBTs represents the cut size, i.e., the total number of hybrid bonding terminals.
BiHPWL is the bistratal wirelength equipped with adaptive planar gradient in Definition 6. FDA indicates
finite difference approximation of depth gradients in Definition 7.

Bench. Plain HPWL BiHPWL w/o. FDA Plain HPWL w/. FDA BiHPWL w/. FDA
WL HBTs WL HBTs WL HBTs WL HBTs

case2 2351813 459 2271554 454 2118450 708 1944656 646
case2h 2919815 236 2755549 245 3001905 441 2462553 345
case3 34776108 4396 33965431 4547 35577287 8086 30062713 8017
case3h 31093130 4770 30066866 4781 30748977 8544 26727327 8887
case4 309580785 19339 304667903 23261 288957440 51369 267400694 42763
case4h 330290736 18971 325610343 22195 324613980 54942 289245272 47712

Avg. 1.169 0.555 1.134 0.588 1.141 1.116 1.000 1.000
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CONCLUSION AND FUTURE WORK

In this thesis, several analytical placement techniques in 2D and 3D scenarios are proposed and
discussed to enhance and improve the quality of current placers. In addition to the rigorous theoretical
analysis, we have also conducted intensive experiments to verify the efficacy of our proposed algorithms
and theories.

In Chapter 3, we propose a new differentiable wirelength model using the Moreau envelope to
approximate HPWL. Considering that the differentiability of wirelength models is very critical to
gradient-based numerical optimization, the proposed algorithm is able to surpass the previous nonlin-
ear models in terms of numerical stability, convexity and approximatin error. We have theoretically
analyzed the rationality, feasibility, and superiority. By combining the state-of-the-art electrostatic-
based placement algorithm, the experimental results demonstrate that our proposed algorithm can
achieve significant HPWL improvement compared to the most widely-used nonlinear wirelength mod-
els.

In Chapter 4, we propose a timing-driven global placement algorithm leveraging a momentum-
based net weighting strategy. Besides, we improve the preconditioner to incorporate our net weight-
ing scheme. Existing global placement algorithms mostly focus on wirelength optimization without
considering timing. Providing that timing is hard to analytically optimize through an explicit ob-
jective, we use the net weighting scheme to incorporate timing metrics into analytical placement so
that the placer can conciously consider timing during optimization. The preconditioner is correspond-
ingly upgraded with net weights considered to stable the process of numerical optimization and thus
more robust to avoid possible divergence. Experimental results demonstrate that our algorithm can
significantly improve TNS and meanwhile be beneficial to WNS.

In Chapter 5, we present a new analytical 3D placement framework with a bistratal wirelength
model for F2F-bonded 3D ICs with heterogeneous technology nodes based on the electrostatic-based
density model. The proposed framework, enabled GPU-acceleration, is capable of efficiently deter-
mining node partitioning and locations simultaneously, leveraging the dedicated 3D wirelength model
and density model. The experimental results on the latest public contest benchmarks demonstrate
the extreme efficacy and efficiency of our proposed 3D placement framework. Compared to the state-
of-the-art heterogeneous 3D placers, the proposed one is much more powerful and scalable using
GPUs.

With above exploration, discussion, and theoretical analysis on analytical placement techniques,
we have already dived into a deep place of numerical approaches in VLSI placement. However, there
still remain numerous challenges I would like to mention here, based on my knowledge of analytical
placement and the research I have done. These topics may have the potential to push forward the
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cutting-edge progress of acedemic and engineering efforts on analytical placement.

• Mixed-Size Placement. Placement with macros, especially in a large range of sizes, is ex-
tremely challenging. Nowadays, mixed-size placement has drawn people’s attention as deep
learning has been thriving in various modern applications. There are several works with mod-
ern deep learning [CY21; LML22; Lai+23] to accomplish macro placement and leverage reliable
analytical placers to perform cell placement. However, industrial designs may become more
complex than imagined, leading to a high probability for learning-based placers to fail. Dream-
Place [Lin+19; Lin+20b; Lin+20a] is proved to be powerful on both solution quality and end-
to-end runtime, but its robustness on mixed-size placement still remains unsolved. Therefore,
designing robust and explainable analytical algorithms for mixed-size placement has become the
bottleneck of modern wirelength-driven placement.

• Powerful Optimizers. Gradient-based numerical optimization heavily relies on the adopted
optimizer. The most popular optimizer adopted by modern electrostatic-based placers (Dream-
Place [Lin+19; Lin+20b; Lin+20a], RePlAce [Che+18], etc.) derives from the well known
Nesterov Accelerated Gradient [Nes83]. DreamPlace 4.1 [Che+23b] enhances stability of
macro placement by incorporating Barzilai-Borwein [BB88] (BB) method. Following Theorem 1
in this thesis, we are reasonably capable of handling non-smooth numerical optimization. Through
this way, we can also solve global placement with proximal optimizers, which does not require
any explicit differentiable approximation to the convex HPWL objective. Hence, the develop-
ment of non-smooth optimizers based on the proximal mapping of HPWL may help to improve
the numerical optimization of analytical global placement. Correspondingly, more theoretical
analysis and intensive experiments are also required.

• Ultra-Fast and Robust 3D Placement. We have proposed a 3D analytical placer in Chap-
ter 5. Despite its wonderful performance on the ICCAD 2022 Contest [Hu+22] Benchmarks,
there is no enough data of about mixed-size 3D placement or experiments on that. Besides, 3D
scenarios expand all possible issues occurring in 2D cases and make it more complex than imag-
ined. For example, the density map calculation and the gradient aggregation for large macros
would be significant when there exists another dimension. In short, efficient 3D placement with
high quality is still an open challenge. Some further academic research can be conducted on our
foundation of analytical 3D placement.

• Realistic Objectives. In Chapter 4, we discussed a net weighting scheme to enable timing
optimization indirectly in normal analytical placement. Some recent works [GL22] suggest that
directly optimizing differentiable timing objectives is absolutely possible. More realistic objec-
tives might be analously considered as differentiable in analytical placement, and thus provide
a more elegant way for researchers to follow.
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