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Abstract

During the chip design flow, the physical verification is undoubtedly a critical step,

where the design of an integrated circuit (IC) layout is verified to ensure correct

logical functionality and manufacturability. However, with the continuous scaling-

down of circuit feature size, the physical verification suffers from severe runtime

overhead issues. Recent years have witnessed the great success of machine learning

in the electronic design automation (EDA) community. To improve efficiency and

guarantee accuracy, this thesis explores artificial intelligence (AI) solutions for a

series of important problems in physical verification, including layout hotspot

detection, mask optimization, and design rule checking.

In chip manufacturing, design rule checking (DRC) is a critical step in physical

verification. DRC requires formatted scripts as the input to design rule checkers.

However, these scripts are manually generated in the foundry, which is tedious

and error-prone for the generation of thousands of rules in advanced technology

nodes. To mitigate this issue, we propose the first DRC script generation framework,

leveraging a deep learning-based key information extractor to automatically identify

essential arguments from rules and a script translator to organize the extracted

arguments into executable DRC scripts.

Printing errors are very common during the lithography process due to the

diffraction effect. To reduce printing errors and improve the yield of integrated
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circuits, we present L2O-ILT, a deep learning-based model that achieves mask

optimization acceleration and keeps remarkable printability performance. Our

model structure is implemented by unrolling our customized inverse lithography

techniques (ILT) algorithm, and thus the model structure is highly incorporated

into prior knowledge of mask optimization. Such an ILT algorithm-inspired model

is able to generate an initial mask solution with better performance than previous

developing methods, and the high-quality initial mask can be instantly refined to

obtain the final solution.

Although mask optimization effectively improves the mask quality, there may

still exist hotspots that can potentially lead to open or short-circuit failures, which

are caused by lithography variations. To further ensure the manufacturing yield, an

accurate hotspot detector is indispensable during the physical verification phase. We

propose an end-to-end one-stage hotspot detection framework. We take advantage of

the corner and center representation to improve both classification and localization

accuracy. Besides, a feature aggregation module is designed to capture global layout

information by bridging the relationships between features at different positions.

We further observe that both hotspot detection and OPC require knowledge of

layout structure information and they are closely related to the lithography process

during chip manufacturing. Based on such strong relationships, we propose that

integrating OPC and hotspot detection into a unified deep-learning model will

contribute to the performance of both tasks. To bridge the relationship between OPC

and hotspot detection, we first pre-train a layout understanding model (LUM) built

on the mask modeling technique, which effectively captures the layout geometric

information, and then the pre-trained model can be easily fine-tuned on hotspot

detection and OPC with limited data. To fully pre-train the layout understanding

model, we create a large layout dataset using layout generation techniques, solving

iv



the data-hungry issues.

Based on experimental results, we demonstrate that our proposed deep learning

methodologies alleviate critical runtime issues arising in the physical verification.

With the development of manufacturing techniques for semiconductors, layouts are

becoming more and more complex. We hope that the works presented in this thesis

can provide a more robust and effective solution for advanced research in design

for manufacturability.
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摘要

在芯片設計流程中，物理驗證無疑是一個關鍵的步驟，該步驟驗證了集成電路

（IC）佈局的設計，以確保正確的邏輯功能以及可製造性。然而，隨著電路特徵尺

寸的不斷縮小，物理驗證面臨嚴重的運行時間開銷問題。近年來，機器學習在電子

設計自動化（EDA）的應用中中取得了成功。為了提高效率並確保準確性，本論文

探討了物理驗證中一系列重要問題的人工智能（AI）解決方案，包括佈局熱點檢

測、掩膜優化和設計規則檢查。

在芯片製造中，設計規則檢查（DRC）是物理驗證中的一個關鍵步驟。DRC要

求以格式化的腳本作為設計規則檢查器的輸入。然而，這些腳本在晶圓廠是手動生

成的，在先進技術節點中生成數千條規則繁瑣且容易出錯。為了緩解這個問題，我

們提出了第一個DRC腳本生成框架，利用基於深度學習的關鍵信息提取器自動識別

規則中的基本參數，並設計了腳本轉換器將提取的參數組織成可執行的DRC腳本。

由於衍射效應，印刷錯誤在光刻過程中非常常見。為了減少印刷錯誤並提高集成

電路的良率，我們提出了L2O-ILT，一種基於深度學習的模型，實現了掩膜優化加速

並保證了良好的印刷性能。我們的模型結構通過展開定制的ILT算法來實現，因此模

型結構高度融入了掩膜優化的先前知識。這種受ILT算法啟發的模型能夠生成比以前

的開發方法更好性能的初始掩膜解決方案，高質量的初始掩膜可以立即進行細化以

獲得最終高質量的掩膜解決方案。

雖然光學鄰近校正有效提高了掩膜的質量，但掩膜中仍然可能存在可能導致開路

或短路失敗的熱點區域，這是由於光刻變異引起的。為了進一步確保製造良率，在
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物理驗證階段，準確的熱點檢測器是不可或缺的。我們提出了一個端到端的一階段

熱點檢測框架。我們利用邊界點和中心點表示來提高分類和定位的準確性。此外，

我們設計了一個特徵聚合模塊，通過橋接不同位置的特徵之間的關係，捕捉全局佈

局信息。

我們進一步觀察到，熱點檢測和光學接近校正模型需要佈局結構信息，並且這

兩個任務在芯片製造過程中密切相關。基於這種密切關係，我們提出將光學接近校

正和熱點檢測整合到統一的深度學習模型中，將有助於兩個任務的性能。為了建立

光學接近校正和熱點檢測之間的關聯，我們首先在掩膜建模技術上預訓練一個佈局

理解模型，該模型有效地捕捉佈局的幾何信息，然後可以在有限的數據上輕鬆地對

預訓練的模型進行熱點檢測和光學接近校正的微調。為了完全預訓練佈局理解模型

（LUM），我們使用佈局生成技術創建了一個大型佈局數據集，解決了數據需求量

大的問題。

根據實驗結果，我們證明了我們提出的深度學習方法能夠緩解物理驗證中出現的

關鍵運行時間問題。隨著半導體製造技術的發展，佈局越來越複雜。我們希望本論

文提出的框架能夠為先進的可製造性研究提供更強大的解決方案。
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Chapter 1

Introduction

Electronic Design Automation (EDA) encompasses a broad range of software tools

and methodologies, which are used to design and verify electronic systems, particu-

larly integrated circuits (ICs). EDA tools are essential in the semiconductor industry,

enabling the design, simulation, verification, and manufacturing of complex ICs

with billions of transistors. The EDA process typically involves several stages,

including system-level design, logic synthesis, physical design, and verification.

Physical verification is a critical stage in the EDA workflow, ensuring that

the designed circuits are manufacturable and meet all specified constraints. The

physical verification involves multiple steps, including design rule checking (DRC),

optical proximity correction (OPC), hotspot detection (HSD), etc. For example, DRC

ensures that the layout conforms to the manufacturing rules defined by the foundry,

such as minimum spacing between features and layer-specific constraints. The key

to physical verification is the ability to detect and correct errors that could lead

to manufacturing defects or suboptimal performance. This stage is increasingly

challenging due to the miniaturization of semiconductor devices and the complexity

of modern IC designs. In recent years, machine learning (ML) has emerged as
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a powerful tool in addressing the challenges of EDA, particularly in the area of

physical design and verification. To be specific, ML models can be applied to

many predictive EDA tasks, which provide early and rapid predictions for chip

optimization. By leveraging ML model predictions, designers can reduce reliance on

time-consuming EDA tools and directly estimate the effects after running the EDA

tools. Based on ML predictions, designers can promptly adjust design parameters

and further improve the design efficiency.

1.1 Challenges

Although significant progress has been made, there are still many challenges,

primarily in the following three aspects:

Firstly, as semiconductor technology advances and integrated circuits become

smaller, the number of rules has significantly increased, from a few hundred in

65nm nodes to thousands of rules in 7nm nodes. Moreover, some design rules are

inherently complex, often involving intricate conditions, which can easily lead to mis-

understanding. Currently, the rule-making process is mainly manually conducted,

which further compounds the issue. As the number of design rules continues to

grow in advanced technology nodes, the manual workload involved in rule-making

becomes more time-consuming. Consequently, there is an urgent need to alleviate

the manual burden in the rule-making procedure.

Secondly, due to the proximity effect during the lithography process, RETs are de-

veloped to modify the photomasks in the lithographic processes, which compensates

for limitations in the optical resolution of the projection systems. Mask optimization

is one of the typical RETs. However, the increasing complexity of mask patterns

presents challenges in terms of runtime overhead for mask optimization. Typically,
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conventional mask optimization is solved by iterative methods like gradient descent,

which require numerous iterations to converge. Therefore, the optimization process

requires significant runtime overhead, particularly for advanced technology nodes

like extreme ultraviolet (EUV) lithography. This inefficiency hinders the practical

application of ILT and highly demands more efficient solutions.

Thirdly, although RETs effectively improve the mask quality, there may still

exist hotspots that can potentially lead to open or short failures, which are caused

by lithography variations. By performing hotspot detection before lithography

simulation, potential hotspot regions can be identified early in the design flow. Such

a look-ahead mechanism allows design teams to address these hotspots by applying

design rule modifications or layout optimizations in advance. Early detection of

hotspots enables designers to mitigate potential issues and improve the overall

manufacturability of the chip. However, hotspot detectors face the challenge of

relying on limited and specific hotspot pattern libraries, which hinders the design

of efficient hotspot detectors. The limitations in the generality of the hotspot pattern

libraries become significant factors that impede the development of efficient hotspot

detection methods.

1.2 Thesis Overview

This thesis aims to contribute to the field of chip manufacturing by investigating

four works that address critical aspects of design automation and system integration.

These works delve into topics such as DRC, OPC, and HSD. By examining the

findings and insights presented in these works, we can identify potential future

directions and areas of research that hold promise for pushing technology innovation

forward.
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In Chapter 3, we propose the first DRC script generation framework, leveraging

a deep learning-based key information extractor to automatically identify essential

arguments from rules and a script translator to organize the extracted arguments

into executable DRC scripts. We further enhance the performance of the extractor

with three specific design rule generation techniques and a multi-task learning-based

rule classification module.

In Chapter 4, we explore the challenges associated with traditional ILT algorithms

and propose a new deep learning-based approach to improve the efficiency of mask

optimization. Different from previous works that employ black-box models with

stacked convolutional layers, our proposed L2O-ILT framework unrolls the iterative

ILT optimization algorithm into a learnable neural network with high interpretability,

which can generate a high-quality initial mask for fast refinement.

In Chapter 5, we address the limitations of traditional hotspot detection methods

based on CNNs, which cannot capture the global layout information. However, the

global layout information proves to be critical for hotspot detection. To solve this

issue, we introduce a comprehensive one-stage hotspot detection framework that

enhances both classification and localization accuracy through the utilization of

corner and center representation. Our framework incorporates a feature aggregation

module that offers a novel approach to aggregating diverse features and generating

enhanced features.

In Chapter 6, inspired by large pre-trained models in deep learning, we present

a customized training scheme called domain-crossing masked layout modeling. By

generating a large layout dataset and incorporating lithography process awareness,

this scheme effectively pre-trains the layout understanding model (LUM) on layout

geometric information. The fine-tuned LUM achieves remarkable performance in

both OPC and HSD tasks. This chapter also emphasizes the importance of data
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generation techniques and the integration of domain knowledge in training deep

learning models for layout understanding.

Chapter 7 makes a summarization and proposes a series of future study direc-

tions.
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Chapter 2

Literature Review

2.1 Design Rule Checking

DRC is a fundamental step in the EDA process, ensuring that integrated circuit lay-

outs conform to the manufacturing constraints specified by semiconductor foundries.

DRC is crucial for the manufacturability, performance, and reliability of ICs, playing

a pivotal role in the physical verification phase of chip design. The primary objective

of DRC is to verify that a given IC layout adheres to a set of predefined rules that

dictate the minimum allowable distances, widths, and other geometric and electrical

requirements. These rules are necessary to prevent issues such as short circuits,

open circuits, and electromigration. The typical DRC process involves the following

steps: (1) Rule definition: Foundries provide detailed design rules that describe

the geometric and electrical constraints for each layer of the IC. (2) Layout analysis:

The IC layout is analyzed against these rules using DRC tools, which scan the

layout geometries to detect violations. (3) Violation reporting: Any discrepancies

between the layout and the design rules are reported as violations. (4) Correction:

Designers must correct these violations so that the layout complies with all design
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rules. However, with the continuous scaling-down of technology nodes and the

increasing number of rules, the DRC process suffers from severe runtime overhead

issues.

To improve the DRC process, some methods optimize the DRC from a parallel

computing perspective. Relying on parallel computing, these methods can achieve

simultaneous execution of multiple tasks or instructions across multiple processing

units within a layout. Therefore, it can fully utilize the computation resources to

improve the DRC efficiency. For example, George et al. [1] develop an algorithm

where the layout design is partitioned into vertical slices, allowing individual slices

to be checked separately on different processors. Different from [1], Nandy et al. [2]

introduce a distributed approach by exploiting spatial or layer independence. This

parallel algorithm partitions the layout into sub-layouts and allocates DRC tasks to

idle processors in a distributed computing environment to achieve load balancing.

Gregoretti et al. [3] consider the hierarchical information of layout and exploit cell-

level parallelism computation. With the emergence of more powerful computing

resources, He et al. [4] propose a highly efficient DRC engine that develops an

adaptive row-based partitioning scheme and relies on GPU parallel processing,

successfully achieving efficient DRC on hierarchical layouts.

The second category of methods considers optimizing the DRC by designing

suitable data structures. Studies are conducted on the selection of appropriate data

structures and algorithms to handle layout data. Bentley et al. [5] bring forth an

algorithm for reporting intersections of rectangles, which is extracted from the DRC

process. It utilizes a two-stage approach involving edge intersections and enclosing

pairs of rectangles. [6] develops the concept of hinted quad-trees as a data structure

for efficient neighbor searching in geometry design-rule checking, achieving high

performance and reasonable storage usage. Marple et al [7] introduce a novel layout
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system called Tailor, which employs corner stitching as a data structure for efficient

access and search operations. As a result, Tailor allows for integrated tools to

operate directly on the layout hierarchy, resulting in a fast and efficient design

system. R-tree [8], a dynamic index structure for efficient spatial searching, can be

used to represent layout based on bounding box intervals. Using R-tree allows for

quick retrieval based on the spatial locations.

In recent years, approximation methods have been employed to improve the

runtime efficiency of certain tasks at the expense of sacrificing result accuracy.

Francisco et al. [9] develop a deep learning-based method using a CNN as a feature

extractor. The proposed framework [9] can be used to detect and identify multiple

design rule violations in layout designs, achieving faster detection and higher

accuracy compared to traditional Boolean checkers. During the placement or

routing stage, ML is widely used to predict DRC hotspots and estimate the number

of DRVs, without the need for precise violation identification. Zeng et al. [10] utilize

random forest as an effective and efficient model for predicting DRC hotspots in

VLSI layouts, and introduce the SHAP value as a metric for explaining individual

DRC hotspot predictions. Routnet [11] adopts CNN for routability prediction in

mixed-size designs, accurately forecasting overall routability and predicting hotspots.

R. Islam et al. [12] apply the ensemble random forest algorithm to predict DRC

violations before global routing. A. F. Tabrizi et al. [13] propose to extract features

from a placed netlist and feed to a neural network to detect short violations in

detailed routing.
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2.2 Mask Optimization

As feature sizes decrease in advanced nodes, the influence of the proximity effect

becomes more noticeable, leading to a decrease in manufacturing yield. To tackle

this problem, a resolution enhancement technique called OPC has been devised.

OPC aims to compensate for these effects by modifying the original design layout to

improve the final printed image. This technique plays a crucial role in guaranteeing

pattern quality.

Typical OPC methodologies include model-based approaches [14, 15, 16] and ILT-

based methods [17, 18, 19, 20, 21, 22]. For model-based OPC, the edges of polygons

in the mask are first divided into segments, and these edges are moved under the

guidance of the lithography simulation model [14]. Different from model-based

methods, ILT-based methods represent the mask as a pixel-wise function [17, 19, 18,

20, 23] or level-set function [21, 22, 24, 25]. Then, the OPC process is modeled as an

inverse problem, which can be effectively solved by optimizing the misfit between

the printed image on the wafer and the target pattern. Compared with model-based

methods, ILT-based methods optimize the mask within a larger solution space and

thus achieve better performance. ILT algorithms usually adopt iterative methods

such as gradient descent to optimize the objective function. For example, Gao

et al. [17] simultaneously optimize the design target and minimize the process

window based on the gradient descent technique. It achieves improved contour

fidelity and considers manufacturing variability for better mask optimization. Ma et

al. [23] introduce a unified framework for simultaneous layout decomposition and

mask optimization, achieving faster optimization and improved design quality

by employing gradient-based approaches and discrete optimization techniques.

The proposed unified model also successfully addresses the inconsistency between
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layout decomposition and mask optimization.

Although ILT has shown satisfactory performance on mask optimization [26,

27, 28], the shrinking size of the technology node and increasing complexity of

mask patterns pose significant challenges to the runtime overhead. There have

been many exciting explorations of ILT acceleration in recent years, and these

works can be generally divided into two categories. (1) The first one is to design

GPU-accelerated algorithms by fully utilizing the massive computing resources

in GPUs. For example, Yu et al. [21] rely on the CUDA toolkit to implement

a GPU-accelerated Fourier transform algorithm, accelerating a critical and time-

consuming step in the lithography simulation model. Inspired by the multigrid

method, the proposed architecture in [29] involves a lithography simulation scheme

that operates at multiple resolutions. The proposed scheme simulates the layout

pattern from coarse to fine resolution, effectively achieving ILT acceleration. (2)

The second one is to learn the whole ILT solver using stacked convolutional layers.

Related methods [19, 20, 22, 18] utilize a pre-trained CNN-based generation model

such as GAN [30, 31] or U-Net [32, 33] to quickly approximate an initial mask

solution of the test target and then conduct further refinements on the initial mask

to improve the solution quality. We summarize these methods as ªgenerative ILTº.

For example, Yang et al. [34] propose GAN-OPC based on a GAN model combined

with lithography-guided techniques, which achieve improved mask printability and

reduce computational resources. To achieve full-chip scale OPC, DAMO [35] utilizes

a deep lithography simulator and a deep mask generator to optimize full-chip mask

patterns, outperforming state-of-the-art solutions in both academic and industrial

settings. To further improve the ILT efficiency, Jiang et al. [36] design an end-to-end

framework called Neural-ILT, which combines mask prediction and ILT correction

in a single neural network. Following [36], Chen et al. [22] bring forth a deep-
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neural level set technique for instant mask optimization. Different from Neural-

ILT [36], Develset [22] replaces pixel-based masks with implicit level set-based

representations and utilizes a neural network and a CUDA-based mask optimizer

for fast convergence. To further reduce the mask complexity, A2-ILT [37] develop a

GPU-accelerated ILT framework with a spatial attention mechanism, which improves

the ILT quality by introducing spatial attention maps and reinforcement learning,

effectively reducing the manufacturing shot count.

2.3 Hotspot Detection

During chip manufacturing, the lithography process is employed to transfer layout

patterns onto silicon wafers. However, the lithography process always involves many

variations, and some patterns are sensitive to these variations. The layout patterns

that are sensitive to process variations are defined as hotspots [38, 39]. Hotspots

always cause potential open or short-circuit failures, which will undoubtedly reduce

manufacturing yields.

To ensure that layout designs can be accurately printed, it is essential to have

an efficient and precise hotspot detection system. The first category of the hotspot

detection method is based on lithography simulation [40, 41]. These methods

typically sample a series of points on the optimized masks of the layout pattern and

then measure edge placement errors (EPEs). The locations with unacceptable EPEs

are regarded as hotspot regions. The main drawback is that they cannot achieve

end-to-end hotspot detection since they always require mask optimization results,

causing extra time overhead. Moreover, the calculation of EPE is not straightforward,

and due to the varying complexities of layouts, the number of sampling points differs

significantly, making it challenging to perform parallel computations. Therefore, it
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is not an efficient hotspot detection method to find the hotspot after the lithography

simulation. Besides, since such a detection process involves sampling, the accuracy

of hotspot detection is also influenced by the sampling frequency. Higher sampling

frequencies result in higher detection accuracy but unsatisfactory efficiency.

To improve efficiency, various practical and efficient hotspot detection methods

have been developed to overcome these limitations. The main idea is to directly de-

tect hotspot regions from the target patterns instead of analyzing the mask patterns

after the time-consuming lithography simulation process. In this way, the overall

runtime can be remarkably reduced. Recent hotspot detection can be generally

divided into two categories, pattern matching-based methods and machine learning-

based methods. The first one relies on pattern matching techniques. These methods

[42, 43, 44, 45] first take a collection of hotspot layout patterns and use them to scan

over new designs to identify any matched patterns as hotspots. For example, Yao et

al. [43] propose an efficient and scalable algorithm called range pattern matching

to detect hotspots by representing them using range patterns and identifying them

in a given layout. Yu et al. [44] develop a detection framework that extracts critical

design rules and utilizes a two-stage filtering process to detect hotspots. Wen et

al. [46] present a fuzzy-matching model for hotspot detection. It dynamically adjusts

fuzzy regions around known hotspots and utilizes a grid reduction technique to

reduce computational complexity. Although pattern matching overcomes the time-

consuming issue, it fails to detect unknown hotspots since the accuracy of these

methods is closely related to the completeness of the constructed hotspot datasets.

When confronted with unknown hotspot patterns, it is difficult for these methods

to match the unknown patterns with any hotspot patterns collected in the datasets.

Therefore, pattern matching-based methods always have poor generalization ability.

In recent years, the development of machine learning has provided useful tech-

13



niques for hotspot detection. Different from the pattern matching-based methods,

machine learning-based hotspot detection frameworks have successfully shown

their ability to identify both known and unknown hotspot patterns with the help

of generalized feature extractors. In general, machine learning-based methods

formulate the hotspot detection task as a binary classification problem, which can be

effectively tackled by neural networks. The neural network models employed have

also undergone a transition from simplicity to complexity along with the develop-

ment of machine learning. At the early stage, commonly adopted machine learning

techniques for hotspot detection [47, 48, 49, 50, 51, 52, 53, 54] include support

vector machine (SVM), Gaussian Process, Adaboost, etc. For example, Yu et al. [53]

develop an accurate lithography hotspot detection method based on a combination

of principal component analysis (PCA) and SVM classifier, utilizing hierarchical data

clustering and data balancing techniques. It successfully enhances the performance

and flexibility in adapting to new lithography processes and rules. Ye et al. [55]

address the issue of uncertainty in hotspot detection and introduce a Gaussian

process assurance to provide confidence in each prediction. Matsunawaa [51] et al.

utilize a simplified layout feature and a robust classifier based on the probability

distribution function of layout features.

However, there are still some issues with conventional machine learning-based

methods. The main drawback is that their performances are determined by the

manually crafted feature extractors. The advancement of deep neural networks

(DNNs) has spawned powerful techniques to further improve hotspot detection

performance [56, 57, 58, 59, 60]. Instead of relying on handcrafted features, DNNs

extract hierarchical representations of the input data through the successive layers

of neurons. This ability to learn features eliminates the need for manual feature

engineering, which can be extremely time-consuming. For example, Yang et al. [56]
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propose a deep learning framework for layout hotspot detection, utilizing feature

tensor generation to preserve spatial information and a biased learning algorithm

to improve detection accuracy. Geng et al. [58] design an end-to-end detection

framework that combines layout feature embedding and hotspot classification using

an attention-based deep convolutional neural network. To achieve faster detection

speed than previous detection framework, Chen et al. [59] get inspiration from the

object detection problem in computer vision and propose R-HSD, which can locate

the regions of multiple hotspot locations on larger clips. Instead of representing

the layout using an image, Sun et al. [61] propose a detection approach using a

modified GNN and a novel graph representation scheme to transfer a layout to a

graph. The feature extraction is more efficient compared with CNN-based extractor

and therefore, it achieves significant speedup while maintaining accuracy.
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Chapter 3

Efficient Design Rule Checking Script

Generation via Key Information

Extraction

3.1 Introduction

Design rule checking (DRC) is an important step in electronic design automation

(EDA) flow. It checks whether a layout conforms to a set of design rules, which

specify certain geometric and connectivity restrictions to ensure sufficient pro-

cess window in manufacturing and guarantee the proper functionality. Figure 3.1

sketches the complete DRC flow, consisting of two phases. (1) Rule making: man-

ufacturers first specify the essential design rules based on their manufacturing

capability and then convert them into the executable DRC scripts manually, which

is illustrated in the first phase of Figure 3.1. (2) Rule checking: these scripts are

provided to a design rule checker, such as KLayout [62] and LayoutEditor [63], to

verify the correctness of the layout design.
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Modern DRC process is time-consuming and error-prone mainly in three aspects.

(1) With the rapid development of semiconductor technology and the shrinking

size of integrated circuits, the number of rules has grown from a few hundred

in 65nm nodes to thousands of rules in 7nm nodes. (2) Different checkers re-

quire different script languages, resulting in additional efforts to re-implement and

transfer scripts between checkers, as shown in Figure 3.2. (3) Some design rules

can be very complicated, e.g., with complex conditions, which may easily lead to

misunderstanding.

In the past few years, advanced deep learning techniques have spawned many

frameworks for effectively and efficiently solving EDA problems, including physical

design [64, 65, 66, 67], mask synthesis [68, 19, 69, 70], physical verification [71, 58,

72, 73], testing [74, 75, 76], etc. The literature has also explored to accelerate the rule

checking phase in DRC with deep learning techniques and demonstrated promising

efficiency with acceptable accuracy. For example, A. F. Tabrizi et al. [13] proposed to

extract features from a placed netlist and feed to a neural network to detect short

violations in detailed routing. R. Islam et al. [12] developed the ensemble random

forest algorithm to predict DRC violations before global routing.

Despite the previous efforts to accelerate the rule checking phase with deep learn-

ing techniques, the rule making phase is still done manually, which requires more

and more turn-around time with increasing numbers of design rules in advanced

technology nodes. In preliminary work, we argue that it is of great importance to

ease the manual workload in the rule making procedure. In accordance with this

argument, we have proposed a DRC script generation flow (DRC-SG) in [77] where

the rule making problem is formulated into a natural language processing task,

which can be conducted automatically by computers. To the best of our knowledge,

[77] is the first work to investigate methods for efficient DRC script generation.
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As shown in Figure 3.3, the proposed flow in [77] relies on an automatic DRC

script generation engine which consists of two stages: (1) a deep learning-based key

information extractor to automatically identify the essential arguments of rules, and

(2) an automatic script translator to generate scripts based on the key information

extracted. The quality of the generated script is correlated to the accuracy of the key

information extractor.

There are several advantages of the script generation flow in Figure 3.3. For

example, with an efficient and accurate key information extractor, most generated

rules are correct, so process engineers only need to do quick verification and

make minor corrections on a few rules, which can significantly reduce the manual

efforts and the turn-around time. In addition, our flow is highly adaptive to

different design rule checkers with different script languages, as the key information

extractor is a common component, and the script translator can be easily modified

to accommodate new language formats. However, there still exist some defects in

our preliminary design. For example, our previous flow does not fully leverage
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the rule information provided by the process design kit, such as the category of

each design rule. The extractor will have stronger rule understanding abilities if

the model is trained to recognize the rule type. In addition, the imbalance issue

of the dataset used for training our key information extractor is not considered. It

is acknowledged that an imbalanced dataset will harm the performance of a deep

learning-based model, which may cause the model to be biased towards the major

class in the dataset. In this chapter, we solve such an issue by optimizing the loss

function. The main contributions are summarized as follows:

• We propose an efficient DRC script generation flow and design dedicated deep

learning techniques based on the state-of-the-art natural language processing

model to accurately extract key information from design rules. Our proposed

flow can be flexibly applied to different checkers.

• We develop data generation techniques based on the special language struc-

tures of design rules to expand the dataset, overcoming the dilemma of lacking

design rule data for academic research.

• We build up a rule type prediction head for the extractor based on the multi-

task learning paradigm to further improve the accuracy of the extracted

information.

• A weighted cross-entropy loss function is customized for our key information

extractor to overcome the imbalance issue from the training dataset.

• Experimental results on 7nm technology node demonstrate that our extractor

achieves 91.1% precision and 91.8% recall on the key information extraction

task. Besides, it only takes 5.46ms on average for our flow to generate the

script of a single design rule.
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The rest of this chapter is organized as follows. Section 3.2 introduces the

problem formulation and terminologies related to this work. Section 3.3 illustrates

the details of the preliminary work, including methods for rule data generation,

and components of our proposed DRC script generation (DRC-SG) flow. Section 3.4

describes the techniques to enhance the performance of the preliminary DRC-SG

flow. Section 3.5 shows the benchmarks and the experimental results, followed by

the conclusion in Section 3.6.

3.2 Preliminaries

3.2.1 Design Rule Key Information Extraction

Extracting key information from natural language design rules is critical in our

proposed script generation flow. It can be converted to such a problem that a

specific word should be classified into a particular category, termed as a semantic

role, such as the property to be checked or a specified minimum value. In this

way, the problem can be considered as a word classification problem. We provide

two examples as shown in Figure 3.4a and Figure 3.4b to illustrate the extraction

process, where one rule is a simple rule and the other rule is relatively complex. All

specified semantic roles will be further explained in Section 3.3.1. After finishing

the word classification task, the categories and related words can be paired and

then stored into a data structure, which is exactly the key information extracted

from design rules. The following script translator simply organizes the extracted

information into the final scripts; therefore, the accuracy of the generated scripts

mainly depends on the extractor performance.

To quantitively evaluate the extractor performance, we adopt the widely used
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Figure 3.4: Key information extraction process on (a) simple rule, (b) complex rule. (PRO means
Property, OBJ means Object, LOW means Lower Bound and CON means Condition.)
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Table 3.1: Confusion Matrix

Prediction

Positive Negative

Actual
Positive TP FN

Negative FP TN

metrics in multi-class classification problem including precision, recall and F1 score.

In order to illustrate these metrics clearly, we first give the confusion matrix as

shown in Table 3.1, where the rows present actual classes while columns show the

prediction results. For example, given a word belonging to a specific semantic role

category S, TP means that the category of the word is correctly predicted while

FN means that the word is predicted as other categories instead of S. Based on the

confusion matrix in Table 3.1, we give the definition of each metric as follows:

Definition 1 (Precision). Precision describes the proportion of positive predictions that is

actually correct, formulated as: Precision = TP
TP+FP .

Definition 2 (Recall). Recall describes the proportion of actual positive samples that is

correctly classified, formulated as: Recall = TP
TP+FN .

Definition 3 (F1 Score). The F1 score is the harmonic mean of the precision and recall,

formulated as: F1 = 2 ∗ Precision∗Recall
Precision+Recall .

3.2.2 Transformer and BERT

Recently, Transformer [78] has made much progress in sequence-to-sequence tasks [79,

80, 81]. BERT [79] is one of the most famous models built with the Transformer

encoder and has been widely used as a backbone to extract features from sentences
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Figure 3.5: (a) Transformer Encoder. (b) Multi-Head Self-Attention. (c) BERT.
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to solve many natural language processing problems such as Question Answer-

ing [82], Machine Translation [83], etc. To illustrate BERT [79], we first introduce the

structure of Transformer encoder.

As shown in Figure 3.5a, Transformer encoder consists of multiple layers, of

which the most important one is the multi-head self-attention, allowing the model

to attend to information at different positions globally [78]. Given the input

representation of a sequence {x⃗1, x⃗2, . . . , x⃗n}, Transformer encoder first packs the

sequence as a matrix, represented as X⃗ ∈ R
n×dm , where n is the length of the

sequence and dm is the dimension of each element. Then, the multi-head self-

attention layer projects the input matrix X⃗ onto three different subspaces, which can

be represented as:

{Q⃗, K⃗, V⃗} = {X⃗W⃗Q, X⃗W⃗K, X⃗W⃗V}, (3.1)

where W⃗Q, W⃗K and W⃗V ∈ R
dm×dm are three projection matrices, which project input

matrix X⃗ onto Q⃗, K⃗ and V⃗ respectively. Q⃗, K⃗, V⃗ are called query, key and value as

named in Transformer [78]. The output of multi-head self-attention layer can be

formulated as:

MultiHead(Q⃗, K⃗, V⃗) = Concat
(

H⃗1, . . . , H⃗h

)
W⃗O, (3.2)

where H⃗i, i ∈ {1, 2, . . . , h} is the output of a single scaled dot-product attention head

as shown in Figure 3.5b and h is the number of heads. The multi-head self-attention

layer concatenates all the outputs H⃗i, i ∈ {1, 2, . . . , h} from different heads and

then reduces the high dimension feature Concat
(

H⃗1, . . . , H⃗h

)
to low dimension via

another projection matrix W⃗O. To illustrate the dimension of H⃗i and W⃗O, we first
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give the formulation of H⃗i as follows:

H⃗i = Attention
(

Q⃗W⃗Q
i , K⃗W⃗K

i , V⃗W⃗V
i

)

= softmax




Q⃗W⃗Q
i

(
K⃗W⃗K

i

)⊤

√
dk


 V⃗W⃗V

i .
(3.3)

For each attention head, the original input Q⃗, K⃗, V⃗ are further projected onto different

subspaces via projection matrices W⃗Q
i , W⃗K

i ∈ R
dm×dk , W⃗V

i ∈ R
dm×dv so that different

heads deal with different input to learn richer information [78]. The attention head

then computes the similarity between projected query and key via scaled dot-product

and a softmax function is applied to obtain the weights on projected value. As

calculated in Equation (3.3), the output of each attention head H⃗i is a dv × dm

matrix. The concatenated matrix Concat
(

H⃗1, . . . , H⃗h

)
is a n× hdv matrix and W⃗O

is a hdv × dm projection matrix.

As for BERT, the architecture is shown in Figure 3.5c, which is based on stacked

Transformer encoder blocks [78] and hence incorporates the superiority of multi-

head self-attention. In addition, another significant advantage of BERT [79] is that it

has been fully pretrained by two complex tasks, Cloze and Next Sentence Prediction

(NSP). In the Cloze task, some of the words from the input sentence are randomly

masked, and the objective is to predict the masked words. As for the NSP task, it

predicts whether one sentence is followed by the other sentence. Since these two

tasks do not require any manual annotations, the model can be trained on two

extremely huge datasets, BooksCorpus (800M words) [84] and English Wikipedia

(2500M words). As a result, the pretrained BERT has been equipped with strong

language representation ability and can be easily fine-tuned for other language

tasks.
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Table 3.2: Explanations of all semantic roles defined in our work. The bold parts belong to the roles
defined in their rows.

Semantic Roles Meanings Examples

Object Target layer of checking rules. Minimum vertical width of ACT is 48 nm.

Relation Object
Additional layer that have relationships

with target layer
. Minimum extension of GATEAB past ACT is 38 nm.

Property Property to be checked of the target layer. Minimum vertical width of ACT is 48 nm.

Condition Logical conditions for particular layers.
GATEC shape bottom or top must be aligned

if distance is less than 192 nm.

Restriction Geometric restrictions that layers should follow. GIL may not bend.

Lower Bound Minimum value of the property to be checked. Minimum vertical width of ACT is 48 nm.

Upper Bound Maximum value of the property to be checked.
Maximum distance of GATEAB to neighboring

shape is 236 nm.

Exact Value Exact value of the property to be checked. Exact horizontal spacing of ACT is 80 nm.

None Words do not belong to any above semantic roles Vertical length of AIL1 is 58 nm.

3.3 DRC-SG Framework

In order to design a powerful key information extractor, both data and architecture

design are important. In Section 3.3.1, we first consider how to label the design

rules for effectively training the extractor. Then, in Section 3.3.2, we propose three

design rule generation techniques to expand the rule dataset. The architecture of the

extractor is illustrated in Section 3.3.3. In addition to the extractor, in Section 3.3.4,

we explain how to design a rule-based translator to generate the scripts based on

the extracted information.

3.3.1 Semantic Roles

As illustrated in Section 3.2.1, extracting key information from design rules is

inherently a word classification problem. In our task, categories of words are

determined based on their semantic roles in sentences. Design rule data for training

our key information extractor is from an open-source design kit, FreePDK15 [85].
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To clearly classify different words, we first clarify all essential semantic roles for

rules in FreePDK15 [85].

Some prior works for semantic role labeling studies [86, 87] have defined roles for

universal natural languages. However, semantic roles to be considered are relatively

different for rule sentences in integrated circuit design. For example, numerical

expressions are less frequent in these studies and usually not attributed to a separate

category. In contrast, they exist in most design rules and are core components of the

extracted key information. Moreover, semantic roles of numerical expressions are

supposed to be further divided into three categories, i.e., ªLower Boundº, ªUpper

Boundº, and ªExact Valueº, which help adapt to different design rules flexibly as

well as avoid confusion. We list all customized semantic roles for our task along

with their meanings and examples in Table 3.2.

3.3.2 Rule Data Generation

Open-source design rules for academic research are relatively rare. Our training

dataset, FreePDK15 [85], only contains around 130 rules. To help the key information

extractor avoid overfitting and generalize better on those unseen rule data, we are

supposed to expand the dataset before training.

Nevertheless, rule generation for our task is heavily restricted. On the one

hand, since the extractor receives the design rule sentences, we are supposed to

guarantee that all generated rules are both syntactically and semantically correct.

On the other hand, as our task is a classification task, semantic role labels need to

be assigned to each word, which is extremely expensive. Data augmentation is one

kind of dataset expansion technique, referring to adding slightly modified copies of

already existing data or newly created synthetic data from existing samples. There

are many widely-used augmentation methods for image data, including rotation,
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Figure 3.6: Three rule data generation methods. (a) Word Order Adjustment; (b) Paraphrasing; (c)
Template Filling.

cropping, and noise injection, all of which are quite effective for generating new

image samples. Encouraged by these methods in image tasks and considering the

unique properties of our rule data, we customize three generation techniques as

follows:

Word Order Adjustment. Inspired by the rotation technique for image data

augmentation, we propose to adjust the word order of a rule without modifying its

meaning. For example, we can settle the conditional adverbial clauses at the start

or the end of the sentence, as shown in Figure 3.6a. For the human, the reordered

sentence can be regarded as the same as the original one. However, from the

perspective of the extractor, the input rule is a sequence [w1, w2, . . . , wn] where wi

stands for a word. If the order is changed, the word of each position in the sequence

will be different. Moreover, since our adjustment operation is simply changing the
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position of conditional adverbial clauses and does not change any sentence content,

the syntactical correctness of the generated rules can be guaranteed. In addition,

adjusting the order will not affect the semantic role labels of words, and thus no

extra annotations need to be done.

Paraphrasing. In contrast to word order adjustment, paraphrasing can produce

a new rule that does not change the meaning but has different expressions. To be

specific, we can replace some words with synonyms or change the sentence structure,

e.g., from passive to active voice, and an example is given in Figure 3.6b. In order to

reduce the manpower work, we first rely on a paraphrasing tool called QuillBot [88]

and then check the correctness of the generated paraphrases by ourselves. Although

paraphrasing will modify some words, which require extra annotations, there are

still many words not replaced, whose semantic roles also stay unchanged. Therefore,

the annotation workload can be reduced remarkably.

Template Filling. The generated design rules from the previous two methods

are still confined to the meaning of the original ones, making it challenging to

generate sufficient training data. To take a further step, we propose the third

method, template filling. After applying the previous two generation methods,

we can obtain a series of design rules with diverse sentence structures. We notice

that many rules have similar structures, e.g., ªMinimum width of ACT is 42 nmº

and ªMinimum length of GATE is 28 nmº. To generate more design rule data,

we first extract many templates from design rules and a representative template is

ªMinimum Property of Object is Lower Bound nmº, as shown in Figure 3.6c. For

example, we can fill in words related to the property, like ªwidthº, ªlengthº and

ªareaº, in the Property part. And we can fill in words related to the layer name,

like ªACTº, ªGATEº and ªM1º in the Object part. Also, numerical value can be

filled in the Lower Bound part. With such a template, once we associate words in
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Figure 3.7: Architecture of the key information extractor in DRC-SG.

the bold part, the syntactical correctness of the generated rules can be guaranteed.

By filling in the designed templates via different combinations, a large number of

design rules can be collected for training, which benefits the generalization ability

of the extractor dramatically. More importantly, we do not need to annotate the data

manually since the semantic roles have been specified in advance.

After applying our customized data generation methods, we obtain 2830 new

design rules, which effectively expand our rule dataset and contribute to training

our key information extractor.

3.3.3 Key Information Extractor

To classify all words from design rules into their corresponding semantic roles, we

build up a deep learning-based language model. The overall architecture of our

framework is illustrated in Figure 3.7.

Input Preprocessing Module. Before feeding the design rules into our extractor,

some preprocessing operations need to be conducted. The first one is to split the

rule into a list of words for the later word classification task. Besides, since different

rules vary in sentence length, we extend the word list length to a fixed value L by
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padding a special word ª[PAD]º. The whole procedure is formulated as:

Preprocess(⃗r) = [w1, w2, . . . , wlen(⃗r), [PAD], . . . , [PAD]︸ ︷︷ ︸
L−len(⃗r)

], (3.4)

where r⃗ is the input design rule. wi, i ∈ {1, 2, . . . , len(⃗r)} represents each word of r⃗,

and len(⃗r) is its sentence length.

Backbone. Following the design paradigm of the deep learning model, we first

need a backbone module to obtain a good feature representation from input rules.

Determining the semantic role of each word is closely related to its sentence, and

one word may have different semantic roles in different rules like ªACTº in the first

and second examples in Table 3.2. Therefore, the backbone is supposed to have

strong abilities to capture the context information.

Instead of designing a backbone from scratch, we adopt a powerful language

model, BERT [79], as the feature extractor, which proves to have prominent feature

extraction ability according to many natural language processing works like [82, 83].

As explained in Section 3.2.2, based on the self-attention mechanism, BERT is able

to model interactions between any two different words in a sequence; therefore, the

extracted feature of each word is closely correlated with the contexts. Besides, BERT

has been fully pretrained, which means that we can fine-tune it from the pretrained

parameters, notably speeding up the training procedure.

Given the word list after preprocessing, the backbone will first encode words into

vectors and then feed them into stacked Transformer encoder layers. The output

feature is represented as F⃗o ∈ R
L×db , where db is the dimension of the word feature

and L is the length of the input sequence.

Word Classification Head. With the purpose of classifying each word, we feed

F⃗o into a word classifier, which is a simple feed-forward neural network composed

of two fully connected layers. The output is represented as P⃗wc ∈ R
L×Nwc , where
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Nwc is the number of categories, and the element P⃗wc
i,j stands for the score of the

word wi belonging to label j.

However, such a prediction head does not take the relationships between different

labels into consideration. We can force the word classification head to effectively

avoid those impossible prediction sequences. For example, according to the common

natural language expression habits, ªRelation Objectº is impossible to directly follow

ªObjectº since there must exist some conjunctions between them. As a result, the

extractor performance can be further improved by evaluating the rationality of the

entire prediction sequence. To achieve this, we build a probability model, condition

random field (CRF) [89], on top of the word classifier, whose parameters are a label

transition matrix, represented as K⃗ ∈ R
(Nwc+2)×(Nwc+2). The element of the label

transition matrix K⃗i,j describes the probability of transitioning from label i to j. Two

additional states included in K⃗ stand for the ªstartº and ªendº of the sequence.

In such a case, given a design rule r⃗, the probability of a prediction sequence y⃗ is

calculated from softmax function as:

p(⃗y|⃗r) = exp S(⃗r, y⃗)

∑⃗̂y∈Y⃗⃗r
exp S(⃗r, ⃗̂y)

, (3.5)

where Y⃗⃗r represents all possible prediction sequence results given the rule r⃗. S(⃗r, y⃗)

is used to measure the score of prediction y⃗, which can be formulated as:

S(⃗r, y⃗) = (K⃗start,⃗y1
+

L−1

∑
i=1

K⃗y⃗i ,⃗yi+1
+ K⃗y⃗L,end) +

L

∑
i=1

P⃗wc
i,⃗yi

. (3.6)

In this way, S(⃗r, y⃗) is able to measure the reasonableness of the label sequence itself.

Loss Function. After constructing the whole architecture, we need to specify the

loss function to train our key information extractor. In the CRF module, we should

maximize the groundtruth probability p(g⃗|⃗r), where g⃗ is the actual label sequence

for the rule r⃗. Based on this maximization objective, the loss function Lwc of the
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word classification head can be formulated in the negative log-likelihood format as

follows:

Lwc = Lcr f = − log p(g⃗|⃗r)

= −S(⃗r, g⃗) + log( ∑
⃗̂y∈Y⃗⃗r

exp S(⃗r,⃗ˆ⃗y)).
(3.7)

3.3.4 Script Translator

The script translator in the second stage of our proposed flow is used to translate the

extracted key information into the DRC scripts. When transferring to other checkers,

we can preserve the extractor and simply replace the translator. The translator

design is similar and simple for different checkers, and here we take the Guardian

checker [90] as an example.

DRC script is composed of function calling statements. When given the key

information, the functions to be called mainly depend on the checking properties.

To conveniently search the required function, we can pair the properties and func-

tions together, as shown in Figure 3.8. In addition, to automatically pass the key

information to the function, we also need to connect the parameters of different

functions with our semantic roles. As we clearly define the fine-grained semantic

roles in Table 3.2, the relationships can be easily established. For example, parame-

ters that receive the layer name correspond to ªObjectº or ªRelation Objectº, and

parameters that receive the checking value correspond to ªLower Boundº or ªUpper

Boundº or ªExact Valueº.

To better illustrate the entire script translation process, we take the translation

process of an overlap rule as an example, which is shown in Figure 3.8. Layer

is a regular function for each Guardian script and receives the layer names along

with their identifiers, which depend on the specific layout design. InDistance
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Figure 3.8: Script translator.

function receives two layer names and the value to check the overlap. It can be

observed that all the required arguments passed to these two functions can be easily

obtained from the extracted information. By automatically filling them into the

corresponding placeholders, we obtain the final script for overlap checking. It can

be seen that the entire translation process is very efficient.

3.4 DRC-SG 2.0

In the previous section, the preliminary DRC-SG flow has been proposed. However,

there still exists some room to improve the performance of the script generation

flow. For instance, the training dataset has an imbalance issue, which has a negative
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impact on the performance of the key information extractor in DRC-SG. Therefore,

based on the preliminary design for DRC-SG, we propose DRC-SG 2.0 where two

new techniques are introduced for further enhancement.

3.4.1 Rule Classification Head for Key Information Extractor

In addition to the concrete rule descriptions as shown in the ªExamplesº column

in Table 3.2, the process design kit also provides another important information,

rule category, which is not effectively utilized in the DRC-SG framework. Rule

category is always determined by the entire rule content. Therefore, the global

comprehension ability of the extractor on the design rule can be further improved if

the extractor can learn to predict the rule type, which also contributes to the word

classification performance.

Based on such a consideration, a new branch, rule type prediction head, is

incorporated into the original key information extractor as shown in Figure 3.9. It

can be seen that the rule classification head shares the same backbone with the

word classification head. In order to predict the rule type, we are supposed to

learn the rule feature f⃗ rc by combining word features f⃗ o
i , ∀i ∈ {1, 2, . . . , L} output

by the backbone. To achieve this, we rely on the self-attention mechanism illustrated

in Section 3.2.2 and make some customizations.

Firstly, instead of utilizing the entire word features f⃗ o
i , ∀i ∈ {1, 2, . . . , L}, a

well-designed algorithm is proposed to select part of them, which is illustrated

in Algorithm 1. The main idea of our selection algorithm is to leverage the proba-

bility matrix P⃗wc output by the word classification head to guide the word feature

selection. P⃗wc describes the probability of each word belonging to each semantic

role. We propose that words with lower probabilities belonging to ªNoneº category

are more informative, and based on this metric, we choose features of the most
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Figure 3.9: Architecture of the key information extractor with rule prediction head in DRC-SG 2.0.
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informative k words for rule type prediction.

Algorithm 1 Word Feature Selection Algorithm

Input: Word Classification Output P⃗wc ∈ R
L×Nwc , Feature Map F⃗o ∈ R

L×db , Selec-
tion Number k;

Output: Feature set F⃗k;

1: F⃗k ← Initialized to empty set;
2: p⃗None ← probabilities of all words belonging to ªNoneº class.

3: ⃗SelectIdx ← indices of the minimum k probabilities in p⃗None;
4: for i← 1, 2, . . . k do
5: idx ← ⃗SelectIdx[i];

6: f⃗ o
i ← the feature in the position idx of F⃗o;

7: append feature f⃗ o
i to F⃗k;

8: return feature set F⃗k with k word features.

Then, we introduce an extra variable q⃗rc as the query, and features f⃗ k
i , i ∈

{1, 2, . . . , k} from F⃗k are regarded as the key and value. Different from the original

multi-head self-attention computation paradigm as formulated in Equation (3.2),

we only adopt a single self-attention head, which is capable of this sub-task and

also saves computation resources. In this way, the rule feature can be represented as

follows:

f⃗ rc =
k

∑
i=1

exp(⃗qrc( f⃗ k
i W⃗K)⊤/

√
db)

∑
k
j=1 exp(⃗qrc( f⃗ k

j W⃗K)⊤/
√

db)
f⃗ k
i W⃗V , (3.8)

where f⃗ rc, q⃗rc ∈ R
db have the same dimension as f⃗ k

i . W⃗K, W⃗V ∈ R
db×db are projection

matrices as explained in Section 3.2.2. Noted that q⃗rc is a learnable variable whose

value is determined after extractor training.

Once the representation f⃗ rc of the whole design rule is obtained, we feed it into

a rule classifier, which is a neural network with three fully-connected layers. The

final output is represented as p⃗rc ∈ R
Nrc , elements of which are prediction scores of

all rule types, and Nrc represents the number of rule categories.

After introducing the rule classification head, the loss function for training our
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extractor is supposed to be redesigned as follows:

L = Lwc + λLrc, (3.9)

where Lwc is the loss of the word classification head and Lrc is the loss of the rule

classification head. λ is a hyperparameter to balance Lwc and Lrc. Since the rule

classification head conducts a multi-classification task, we utilize the conventional

cross entropy loss for Lrc, computed as:

Lrc = − log
exp ( p⃗rc

t )

∑
Nrc
i=1 exp ( p⃗rc

i )
, (3.10)

where t stands for the groundtruth rule type of the input and p⃗rc is the prediction

result of the rule classification head.

3.4.2 Weighted Cross-Entropy Loss for Word Classification Head

In our previous loss function design for the word classification head, we have

avoided unreasonable label sequences by utilizing the CRF module, which effec-

tively improves the word classification performance. However, another issue is the

imbalance problem of the dataset, which can not be solved by CRF. To be specific,

almost every design rule has words belonging to the semantic role ªObjectº, but may

not have ªRelation Objectº words. The concrete proportion distribution of different

semantic roles in our dataset is shown in Table 3.3, also proving the imbalance issue.

We realize that such an issue is harmful to the performance of our extractor.

Specifically, the extractor will be biased towards the major class in the dataset once

it is trained by an imbalanced dataset. To solve this issue, we consider introducing

a weighted cross-entropy loss term Limb into the original word classification loss,

formulated as follows:

Lwc = Lcr f + ηLimb, (3.11)
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where Lcr f is still from Equation (3.7) and η is another hyperparameter to balance

Lcr f and Limb. The Limb is computed via a weighted cross-entropy loss as formulated

in Equation (3.12) and w⃗g⃗i
is the corresponding weight of each term.

Limb = −
L

∑
i=1

w⃗g⃗i
log

exp (P⃗wc
i,⃗gi

)

∑
Nwc
j=1 exp (P⃗wc

i,j )
, (3.12)

w⃗g⃗i
= exp (

1− u⃗g⃗i
/ max(u⃗)

α
). (3.13)

We utilize the groundtruth label of each word to supervise the input of the CRF

module, P⃗wc ∈ R
L×Nwc , which includes scores of words belonging to each category.

g⃗i is the groundtruth label of the i-th word and u⃗ ∈ R
Nwc is a vector containing

proportions of different categories. α ∈ R
+ is a hyperparameter to control the

weight range. It can be observed that we assign larger weight w⃗g⃗i
to the smaller

proportion category, by which we are able to balance the extractor performance on

each word category. After introducing the rule classification loss Lrc and weighted

cross-entropy loss Limb, the total loss of the enhanced extractor is finally represented

as follows:

L = Lwc + λLrc = Lcr f + ηLimb + λLrc. (3.14)

The objective of training is to minimize the loss calculated in Equation (3.14), which

can be successfully solved by Adam [91] optimizer, a widely-used gradient descent

optimization algorithm.
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Table 3.3: Semantic roles distribution of dataset

Semantic Roles
Training Set Test Set

# Percent (%) # Percent (%)

Object 6054 15.68 491 14.74

Relation Object 2561 6.63 181 5.43

Property 4705 12.18 300 9.01

Condition 5061 13.10 596 17.89

Restriction 1404 3.64 159 4.77

Lower Bound 2482 6.43 326 9.79

Upper Bound 1144 2.96 8 0.24

Exact Value 1430 3.70 40 1.20

None 13778 35.68 1230 36.93

Total 38619 100 3331 100

3.5 Experiment Results

3.5.1 Experimental Settings and Benchmark

We implement our entire framework with the Pytorch library[92] in Python, and test

it on a platform with the Xeon Silver 4114 CPU processor and NVIDIA TITAN Xp

Graphic card. The dataset used for training our key information extractor contains

2970 design rules, 2840 of which are obtained via our proposed rule generation

methods and the rest are the original data from PDK15 [85]. To evaluate the

performance, another design kit, ASAP7 [93], acts as the test set, which includes

200 design rules on the 7nm node. Due to the advanced technology node, rules in

ASAP7 are more complex compared with our rules on the 15nm node for training,

and therefore, the evaluation performance on ASAP7 will convincingly reflect the

generalization ability of our framework. We summarize the statistics of the datasets

in Table 3.3. It can also be observed from Table 3.3 that the "None" category words

accounts for nearly 40 percent, which further proves that a key information extractor
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can filter a lot of unnecessary information and contribute to the design rules scripts

generation.

3.5.2 Experimental Results and Analysis

Due to the various structure of scripts for different rules, it is not convenient to

directly measure the accuracy of the generated scripts. In Section 3.2.1, we discuss

that the script accuracy can be reflected by the extractor performance, and we also

explain that the key information extraction task is essentially a word classification

task. To evaluate the comprehensive performance, we test the word classification

accuracy, inference time of the whole generation process and robustness ability of

the extractor.

Table 3.4: Word classification comparison results with two other baselines

Semantic Roles
Bi-RNN [94] Bi-LSTM [95] DRC-SG [77] DRC-SG 2.0

Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

Object 0.609 0.666 0.636 0.772 0.662 0.713 0.853 0.804 0.828 0.916 0.872 0.894

Relation Object 0.436 0.674 0.529 0.422 0.674 0.519 0.849 0.896 0.872 0.904 0.934 0.918

Property 0.879 0.970 0.922 0.899 0.953 0.926 0.892 0.900 0.896 0.955 0.997 0.976

Condition 0.786 0.768 0.777 0.670 0.757 0.711 0.818 0.838 0.828 0.900 0.938 0.919

Restriction 0.389 0.453 0.419 0.538 0.399 0.458 0.789 0.704 0.744 0.800 0.704 0.749

Lower Bound 0.947 0.871 0.907 0.960 0.883 0.920 0.967 0.907 0.936 0.987 0.908 0.946

Upper Bound 0.500 1.000 0.667 0.429 0.750 0.545 0.889 1.000 0.941 1.000 1.000 1.000

Exact Value 0.371 0.650 0.473 0.750 0.900 0.818 0.741 1.000 0.851 0.833 1.000 0.909

None 0.853 0.714 0.777 0.883 0.825 0.853 0.892 0.894 0.893 0.900 0.912 0.906

Average 0.641 0.752 0.679 0.703 0.756 0.718 0.853 0.880 0.863 0.911 0.918 0.913

Ratio 0.703 0.819 0.744 0.772 0.824 0.786 0.936 0.959 0.945 1.000 1.000 1.000

Word Classification Results. Table 3.4 summarizes the detailed comparing

results in the test set. Since our preliminary work DRC-SG [77] is the first one to

investigate key information extraction methods for design rules, no other state-of-

the-art work in DRC area can be referred for comparison. Therefore, we further

implement two baseline models, bidirectional RNN (Bi-RNN) and bidirectional
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Table 3.5: Average word classification results on different ablation settings.

Ablation Settings
Precision Recall F1

Rule

Classification Head

Weighted

Cross-Entropy

Condition

Random Field

Rule

Generation

✓ ✓ ✓ 0.875 0.903 0.889

✓ ✓ ✓ 0.895 0.913 0.904

✓ ✓ ✓ 0.877 0.905 0.891

✓ ✓ ✓ 0.662 0.634 0.637

✓ ✓ ✓ ✓ 0.911 0.918 0.913

LSTM (Bi-LSTM). Similar to BERT, Bi-RNN [94] and Bi-LSTM [95] are commonly

used for learning words features combined with context information and output

the category prediction results, which match the objective of our extractor. The

corresponding results are listed in columns ªBi-RNNº and ªBi-LSTMº The rest two

columns, ªDRC-SGº and column ªDRC-SG 2.0º denote the methods in [77] and the

framework presented in this work.

It can be seen that the result in DRC-SG averagely outperforms Bi-RNN with

21.2% and 12.8% improvement on precision and recall and 18.4% rise on F1 score.

Besides, DRC-SG surpasses Bi-LSTM with an average precision, recall and F1 score

of 15.0%, 12.4% and 14.5%. Compared with our preliminary work DRC-SG [77],

the word classification performance is further promoted in this work. Specifically,

our new proposed DRC-SG 2.0 model achieves better results with 91.1%, 91.8% and

91.3% on precision, recall and F1 score respectively.

Noted that we do not show the rule type prediction results since the rule

classification head is removed during the test stage to save the computation costs.

It is designed to help promote the training performance of the word classification

head, and we will show its functionality in the following ablation study part.

Inference Time. In addition to the satisfactory accuracy, our flow also shows

superior efficiency. We first test the inference time of the extractor on ASAP7 dataset
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which contains 200 design rules. The total runtime result is 1.0s, from which we

can calculate that our model averagely takes only 5.0ms to process a single rule. As

for the translator, since it is simply responsible for deciding which function to call

and passing the extracted key information to the function, the translation process

is also high-efficient. According to our measurement, the script translator spends

around 0.46ms processing one item of key information. In conclusion, by combining

the extractor and translator, our framework can generate a single script in 5.46ms

on average, indicating that our proposed DRC script generation flow is extremely

efficient.

Compared with Manual Script Generation. We also compare the runtime of

our proposed DRC-SG 2.0 framework with manual script generation. Although

the key information extractor in DRC-SG 2.0 can not guarantee absolutely accurate

results and requires post-correction, however, because of the high accuracy as listed

in Table 3.3, most scripts will be correct and only few errors need to be rectified

in real scenarios, and thus the manual workload of scripts generation is notably

reduced. We test that it takes around 30 minutes to correct all the scripts generated

by our DRC-SG 2.0 framework. As for manual script generation, we calculate that a

single rule averagely takes 3 minutes to write its corresponding script. Therefore,

given all the 200 design rules from ASAP7 dataset, people should spend around 10

hours finishing all scripts writing, which is very time-consuming. With the help of

our proposed DRC-SG 2.0, the script generation tasks achieve nearly 20 times faster

than manual script generation.

Robustness Analysis. Sometimes there may exist typos in natural language

design rules, which may affect the accuracy of a language model. To further

evaluate the performance of the extractor, we conduct the following experiments to

test the robustness ability of our extractor when encountering typos. We randomly
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choose 5% words from the test datasets and then replace one character of each

word to simulate typos. Without retraining our extractor, we directly evaluate the

performance on the new test datasets. We repeat the above procedure 10 times and

the average F1 score is 88.35%, which is close to the original F1 score (91.30%). This

indicates that our extractor has powerful fault-tolerant mechanism, which is also

beneficial for the stability of the whole script generation flow.

3.5.3 Ablation Studies

The major work of this chapter is to design a high-performance key information

extractor. To verify the benefit of our customized components in the extractor,

including rule classification head, weighted cross-entropy, CRF and data generation

methods, we conduct extra ablation studies. The average word classification results

of different configurations are shown in Table 3.5. In the following analysis, we

mainly adopt F1 score as the metric, since it is calculated from both the precision

and recall and is capable of reflecting the positive effect of each component.

Results in Table 3.5 show that with the rule generation techniques, F1 score

notably improves. It is because that abundant data increase the diversity, which helps

prevent the extractor from overfitting and improve the generalization ability. Besides,

with CRF, we further achieve nearly 2.2% improvement on F1 score, demonstrating

that CRF effectively avoids unreasonable label sequence and achieves better word

classification performance. With the weighted cross entropy loss, the F1 score

increases 0.9% and we also notice that the positive gains are mainly from small

proportion categories such as "Upper Bound" and "Exact Value", which conforms

to our design motivation. In addition, with the rule classification head, F1 score

improves around 2.4%, indicating that the knowledge learned in this head can be

positively leveraged for the word classification task.
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3.6 Summary

In this chapter, we propose an automatic DRC script generation flow. We first build

up a deep learning-based extractor that efficiently recognizes essential arguments

from design rules and then leverage a script translator to organize the extracted

arguments into the scripts. Experimental results on 7nm technology node have

confirmed the excellent performance of our framework: it only takes on average

5.46ms to generate a single rule script, which is much faster than manual generation,

and our powerful extractor achieves 91.1% precision and 91.8% recall on the key

information extraction task. The number of design rules keeps increasing with the

development of semiconductor technology, and generating DRC scripts manually

will become more and more time-consuming. We hope the framework proposed in

this work can provide a preliminary solution to automate the generation of DRC

scripts and help reduce the manual workload. There still exist limitations for our

model to generate design rule scripts for those extremely complex rules and we will

continue to find the solution in the future.
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Chapter 4

L2O-ILT: Learning to Optimize Inverse

Lithography Techniques

4.1 Introduction

With the continuous scaling-down of technology nodes, the proximity effect and

optical diffraction are becoming non-neglectable, which seriously affects the yield

of integrated circuits. Resolution enhancement techniques (RETs) are developed

to reduce printing errors during the lithography process. ILT is one of the widely

used RETs to compensate for lithography proximity effects by correcting mask

pattern shapes and inserting assist features. Although ILT has shown satisfactory

performance on mask optimization [26, 27, 28], the continuous scaling-down of

the technology node and increasing complexity of mask patterns pose significant

challenges to the runtime overhead.

To further accelerate the process of ILT and keep the accuracy of mask print-

ability, we propose L2O-ILT as illustrated in Figure 4.1 in this work. The novel ILT

method is inspired by the learning-to-optimize (L2O) scheme [96, 97, 98, 99, 100] in
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machine learning, which aims to incorporate prior knowledge of the optimization

algorithm into a learning model. Specifically, we build up an ILT-inspired learning

model by unrolling the entire algorithm. The structure of our model is no longer

stacking convolutional layers. Instead, each layer is customized to represent each

iteration of the ILT algorithm. This representation projects the ILT problem into a

hyperspace that can be more efficiently solved by deep learning algorithms. And the

model training can be regarded as automatically tuning the algorithm parameters,

which are hand-crafted in the conventional ILT algorithm. In addition, such a

learnable L2O-

ILT model

training target images

train

 learned L2O-

ILT model

algorithm 

unrolling

final mask imagestest target images

high-quality 

initial mask images

test
efficient 

refinement

model pre-training

GPU-accelerated 

iterative ILT 

algorithms

Figure 4.1: Learning to Optimize ILT.

model is inherently equipped with interpretability and prior knowledge of mask

optimization, which will contribute to robustness and ensure a high-quality initial

mask for efficient refinement. Besides, a specialized optimization mechanism called

alternating optimization is designed for our model to jointly optimize the printed

image under different process conditions. An adaptive solution space is devel-

oped to accelerate the convergence rate of our algorithm while saving computation

resources. We summarize the contributions of this chapter as follows:

• A deep learning-based and ILT-inspired neural network called L2O-ILT is
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developed, which incorporates domain-specific prior knowledge of mask

optimization.

• The network architecture is designed by unrolling the ILT algorithm and

modeling each iteration as a neural network layer.

• We develop an alternating optimization mechanism and an adaptive solution

space method to improve the conventional ILT algorithm and further the

performance.

• L2O-ILT is able to generate high-quality initial mask solutions, which can be

efficiently refined. Experimental results show that our model achieves better

performance on both mask printability and runtime than previous methods.

The rest of this chapter is organized as follows. Section 4.2 gives an introduc-

tion preliminaries about lithography model and inverse lithography technologies.

Section 4.3 gives the detailed elaboration of the L2O-ILT model with an alternating

optimization strategy and an adaptive solution space mechanism. Section 4.4 details

experimental results and comparisons, followed by conclusion in Section 4.5.

4.2 Preliminaries

In this section, we will introduce the problem formulation and some preliminary

knowledge related to this work.

4.2.1 Lithography Simulation Model

During the lithography process, an input mask M⃗ is first transformed through an

optical projection system into the aerial image I⃗. The distribution of light intensity
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at the wafer plane then undergoes development and etching processes to form the

printed image Z⃗.

To simulate the lithography process, a mathematical model is proposed in [101],

which is composed of two components, optical projection model and photoresist

model. For the optical projection process, the Hopkins diffraction model of the

partially coherence imaging system is used to approximate the projection behavior.

In mathematics, the aerial image I⃗ can be obtained by convolving the mask M⃗ with

a set of optical kernels H⃗, formulated as:

I⃗(x, y) =
N2

∑
k=1

wk

∣∣∣M⃗(x, y)⊗ h⃗k(x, y)
∣∣∣
2

, (4.1)

where "⊗" represents the convolution operation, hk is the k-th optical kernel of the

optical kernel set H⃗ and wk is the corresponding weight of the coherent system.

To save the computation resources, an Nh-th order approximation to the partially

coherent system is proposed in [17], represented as:

I⃗(x, y) =
Nh

∑
k=1

wk

∣∣∣M⃗(x, y)⊗ h⃗k(x, y)
∣∣∣
2

, (4.2)

where the kernel number Nh is 24 in our work. After optical simulation, the aerial

image I⃗ is input into the photoresist model with an intensity threshold Ith, which

indicates the exposure level. And the final binary printed image Z⃗ is calculated by

the following step function:

Z⃗(x, y) =





1 I⃗(x, y) ≥ Ith

0 I⃗(x, y) < Ith

(4.3)

Following the ICCAD 2013 contest settings [102], Ith is set as 0.225 in our implemen-

tation.
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Figure 4.2: (a) Visualization of PV Band measurement. (b) Visualization of EPE measurement.

4.2.2 OPC Evaluation Metrics

Process Variation Band (PVB): In the real-world lithography system, process

variations will cause deviations in the final printed image, leading to printing failure.

Under different lithography conditions, such as focus/defocus depth and incident

light intensity, printed images have various contour results. Process variation band

(PV Band) computes the bitwise-XOR region between the outermost and innermost

contour as shown in Figure 4.2a to evaluate the printing robustness.

Square L2 Error: Given the target image Z⃗target and the printed image Z⃗nominal,

which represents the image printed via nominal lithography process condition, the

square L2 loss is calculated as ||Z⃗nominal − Z⃗target||22.

Edge placement error (EPE): Edge placement error is used to evaluate the difference

of the contour between the target design Z⃗t and the image Z⃗nom. To calculate the

EPE, a series of points are sampled along the contour of the target design, as shown
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in Figure 4.2b. If the distance D(x, y) between the target design to the printed image

is larger than an EPE constraint thEPE, the point (x, y) is labeled as a EPE violation.

EPE_Violation(x, y) =





1 D(x, y) ≥ thEPE

0 D(x, y) < thEPE

(4.4)

Mask Manufacturing Shot Count: Since ILT naturally generates purely curvilinear

features, conventional fracturing methods require a large number of small rectangles

to approximate the shape. Mask Data Preparation (MDP) is used to fracture the

shapes on the masks into non-overlapping rectangles, known as Variable Shaped-

Beam (VSB) shots, to ensure mask printability. The shot count is used to evaluate

the complexity of mask patterns.

With the evaluation metrics defined above, we formulate the mask optimization

problem as follows:

Problem 1 (Mask Optimization). Given a target image Z⃗t, the objective of mask optimiza-

tion is to find a mask M⃗, whose printed image through the lithography process is supposed

to be close to the target image and keep stable under different process conditions, such that

the EPE, L2 loss, PV Band and manufacturing shot count are minimized.

4.2.3 Inverse Lithography Techniques

The objective of the conventional ILT-based method is to find an optimized mask

M⃗opt = g−1(Z⃗t, C⃗nom), where Z⃗t is the design target, and g(·, C⃗nom) stands for the

lithography process under the nominal process condition. Usually, we can not

obtain the inverse function of g to compute the closed-form solution. The optimal

mask is searched by computing the gradient of an objective function Fobj and using

the gradient to guide the adjustment of each pixel value.
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To calculate the gradient, all variables during the lithography process have to

be continuous. Therefore, the binarized and constrained pixel values of mask M⃗

and printed image Z⃗ should be relaxed. To achieve this, we first introduce an

auxiliary and unconstrained variable P⃗ and assume that M⃗ is determined by P⃗. The

relationship between them is depicted by a sigmoid function in Equation (4.5).

M⃗ =
1

1 + exp (−θMP⃗)
, (4.5)

where θM defines the steepness of the sigmoid function.

Then the whole lithography process can be represented as: P⃗ → M⃗ → I⃗ → Z⃗.

Note that the original function that maps I⃗ to Z⃗ is a threshold function as formulated

in Equation (4.3), which is also undifferentiable. Therefore, we approximate it using

another sigmoid function

Z⃗ =
1

1 + exp (−θZ (⃗I − Ith))
, (4.6)

where θZ defines the steepness and Ith represents the intensity threshold as shown

in Equation (4.3). In this way, the whole process becomes differentiable and each

iteration of the optimization algorithm can be formulated as follows:

P⃗(j) = P⃗(j−1) − η
∂Fobj

∂P⃗(j−1)
, (4.7)

where η is the step size of gradient descent. P⃗(j) indicates the variable P⃗ at the j-th

iteration. After finally obtaining the P⃗opt by minimizing the objective function Fobj,

we binarize P⃗opt to M⃗opt, which is the final optimized mask solution.

53



4.3 The L2O-ILT algorithm

In this section, we first discuss an optimization mechanism in Section 4.3.1 called

alternating optimization, which solves the issue that the conventional ILT [17]

does not achieve satisfactory joint optimization of design targets under different

conditions. Then, we develop our learning model L2O-ILT in Section 4.3.2, where

each layer is constructed based on our proposed ILT algorithm with alternating

optimization, and the whole architecture is equipped with strong prior knowledge

and highly interpretable. The model training and refinement strategy is explained

in Section 4.3.3 and Section 4.3.4. A technique called adaptive solution space is

proposed in Section 4.3.5 to help our model accelerate the convergence rate as well

as keep the solution quality.

4.3.1 Alternating Optimization

As illustrated in Section 4.2.3, the general implementation of ILT-based methods

is to first define an objective function of the mask, which is then optimized using

numerical approach. Therefore, the quality of final solution is closely related to

the definition of the objective function. Given an input P⃗, the classical pixel-based

ILT [17] gives the objective function to be minimized as follows:

Ftarget =Lnominal + Lout + Lin

=||Z⃗nominal − Z⃗target||22 + ||Z⃗out − Z⃗target||22 + ||Z⃗in − Z⃗target||22,

(4.8)

where Z⃗nominal = g(P⃗, C⃗nominal), Z⃗out = g(P⃗, C⃗out) and Z⃗in = g(P⃗, C⃗in). C⃗out and

C⃗in stand for two extreme conditions, under which the outer-most and inner-most

images will be printed.

Under the guidance of Ftarget, the printed images under different process condi-
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Figure 4.3: The change of loss terms and PV Band in (a) conventional ILT; (b) the proposed
alternating optimization scheme.

tions are jointly pushed toward the target pattern, which is actually a desired

property of an optimized mask. However, according to our empirical study
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as shown in Figure 4.3a, we find that while all three loss terms are gradually

minimized, the PV Band metric is negatively optimized. This is because mini-

mizing ||Z⃗out − Z⃗target||22 + ||Z⃗in − Z⃗target||22 can not guarantee the minimization of

||Z⃗out − Z⃗in||22 in mathematics. We also depict the change of Lnominal, Lin, Lout, and

PV Band in Figure 4.3a. Therefore, although optimizing Ftarget contributes to reduc-

ing the error between the printed image and the real target, it results in a high PV

Band value, leading to a large process window. We call such an objective function

optimization ªtarget-driven optimizationº and we propose that the optimization

configuration is supposed to be improved.

It can be easily seen that convergence rates of all three loss terms are drastically

reduced after a certain number of iterations. Based on such an observation, we

replace several iterations of optimizing Ftarget with optimizing Fpvb, formulated as:

Fpvband = ||Z⃗out − Z⃗in||22, (4.9)

which is directly related to PV Band performance. Optimizing Fpvband can be

regarded as ªPV Band-driven optimizationº. Instead of optimizing a weighted

sum of Ftarget and Fpvband, we choose to decouple the optimization of these two

objectives. This will make it more convenient to encapsulate basic modules in our

deep learning-based framework, which will be shown in the following Section 4.3.2.

And according to our experimental results shown in Figure 4.3b, we find that

alternating ªtarget-driven optimizationº and ªPV Band-driven optimizationº can

achieve satisfactory improvement in PV Band while slightly affecting Lnominal, Lin,

and Lout. Our designed optimization scheme can be represented as:

P⃗(j) =





P⃗(j−1) − η
∂Fpvband

∂P⃗(j−1)
j < Q;

P⃗(j−1) − η
∂Ftarget

∂P⃗(j−1)
j ≥ Q,

(4.10)
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Figure 4.4: Each iteration of L2O-ILT algorithm is represented as a neural network layer.

where Q is a hyper-parameter to balance the performance of the process window

and the L2 error between the printed image and target design.

4.3.2 Model Architecture of L2O-ILT

Classic ILT-based mask optimization algorithms are built upon numerical ap-

proaches in a theoretically justified manner. In spite of the high interpretability, the

performance heavily depends on human experiences, such as how to select appro-

priate parameters in the algorithm. Since these algorithms are sensitive to initial

conditions and parameters chosen, the optimization results may be easily stuck

in a local optimum state. Furthermore, a large number of optimization iterations

are usually required to achieve an acceptable performance level, and thus these

algorithms can be computationally expensive.

ªGenerative ILTº methods use learning-based models to quickly generate initial

mask solutions and conduct further refinement. Regardless of its higher efficiency
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Ntarget

Figure 4.5: Stacking multiple layers forms a neural network and passing through L2O-ILT is
equivalent to executing an iterative ILT algorithm. Training L2O-ILT can be interpreted as tuning
the parameter that is manually determined in the original ILT algorithm.
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Figure 4.6: Convergence rate comparison between conventional ILT and L2O-ILT model during
inference.

compared with conventional ILT, we notice that the quality of the initial mask is

always low, which still requires a long-time correction to improve the solution

quality. The inferior mask is mainly caused by the black-box property of generation
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models, structures of which are difficult to be customized for mask optimization

problems.

In accordance with the aforementioned observations, we propose an ILT algorithm-

inspired learning model, L2O-ILT, which can generate a high-quality mask solution

for fast refinement. The structure of L2O-ILT is not simply composed of stacking

convolutional layers like ªgenerative ILTº methods [18, 20, 19, 22]. Instead, each

layer of our model is customized with prior knowledge for mask optimization tasks.

To be specific, we unroll the entire ILT algorithm and use a neural network layer to

represent each iteration of gradient descent as formulated in Equation (4.10), where

the P⃗(j) and P⃗(j−1) can be regarded as the output and input of the j-th layer.

Based on our proposed alternating optimization scheme in Section 4.3.1, two

kinds of neural network layers, target-driven block and PV Band-driven block, are

respectively designed as shown in Figure 4.4. The architecture of L2O-ILT can be

regarded as a time-unfolded recurrent neural network. In addition, our model can

also keep the consistency advantage of ILT algorithms, i.e., we can still get a similar

mask even if the pattern is offset. This is ensured by the translation invariance

property of the lithography process as proved in [103].

The computation of the Target-Driven block exactly represents P⃗ = P⃗− η
∂Ftarget

∂P⃗
.

To further illustrate the concrete computation operation, we first represent the
∂Ftarget

∂P⃗

as follows:
∂Ftarget

∂P⃗
=

∂Lnominal

∂P⃗
+

∂Lout

∂P⃗
+

∂Lin

∂P⃗
. (4.11)

The gradient calculations of all three terms are similar, and here we take ∂Lnominal

∂P⃗
as
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an example, which is computed by:

∂Lnominal

∂P⃗
= 2θZθM M⃗ ◦ (1− M⃗){H⃗nominal ⊗ [(Z⃗nominal−

Z⃗target) ◦ Z⃗nominal ◦ (1− Z⃗nominal) ◦ (M⃗⊗ H⃗∗nominal)]+

H⃗∗nominal ⊗ [(Z⃗nominal − Z⃗t) ◦ Z⃗nominal ◦ (1− Z⃗nominal)◦

(M⃗⊗ H⃗nominal)]},

(4.12)

where ª◦º indicates the matrix element-wise multiplication and ª⊗º stands for

the convolution operation. The PV Band-driven block is designed in a similar

way, which precisely represents the computation of
∂F⃗pvband

∂P⃗
. In addition, all convo-

lution operations in our algorithm are implemented via FFT convolution to save

computation resources. Since the optical kernel size is quite large, given a k× k

(e.g., 35×35) optical kernel and N × N mask (e.g., 2048×2048), the computation

complexity of FFT convolution is O(N2 log N2), less than the complexity O(k2N2)

of direct convolution. All the matrix computations can be easily implemented with

the deep learning toolkit, such as Pytorch [104], which provides matrix computing

with strong acceleration implemented by CUDA kernel.

Stacking Npvband PV Band-driven blocks and Ntarget target-driven blocks forms

a deep neural network, which is exactly our L2O-ILT as shown in Figure 4.5,

and passing through the entire neural network is equivalent to executing the ILT

algorithm a number of iterations. In L2O-ILT, we set both Npvband and Ntarget as

5. The convergence rate of our L2O-ILT can be boosted via model training. All

learnable parameters, such as the step size of gradient descent, updated during

the training process are all from the original ILT algorithm. Therefore, the model

training can be naturally interpreted as a parameter auto-tuning process to achieve

much faster convergence than non-learning ILT with hand-crafted parameters. We

show the convergence rate comparison in Figure 4.6. Compared with conventional
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non-learning ILT, L2O-ILT is able to achieve convergence within a much smaller

number of iterations, resulting in significant ILT acceleration. Passing through one

layer can be regarded as executing the original non-learning ILT algorithms for

multiple iterations. In addition, the learnable parameters can also help avoid the

local optimum state, contributing to the robustness of our algorithm.

Note that the number of iterations also indicates the number of layers in L2O-ILT.

The training strategy will be explained in Section 4.3.3. Overall, our proposed

framework seamlessly incorporates the prior knowledge of mask optimization and

achieves ILT acceleration with deep learning, and therefore we call it ªlearning to

optimize ILTº.

4.3.3 Interpretable Self-supervised Learning

In order to accelerate the convergence rate of L2O-ILT, a specialized interpretable

training strategy is proposed. As illustrated in Section 4.3.2, each layer of our

neural network is equivalent to an optimization iteration, and each layer outputs a

mask that has not been fully optimized. Therefore, we can directly supervise the

intermediate-generated mask M⃗(i) computed from Z⃗(i) using the training target

design Z⃗train
target. Such a training strategy can be regarded as providing a look-ahead

mechanism, which forces Z⃗(i) to be close to the real target Z⃗train
target. As a result, the

error between the printed image Z⃗(n) of the final mask M⃗(n) and Z⃗train
target will be

reduced efficiently. The training loss function can be formulated as:

Ltrain =
n

∑
i=1

l(i)(M⃗(i), Z⃗train
target), (4.13)

where n is a configurable hyper-parameter, representing the number of intermediate

masks that we supervise with Z⃗train
target, as shown in Figure 4.5. The loss between

M⃗(i) and Z⃗train
target is decided by its printed image Z⃗(i), and the computation of l(i) is
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calculated as:

l(i) = ||Z⃗(i)
nominal − Z⃗train

target||22 + ||Z⃗
(i)
out − Z⃗

(i)
in ||22, (4.14)

where Z⃗
(i)
nominal, Z⃗

(i)
out and Z⃗

(i)
in stands for the printed image through our lithography

module under different conditions. Such a training loss function design contributes

to jointly optimizing PV Band, L2 error and EPE. It should be reminded that the

parameters of all lithography modules mapping from M⃗(i) to Z⃗(i) are fixed and

unlearnable, so as to ensure the correctness of the lithography process.

In addition, it can be observed that our training scheme is self-supervised

learning. To be specific, we directly adopt the target design as the supervision

signal, which is totally different from previous ªgenerative ILTº methods [19, 20, 22].

When given a set of training target design Z train
target, they demand a corresponding

optimized mask setM∗ acting as the ªground truthº signal to supervise the mask

output by the black-box generation model. We argue that this training scheme is

not reasonable. This is because when given a target design, there is no way to know

what its actual corresponding mask is. Therefore, the optimized masksM∗ utilized

by previous methods [19, 20, 22] are actually approximated optimized masks, which

are obtained from conventional ILT algorithms. In this way, the ªground truthº

signals themselves are not accurate to act as the supervision signals for training.

Moreover, the model training process will further accumulate the error. This also

provides another reason to explain why the initial solution generated by these

generation models is inferior.

4.3.4 Inference and Refinement

We have finished discussions about the model architecture and training process, both

of which are highly interpretable. Overall, the model architecture is unrolling the
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fixed mask solution space

Figure 4.7: The mask optimization result of a simple target design pattern.

iterative algorithm, and the model training can be regarded as tuning the parameters

to improve the original manual parameter configuration to accelerate optimization

convergence.

Finally, when applied to design targets from the test dataset, our learned L2O-

ILT model is able to generate a superior initial mask solution instantly. To further

improve the mask quality, refinement is conducted on the initial mask. When given

a test target Z⃗test
t , the mask refinement is achieved by finetuning the parameters of

the last layer by optimizing the following loss function:

L f inetune = γ||Z⃗(n)
nominal − Z⃗test

target||22 +
1

γ
||Z⃗(n)

out − Z⃗
(n)
in ||22, (4.15)

where γ is an adaptive factor to balance these two loss terms, and it is computed

as the ratio between the L2 error and PV Band of the initial mask. Because of the

high-quality initial mask, the refinement can be quickly converged within a very

small number of iterations.
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Figure 4.8: Comparison of the convergence rate in fixed solution space and reduced solution space.

4.3.5 Adaptive Solution Space

Conventional ILT algorithms [17, 18, 19, 20, 21, 22] optimize the mask pixel within

a determined wide-ranging area, e.g., 1280×1280. However, we observe that the

areas of the optimized mask are always close to the targets. Specifically, the updated

pixels always lie in the neighbourhood of the target patterns. Therefore, we try

to leverage this prior knowledge in our framework. We propose that the space

can be suitably narrowed while keeping a high-quality mask solution. Based on

such a motivation, we design an adaptive solution space in our algorithm, and

this mechanism can also effectively avoid the emergence of outlier features in the

optimized masks. In addition, a smaller solution space will also contribute to a

faster convergence rate as well as saving computation resources. The experimental

results show that the convergence rate of mask optimization will increase, as shown

in Figure 4.8.

We design an adaptive mechanism to dynamically adjust the solution space

according to the specific target patterns. It is based on such an observation that
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the optimized mask area always lies in the neighborhood of the target pattern.

Therefore, our adaptive solution space is achieved by expanding the target pattern.

Usually, this can be implemented by convolution with a square kernel 1 ∈ R
s×s,

where 1 is a matrix in which all elements are 1, and N is the image size. Such

a dilation operation is feasible but not efficient, which has O(s2N2) complexity.

To solve this issue, an agile algorithm is designed to satisfy our requirements.

To specific, we can directly move the vertices to adjust the solution space. It is

noted that the layout patterns tested in this work are from ICCAD 2013 CAD

Contest [102] where all patterns are regular polygon shapes and represented as a

vector of vertices as shown in Figure 4.9. Therefore, all vertices are off the shelf.

And there are no extra workloads to transfer the pixel representation to the vertex

representation. The movement direction of each vertex v⃗i = (xi, yi) is determined

by its convexity-concavity and two neighborhood vertices v⃗i−1, v⃗i+1, which can be

formulated as:

u⃗ = (⃗vi+1 − v⃗i)× (⃗vi − v⃗i−1)

= (0, 0, (xi+1 − xi)(yi − yi−1)− (yi+1 − yi)(xi − xi−1)), (4.16)

c = sign(u⃗z), (4.17)

x′i = xi + c · sign((xi − xi−1)− (xi+1 − xi)) · offset, (4.18)

y′i = yi + c · sign((yi − yi−1)− (yi+1 − yi)) · offset. (4.19)

In Equation (4.16), to compute the cross product, we assume that vectors (⃗vi+1 − v⃗i)

and (⃗vi − v⃗i−1) have a 0 z-axis component. The coefficient c is to determine whether

the vertex is convex or concave according to the positive or negative of the z-axis

component u⃗z of u⃗, and sign(·) represents the sign function. We have c = 1 when

the vertex is convex. (x′i, y′i) indicates the coordinate of vertex v⃗i after movement,
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Figure 4.9: Adaptive solution space via the movement of vertices.

and ªoffsetº is a configurable hyper-parameter to control the size of solution space

and further accelerates the convergence rate.

Adjusting the space by moving vertices requires O(p) computation complexity,

where p represents the number of vertices, typically less than 100. Therefore, such

an algorithm is much more efficient than the traditional dilation operation with com-

plexity O(s2N2). The generated adaptive solution space S⃗ada can be incorporated

into our original gradient descent formulation in Figure 4.4 to restrict the range

of mask pixels update. As shown in Figure 4.9, we only allow the pixels within

the space to be updated during the optimization process. The gradient descent

formulations combined with the adaptive solution space are now represented as:

P⃗(j) = P⃗(j−1) − η
∂Fpvband

∂P⃗(j−1)
◦ S⃗ada, (4.20)

P⃗(j) = P⃗(j−1) − η
∂Ftarget

∂P⃗(j−1)
◦ S⃗ada, (4.21)

where S⃗ada acts as a filter. In S⃗ada, the values within the adaptive solution space are

1 and others are 0.
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Figure 4.10: The adaptation of L2O-ILT on full chip.

4.3.6 Applied on Full Chip

The above methodology mainly discusses mask optimization on layout patterns

of small size, i.e., 2048× 2048. With the development of semiconductors and the

shrinking size of transistors, the chip scale is constantly growing, which is usually

much larger than the patterns used in academic research. To overcome this issue,

we also explore the adaption of our L2O-ILT on the full chip. Inspired by [105],

our proposed algorithm is illustrated in Figure 4.10, a combination of our L2O-

ILT and the large tile global perception algorithm proposed by [105]. As shown

in Figure 4.10, we adopt a sliding window to scan over the entire chip, dividing the

large full chip into smaller chips. It is noted that each window includes two parts,

the core region and the boundary region. The layout patterns within the boundary

region in each sliding window will be ignored, and the core part is the mask region

that we want to obtain its mask optimization result. As discussed in [105], such

a sliding-window manner can help minimize boundary distortion effects. After

feeding each tile into our L2O-ILT framework, the optimized mask of all core parts

can be obtained, which will then be concatenated back. The stitching result is the

optimized mask of the full chip.
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Table 4.1: Benchmark information of ICCAD 2013 Dataset

Bench Area (nm2)

case1 215344

case2 169280

case3 213504

case4 82560

case5 281958

case6 286234

case7 229149

case8 128544

case9 317581

case10 102400

Table 4.2: Mask printability and runtime comparison with state-of-the-art methods (Experimental
settings follow [17])

Bench

ILT [17] GAN-OPC [19] DevelSet [22] L2O-ILT

EPE L2 PVB TAT EPE L2 PVB TAT EPE L2 PVB TAT EPE L2 PVB TAT

(nm2) (nm2) (s) (nm2) (nm2) (s) (nm2) (nm2) (s) (nm2) (nm2) (s)

case1 6 49893 65534 318 8 52570 56267 358 10 49142 59607 1.50 3 39742 50432 0.73

case2 10 50369 48230 256 13 42253 50822 368 1 34489 52010 1.40 0 31550 42620 0.72

case3 59 81007 108608 321 51 83663 94498 368 64 93498 76558 1.29 22 67612 73850 0.76

case4 1 20044 28285 322 2 19965 28957 377 2 18682 29047 1.65 1 12550 20306 0.72

case5 6 44656 58835 315 8 44733 59328 369 1 44256 58085 0.91 0 34056 50982 0.72

case6 1 57375 48739 314 12 46062 52845 364 2 41730 53410 0.84 0 31830 47237 0.73

case7 0 37221 43490 239 7 26438 47981 377 0 25797 46606 0.76 0 20443 37207 0.75

case8 2 19782 22846 258 0 17690 23564 383 0 15460 24836 1.14 0 13429 19702 0.74

case9 6 55399 66331 322 12 56125 65417 383 0 50834 64950 1.21 0 39652 58708 0.72

case10 0 24381 18097 231 0 9990 19893 366 0 10140 21619 0.42 0 8363 17561 0.71

Average 9.10 44012.70 50899.50 289.60 11.30 39948.90 49957.20 371.30 8.00 38402.80 48672.80 1.11 2.60 29922.70 41860.50 0.73

Ratio 3.500 1.471 1.216 396.712 4.346 1.335 1.193 508.630 3.077 1.283 1.163 1.523 1.000 1.000 1.000 1.000

4.4 Experimental Results

We implement our entire framework L2O-ILT with the Pytorch library [104] and test

it on a Linux system with 2.3GHz Intel Xeon CPU and a single Nvidia GeForce RTX
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Table 4.3: Mask printability and runtime comparison with state-of-the-art methods (Experimental
settings follow [20])

Bench

Neural-ILT [20] A2-ILT [106] L2O-ILT

EPE L2 PVB TAT EPE L2 PVB TAT EPE L2 PVB TAT

(nm2) (nm2) (s) (nm2) (nm2) (s) (nm2) (nm2) (s)

case1 8 49817 55975 13.96 7 45824 59136 4.43 3 39636 46905 1.12

case2 3 38174 52010 15.87 3 33976 52054 4.48 0 29108 37099 1.11

case3 52 89411 91357 12.95 62 94634 82661 4.52 21 67263 69115 1.13

case4 2 16744 29982 9.53 2 20405 29435 4.44 1 10807 20694 1.12

case5 3 45598 58900 8.43 1 37038 62068 4.47 0 31909 48797 1.10

case6 5 43836 54969 8.50 2 40701 54842 4.44 0 31474 45453 1.14

case7 0 20324 50542 13.09 0 21840 48474 4.42 0 16942 35942 1.11

case8 0 13337 26353 12.94 0 14912 24598 4.47 0 12236 19496 1.13

case9 2 49401 68817 12.95 2 47489 68056 4.50 0 34849 56706 1.11

case10 0 8511 20734 11.66 0 9399 20243 4.35 0 7203 15976 1.11

Average 7.50 37515.30 50963.90 11.99 7.90 36621.80 50156.70 4.45 2.50 28142.70 39618.30 1.12

Ratio 3.000 1.333 1.286 10.705 3.160 1.301 1.266 4.045 1.000 1.000 1.000 1.000

3090 GPU. The evaluation data to test the model performance are from ICCAD 2013

CAD Contest [102], which includes ten industrial M1 designs on the 32nm design

node and also provides the lithography engine. The dataset used for training our

L2O-ILT is obtained from the authors of GAN-OPC [19].

4.4.1 Comparison with State-of-the-art

We compare the performance of the proposed L2O-ILT with other state-of-the-

art mask optimization methods, and the detailed results are listed in Table 4.2

and Table 4.3. We learned that there exists offsets between the initial generated

mask between the work in [17], [19] and [22] and [20], [106] and we noted

that the offset of the initial mask would slightly affect the mask printability and

complexity. To make a fair comparison, we set two versions of L2O-ILT results

following corresponding experimental settings.

As listed in Table 4.2, compared with classical ILT [17] (denoted as ILT), the L2
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and PV Band are reduced by 47.1% and 21.6% respectively, and the EPE count is

less than one-third of [17]. Compared with two ªgenerative ILTº GAN-OPC [19],

and DevelSet [22], which respectively adopt GAN [30] and U-Net [32] to generate

initial mask solution, our model L2O-ILT also shows superiority. The performance

of L2 achieves 33.5% and 28.3% enhancements, and PV Band could obtain 19.3%

and 16.3% improvements. For the EPE count, the number of our EPE is only 2.60 on

average, which is much smaller than GAN-OPC [19] (11.30) and DevelSet [22] (8.00).

As for the runtime, our model is also faster than prior work. According to Table 4.2,

compared with ILT [17], GAN-OPC [19] and DevelSet [22], our L2O-ILT achieves

396.712×, 508.630× and 1.523× speedup respectively.

As for the other experimental results listed in Table 4.3, when following the same

settings as [20], L2O-ILT also achieves the best performance. Specifically, our model

averagely outperforms Neural-ILT [20] with 33.3% and 28.6% reduction in L2 error

and PV Band. And the EPE count is only one-third of Neural-ILT [20]. Compared

with A2-ILT [106], which relies on the reinforcement learning technique to improve

the ILT performance, the L2 and PV Band of our model are still reduced by around

30.1% and 26.6%. Also, our average EPE count is 2.50, much smaller than the EPE

count of A2-ILT [106]. For the total runtime, L2O-ILT achieves 11.091× and 4.038×

speedup in comparison with Neural-ILT [20] and A2-ILT [106].

Besides, we also evaluate the mask manufacturability in terms of the shot

count, which stands for the number of rectangles that are used to approximate

the optimized mask patterns. The comparison results are listed in Figure 4.11a

and Figure 4.11b. Among the above-mentioned methods, the shot number of L2O-

ILT is reduced by 99.2%, 8.3% and 7.2% compared with ILT [17], GAN-OPC [19]

and DevelSet [22]. Although the masks generated by L2O-ILT contain 21.7% and

28.8% more shots than Neural-ILT [20] and A2-ILT [106], the mask printability and
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Figure 4.11: Comparison of the mask manufacturability with state-of-the-art methods.

runtime performance is much better as listed in Table 4.5. The quality and simplicity

of the mask make a trade-off, and we think it is acceptable to remarkably improve

the mask printability within less runtime at the cost of a little bit higher complexity.

In addition, the memory usage of L2O-ILT is also compared versus other state-

of-art methods, and the comparison results are listed in Table 4.4. It can be seen that

our proposed model requires 7.4GB GPU memory, which is comparable with other

state-of-the-art methods. This also indicates that we successfully incorporate the

prior knowledge of ILT into the deep learning-based model while not remarkably

increasing the complexity of the model.

4.4.2 Evaluation of Initial Mask Qualities

To prove the benefit of our model that high-quality mask solutions can be generated

by L2O-ILT, we compare the L2 error of the initial solutions with other ªgenerative

ILTº methods. Also, considering different experimental settings, we split the result

comparison into two groups, as shown in Figure 4.12a and Figure 4.12b. The average
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Figure 4.12: Comparison of the initial mask solution with GAN-OPC [19] and DevelSet [22], and
with Neural-ILT [20].

L2 error of our initial masks is much lower than the initial masks of GAN-OPC [19],

DevelSet [22], and Neural-ILT [20]. (A2-ILT [106] is not considered as ªgenerative

ILTº since it does not adopt a generation model). Combined with the results

in Table 4.2 and Table 4.3, we can observe that for these ªgenerative ILTº methods,

there exists a large gap between the performance of the initial mask and the final

result. Therefore, a long-time refinement is always required. As for the initial

solutions of L2O-ILT, the performance gap is really small, and thus the refinement

can be finished rapidly, i.e., within 20 iterations, which contributes to the remarkable

runtime improvement.

4.4.3 L2O-ILT Acts as a Plugin

Another benefit of L2O-ILT is that our model can be incorporated into other models

like Neural-ILT [20] and GAN-OPC [19] as a plugin, which can improve their mask

optimization performance. We take the Neural-ILT [20] as an example. Given an
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Table 4.4: Memory usage comparison with state-of-the-art methods

Memory Usage(GB)

GAN-OPC [20] 6.5

DevelSet [22] 8.0

Neural-ILT [20] 6.6

A2-ILT [106] 5.7

L2O-ILT 7.4

initial mask solution generated by Neural-ILT [20], the original refinement process

in Neural-ILT [20] has to finetune the entire model, including the U-Net [32], which

contains a lot of parameters. Therefore, the refinement process is not efficient.

An improved method is to combine L2O-ILT with Neural-ILT [20] by directly

feeding the low-quality mask into our model. As explained in Section 4.3.4, given an

initial solution and a test target pattern, the refinement process is achieved by tuning

the last layer of our model, which includes fewer parameters than Neural-ILT [20].

Therefore, the refinement process is much more efficient to execute.

To verify the effectiveness of L2O-ILT as a plugin, we conduct further experiments

using the ICCAD 2013 CAD benchmark [102]. We list the average performance

of the mask refined by our L2O-ILT along with the required runtime in Table 4.5,

where we use Neural-L2O-ILT to denote the combination of Neural-ILT [20] and

L2O-ILT. It can be seen that in spite of the low-quality initial mask, with the L2O-ILT,

the mask generated by Neural-ILT [20] can still be more efficiently refined and even

achieve better results in comparison with original Neural-ILT [20]. Note that the

ªTATº of Neural-L2O-ILT has considered the generation runtime of the initial mask.

73



Table 4.5: Neural-ILT vs. Neural-L2O-ILT ( Neural-L2O-ILT is to adopt L2O-ILT to refine the
initial mask generated by Neural-ILT)

EPE L2(nm2) PVBand(nm2) TAT(s)

Neural-ILT [20] 9.20 38567.90 50636.70 11.80

Neural-L2O-ILT 3.00 30412.70 39626.70 1.81

4.4.4 Evaluation on Full Chip

We also evaluate the performance of L2O-ILT on a large-scale chip of size 144µm2

using the pipeline illustrated in Section 4.3.6. In our experiment, the large-scale

chip is divided into smaller chips of size 2048× 2048 and the size of the core region

is set as 1024× 1024. Such a setting effectively reduces the distortion effect while

achieving satisfactory runtime performance.

We compare the performance of our proposed L2O-ILT and Neural-ILT [20]

method in terms of L2 and PV Band metrics. When evaluating the performance

of Neural-ILT on the full-chip, we directly replace L2O-ILT in the pipeline shown

in Figure 4.10 with Neural-ILT. The presented results demonstrate that L2O-ILT

achieves a reduction of 8.0% and 12.2% in L2 error and PV Band, respectively. These

results illustrate the benefit of L2O-ILT for full-chip mask optimization.

4.5 Summary

In this chapter, we present L2O-ILT, a deep learning based-model that achieves

mask optimization acceleration and keeps remarkable printability performance. Our

model structure is implemented by unrolling our ILT algorithm, and thus the model

structure is highly incorporated into prior knowledge of mask optimization. Such

an ILT algorithm-inspired model is able to generate an initial mask solution with
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Figure 4.13: Comparison of the full-chip mask optimization performance with Neural-ILT [20].

better performance than previous methods, and the high-quality initial mask can be

instantly refined to obtain the final solution. The experimental results demonstrate

the superiority of our framework over current ILT acceleration works on both

accuracy and efficiency.
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Chapter 5

Hotspot Detection via Multi-task

Learning and Transformer Encoder

5.1 Introduction

As semiconductor technology develops rapidly, the size of integrated circuit compo-

nents is becoming much smaller. This poses a challenge for chip manufacturers since

it is much more difficult to ensure the printability of layout designs due to shrinking

feature sizes. Therefore, a precise and efficient hotspot detection technique is crucial

to help locate the defect position of a given layout.

With the development of deep learning, learning-based hotspot detection meth-

ods [107, 108, 109, 110, 111, 112] show strong generalization abilities and achieve

acceptable performance. Especially the approaches [113, 56, 57, 58, 114, 59, 115]

built upon deep learning techniques get significant improvements on both accuracy

and efficiency. However, there are still some issues with previous methods. (1)

Most deep learning-based frameworks are designed to detect whether there is a

hotspot at the center of an input clip. It would take a long time to detect the whole
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layout design. Although the method proposed in [59] can detect multiple defects in

large scales, some redundant designs may affect the efficiency. To be specific, the

whole framework is a two-stage detector that requires a region proposal network

as the first stage to select the potential defect regions. A refinement module is

designed to process these candidate defect regions for more accurate results (2)

Chen et al. [59] trains a framework to locate hotspots with rectangle bounding

boxes. However, the underlying information, e.g., corner information, is not uti-

lized as supervision for model training. The underlying information is helpful for

detection tasks in some aspects. For example, corner information contributes to

improve the localization accuracy [116], while center information performs better

on detecting small targets [117]. (3) We observe some outlier situations where two

regions sharing the same layout patterns may have different simulation results, i.e.,

one region is identified as a hotspot while the other is not. An example is shown

in Figure 5.1a and Figure 5.1b. This phenomenon indicates that we can not judge

whether a hotspot exists only by focusing on the local layout patterns, instead,

context information plays an important role. However, CNNs, commonly adopted

by previous methods, are infeasible to capture the long-range dependencies due to

the locality inductive bias. Only neighboring pixels are taken into consideration

when performing convolution operation, leading to a limited receptive field for each

position, as illustrated in Figure 5.1c. Therefore, frameworks solely based on CNNs

have limitations on hotspot detection.

In this chapter, we propose a single-stage detection framework, where we design

two modules called center head and corner head to learn the underlying represen-

tations of the hotspots. These two modules act as auxiliary to help produce more

accurate bounding boxes, which are used to indicate hotspot regions. A visualized

example of different representations is shown in Figure 5.2. Our motivation is
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hotspot region non-hotspot region

(a) (b)

(c)

Figure 5.1: The comparison between two regions with the same layout patterns. (a) Hotspot region.
(b) Non-hotspot region. (c) Locality inductive bias of CNN.

bounding box center corner

(a) (b) (c)

Figure 5.2: The visualization for three different representations to indicate hotspot regions. (a) The
bounding box of the hotspot region. (b) Center of the hotspot region. (c) Top-left and bottom-right
corner of the hotspot region.
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that by jointly training the hotspot detector to learn different but related tasks, the

knowledge learned from one task can be leveraged by others. This process simulates

human perception and helps improve the overall performance. In addition, a feature

aggregation module based on Transformer Encoder [118] is designed to augment the

feature representation ability by modeling the dependencies between each feature

with others. With this module, the issue of the CNNs, which can only attend to local

features, is mitigated. The main contributions of this chapter are listed as follows:

• We propose a single-stage detector skipping the region proposal stage, which

can effectively detect the hotspots.

• We build up center head and corner head to detect the center and corner

points of the hotspot regions.

• We design a feature aggregation module and a feature sampling strategy to

enrich the feature representation. The sampling strategy is adopted to save

the computation cost of the aggregation operation.

• Experimental results show that our model achieves high detection accuracy

and speed over prior state-of-the-art models.

The rest of this chapter is organized as follows. Section 5.2 introduces termi-

nologies and evaluation metrics related to this work. Section 5.3 discusses each

component of the proposed hotspot detector. Section 5.4 describes the implementa-

tion details including the loss function design. Section 5.5 shows the experimental

comparison results with state-of-the-art, followed by the conclusion in Section 5.6.
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5.2 Preliminaries

In this section, we will introduce the problem formulation and some preliminary

knowledge related to this work.

5.2.1 Problem Formulation

In the process of chip manufacturing, lithography is employed to transfer layout

patterns onto silicon wafers. However, this process involves many variations, and

some patterns are sensitive to these variations, which may reduce the manufacturing

yield due to potential open or short-circuit failures. Layout patterns that are sensitive

to lithographic process variations are defined as hotspots.

A high-performance hotspot detector should correctly detect as many hotspots

as possible and avoid mistaking non-hotspot patterns for hotspot patterns. The

following metrics are adopted to evaluate the performance of a hotspot detector.

Definition 4 (Accuracy). The ratio between the number of correctly detected hotspots and

the number of ground-truth hotspots.

Definition 5 (False Alarm). The number of non-hotspot regions that are mistakenly

identified as hotspot regions by the hotspot detector.

Problem 2 (Hotspot Detection). The objective of hotspot detection is to train a detector on

a collection of clips containing both hotspot and non-hotspot layout patterns. The detector

aims to accurately locate and classify all hotspots and non-hotspots, to maximize detection

accuracy while minimizing false alarms.
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5.3 Hotspot Detection Architecture

The proposed architecture overview of our framework is illustrated in Figure 5.3. (1)

The first part is a backbone made up of ResNet-50 and Feature Pyramid Network.

With the backbone, we can transfer the input clip to high dimensional features, and

multiple level feature maps are generated for subsequent detection. (2) To conduct

the hotspot detection task, we predefine dense regions on the output feature map of

the backbone. The classification head performs label prediction to judge whether

a region is a hotspot region or not. The localization head adjusts the predefined

regions to fit the groundtruth hotspot regions better. (3) Corner head and center

head receive the output from the backbone and identify the corners and centers of

input clips. (4) The feature aggregation module is used to learn a rich hierarchy of

associative features across different positions in the localization and classification

head separately. The feature selection module selects informative features and filters

out unimportant ones to save the computation cost.

5.3.1 Backbone

Feature extraction is a process that identifies important features from input clips,

which makes it easier for later hotspot detection. The deep convolutional neural

network is a powerful tool for extracting effective features.

ResNet-50. Different from the previous works like [113, 59], our work does not

concentrate on the design of the convolutional neural network for feature extraction.

Instead, we adopt ResNet-50 [119] as the feature extractor, which proves to have

prominent feature extraction ability according to much work like[119, 120, 121]. The

architecture of ResNet-50 is listed in TABLE. 5.1.
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Table 5.1: ResNet-50 Architecture

layer name ResNet-50

conv1 7× 7, 64, stride 2

conv2_x 3× 3 max pool, stride 2



1× 1, 64

3× 3, 64

1× 1, 256


× 3

conv3_x




1× 1, 128

3× 3, 128

1× 1, 512


× 4

conv4_x




1× 1, 256

3× 3, 256

1× 1, 1024


× 6

conv5_x




1× 1, 512

3× 3, 512

1× 1, 2048


× 3

3× 3, 64

1× 1, 64

1× 1, 256

+

256-d

relu

relu

relu

Residual Block
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Figure 5.3: The architecture of the proposed hotspot detector.

Feature Pyramid Network. Previous work [113, 71, 59] simply detect hotspots

on the output from the last layer of the backbone. However, we find that the feature

maps of layers in different levels are also crucial for hotspot detection, which is

further verified by our experimental results in 5.5.

To utilize the feature maps from different layers, we build the Feature Pyramid

Network (FPN) [122] on top of the ResNet-50. As shown in the right part of Fig-

ure 5.4, with a top-down pathway and lateral connections, multi-scale feature maps

are generated. Each feature map contains different level features, and all of them

can be used for detecting hotspots. Considering the potential size of hotspot regions,

we generate three feature maps (P3, P4, P5) with different scales, where Pk indicates

that it has resolution 2k lower than the input.
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5.3.2 Classification and Localization Head

In order to detect hotspots, previous work [59] first proposes the regions of interest

(ROI) that are likely to contain the hotspot with region proposal network [59].

Then these proposed regions are fed into the detection head for regression and

classification to get more accurate results. However, due to the region proposal

network with complex structures, the detection speed is low.

To tackle this issue, we define dense regions which will be directly passed to

classification and localization head after feature extraction. The region proposal step

is skipped in order to improve the detection efficiency. These predefined regions are

called anchors. More details about the anchor settings are illustrated in Section 5.4.1.

Assume that we define M anchors for each pixel of the feature map. Given a

feature map F⃗ ∈ R
H×W×C generated by the backbone as the input, the conv layers

module, which consists of four consecutive 3× 3 convolution layers with C filters,

outputs a new feature map F⃗c ∈ R
H×W×C. A feature aggregation module is then

adopted to enhance the representation ability of F⃗c, and then produces another

feature map F⃗a ∈ R
H×W×C. The structure of the feature aggregation module will

be clearly illustrated in Section 5.3.4. The feature map Fa will be fed into the

last layer, which is a 3× 3 convolution layer with M filters and output the final

result F⃗o ∈ R
H×W×M where each element predicts the probability of each anchor

containing a hotspot.

As for the regression head, it predicts the offset from each anchor to a nearby

groundtruth hotspot, if one exists. The structure of the regression head is almost

the same as the classification head except that the last layer has 4M filters. This is

because the offset for each anchor is a 4-dimension vector, including the offset for a

2-d center, width, and height.
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Figure 5.4: The architecture of the backbone. The backbone is a combination of ResNet-50 and
Feature Pyramid Network.

5.3.3 Corner & Center Representation Learning

Multi-task learning is a learning paradigm which aims to learn multiple related

tasks jointly so that the knowledge contained in one task can be leveraged by other

tasks, with the hope of improving the overall performance.

In Section 5.3.2, the localization and classification heads are proposed to detect

the potential hotspot regions with bounding boxes. Apart from the bounding box,

corner and center representations are proposed in this work to further improve the

detection performance. There are several advantages to utilize corner and center

representation learning. (1) Center representation learning: hotspot region can be

regarded as a small pattern in the layout design, for which center representation

is proved to be friendly to detect small objects [117]. (2) Corner representation

learning: corner representation is helpful for locating the target precisely [116].
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H ×W × C H ×W × C

H ×W × C

H ×W × C

H ×W × 1

H ×W × 2

Figure 5.5: Point head structure. The center head is composed of a single point head. The corner
head is composed of two point heads.

Following the paradigm of multi-task learning, corner and center representation

learning share the same backbone with the previous heads illustrated in Section 5.3.2.

To train the detector to learn these effective representations, we design corner head

and center head separately. The center head receives the output F⃗ ∈ R
H×W×C of

the backbone and predicts the probability of each point being a center as well as

the offset from each point to a nearby center, if one exists. The structure of the

center head is composed of a single point head as shown in Figure 5.5. Different

from the center head, the corner head identifies both the top left corner and bottom

right corner of the hotspot region. Therefore, the corner head is composed of two

separate point heads.
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5.3.4 Feature Aggregation Module

The Transformer Encoder applied in machine translation tasks has shown its strength

in modeling all pairwise interactions between different elements in a sequence.

Inspired by its mechanism, we design a module called feature aggregation module

(FAM) based on the Transformer Encoder.

With the help of FAM, we can enrich the feature map output from the conv

layers module in the localization and classification heads, as shown in Figure 5.3.

By globally capturing the dependencies between different features with the Multi-

Head Attention mechanism, the representation ability of the feature map could be

effectively augmented.

To be specific, given a feature map F⃗c ∈ R
H×W×C, when we hope to capture the

dependencies between f⃗m ∈ R
C with all other features f⃗n ∈ R

C, n ∈ {1, 2, . . . , HW},

f⃗m is regarded as query and f⃗n is regarded as key and value. Noted that F⃗c is the

output of the conv layers module as illustrated in Section 5.3.2. Then considering

the operation via a single head of the Multi-Head Attention, which can be applied

on f⃗m and f⃗n as follows:

h⃗i =
HW

∑
n=1

exp( f⃗mW⃗Q
i ( f⃗nW⃗K

i )
⊤/
√

C)

∑
HW
n=1 exp(fmW⃗Q

i ( f⃗nW⃗K
i )
⊤/
√

C)
f⃗nW⃗V

i , (5.1)

where h⃗i ∈ R
C is the output of head i. HW is the number of features of the feature

map F⃗c ∈ R
H×W×C, and C is the dimension of the feature. W⃗Q

i , W⃗K
i , W⃗V

i ∈ R
C×C

are projection matrices.

However, the computation cost is extremely expensive since the huge key set

includes hundreds of candidates and the complexity for Equation (5.1) is O(HWC2).

In terms of this issue, we design a simple yet effective algorithm to reduce the

amount of the selected keys. The main idea is to leverage the knowledge from the
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center head and corner head to guide the key selection for the feature map in the

classification head and localization head separately. The key selection algorithm on

the center head is demonstrated in Algorithm 2. The key set of the corner head is

selected in a similar way.

Algorithm 2 Key selection algorithm

Input: Center Probability Map C⃗ ∈ R
H×W , Feature Map F⃗c ∈ R

H×W×C, Selection
Number k;

Output: Key set F⃗k;

1: F⃗k ← Initialized to empty set;

2: C⃗′ ← AvgPool(C⃗);
3: ⃗topk_idx ← the index of the maximum k values in C⃗′;
4: for i← 1, 2, . . . k do
5: idx ← ⃗topk_idx[i];

6: f⃗i ← the feature in the position idx of F⃗c;

7: append feature fi to key set F⃗k;

8: return Key set F⃗k with k features.

As illustrated in Section 5.3.3, the probability map output by center head de-

scribes the probability of each point being a center. We perform a 3× 3 average

pooling with stride 1 on the probability map and get the positions of the maximum

k values (lines 2±3). Then the features in the corresponding positions of the feature

map are added to the key set (lines 4±8), which will be adopted to enhance the

feature map.

Based on the new generated key set, we further design a variant of Equation (5.1)

as follows:

h⃗i = f⃗m + λ
k

∑
n=1

exp( f⃗mW⃗Q
i ( f⃗nW⃗K

i )
⊤/
√

C)

∑
k
n=1 exp( f⃗mW⃗Q

i ( f⃗nW⃗K
i )
⊤/
√

C)
f⃗nW⃗V

i (5.2)

where k is the selection number of keys defined in Algorithm 2 and f⃗n is from the key

set F⃗k. λ is a hyperparameter to control the feature augmentation degree. Compared

to Equation (5.1), the complexity of Equation (5.2) is reduced to O(kC2), where k
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is much smaller than HW. In addition, the Multi-Head Attention is composed of

multiple attention heads. In our framework, the number of the heads is set to 8.

5.4 Implementation Details

5.4.1 Anchors

For each pixel of the feature map, anchors with three different aspect ratios {1:2,

1:1, 2:1} and four different sizes {20, 21/4, 22/4, 23/4} are set for dense scale coverage.

Since each pixel is assigned with 12 anchors and each feature map is composed of

many pixels, the number of anchors is extremely large, leading to the low efficiency

for training. We can benefit from getting rid of large parts of the anchors. We first

define Intersection-over-Union (IoU) as follows:

IoU =
anchor∩ groundtruth

anchor∪ groundtruth
. (5.3)

Our assignment rule is based on the IoU between anchor and groundtruth as

follows:

• If the IoU between an anchor and a groundtruth is larger than 0.5, the anchor

will be regarded as positive sample.

• If the IoU between an anchor and any other groundtruth is smaller than 0.4,

the anchor will be regarded as negative sample.

• If the IoU between a groundtruth and any other anchor is smaller than 0.5, the

anchor with the highest IoU will be regarded as positive sample.

• The rest anchors are ignored during training.

Noted that each anchor is assigned to at most one groundtruth bounding box.

89



5.4.2 Training Loss

The objective function presented in this work is formulated as follows:

Ldet = Lbbox + Lctr + Lcor, (5.4)

Lbbox, Lctr and Lcor are bounding box loss, center loss and corner loss correspond-

ingly. The detail explanation on these three terms will be introduced in this section.

Table 5.2: Benchmark Information

Bench Train #HS Test #HS Train #Clips Test #Clips Training Set Size (µm× µm) Test Set Size (µm× µm)

case2 40 39 1000 8 6.95 × 3.75 6.95 × 3.75

case3 1388 1433 1000 33 12.91 × 10.07 12.91 × 10.07

case4 90 72 1000 55 79.95 × 42.13 79.95 × 42.13

Table 5.3: Comparison with State-of-the-art

Bench
TCAD’19[71] DAC’19[59] Ours

Accu(%) FA Time(s) Accu(%) FA Time(s) Accu(%) FA Time(s)

case2 77.78 48 60.0 93.02 17 2.0 94.87 6 1.0

case3 91.20 263 265.0 94.5 34 10.0 97.2 26 4.0

case4 100.00 511 428.0 100.0 201 6.0 100 70 6.0

Average 89.66 274.00 251.00 95.84 84.00 6.00 97.31 34.00 3.67

Ratio 0.92 8.06 67.84 0.98 2.47 1.62 1.00 1.00 1.00

Bounding Box Loss: Based on the assignment rule in section 5.4.1, the ground truth

classification target pi is set to 1 if the anchor i belongs to positive sample and 0

otherwise.

Focal loss[123] is adopted to train the classification head. The classification loss
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function is defined as:

Lbbox
cls (pi, p′i) =





−α(1− p′i)
γ log p′i, pi = 1,

−(1− α)p
′γ
i log(1− p′i), pi = 0,

(5.5)

where α and γ are hyperparameters. p′i is the prediction result which indicates the

probability containing the hotspot.

In addition to the classification head, the regression head predicts the offset

between each anchor and its assigned groundtruth bounding box. t⃗′i = (t′x, t′y, t′w, t′h)

and t⃗i = (tx, ty, tw, th) are 4-d vector representing the regression prediction and the

corresponding groundtruth target, respectively. They are defined as:

tx = (x− xa) /wa, ty = (y− ya) /ha,

tw = log (w/wa) , th = log (h/ha) ,

t′x = (x′ − xa) /wa, t′y = (y′ − ya) /ha,

t′w = log (w′/wa) , t′h = log (h′/ha) ,

(5.6)

where (x, y, w, h) represents the center coordinates, width and height. w′, wa and

w represents the width of the predicted bounding box, anchor and groundtruth

bounding box separately (same as x, y and h). Smooth L1 loss is adopted for

regression loss function which is formulated as:

Lbbox
reg (⃗ti, t⃗′i) =

4

∑
j=1

lbbox
reg (ti[j], t′i[j]), (5.7)
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where

lbbox
reg

(
ti[j], t′i[j]

)
=





1
2

(
ti[j]− t′i[j]

)2
, if

∣∣ti[j]− t′i[j]
∣∣ < 1

∣∣ti[j]− t′i[j]
∣∣− 1

2 , otherwise.

(5.8)

With the defined regression and classification loss function, the overall loss for

the bounding box is calculated as:

Lbbox =
1

Nanch
∑

i

(Lbbox
cls (pi, p′i) + piL

bbox
reg (⃗ti, t⃗′i)), (5.9)

where Nanch is the number of anchors.

Center & Corner Loss: Center and corner representations are adopted as the

auxiliary to enhance the bounding box representation. To learn the effective feature

expression, loss functions are designed for the corner head and the center head

respectively. The loss for each point in the corner head is designed identically as

the loss for the center head, thus we take the loss function for the center head as an

example.

Similar to the anchor assignment, all the points within a feature map are divided

into two categories. The points within the groundtruth bounding box are regarded

as positive points and the rest are regarded as negative points. We assign each

positive point with its corresponding bounding box center. For negative points, the

groundtruth probability qxy for (x, y) being the center is set to 0. And for positive

points, we take the Gaussian kernel to describe the probability as follows:

qxy = exp

(
− (x− ⌊x̂⌋)2 + (y− ⌊ŷ⌋)2

2σ2

)
, (5.10)

where (x̂, ŷ) is the assigned center for each positive point and σ is a hyperparameter.

The classification branch of the center head predicts the probability q′xy of each point

being the center. A variant of focal loss [123] is adopted for the classification loss
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function, defined as:

Lctr
cls(qxy, q′xy) =





(
1− q′xy

)θ
log
(

q′xy

)
, qxy = 1,

(
1− q′xy

)β (
q′xy

)θ
log(1− q′xy), qxy < 1,

(5.11)

where θ and β are hyperparameters.

Besides predicting the probability of each point being a center, the center head

is trained to predict the offset d⃗′xy between each positive point (x, y) and its corre-

sponding center (x̂, ŷ). Similar to eq. (5.7), the regression loss function is defined

as:

Lctr
reg(d⃗xy, d⃗′xy) =

2

∑
j=1

lctr
reg(dxy[j], d′xy[j]), (5.12)

where lctr
reg is taken as the same form as eq. (5.8).

By combining the regression and classification loss functions, the overall loss for

the corner head is calculated as:

Lctr =
1

Nctr
∑
x

∑
y

(Lctr
cls(qxy, q′xy) + Iqxy>0Lctr

reg(d⃗xy, d⃗′xy)), (5.13)

where Nctr is the number of centers for a given input. The indicator function Iqxy>0

points out that the negative points are omitted for regression part.

5.5 Experimental Results

We implement our proposed hotspot detector on a platform with the Xeon Silver

4114 CPU processor and NVIDIA TITAN Xp Graphic card. We evaluate the perfor-

mance of our framework on the ICCAD 2016 Benchmarks[124]. According to the

results detected with the industrial 7nm metal layer EUV lithography simulation

technique, the hotspot is precisely located. Since the first benchmark design contains
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limited defects checked by lithography simulation, we only conduct the experiments

on the rest three ones. For each layout, we split it into two parts with equal area size,

among which one part is used for training, and the other part is used for testing.

Due to the extremely large size of the whole layout, small clips are cropped from

the layout and are then fed into the hotspot detector. More details are illustrated in

TABLE 5.2.

Noted that case2, case3 and case4 are the names of the three benchmarks.

Column ªTrain #HSº and ªTest #HSº indicate the total number of hotspots in the

training and test set, while column ªTrain #Clipsº and ªTest #Clipsº refer to the

total number of clips in the training and test set. ªTraining Set Sizeº and ªTest

Set Sizeº denote the resolution of the training and test set for each benchmark

respectively. Clips in the training set are obtained by randomly cropping the layouts

of the training part for 1000 times to get sufficient data for training. Different from

the training set, we uniformly crop the layout in the test set. The size of each clip is

256× 256 (corresponding to 2.56µm× 2.56µm), on which hotspots may appear or

not.

Table 5.3 shows the results of our proposed framework and several other state-of-

the-art hotspot detectors. ªTCAD’19º lists the result of a deep learning-based hotspot

detector proposed in [71] that adopts a high-dimensional feature extraction method

and biased learning algorithm which can reduce the size of training instances.

ªDAC’19º shows the result of a faster region-based hotspot detector in [59] which

first proposes a detector capable of detecting multiple hotspots in a large area for

each inference. The comparison results illustrate that our model has satisfactory

detection accuracy on each case. Especially, the average accuracy of our framework

achieves 97.31 compared to 95.88 and 89.66 for DAC’19 [59] and TCAD’19 [71],

respectively. Besides, the efficiency superiority of our proposed hotspot detector can
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also be noticed that it achieves 67.84× speedup compared to TCAD’19 [71], which

can only detect whether the center of an input clip has a hotspot. Also, compared

to DAC’19 [59], the inference speed of our model is faster because of the simpler

architecture of the whole framework. Moreover, the advantage of our framework

can also be noticed that it suppresses the false alarm effectively, which decreases

87.6% and 59.5% of the FA reported by TCAD’19 and DAC’19.

To investigate the behavior of our designed components, we carry out ablation

studies to examine how different configurations affect performance as shown in

Figure 5.6. The histogram shows that with the FPN, the detection accuracy improves

significantly, which reveals the importance of merging feature maps from different

layers. By detecting on the feature maps from different layers, multi-level features

from the input clip could be utilized for detection, which contribute to the robustness

of the framework. Besides, with the center head and corner head, we obtain 2.21%

improvement on accuracy and a reduction on average False Alarm, indicating

that the knowledge learned in the corner head and center head can be positively

leveraged for the regression and classification for bounding boxes. In addition, with

feature aggregation module, we further achieve 3.1% improvement on accuracy,

demonstrating that by adopting the self-attention module, the detector learns more

informative representations and further achieves better detection performance.

5.6 Summary

In this chapter, we proposed an end-to-end one-stage hotspot detection framework.

We take advantage of the corner and center representation to improve both clas-

sification and localization accuracy. Our feature aggregation module provides a

new way to aggregate different features and further generate the enhanced features.
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Figure 5.6: Comparison among different configurations on (a) average accuracy and (b) average false
alarm.

We further exploit a sampling strategy for FAM to reduce the computation cost

effectively. The experimental results demonstrate the superiority of our framework

over current deep learning-based detectors on both accuracy and efficiency. With the

development of manufacturing techniques for semiconductors, layouts are becoming

more and more complex. We hope the framework proposed in this work can provide

a more powerful solution to advanced design for manufacturability research.
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Chapter 6

Bridging Hotspot Detection and Mask

Optimization via Domain-Crossing

Masked Layout Modeling

6.1 Introduction

In chip manufacturing, due to the proximity effect [125] during the lithography

process, mask optimization techniques, including optical proximity correction (OPC),

are first adopted to obtain the desired mask patterns, which facilitates the reduction

of printing errors. Inverse lithography technology (ILT) [126] is a mathematically

rigorous approach that optimizes the shapes on the mask to achieve the desired

wafer patterns. It has been explored and developed as the new generation of mask

optimization techniques, which is expected to solve the challenges of advanced

technology nodes such as extreme ultraviolet (EUV) [127]. However, traditional

ILT algorithms [17, 21, 128] typically adopt iterative methods such as gradient

descent to optimize the misfit between the printed image on the wafer and the
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Figure 6.1: Traditional mask optimization and hotspot detection process, where detecting hotspot
regions has to rely on the result of previous mask optimization.

target pattern, and the whole process requires many iterations for convergence,

suffering from runtime overhead. To alleviate this problem, researchers propose

deep learning-based algorithms to boost the efficiency of ILT and these works try to

learn an ILT solver using stacked convolutional layers. By fully utilizing the massive

computation resources of GPU, they can output the optimized mask patterns within

a short runtime.

Although considerable progress has been made in mask optimization, there

may still exist hotspots that can potentially lead to open or short failures. Current

deep learning-based hotspot detection models have demonstrated their strong

performance by automatically extracting key features from layout patterns and

shown strong generalization ability. However, there are still some issues with

learning-based methods. (1) Current deep learning-based hotspot detection models

are usually trained and tested on small labeled datasets, such as ICCAD 2012

benchmark [129]. These small datasets lead to a data-hungry problem in academic

research of EDA and may easily cause over-fitting of learning models. Therefore,
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Figure 6.2: Our proposed unified framework. A pre-trained layout-understanding encoder can boost
performance on both OPC and HSD.

learning models trained by these datasets usually have poor performance when

transferred to real industrial scenarios. (2) As mentioned above, hotspot detection

is closely related to mask optimization since the quality of mask optimization will

determine whether any hotspot exists. However, these methods simply regard

hotspot detection as an image classification problem and do not effectively utilize

any prior knowledge of mask optimization and lithography process.

To improve the generalization ability, we aim to design a large pre-trained model,

which can leverage more training data. Such a model can be easily transferred to

multiple downstream EDA tasks. Considering both hotspot detection and mask

optimization call for the understanding and knowledge of the layout geometry and

the lithography process, we argue that hotspot detection and mask optimization

should be integrated into a unified deep learning model, as shown in Figure 6.2.

Based on these motivations, a strong pre-trained layout-understanding model (LUM)

is proposed, where we design a customized training scheme called domain-crossing

masked layout modeling. The proposed framework is inspired by the large pre-

trained model in deep learning, such as mask auto-encoder (MAE) [130] and gener-

ative pre-trained transformer (GPT) [131], which achieves incredible performance
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on many downstream tasks. In LUM, we first generate a large amount of layout

data and randomly mask a portion of the layout tile. Then, a training scheme called

domain-crossing mask layout modeling is proposed to guide the model training,

which is illustrated in Figure 6.3. It can be seen that LUM is responsible for restoring

both target images and ILT results from the given masked images. In this way, we

can not only leverage massive masked layout data to pre-train the model sufficiently

but also embed the awareness of the lithography process and mask optimization into

LUM. After pre-training, we can easily fine-tune the pre-trained LUM with fewer

data while achieving satisfactory performance on various layout understanding

tasks, including both OPC and HSD. The main contributions of this chapter are

listed as follows:

• We unify mask optimization and hotspot detection through the proposed

pre-trained layout-understanding model.

• We create the SynLayout dataset, a large layout dataset, using layout generation

techniques, which solves the data-hungry issue.

• Our proposed learning scheme, masked layout modeling, helps LUM better

capture the geometric information of layout patterns, which contributes to the

ability of mask optimization and hotspot detection.

• Experimental results show that our pre-trained LUM model achieves remark-

able performance when fine-tuned on both OPC and HSD tasks.

The rest of this chapter is organized as follows. Section 6.2 introduces prelim-

inaries about OPC, HSD, and mask modeling. Section 6.3 elaborates the layout

understanding model with customized domain-crossing mask modeling and target

reconstruction mechanism. Section 6.4 details our generated large layout dataset

and experimental results, followed by the conclusion in Section 6.5.
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Figure 6.3: Illustration of domain-crossing masked layout modeling. It restores the desired patterns
from a masked layout tile.

6.2 Preliminaries

In this section, we will introduce some preliminary knowledge related to this work.

6.2.1 Masked Modeling

Masked modeling is such a learning task: masking a portion of input contents and

attempting to restore the contents hidden by the mask [132]. Masked language

modeling, including BERT [133] and GPT [131], is the first successful application of

masked modeling in natural language processing. Typically, it is a fill-in-the-blank

self-supervised learning task, where a model learns representations by predicting

what a masked word should be according to the context words surrounding the

token. Recently, masked image modeling [130, 134] follows a similar way to learn

representations by predicting the missing parts at the pixel or patch level. Once the

model is trained and evaluated, it can be deployed in production systems for various

applications, such as object detection, instance segmentation, semantic segmentation,

or medical image analysis. Mask modeling plays a crucial role in computer vision
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Figure 6.4: Overview of the proposed framework, consisting of the pre-training, fine-tuning, and
co-evolution phases. The solid and dashed lines indicate the feed-forward and back-propagation in
training, respectively.

tasks where precise localization and pixel-level understanding of objects or regions

are required.

Nonetheless, the techniques described above have only been shown to be useful

for natural language and image modeling. Masked modeling has not been fully

explored in the EDA domain. It is widely known that there are many layout-related

tasks that call for strong layout understanding abilities of the deep learning model.

In this work, we aim to investigate the application of masked modeling for more

robust layout feature extraction. We mask a portion of the layout, and our layout-

understanding model is responsible for restoring the masked layout image. In

addition, regarding the uniqueness of EDA layouts and tasks, we have made many

customizations to the mask layout modeling mechanism, which is significantly

different from the mask modeling mechanisms in computer vision and natural

language processing fields, which will be detailed in Section 6.3.5.

6.3 Algorithms

In this section, the architecture of our layout understanding model (LUM) will be

explained in detail. We will introduce the critical components that enable the LUM
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to be equipped with strong generalization abilities that differ LUM from previous

attempts on layout feature learning models. We also show how to incorporate the

prior knowledge of mask optimization into LUM, which remarkably contributes to

the HSD and OPC performance.

6.3.1 Overview

As shown in Figure 6.4, the proposed framework consists of two phases:

Pre-training Phase: . In this phase, we employ the proposed domain-crossing

masked layout modeling method to pre-train the model. The masking strategy (Sec-

tion 6.3.2) masks a specific portion of input patches, the LUM encoder (Section 6.3.3)

maps the input patches to the latent space, and the LUM decoder (Section 6.3.4)

aims to recover the desired layout patterns. During the pre-training stage, the inputs

and outputs can be target images or optimized masks. This training scheme enables

the model to acquire knowledge of the two domains. The reconstruction target

(Section 6.3.5) guides the pre-training process via back-propagation.

Fine-tuning Phase: . Since our framework is targeted at OPC and HSD, we need

an OPC decoder and an HSD decoder to accomplish these two tasks according to

the encoding from the LUM encoder. We fine-tune the LUM decoder used in the

pre-train phase to build the OPC decoder. In addition, we introduce a new HSD

decoder for classification. Section 6.3.6 demonstrates how to fine-tune the model on

these tasks.
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6.3.2 Masking Strategy

Before training our LUM framework to restore the layout pattern, the first step is to

mask a portion of the layout tile suitably. Most recent mask modeling approaches,

such as MAE [130] and SimMIM [134], followed a uniformly random masking

method at the patch level. Inspired by these works, the layout pattern in our work

is first divided into non-overlapping patches of size 4× 4, and part of the patches

are randomly masked.

The masking ratio is critical for model training. A suitable ratio can ensure

that the masking layout patterns effectively eliminate redundancy, resulting in a

task that cannot be solved by extrapolation from visible neighboring patches. In

previous vision works, a commonly adopted masking ratio is 75%. However, we

find that such a high ratio is not suitable for our task since the meaning of semantic

information of layout patterns is more sparse than in regular images. To determine

a suitable masking ratio, a series of experiments are investigated, and we finally set

the masking ratio as 50%.

6.3.3 Encoder

The LUM encoder is responsible for modeling latent feature representations of

the masked patches, which are then utilized to forecast the original signals in the

masked area. The learned encoder should be capable of adapting to different tasks.

Recently, Transformer [78] has become a powerful encoder in both vision and

language areas. The transformer encoder consists of multiple layers, of which

the most important one is the multi-head self-attention, allowing the model to

capture information at different positions globally [78]. To deal with image inputs,

Vision Transformer (ViT) [135] splits an image into fixed-size patches, each of
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for self-attention
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Figure 6.5: The shifted window approach for computing self-attention in our proposed encoder
architecture. In layer W-MSA, we adopt a regular window partitioning scheme as shown in the left
part, and self-attention is computed within each local window. In layer SW-MSA, the window is
shifted as shown in the right part.

which is regarded as a token in sequential data. Given an input layout of size

H×W × C and the patch size P, the representation is first transformed into patches

{x⃗1, x⃗2, . . . , x⃗ HW
P2
}.

The Transformer encoder first packs the patches as a matrix, represented as X⃗ ∈

R
HW
P2 ×CP2

. Next, a fully-connected layer maps the patches to the input embeddings

X⃗E ∈ R
HW
P2 ×NH . To differentiate the positions of patches, positional encodings

E⃗P ∈ R
HW
P2 ×NH are then added to the input embeddings.

X⃗P = X⃗E + E⃗P (6.1)

However, the vanilla Transformer [78] is extremely computationally expensive.

Inspired by Swin Transformer [136], our encoder module introduces three extra

mechanisms to further improve the efficiency while keeping the advantage of

the Transformer [78]. The first one is the local attention mechanism. Instead of

applying attention to all patches, we group the patches into W ×W windows,

and a multi-head self-attention layer is employed within each window. Such a
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mechanism is implemented as a window multi-head self-attention (W-MSA) layer.

Local attention improves computation efficiency but lacks global perception. The

second mechanism solves this problem by introducing shifted windows to partition

the original layout pattern. Specifically, the local attention mechanism uses a regular

window partitioning strategy that starts from the top-left, while the shifted window

mechanism displaces the windows by (⌊H
2 ⌋, ⌊W

2 ⌋). Figure 6.5 illustrates the cross-

connection ability of the shifted windows mechanism. This mechanism is called

a shifted window multi-head self-attention (SW-MSA) layer. Furthermore, the

patch merging mechanism downscales the features by concatenating neighbouring

patches, which can enable the aggregation of multiscale information. Our encoder

contains multiple stages, and Figure 6.6 presents a single stage, which consists of a

patch merging layer and Ni Swin Transformer blocks. Each Swin Transformer block

includes W-MSA, MLP, SW-MSA, and MLP layers, where MLP means multi-layer

perceptrons.

6.3.4 Decoder

The LUM decoder is designed based on the feature pyramid network (FPN) [137],

which is a widely used and effective technique in the field of computer vision.

FPN serves as a versatile feature extractor that capitalizes on the inherent and

pyramidal hierarchy of features. This allows for the extraction of multi-level feature

representations.

In our framework, the LUM decoder takes as input the output features obtained

from the four stages of the LUM encoder depicted in Figure 6.7. These features

serve as the foundation for the subsequent decoding process. To generate feature

maps with varying levels of detail, the LUM decoder employs a top-down pathway.

This pathway utilizes convolutional layers, residual connections, and a pyramid
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Figure 6.6: Illustration of a stage in the Swin Transformer architecture, which consists of a patch
merging layer and Ni Swin Transformer blocks.

pooling module [138] to process the input feature maps. The result is the creation of

multi-scale feature maps, each containing features at different levels of abstraction.

In addition, lateral connections are introduced to integrate information from

different levels of the feature hierarchy. These connections combine feature maps

from different levels and facilitate the creation of a single consolidated feature map.

This final feature map is then fed through readout convolutional layers to produce

the ultimate output, which represents the generated layout.

6.3.5 Target Reconstruction

Our model is able to receive or output target images or optimized masks. For

example, receiving the target image and generating the optimized mask is equiv-

alent to the OPC. Receiving the masked target image and generating the restored
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Figure 6.7: LUM decoder. The inputs to the LUM decoder are the output features from the four
stages of the LUM encoder. With a top-down pathway, multi-scale feature maps can be generated,
each containing different level features.

target image is the layout reconstruction process. Combining different input and

reconstruction targets enables our LUM to acquire knowledge of different domains.

To distinguish between target images and optimized tasks, we design an ad-

ditional type of embedding for the LUM encoder. Specifically, given the input

embeddings X⃗E, we apply the type embedding by:

X⃗P =





X⃗E + E⃗T, if the input is a target image,

X⃗E + E⃗M, if the input is an optimized mask.

(6.2)

Similarly, we also introduce the type embedding to the LUM decoder. The embed-

ding matrix ˜⃗ET or ˜⃗EM is added to the input of the MLM decoder. We set the type

embedding matrices E⃗T, E⃗M, ˜⃗ET, and ˜⃗EM trainable. This mechanism enables the

encoder and decoder to differentiate between the two domains.

During the pre-training stage, when given a layout tile X⃗, we first obtain its

corresponding target image X⃗T and optimized mask X⃗M. Next, we mask the images
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and get X⃗T, X⃗M. Denoting the mask layout modeling with f⃗ : R
H×W → R

H×W , the

reconstruction target can be formulated as:

Lcross(X⃗) = ∥ f⃗TT(X⃗T)− X⃗T∥2
2 + ∥ f⃗TM(X⃗T)− X⃗M∥2

2+

∥ f⃗MT(X⃗M)− X⃗T∥2
2 + ∥ f⃗MM(X⃗M)− X⃗M∥2

2.

(6.3)

In Equation (6.3), the two subscripts of f⃗ indicate the input and output domains.

For example, f⃗TM uses E⃗T as the encoder type embedding and ˜⃗EM as the decoder

type embedding.

6.3.6 Fine-tuning

In the fine-tuning phase, we adapt the pre-trained model to HSD and OPC tasks.

For OPC, we simply fine-tune the pre-trained mask layout modeling decoder to

predict the optimized masks. Given the target image X⃗T and the optimized mask

X⃗M, the loss function is defined as:

LOPC(X⃗T, X⃗M) = LM(X⃗T, X⃗M) + LL2(X⃗T) + LPVB(X⃗T). (6.4)

The loss function (6.4) involves the following components:

• The similarity between the predicted mask and the optimized mask is mini-

mized by:

LM(X⃗T, X⃗M) = ∥ f⃗TM(X⃗T)− X⃗M∥2
2. (6.5)

• The L2 loss minimizes the distance between the printed image and the target

image, which is formulated as:

LL2(X⃗T) = ∥ f⃗Z( f⃗TM(X⃗T))− X⃗T∥2
2. (6.6)

The printed image f⃗Z( f⃗TM(X⃗T)) is computed by the lithography simulation
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model.

• LPVB(X⃗T) improves the robustness of the OPC results by minimizing the

distance between the printed images at the maximum and minimum process

corners. Specifically, the maximum and minimum process corners are modeled

by lithography kernels H⃗max and H⃗min, respectively. Given the printed images

f⃗Zmax( f⃗TM(X⃗T)) and f⃗Zmin
( f⃗TM(X⃗T)), the PVB loss is defined as:

LPVB(X⃗T) = ∥ f⃗Zmax( f⃗TM(X⃗T))− f⃗Zmin
( f⃗TM(X⃗T))∥2

2. (6.7)

Since the objective of HSD is very different from the OPC task, a customized HSD

decoder is specifically designed to output whether there exist hotspot regions in the

layout patterns. The HSD decoder is composed of three consecutive convolution

layers, which receive the output of the previous encoder and predict whether there

exists a hotspot in each patch as divided in Section 6.3.2. Therefore, the output

of the HSD decoder is an N × N feature map, where each pixel value denotes the

probability of the hotspot region. To guide the learning of the HSD decoder, we

adopt a loss function based on the cross-entropy loss, which is defined as:

LHSD(X⃗T) =
N

∑
x=1

N

∑
y=1

−pxy log p̂xy − (1− pxy) log (1− p̂xy), (6.8)

where pxy and p̂xy denote the ground truth and prediction probability of the hotspot

region respectively.

6.4 Experiments

We implement our entire framework LUM with the widely used deep learning

library, Pytorch [104]. The model is tested on a Linux system with a 2.3GHz Intel
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Figure 6.8: Examples of Synthetic Layout Patterns.

Xeon CPU and a single NVIDIA GeForce RTX 3090 GPU. To verify the efficiency and

robustness of our approach, we synthesized a large layout dataset, called SynLayout

Dataset, to test the performance of LUM.

6.4.1 SynLayout Dataset

In previous works, the ICCAD-2012 benchmark [129] and ICCAD-2013 [102] are

two commonly used layout datasets for hotspot detection and mask optimization.

However, these benchmarks are only used for academic research, and they contain

very limited layouts. To be specific, ICCAD-2013 [102] only contains ten 2µm× 2µm

metal layer clips, which are too small to fit AI solutions. To create a larger dataset,

GAN-OPC [19] releases around 4k synthetic tiles of metal-layer. However, its

scale still cannot meet the training requirements of deep learning models currently

applied in layout-related tasks. Previous learning models trained by these small

datasets usually have unsatisfactory performance when applied in real industrial

scenarios due to weak generalization ability.

In order to further improve the generalization ability of our model, we are sup-

posed to generate and leverage more layout pattern data to train our LUM effectively.

Therefore, we create a new layout dataset called SynLayout, where we synthesize

16000 tiles following the layout generation method proposed in [139]. Each tile is
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Table 6.1: Benchmark information of our SynLayout dataset.

Benchmark SynLayout

Train #Layout 11200

Test #Layout 4800

Train #HS 43269

Test #HS 18120

Table 6.2: Comparison with state-of-the-art HSD methods on SynLayout dataset.

Accuracy (%) False Alarm Runtime (s)

TCAD’19 [71] 85.63 6384 0.40
DAC’19 [59] 89.76 4629 0.28

ICCAD’21 [141] 91.94 3241 0.12

Ours 94.21 2860 0.22

randomly generated according to the design rules of ICCAD-13 benchmark. The

rules include the requirements on shape widths, distances, and areas, determined

by the technology node. We split 70% of the data for training and 30% of the data

for testing.

In addition, we also need to obtain the corresponding optimized masks and

hotspot regions of all generated layout patterns, which act as supervised signals.

Traditional optimization-based ILT methods are adopted to obtain the accurate

optimized masks of our generated layouts. L2 loss (Equation (6.6)), PVB loss (Equa-

tion (6.7)), and curvature loss [140] are employed in the ILT method to ensure the

mask quality while minimizing the mask complexity. After obtaining all optimized

masks, we sample a series of points and calculate their EPE values, and the locations

that have EPE violations are determined as hotspot regions. Figure 6.8 shows syn-

thetic layout pattern examples which follow legal design rules. Details of our dataset

are listed in Section 6.4.1, where columns ªTrain #HSº and ªTest #HSº indicate the

total number of hotspots in the training and test set.
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Table 6.3: Mask printability comparison with sate-of-the-art methods on ICCAD 2013 benchmark.

MOSAIC [126] DevelSet [140] CTM-SRAF [142] Ours-Fast Ours-Exact

Benchmarks EPE L2 PVB EPE L2 PVB EPE L2 PVB EPE L2 PVB EPE L2 PVB

(nm2) (nm2) (nm2) (nm2) (nm2) (nm2) (nm2) (nm2) (nm2) (nm2)

case1 6 49893 65534 10 49142 59607 3 46405 57584 5 46655 47519 3 39561 47788

case2 10 50369 48230 1 34489 52010 1 33481 45756 0 33893 37084 0 31261 38279

case3 59 81007 108608 64 93498 76558 28 77734 92660 40 80918 76726 15 63798 76121

case4 1 20044 28285 2 18682 29047 0 13183 26061 1 12014 22039 0 8939 23679

case5 6 44656 58835 1 44256 58085 1 41569 54553 0 36695 55481 0 30208 53504

case6 1 57375 48739 2 41730 53410 1 38608 48134 0 37338 47979 0 30284 47809

case7 0 37221 47120 0 35329 46071 0 32443 43697 0 30640 43268 0 28579 43012

case8 2 19782 22846 0 15460 24836 1 15178 20657 0 12751 20535 0 10813 20192

case9 6 55399 66331 0 50834 64950 0 49073 60754 0 42860 58123 0 34738 60962

case10 0 24381 18097 0 10140 21619 0 8231 17426 0 10323 16544 0 7714 16234

Average 9.1 44012 50899 8 38402 48672 3.5 34765 46753 4.6 33292 42179 1.8 27349 42577

Table 6.4: Runtime comparison with state-of-the-art methods on ICCAD 2013 benchmark.

Benchmarks MOSAIC [126] DevelSet [140] CTM-SRAF [142] Ours-Fast Ours-Exact

case1 318 1.50 121 0.01 6.6

case2 256 1.40 93 0.01 6.6

case3 321 1.29 179 0.01 6.6

case4 322 1.65 128 0.01 6.6

case5 315 0.91 73 0.01 6.6

case6 314 0.84 72 0.01 6.6

case7 239 0.76 78 0.01 6.6

case8 258 1.14 66 0.01 6.6

case9 322 1.21 74 0.01 6.6

case10 231 0.42 57 0.01 6.6

Average 289 1.1 94.1 0.01 6.6

6.4.2 Results Comparison

Table 6.2 shows the comparison hotspot detection results of our proposed frame-

work and several other state-of-the-art hotspot detectors. The comparison results
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(a) (b) (c) (d)

(e)

Figure 6.9: Examples of OPC results. (a) shows a mask output by the pre-trained LUM without
further training. (b) is a well-optimized mask from the ªOurs-Exactº setting. (c) (d) (e) present three
examples from the ªOurs-Fastº setting.

illustrate that our model LUM has satisfactory performance. Specifically, the aver-

age accuracy of our framework is 94.21% compared to 91.94%, 89.76%, and 85.66%

for ICCAD’21 [141], DAC’19 [59], and TCAD’19 [71], respectively. Besides, the

advantage of our framework can also be noticed that it suppresses the false alarm

effectively, which decreases 55.2%, 30.0%, and 11.8% of the false alarm reported by

TCAD’19 [71], DAC’19 [59] and ICCAD’21 [141]. As for runtime, it averagely takes

0.22s for LUM to detect a hotspot on a single layout, which is a little bit slower than

ICCAD’21 [141] (0.12s) and faster than the other two works. This is because our

model is designed for multiple tasks, including both hotspot detection and mask

optimization, and the architecture of LUM is more complex than ICCAD’21 [141].

In contrast, the model in ICCAD’21 [141] is only used for hotspot detection and

has a simple structure. However, we think the runtime is still comparable, and it is

worth achieving much better performance at the cost of extra limited time.
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6.4.3 What does LUM learn?

Our motivation for designing LUM is to incorporate the prior knowledge of mask

optimization into the model, which is beneficial for improving the accuracy of

hotspot detection. To prove that LUM has also learned the process of OPC, we

concatenate the encoder and the OPC decoder and ask LUM to receive the target

image and directly output the optimized masks without any fine-tuning process.

Figure 6.9a presents an example of the pre-trained results. Comparing Figure 6.9a

to Figure 6.9b, the generated masks without OPC-specific training are close to the

well-optimized masks. This observation indicates that the pre-trained LUM can be

equipped with OPC-based knowledge, which contributes to the outstanding HSD

results.

To provide quantitative analysis, we further conduct OPC-specific training. The

methods are tested on ICCAD 2013 benchmark [102]. Table 6.3 and Table 6.4

compare the mask printability and runtime performance of various OPC methods.

ªMOSAICº [126] is a pixel-based ILT method. ªDevelSetº [140] is a level set-based

ILT method that incorporates DNN models to reduce the optimization time. ªCTM-

SRAFº [142] combines the advantages of pixel-based and level set-based methods

to achieve better performance while maintaining satisfactory mask complexity.

ªOurs-Fastº shows the performance of the masks generated by our OPC decoder.

Figure 6.9c, Figure 6.9d, and Figure 6.9e present the masks generated by ªOurs-Fastº.

ªOurs-Exactº is obtained by fine-tuning the masks with our optimization-based ILT

method. Figure 6.9b shows the fine-tuned version of Figure 6.9c. It can be seen that

ªOurs-Fastº achieves better L2 and PVB than the baselines with a significantly lower

runtime. With acceptable runtime overhead, ªOurs-Exactº not only improves the L2

and PVB but also gets remarkable EPE results. The superior performance indicates
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(a) (b)

Figure 6.10: HSD and OPC results of one layout. (a) shows the hotspot detection result (b) is the
corresponding mask optimization result.

that our LUM-based OPC can achieve better manufacturability. In summary, ªOurs-

Fastº achieves instant mask optimization with nice results, while ªOurs-Exactº

attains outstanding performance with acceptable runtime. These results not only

validate the effectiveness of the proposed layout-understanding model, but also

highlight the importance of the co-evolution of HSD and OPC.

Finally, we also visualize the results in Figure 6.10a and Figure 6.10b obtained

by applying both the OPC decoder and the HSD decoder to the same layout,

aiming to demonstrate the detected hotspot regions correspond to the potential

open-circuit-prone or short-circuit-prone regions in the optimized mask. It can be

observed that as the light intensity increases, there is a significant possibility of

short-circuit occurrence at the highlighted regions on the optimized mask. This

further demonstrates the accuracy of our LUM framework for both OPC and HSD.
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6.5 Summary

In this work, we present a layout understanding model (LUM), a deep learning-based

model that achieves remarkable performance on both mask optimization and hotspot

detection tasks. Our model structure is inspired by the mask modeling method,

which masks a portion of input signals and asks the model to restore the content.

Such a model can leverage more training data to improve the generalization ability.

We propose different decoders for HSD and OPC tasks while maintaining the same

encoder component. During the training stage, we design multiple reconstruction

tasks to enable the model to effectively learn the geometric information of layout

patterns as well as the process of mask optimization. The experimental results

demonstrate that our model has shown remarkable performance on OPC tasks, and

the learned mask optimization knowledge is also beneficial for improving the HSD

performance.
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Chapter 7

Conclusion

In the thesis, several machine learning-driven methodologies are introduced to solve

several typical physical verification tasks in design for manufacturability. Our major

contributions include:

• In Chapter 3, we propose an efficient framework for automating Design Rule

Checking (DRC) script generation. By leveraging deep learning-based key

information extraction, the framework significantly reduces the turnaround

time and improves the accuracy of rule extraction. The experimental results

demonstrate its effectiveness in generating scripts and its potential to stream-

line the DRC process. Overall, DRC-SG represents a valuable contribution

to electronic design automation (EDA) with its automation capabilities and

adaptability to different design rule checkers.

• In Chapter 4, we introduce L2O-ILT, a deep learning-based framework for

inverse lithography technique (ILT) optimization. L2O-ILT generates a high-

quality initial mask, enabling fast refinement and improving mask print-

ability while reducing runtime. The framework combines the strengths of

conventional ILT and "generative ILT" approaches, offering interpretability,
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domain-specific knowledge, and efficient solution search. Experimental results

demonstrate its effectiveness in accelerating ILT and enhancing mask quality,

opening new possibilities for efficient VLSI design.

• In Chapter 5, we present an innovative approach for hotspot detection using

multi-task learning and Transformer Encoder. The proposed single-stage

detector eliminates the need for a region proposal stage, improving effi-

ciency. The center and corner head modules enhance accuracy, while the

feature aggregation module captures feature relationships. Experimental re-

sults demonstrate superior accuracy and speed compared to previous models.

This work contributes valuable advancements to hotspot detection in semicon-

ductor manufacturing, offering an efficient and accurate solution for practical

implementation.

• In Chapter 5, we design a unified deep-learning model, the layout understand-

ing model (LUM), that integrates hotspot detection and mask optimization.

By pre-training LUM on a large layout dataset using domain-crossing masked

layout modeling, the model achieves remarkable performance on both tasks.

The proposed approach improves efficiency, reduces runtime overhead, and ad-

dresses data scarcity. This research has significant implications for enhancing

chip manufacturing processes and advancing technology nodes.

Despite the exploration of new methodologies in this thesis, there remain significant

challenges in design automation and system integration. As the complexity of

design, manufacturing, and integration continues to grow, it is anticipated that

additional methodologies will emerge to drive further technological innovation.

Specifically, the exploration of the following research problems and directions holds

great value.
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• For the generation of DRC scripts, it is necessary to explore more efficient

flows. For instance, we can investigate the possibility of directly generating

scripts without the need for extracting key information and then translating

them in a two-stage flow. Additionally, we need to collect a wider range of

rule categories for advanced nodes. Currently, the number and types of design

rules available in the academic community are significantly fewer compared

to those in the industry. In the future, we need to consider how to improve

the accuracy of script generation for more complex rules in the industry.

• With the advancement of chip technology, the size of layouts is increasing.

Existing optical proximity correction (OPC) techniques are typically designed

for small-scale layouts. However, there is a need to explore how to migrate

these existing techniques to large-scale layouts. This involves the partitioning

and stitching of layouts to ensure seamless integration after performing OPC

on the divided sections. Therefore, it is necessary to explore more robust

partitioning and stitching techniques to enable the efficient handling of large-

scale layouts.

• Regarding the hotspot detection, one potential direction is to introduce multi-

modal learning in the field of hotspot detection. With the rapid development

of large language models, they have already achieved success in various appli-

cations within electronic design automation (EDA), such as Verilog generation.

In the future, we can also consider leveraging the GDS representation of pat-

terns during the hotspot detection stage. This representation includes the

coordinates of all points in each polygon of the pattern. By simultaneously

utilizing large language models and convolutional generative networks, we

can analyze both the GDS files and images, thereby enhancing the accuracy of
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hotspot detection.
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