
20

BOOM-Explorer: RISC-V BOOM Microarchitecture Design

Space Exploration

CHEN BAI, The Chinese University of Hong Kong, Hong Kong SAR

QI SUN, Zhejiang University, China

JIANWANG ZHAI, Beijing University of Posts and Telecommunications, China

YUZHE MA, Hong Kong University of Science and Technology (Guangzhou), China

BEI YU, The Chinese University of Hong Kong, Hong Kong SAR

MARTIN D. F. WONG, Hong Kong Baptist University, Hong Kong SAR

Microarchitecture parameters tuning is critical in the microprocessor design cycle. It is a non-trivial design
space exploration (DSE) problem due to the large solution space, cycle-accurate simulators’ modeling inac-
curacy, and high simulation runtime for performance evaluations. Previous methods require massive expert
efforts to construct interpretable equations or high computing resource demands to train black-box prediction
models. This article follows the black-box methods due to better solution qualities than analytical methods in
general. We summarize two learned lessons and propose BOOM-Explorer accordingly. First, embedding mi-
croarchitecture domain knowledge in the DSE improves the solution quality. Second, BOOM-Explorer makes
the microarchitecture DSE for register-transfer-level designs within the limited time budget feasible. We
enhance BOOM-Explorer with the diversity-guidance, further improving the algorithm performance. Experi-
mental results with RISC-V Berkeley-Out-of-Order Machine under 7-nm technology show that our proposed
methodology achieves an average of 18.75% higher Pareto hypervolume, 35.47% less average distance to ref-
erence set, and 65.38% less overall running time compared to previous approaches.

CCS Concepts: • Computer systems organization→ Superscalar architectures; • Computing methodolo-

gies→Machine learning approaches;

Additional Key Words and Phrases: Microprocessor, microarchitecture, design space exploration

This work is supported by National Key R&D Program of China (2022YFB2901100), The Research Grants Council of Hong
Kong SAR (No. CUHK14210723), and The Zhejiang University Education Foundation Qizhen Scholar Foundation.
Authors’ addresses: C. Bai, Room 122, Ho Sin Hang Engineering Building, Department of Computer Science and Engi-
neering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR; e-mail: cbai@cse.cuhk.edu.hk; Q. Sun, Bd A04,
No. 2118, Pinglan Rd., ZJU-Hangzhou Global Scientific and Technological Innovation Center, Xiaoshan District, Hangzhou,
China; e-mail: qisunchn@zju.edu.cn; J. Zhai, Room 111, Scientific-Research Building, School of Integrated Circuits, Beijing
University of Posts and Telecommunications, Beijing, China; e-mail: zhaijw@bupt.edu.cn; Y. Ma, W4-511, No. 1 Duxue
Road, Nansha, Guangzhou, China; e-mail: yuzhema@hkust-gz.edu.cn; B. Yu, Room 907, Ho Sin Hang Engineering Build-
ing, Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR;
e-mail: byu@cse.cuhk.edu.hk; M. D. F. Wong, Room 801B, Shaw Tower, Department of Computer Science, Hong Kong
Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR; e-mail: prov@hkbu.edu.hk.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
1084-4309/2023/12-ART20 $15.00
https://doi.org/10.1145/3630013

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 1, Article 20. Publication date: December 2023.

https://orcid.org/0000-0002-1742-0090
https://orcid.org/0000-0001-5153-6698
https://orcid.org/0000-0002-1581-3536
https://orcid.org/0000-0002-3612-4182
https://orcid.org/0000-0001-6406-4810
https://orcid.org/0000-0001-8274-9688
mailto:permissions@acm.org
https://doi.org/10.1145/3630013
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3630013&domain=pdf&date_stamp=2023-12-18

20:2 C. Bai et al.

ACM Reference format:

Chen Bai, Qi Sun, Jianwang Zhai, Yuzhe Ma, Bei Yu, and Martin D. F. Wong. 2023. BOOM-Explorer: RISC-V
BOOM Microarchitecture Design Space Exploration. ACM Trans. Des. Autom. Electron. Syst. 29, 1, Article 20
(December 2023), 23 pages.
https://doi.org/10.1145/3630013

1 INTRODUCTION

Recently, RISC-V, an open-source instruction set architecture (ISA), has gained much attention
and received strong support from academia and industry [1]. The RISC-V microprocessor design
cycle requires a high workforce and design time input due to the co-optimization with architecture
and physical implementation. Tuning microarchitecture parameters is crucial in the design cycle,
as it can reduce non-recurring engineering efforts [2] and meet the product delivery deadline [3].

It is non-trivial to determine promising RISC-V microarchitecture parameters combinations
within the limited time budget. The reason lies in three factors. First, the design space size can
be billions or even trillions as architects consider more components such as emerging functional
units or choices of speculation techniques [4–6]. Second, it costs high runtime to estimate the per-
formance of a microarchitecture with high-fidelity simulations. Third, architects often use cycle-

accurate simulators (CAS) [7–11] in the decision procedure, but relatively low CAS performance
modeling accuracy is a concern. A CAS builds a microprocessor model with a high-level program-
ming language to trade off the modeling efficiency and accuracy. The distinction between the
model and actual circuit implementation cannot be eliminated. And positive correlations between
modeled performance results and de facto performance values remain unclear. Hence, a practical,
accurate, and efficient design space exploration (DSE) algorithm is necessary for architects.

Many DSE algorithms have been proposed to solve the problem [16–22] and can be categorized
as analytical and black-box methodologies. The analytical methods require massive expert efforts
to construct interpretable equations or microexecution graph representations to model microar-
chitecture performance [19, 22–25]. The equations or graph representations are then leveraged to
prune the design space or enable fast DSE. Karkhanis and Smith construct analytical models to ex-
plore an out-of-order superscalar microprocessor [19]. Golestani et al. [22] enhance the dynamic
event-dependence graph for DSE with an Alpha21264-like microprocessor [26]. When domain
knowledge cannot be accessed, black-box methods emerge to confront the dilemma [18, 20, 21, 27].
Ipek et al. [18] adopt the artificial neural network (ANN). Li et al. [21] employ statistical sam-
pling with AdaBoost.RT black-box models [28] to conduct DSE. When it comes to solution quality,
black-box methods often outperform analytical methods due to the better prediction and searching
capability of machine-learning models.

Nonetheless, previous black-box methods have two limitations in improving the DSE algorithm
further. First, purely driven by the algorithm rather than tightly coupled with expert knowledge re-

stricts DSE efficiency improvement. Architects already know the characteristics of many microar-
chitectures. For example, the return address stack (RAS) size is relative to the programs’ nested
function call depth. A large-size RAS causes resource waste when the microprocessor executes
benchmarks containing few nested function calls. The number of physical registers depends on the
number of instructions in the pipeline, which is upper bound by the pipeline width and depth. Em-
bedding the prior knowledge in the DSE procedure helps the algorithm probe interesting regions
of the design space with potentially more promising solutions straightly. Second, the inaccuracy of

the cycle-accurate simulators’ modeling leads to sub-optimal DSE solutions. The lack of detailed cir-
cuit implementation, i.e., a register-transfer-level (RTL) design, such as hardware components
connections, signal handshake delays between pipeline stages, speculation mechanisms, and so
on, can result in incorrect simulations. Consequently, sub-optimal DSE solutions are generated.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 1, Article 20. Publication date: December 2023.

https://doi.org/10.1145/3630013

BOOM-Explorer: RISC-V BOOM Microarchitecture Design Space Exploration 20:3

Fig. 1. Comparison of Pareto frontiers between the exploration w.r.t. the VLSI flow and CAS. We use around

300 BOOM microarchitecture designs [12–14]. Each design is estimated with the same benchmarks [15]. The

Pareto frontier attained by CAS differs from that of VLSI flow. Specifically, the design colored in red deviates

from the true Pareto frontier (highlighted with a purple pentagon) by a margin.

Given two limitations, we summarize two learned lessons to solve the problem based on prior
works accordingly. First, embedding microarchitecture domain knowledge in the DSE algorithm is

necessary. It can directly guide the exploration to the regions with potentially more performance-
power Pareto-optimal microarchitectures, reducing dispensable simulations. Second, applying the

DSE algorithm to RTL designs prevents sub-optimal solutions. Figure 1 elucidates the claim. We use
the very-large-scale integration (VLSI) flow to evaluate the performance and power of RTL
designs. The VLSI flow leverages commercial electronic design automation (EDA) tools to con-
duct logic synthesis, RTL simulations, power analysis, and so on. Regrettably, the VLSI flow incurs
higher runtime costs compared to CAS simulations. While performing DSE w.r.t. RTL designs
directly is an ideal solution, the significant runtime cost associated with the VLSI flow poses a
restriction on the method.

This article proposes BOOM-Explorer, an automated DSE flow for RISC-V Berkeley Out-of-

Order Machine (BOOM) [12–14] microarchitecture parameters tuning. BOOM is fully in com-
pliance with RV64GC and demonstrates comparative performance efficiency in academia. The
highlight of BOOM-Explorer is that our methodology makes DSE for RISC-V BOOM RTL designs
feasible. The recipes are based on a combination of domain knowledge and dedicated algorithms.
BOOM-Explorer is based on Bayesian optimization. Specifically, it integrates four key ingredients
to help achieve better DSE algorithm performance compared to previous approaches and even
state-of-the-art methods for RTL designs. Our contributions can be summarized as follows:

(1) MicroAL, a microarchitecture-aware initialization algorithm based on active learning, is pro-
posed to sample the potential most valuable microarchitectures via domain knowledge injec-
tion. The formulated initialization dataset benefits the construction of the surrogate model
in Bayesian optimization.

(2) DKL-GP, the Gaussian process with deep kernel learning, is proposed as an effective surro-
gate model to characterize the microarchitectures’ performance and power.

(3) The expectation improvement on Pareto hypervolume (EIPV) is introduced to handle
the negatively correlated multi-objective (performance and power) optimization, providing
reliable DSE guidance progressively.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 1, Article 20. Publication date: December 2023.

20:4 C. Bai et al.

(4) A diversity-guided exploration strategy is proposed and coupled with the batch Bayesian
optimization flow, enhancing the solution quality. Better performance-power Pareto-
optimal microarchitecture is achieved, outperforming the previous solution and human
implementations.

(5) The evaluation results show that under 7-nm technology [29], BOOM-Explorer achieves an
average of 18.75% higher Pareto hypervolume, 35.47% less average distance to reference set,
and 65.38% less overall running time compared to previous approaches.

The remainder of this article is organized as follows: Section 2 introduces the related work.
Section 3 provides the problem formulation. Section 4 details BOOM-Explorer. Section 5 is for
experimental evaluations. Section 6 concludes this article.

2 RELATED WORK

2.1 RISC-V BOOM Core

Figure 2 illustrates the overall pipeline organization of BOOM [12–14]. BOOM is mainly composed
of a front end (FrontEnd), an instruction decoding unit (IDU), an execution unit (EU), and
a load-store unit (LSU). FrontEnd fetches instructions from I-cache, predicting branch target ad-
dresses, handling return addresses, and packing consecutive instructions as a fetch packet to the
fetch buffer. IDU decodes instructions retrieved from the fetch buffer as micro-ops and dispatches,
schedules, and issues them according to instruction types. EU integrates various functional units,
including dividers, multipliers, accelerator interfaces, and so on. LSU interacts with EU and D-
cache, deciding when to fire memory instructions to D-cache. BOOM implements explicit renam-
ing logics, short-forwards branch optimizations, and integrates a two-level branch predictor [30]
to improve its overall performance. With high-level hardware description language like Chisel [31],
many components and their connections can be parameterized to support various BOOM microar-
chitectures. For example, the parameterization of the size of the branch target buffer, RAS, branch
prediction history tables, and so on, broadens BOOM’s potential to balance the performance and
power dissipation in FrontEnd. We can achieve divergent tradeoffs by adjusting these parameters
to meet design requirements involving low-power and embedded computation applications.

A microarchitecture design space of BOOM is constructed according to BOOM’s overall archi-
tecture, as listed in Table 1. The design space of each module is composed of various components,
the structure of which can affect the performance power tradeoff and deserve to be optimized. As
shown in Table 1, different entries of RAS (RasEntry), branch counters (BranchCount), orga-
nization of I-cache/D-cache (associativity, block width, and size), translation lookaside buffer

(TLB) structures are considered in this article. The column of “Candidate values” in Table 1 denotes
supported hardware resources. For example, the reorder buffer is provided to support 32, 64, or 96
entries, and so on. Performance and power are negatively correlated. Assigning more hardware re-
sources often improves performance and brings considerable power dissipation. Hence, a good mi-
croarchitecture demands an appropriate compromise across all components’ hardware resources.

Some combinations in Table 1 are illegal. A legal combination should observe the constraints
of BOOM design specifications as in Table 2. Otherwise, it would fail to generate reasonable RTL
designs. For example, DecodeWidth defines the maximal instructions to be decoded simultaneously.
If a BOOM microarchitecture breaks rule 2 in Table 2, then the reorder buffer may not reserve
enough entries for each decoded instruction or contain redundant entries that we cannot fully
utilize. The last three rules in Table 2 are added to simplify the design space. Their incorporations
do not affect the design of a DSE algorithm. After we prune the design space w.r.t. rules in Table 2,
the size of the legal microarchitecture design space is approximately 1.6 × 108.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 1, Article 20. Publication date: December 2023.

BOOM-Explorer: RISC-V BOOM Microarchitecture Design Space Exploration 20:5

Fig. 2. BOOM implements a ten-stage pipeline including Fetch, Decode, Register Rename, Dispatch,

Issue, Register Read, Execute, Memory, Writeback, and Commit.

Table 1. Microarchitecture Design Space of BOOM

Module Component Descriptions Candidate values

FrontEnd

FetchWidth The number of instructions the instruction fetch unit can retrieve once 4, 8
FetchBufferEntry The entries of the instruction fetch buffer 8, 16, 24, 32, 35, 40

RasEntry The entries of the return address stack (RAS) 16, 24, 32
BranchCount The maximal number of branches can be speculated simultaneously 8, 12, 16, 20
ICacheWay The associative sets of L1 I-cache 2, 4, 8
ICacheTLB The ways of look-aside buffer (TLB) for L1 I-cache 8, 16, 32

ICacheFetchBytes The L1 I-cache line capacity 2, 4

IDU

DecodeWidth The maximal number of instructions the decoding unit can decode once 1, 2, 3, 4, 5
RobEntry The entries of the reorder buffer 32, 64, 96, 128, 130

IntPhyRegister The number of physical integer registers 48, 64, 80, 96, 112
FpPhyRegister The number of physical floating-point registers 48, 64, 80, 96, 112

EU
MemIssueWidth The width of memory-related instructions issue slot 1, 2
IntIssueWidth The number of integer-related instructions issue slot 1, 2, 3, 4, 5
FpIssueWidth The number of floating point-related instructions issue slot 1, 2

LSU

LDQEntry The entries of the load queue (LDQ) 8, 16, 24, 32
STQEntry The entries of the store queue (STQ) 8, 16, 24, 32

DCacheWay The associative sets of L1 D-cache 2, 4, 8
DCacheMSHR The numbers of miss status handling register (MSHR) 2, 4, 8
DCacheTLB The ways of look-aside buffer (TLB) for L1 D-cache 8, 16, 32

2.2 Bayesian Optimization

CAS offers advantages in terms of fast performance estimations compared to the VLSI flow men-
tioned earlier in Section 1. Thus, it becomes convenient for previous approaches to construct ex-
tensive training datasets using CAS [18, 21]. These datasets allow black-box models to learn the
relationships between microarchitectures and their corresponding performance or power values.
DSE is then conducted by sweeping the design space using these trained black-box models. How-
ever, given the benefits of DSE at the RTL level instead of using CAS (see Figure 1), such a new
solution should aim to reduce the call for the expensive VLSI flow effectively. We find that the in-
herent structure of the problem fits Bayesian optimization well. So, we present the corresponding
preliminary in this section.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 1, Article 20. Publication date: December 2023.

20:6 C. Bai et al.

Table 2. Constraints of BOOM Design Specifications

Rule Descriptions
1 FetchWidth ≥ DecodeWidth
2 RobEntry | DecodeWidth+

3 FetchBufferEntry > FetchWidth
4 FetchBufferEntry | DecodeWidth
5 fetchWidth = 2× ICacheFetchBytes
6 IntPhyRegister = FpPhyRegister
7 LDQEntry = STQEntry
8 MemIssueWidth = FpIssueWidth

+“ |” means RobEntry should be divisible by DecodeWidth.

Bayesian optimization [32, 33] is widely applied in such optimization problems when an evalu-
ation flow is expensive, as shown in Equation (1), where we use the minimization as an example.

x∗ = arg min
x ∈X

f (x), (1)

where X is the solution space (design space), and f represents the evaluation flow, which maps
x to a metric value. The optimal solution x∗ attains the minimal value of f (x). The main idea of
Bayesian optimization is only to select the potentially promising microarchitectures for evaluation
using the VLSI flow. These solutions are predicted promising based on what we have known in
previous searched samples. A distinction between DSE using Bayesian optimization and previous
black-box methods is the absence of the need to construct a large dataset for training a black-box
model. We instead progressively explore the design space in an online fashion.

Bayesian optimization consists of a surrogate model and an acquisition function. A surrogate
model is often constructed from the Gaussian process (GP) [34]. It models f in Equation (1) as
a generated probability distribution from the GP. The acquisition function is designed to charac-
terize the relative rankings between different solutions based on the probability distribution. In
other words, the acquisition function answers whether x1 is better than x2 without considering
exactly how much better x1 performs than x2. The solution that achieves the acquisition function’s
optimum is selected as a potential promising/optimal solution. The potential optimal solutions are
then evaluated using the VLSI flow and their corresponding performance and power values are
utilized to tune the surrogate model. Better solutions are expected to be explored using the tuned
surrogate model with a more accurate modeled probability distribution. Suppose x denotes a mi-
croarchitecture embedding (Section 3), τ denotes the current explored best performance/power
value. GP characterizes the evaluation flow with the mean μ (x) and the covariance σ 2 (x). The
expected improvement (EI), a popular acquisition function, is shown in Equation (2).

EI(x) = E[min(f (x) − τ , 0)]

= E

⎡⎢⎢⎢⎢⎣
min �

�
f (x) − μ (x))√

σ 2 (x)
− τ − μ (x)√

σ 2 (x)
, 0�
�

⎤⎥⎥⎥⎥⎦
·
√
σ 2 (x)

= σ (x) (λΦ(x) + ϕ (x)),

λ =
τ − ξ − μ (x)

σ (x)
,

(2)

where Φ(x) and ϕ (x) are the cumulative distribution function and the probability density function
of GP, and ξ is a coefficient to improve the numerical ability. Figure 3 visualizes the optimization
procedure for maximizing f (x) with Bayesian optimization. A surrogate model with GP is built in

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 1, Article 20. Publication date: December 2023.

BOOM-Explorer: RISC-V BOOM Microarchitecture Design Space Exploration 20:7

Fig. 3. An example of Bayesian optimization (with the EI function): find x , which attains the maximal value

of f (x).

the x− f (x) space from already-known samples represented by red dots. The red curve denotes the
golden values (ground truths) for each input x , and the dashed blue curve denotes GP predictions.
The band colored in orange shows the GP prediction uncertainty of each x . If the band is wider,
then the uncertainty is larger. The potential optimal solution is selected according to EI. Namely,
point x = 2, which achieves the maximal EI, is chosen as a potential optimal solution, as shown in
the x − EI space.

3 PROBLEM FORMULATION

Definition 1 (Microarchitecture Embedding). Microarchitecture embedding is a feature vector x ,
denoting a combination of candidate values given in Table 1, and it satisfies all constraints, as
referred to in Table 2.

Definition 2 (Clock Cycle). The clock cycle is defined as the clock cycles spent when a BOOM
executes a benchmark. It serves as a proxy for performance measurement.

Definition 3 (Power). Power is defined as the summation of dynamic, short-circuit, and leakage
power dissipation.

Given the same benchmark, performance, and power conflict, as mentioned in Section 2.1. Clock
cycles and the power of a BOOM microarchitecture are denoted as a vector y.

Definition 4 (Pareto Optimality). For an n-objective minimization problem, a vector of objective
values f (x) is said to dominate f (x ′) if

∀i ∈ [1,n], fi (x) ≤ fi (x ′);

∃j ∈ [1,n], fj (x) < fj (x ′),
(3)

wherex andx ′ are two microarchitecture embeddings. Hence, we denote f (x)
 f (x ′). Otherwise,
f (x) � f (x ′). A set of objective values that are not dominated by any other is called the Pareto
frontier. Their corresponding microarchitectures are termed Pareto-optimal set.

We aim to explore microarchitecture embeddings, whose objective values are the Pareto-optimal
set in the design space. A microarchitecture whose objective values belong to the Pareto frontier
cannot improve performance without sacrificing power, and vice versa. Based on the above defi-
nitions, we formulate the problem.

Problem 1 (BOOM Microarchitecture Design Space Exploration). Given a design space D,

each microarchitecture embedding x ∈ D corresponds to objective values y in the clock cycle-power

space Y. BOOM microarchitecture design space exploration is to find the Pareto-optimal microarchitec-

ture embeddings set X = {x1,x2, . . . ,xn }, whose objective valuesY = {y1,y2, . . . ,yn } ⊂ Y formulate

the Pareto frontier.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 1, Article 20. Publication date: December 2023.

20:8 C. Bai et al.

Fig. 4. Overview of the proposed BOOM-Explorer.

ALGORITHM 1: TED (U, μ,b)

Input: U is the unsampled microarchitecture design space, μ is a normalization coefficient, and b is the
number of samples to draw.

Output: X : the sampled set with |X | = b.
1: X ← ∅, Kuu′ ← f (u,u ′), ∀u,u ′ ∈ U;
2: for i = 1→ b do

3: x∗ ← arg maxx ∈U Tr[KUx (Kx x + μI)−1KxU]; � KUx , Kx x and KxU are calculated via f
w.r.t. corresponding columns in K .

4: X ← X ∪ x∗, U← U \ x∗;
5: K ← K −KUx∗ (Kx∗x∗ + μI)−1Kx∗U;
6: end for

7: return The sampled set X ;

4 BOOM-EXPLORER

4.1 Overview of BOOM-Explorer

Figure 4 shows an overview of BOOM-Explorer. First, the active learning algorithm MicroAL (Sec-
tion 4.2) is adopted to sample a set of initial microarchitectures from the design space. Domain-
specific knowledge is embedded in the initialization based on the first learned lesson. Second, a
Gaussian process model with deep kernel learning (DKL-GP) (Section 4.3) is then built on
the initial set as a surrogate model. Third, the expectation improvement of Pareto hypervolume
(Section 4.4) is applied as the acquisition function. During the DSE procedure, BOOM-Explorer
interacts with the VLSI flow to acquire performance and power values for the selected microarchi-
tectures. Due to the customized algorithm flow, such interactions make the DSE at the RTL level
feasible. Moreover, we improve the exploration with diversity-guided sampling to handle different
sub-regions (Section 4.5). Finally, The outputs of BOOM-Explorer are the predicted Pareto frontier
and corresponding Pareto-optimal microarchitectures.

4.2 Microarchitecture-aware Active Learning Algorithm

The initial microarchitectures sampled from the design space are critical to constructing a sur-
rogate model for later exploration. A naive solution is to sample microarchitecture embeddings
randomly [18, 27]. Some advanced sampling techniques with statistic analysis like orthogonal de-
sign [21] are also applied in previous works. Nevertheless, the methods mentioned above are less

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 1, Article 20. Publication date: December 2023.

BOOM-Explorer: RISC-V BOOM Microarchitecture Design Space Exploration 20:9

Fig. 5. Visualization of clusters w.r.t. DecodeWidth.

effective, since they require many VLSI flow interactions while the runtime cost of the VLSI flow
is much higher. We follow two guidelines to design the initialization algorithm. First, the initial
microarchitecture embeddings should uniformly scatter in the entire design space. Different PPA
tradeoffs should be captured via uniform scattering. Second, the diversity of these microarchitec-
ture embeddings should represent different characteristics of the design space as much as possible.
Simple characteristics can be described with a few samples, while complex ones can be described
with more samples. Besides, combining with prior knowledge helps us remove samples unworthy
to be evaluated with the VLSI flow.

In MicroAL, we first perform clustering w.r.t. the decode width (DecodeWidth), then we con-
duct transductive experimental design with samples per each cluster. DecodeWidth in IDU, as
referred to in Table 1, decides the maximal numbers of instructions that can be decoded simultane-
ously, i.e., it determines the width of the pipeline, as shown in Figure 2. It allows more instruction
execution parallelism in the pipeline if DecodeWidth is assigned a considerable value in BOOM,
and we also allocate appropriate hardware resources to other components accordingly. Although
large DecodeWidth leads to remarkable performance improvement, in most cases, power dissipa-
tion increases correspondingly due to more transistors integrated. We find that the impact of a
PPA tradeoff by configuring DecodeWidth is significant.

Figure 5 visualizes the objective space by clustering w.r.t. DecodeWdith on sampled microar-
chitecture embeddings. Better microarchitectures will be closer to the original point in Figure 5,
indicating higher performance and lower power dissipation. Figure 5 demonstrates that the distri-
butions of clusters are highly correlated with the potential Pareto frontier. The entire design space
is discrete and non-smooth. Nonetheless, many microarchitectures with the same DecodeWidth
achieve similar performance-power characteristics within their clusters. We embed this domain
knowledge in the initialization algorithm. Additionally, within each cluster, we adopt the trans-

ductive experimental design (TED) [35] to sample microarchitectures that best reflect the char-
acteristics of their groups.

The method of TED is a widely used algorithm to construct samples that deserve to be evaluated
with an expensive flow. It tends to choose microarchitecture embeddings that can spread across
the design space to retain the most information [35]. We can acquire a pool of representative
samples with high mutual divergences by iteratively maximizing the trace of the distance matrix
constructed on newly sampled and unsampled microarchitecture embeddings. Algorithm 1 shows
the backbone of TED, where f represents the distance function used in computing the distance
matrix K. It should be noted that there are no restrictions on the choice of distance functions. The
microarchitecture embeddings can be clustered based on DecodeWidth, allowing us to identify
clusters that are most closely related to the Pareto frontier. Within each cluster, TED is performed

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 1, Article 20. Publication date: December 2023.

20:10 C. Bai et al.

ALGORITHM 2: MicroAL (U, μ,b,n)

Input: U is the unsampled microarchitecture design space, μ is a normalization coefficient, b is the number
of samples to draw, n is the number of pre-determined iterations.

Output: X : the initial set with |X | = b.
1: X ← ∅;
2: Randomly initialize k centroids {c1,c2, . . . ,ck } from U with k equal to the number of candidate values

of DecodeWidth.
3: while i = 1→ n do

4: ci ← arg minj ∈{1,2, ...,k } Φ (xi − c j), ∀xi ∈ U; � Φ is a designed distance function considering
DecodeWidth.

5: Assign xi to Cc i , the centroid of which is cc i ;

6: c j ←
∑|U|

i=1 1{c
i=j }xi∑|U|

i=1 1{ci=j }
, ∀j ∈ {1, 2, . . . ,k };

7: end while

8: Clusters C← {C1,C2, . . . ,Ck } are formulated.
9: for Ci ⊂ C do

10: X̂ ← TED (Ci , μ, � b
k
�); � Algorithm 1

11: X ← Xi ∪ X̂ ;
12: end for

13: return The initial microarchitecture embedding set X ;

to create representative samples. This process leads to the formulation of MicroAL, as described
in detail in Algorithm 2.

In Algorithm 2, first, we cluster the entire design space according to Φ, which is the distance
function with a higher penalty along the dimension of DecodeWidth. One possible alternative can
be Φ = (xi − c j)

�Λ(xi − c j), with i ∈ {1, . . . , |U|} and j ∈ {1, . . . ,k }, where Λ is a pre-defined diag-
onal weight matrix. The procedure runs n rounds to make the design space sufficiently clustered.
Second, we apply TED to each cluster to perform sampling, i.e., line 10 in Algorithm 2. Finally,
the initial microarchitectures that are worth to be estimated with the VLSI flow are constructed.
Each microarchitecture is estimated using the VLSI flow. Our acquisition function is built based
on these microarchitectures and their respective performance and power values.

4.3 Gaussian Process with Deep Kernel Learning

It is common to build GP models for the initial microarchitectures due to the non-parametric
approximation in terms of reliability in uncertainty estimation and robust performance for many
applications [36, 37].

Without loss of generality, letX = {x1,x2, . . .xn } denote a set of microarchitecture embeddings.
The corresponding objective values formulate a matrix:

Y =

������
�

y11 y12 . . . y1m

y21 y22 . . . y2m

...
...
. . .

...
yn1 yn2 . . . ynm

�
�
, (4)

where m denotes the number of objectives, and Y is an n × m matrix. The objective func-
tions { f1, f2, . . . , fm }, which characterize how we get the objective values, map an x to
y = {y1,y2, . . . ,ym }. We place an appropriate GP prior on each f , i.e., fi (x) ∼ GP(μi ,σ

2
i), where μi

and σ 2
i are the mean value function and the covariance function for the ith objective, respectively.

A non-trivial problem is that the objectives in our problem are not orthogonal, since higher

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 1, Article 20. Publication date: December 2023.

BOOM-Explorer: RISC-V BOOM Microarchitecture Design Space Exploration 20:11

performance often comes with higher power dissipation. Characterizing individual objectives
using independent GP models could degrade the overall modeling performance. Hence, we
introduce multi-task GP models to handle the difficulty [38]. The main idea of multi-task GP is to
model the hidden mappings based on the objective identities and the observed objective values for
each microarchitecture. Objective identities are scalars utilized to distinguish different objectives.
Hence, a GP prior is also placed between each objective function, as shown in Equation (5).

cov(fi (x), fj (x ′)) = K
f
i jK

x (x ,x ′), (5)

where cov(fi (x), fj (x ′)) is a covariance between fi and fj on two microarchitecture embeddings

x and x ′, K f
i j is a positive semi-definite matrix specifying the similarities between objective i and

j, and Kx is a covariance function over x and x ′.
Given a newly sampled microarchitecture embedding x∗, the mean value representing the pre-

diction of an objective value is shown in Equation (6).

μi (x∗) = μi +
(
K

f
i ⊗ Kx (x∗,X)

)�
Σ−1 (Yi − μi), (6)

where K f
i is the ith column of K f defined in Equation (5), μi denote a vector of ith objective mean

values, and Yi is the ith column of Y denoting the ith objective values in the training data set. The
uncertainty of the prediction μi (x∗) in Equation (6) is calculated by Equation (7).

σ 2
i (x∗) =

(
K

f
i ⊗ Kx (x∗,x∗)

)
−(

K
f
i ⊗ Kx (x∗,X)

)
Σ�
(
K

f
i ⊗ Kx (X ,x∗)

)
,

(7)

where Σ in Equations (6) and (7) is obtained from Equation (8).

Σ =
(
K

f
i ⊗ Kx (X ,X)

)
+ D ⊗ I . (8)

The operator ⊗ denotes Kronecker product. In Equation (8), D is an m ×m diagonal matrix with
σ 2

k
as the kth diagonal element, and I is the identity matrix. Therefore, the posterior distribution

is fi (x∗ | X ,Yi ,K
f
i ,K

x) ∼ GP(μi (x∗),σ 2
i (x∗)). The likelihood estimation of the multi-task GP is

as shown in Equation (9).

l = −mn

2
log 2π − n

2
log |K f | − m

2
log |Kx |

− 1

2
Tr[(K f)−1Γ� (Kx)−1Γ]

− n

2

m∑
i=1

logσ 2
i −

1

2
Tr[(Y − Γ)D−1 (Y − Γ)�],

(9)

where Γ is a matrix of μi j corresponding toY . The parameters describingK f andKx are optimized
via the maximization of Equation (9).

We use deep kernels [39] stacked by multiple linear perceptrons (MLP) with non-linear
transformations to construct the Gaussian kernels, i.e., K f and Kx . We term our surrogate model
DKL-GP due to the construction of the GP and deep kernel functions. The use of deep kernels
can result in improved performance due to their strong modeling ability. Thus far, K f and Kx are
described by Equation (10).

K → (φ (д(x ,θ)),φ (д(x ′,θ))), (10)

where φ denotes non-linear transformation functions, e.g., the ReLU function, and so on, and the
MLP д is parameterized by θ .

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 1, Article 20. Publication date: December 2023.

20:12 C. Bai et al.

Fig. 6. An example of hypervolume is shown in the power-performance space. (a) The region covered in

orange is dominated by the currently explored Pareto-optimal objective values denoted as circles in blue.

Circles in purple denote dominated objective values. (b) The circle in green denotes an explored potential

point belonging to the Pareto-optimal set among the entire design space. EIPV is represented as the area of

the sub-region colored in light green.

4.4 Correlated Multi-objective Optimization

Although DKL-GP, as demonstrated in Section 4.3, can be utilized to characterize the uncertainty
of predicted clock cycles and power, designing a suitable acquisition function to find the Pareto
frontier remains an unsolved problem. Since clock cycles and power are a pair of negatively cor-
related metrics, we introduce the expected improvement of Pareto hypervolume (EIPV) [40]
to model the tradeoff in the performance-power space.

We denote the points in the performance-power space asY = {y1,y2, . . .yn }. As Figure 6 shows,
a better performance and power tradeoff lies closer to the origin. Pareto hypervolume is the volume
of the area bounded by the Pareto frontier and a reference point. The reference point is a self-
defined point dominated by all objective values. We use P(Y) to represent the Pareto frontier,
i.e., P(Y) = {yi ∈ Y | yj � yi ,∀yj ∈ Y \ {yi }}. Given a reference point vref in the objective
space, which is dominated by P(Y). The Pareto hypervolume [40] bounded by vref and P(Y), as
the orange region highlighted in Figure 6(a), can be computed by Equation (11).

PVolvref (P(Y)) =

∫
Y
1[y
 vref]

⎡⎢⎢⎢⎢⎢⎣
1 −

∏
y∗ ∈P(Y)

1[y∗ � y]

⎤⎥⎥⎥⎥⎥⎦
dy, (11)

where 1(·) is the indicator function, which outputs one if its argument is true and zero otherwise.
The integral characterized by Equation (11) sums up all bounded regions. Intuitively, if a new
point yn+1 is searched out, and yn+1 is not dominated by any points in Y , then PVolvref (P(Y ∪
{yn+1})) is increased. The increased part is specified as the improvement of Pareto hypervolume.
The larger the increased part, the better the improvement of Pareto hypervolume is. The EIPV is the
expectation of the improvement w.r.t. potential solution candidates at the (n + 1)-th optimization
steps. Formally, the EIPV is computed as Equation (12).

EIPV(xn+1 | D) = Ep (f (xn+1) |D)[PVolvref (P(Y) ∪ f (xn+1)) − PVolvref (P(Y))], (12)

where f is the DKL-GP mentioned in Section 4.3, D = {xi ,yi }ni=1 is the dataset, and xn+1 is a newly
sampled microarchitecture embedding at the step n + 1. Figure 6(b) visualizes the EIPV based on
Figure 6(a), where the green region highlights EIPV(xn+1 | D).

In the performance-power space, we can simplify Equation (12) to make EIPV better computable
by decomposing the space as grid cells. Assume vref = {(a0

1,a
0
2)}. The union of grid cells can

be phrased as C = [a1
1,a

0
1) × [a1

2,a
0
2) × [a2

1,a
1
1) × [a2

2,a
1
2) × · · · [an

1),an−1
1 × [an

2 ,a
n−1
2). Denote

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 1, Article 20. Publication date: December 2023.

BOOM-Explorer: RISC-V BOOM Microarchitecture Design Space Exploration 20:13

Cnd = {C ∈ C | y ′ � y,∀y ∈ C,y ′ ∈ P(Y)} as non-dominated cells. Hence, the simplified version
of EIPV computation is derived, as shown in Equation (13).

EIPV(xn+1 | D) =
∑

C ∈Cnd

∫
C

PVolvC
(y)p (y | D)dy. (13)

The relative relations between microarchitecture embeddings x1 and x2, i.e., whether x1 is better
than x2, can be precisely described by EIPV. The microarchitecture embedding x∗, which achieves
the maximal EIPV, explicitly demonstrates that f (x∗) is the potential Pareto-optimal solution, as
shown in Equation (14).

x∗ = arg max
x ∈D

EIPV(x | D). (14)

We sample x∗ each time and evaluate its performance and power values y∗ via the VLSI flow.
If a generous time budget is available, then we can sweep the design space D using DKL-GP
to obtain x∗. The advantage of using DKL-GP is that it has low runtime, making the estimation
highly efficient. The pair (x∗,y∗) is added to D. And we utilize the aggregated D to tune DKL-GP,
hoping to sample the following x∗ with better y∗ that can dominate already explored points in
the design space.

4.5 Diversity-guided Parallel Exploration

Despite the benefits from MicroAL and the negatively correlated multi-objective Bayesian opti-
mization flow, we also propose diversity-guided parallel exploration to further improve the algo-
rithm’s efficiency. With the technique, we can sample and evaluate more microarchitecture em-
beddings at the same time. And we also improve the overall DSE performance effectively.

Although exploring with EIPV is mostly effective, a limitation is also viewed. We notice that
searching via EIPV can lead to local optimum, i.e., it cannot recover the complete Pareto frontier
due to potential “outliers.” Outliers have good properties in performance and power tradeoff but
may not have high EIPV. The reason behind this is that the Pareto frontier tends to group in various
regions due to components impacting the performance and power tradeoff in various degrees.
Some objective values with relatively higher EIPV can hide outliers when we do not have a large
optimization budget. In other words, exploring with EIPV misses such outliers when insufficient
optimization is applied.

Two methodologies can be integrated to explore those outliers with higher Pareto hypervol-
ume. First, improve the number of samples while maintaining an unchanged optimization budget
with batch optimization. Applying parallel VLSI estimations in the batch optimization instead of
original sequential optimization is necessary. And the parallelism depends on the number of avail-
able EDA tools licenses. Second, embedding domain knowledge or heuristics in the exploration is
a good supplement to the exploration with original acquisition design (discussed in Section 4.4).
Consequently, we propose a parallel-based exploration by combining two pathways.

In the exploration, we select multiple microarchitectures simultaneously to conduct parallel
estimations using the VLSI flow. Intuitively, a straightforward way to select microarchitectures
can be achieved according to the ranking of EIPV w.r.t. each design, as introduced in Section 4.4.
Conversely, we provide some prior knowledge in the selection. DecodeWidth (mentioned in
Section 4.2) contributes more to the performance and power tradeoff than other components, since
modifying DecodeWidth can lead to distinct clusters shown in Figure 5. Except for DecodeWidth,
another component IntPhyRegister, determining the number of integer physical registers, can also
distinctly affect performance and power if a benchmark contains considerable integer-related in-
structions. Hence, the Pareto frontier is scattered in multiple sub-regions, as shown in Figure 7. In
Figure 7, the DecodeWidth equals 1, and other components differ. We can observe that the Pareto

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 1, Article 20. Publication date: December 2023.

20:14 C. Bai et al.

Fig. 7. The DecodeWidth equals 1 for the sampled microarchitectures, and the Pareto frontier they formu-

lated disperses across different sub-regions, colored in red.

Fig. 8. The change of performance and power dissipation w.r.t. IntPhyRegister on dhrystone and whetstone.

frontier spread across multiple sub-regions, highlighted in red ribbons in Figure 7. An algorithm
should inspect those sub-regions and sample microarchitecture embeddings across them, cir-
cumventing trapping into local optimum. Therefore, we propose the diversity-guided parallel
exploration.

MicroAL leverages DecodeWidth as a critical factor to capture the main characteristics of the
design space. Similarly, we also notice that IntPhyRegister can significantly affect the tradeoff.
Figure 8 visualizes such impacts. Dhrystone and whetstone are integer instructions-intensive
and floating-point instructions-intensive benchmarks, respectively. When the microarchitecture
selects IntPhyRegister from 48 to 112, the performance is improved by 8.52% and dissipates 6.86%
more power. Since whetstone is mainly composed of floating-point instructions, increasing Int-
PhyRegister introduces no change to the performance but worsens power dissipation more. BOOM
implements the unified integer physical register files design, i.e., the registers hold both committed
and speculative values/states.

More integer physical registers help to resolve more integer-related instructions conflicts,
e.g., data dependencies, and provide more support for instruction parallelism. Most commonly
used benchmarks contain many integer-related instructions, e.g., dhrystone, mm, median, and
so on. Thus, the impact on the tradeoff between performance and power can highly correlate
with IntPhyRegister on these benchmarks. The findings motivate us to propose the backbone for
diversity guidance.

We leverage IntPhyRegister to partition the clustered design space by MicroAL, as demonstrated
in Algorithm 3. In Algorithm 3, the clusters are obtained from MicroAL (line 2), and partitions
within each cluster are formulated according to IntPhyRegister (line 5). Different sub-regions are
constructed based on Algorithm 3. We sample microarchitecture embeddings according to the

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 1, Article 20. Publication date: December 2023.

BOOM-Explorer: RISC-V BOOM Microarchitecture Design Space Exploration 20:15

ALGORITHM 3: Partition (U)

Input: U is the dataset already clustered by MicroAL.
Output: The partitioned dataset U′.

1: U′ ← ∅;
2: C← extract_clusters (U); � C is obtained from line 8 of Algorithm 2
3: for Ci ⊂ C do

4: for x ∈ Ci do

5: U′[Ci][x .IntPhyRegister]← x ;
6: end for

7: end for

8: return U′;

ALGORITHM 4: Diversity-guided BOOM-Explorer (D,T , μ,b,n)

Input: D is the microarchitecture design space,T is the number of maximal iterations, μ is a normalization
coefficient and b is the number of samples to draw, n is the number of pre-determined iterations for
Algorithm 2.

Output: The microarchitectures X that form the Pareto optimality in D.
1: X0 ← MicroAL (D, μ,b,n); � Algorithm 2
2: Push X0 to the VLSI verification flow to obtain corresponding clock cycles and power values Y ;
3: L← X0; U← D \ L;
4: P← Partition (U); � Algorithm 3
5: for i = 1→ T do

6: Establish and train DKL-GP with (L,Y);
7: Select b unvisited partitions randomly from P;
8: for j = 1→ b do

9: x j∗ ← arg maxx ∈Pj
EIPV(x | Pj); � Equation (13)

10: end for

11: x∗ ← {x1∗,x2∗, . . . ,xb∗};
12: Push x∗ to the VLSI flow to obtain corresponding clock cycles and power values and add results toY ;
13: L← L ∪ x∗, U← U \ x∗;
14: end for

15: Construct X from L that form the Pareto optimality, according to Equation (3);
16: return Pareto-optimal set X ;

highest EIPV from each sub-region, respectively, as Equation (15) shows,

x∗ =
⎧⎪⎨⎪⎩

arg max
x ′ ∈Pj

EIPV(x ′ | Pj) | j = 1, 2, . . . ,N
⎫⎪⎬⎪⎭
, (15)

where Pj denotes the partition j, and N is the total number of partitions. The sampled batch x∗ is
evaluated with the VLSI flow in parallel.

Algorithm 4 details the whole framework. Line 4 performs the partition. Combined with Ta-
ble 1 and MicroAL, the partition operation incurs 25 different sub-regions for the design space.
We establish and train the surrogate model, DKL-GP, for each optimization round (line 6) and se-
lect unvisited partitions to aggregate the explored dataset (line 7). We maintain a visited buffer to
record the access times to a specific partition in line 7. The framework extends the explored dataset
gradually (line 13). Finally, the predicted Pareto frontier and corresponding microarchitecture em-
beddings are obtained. It is worth noting that Algorithm 4 requires at least b available EDA tools
licenses to implement.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 1, Article 20. Publication date: December 2023.

20:16 C. Bai et al.

Other solutions could also be leveraged in Algorithm 3 to further improve the performance.
First, some partitions can be directly pruned by the expertise. Architects have predetermined per-
formance or power design goals. The selection of partitions can be made based on these goals. For
example, we prefer to use a wider microarchitecture to pursue higher performance. So, we can only
focus on partitions with decode width attaining the maximal value while neglecting other parti-
tions, i.e., we only focus on “important” partitions. Second, the exploration-exploitation heuristic
can be utilized, similar to the action selection in reinforcement learning [41]. We decide whether
to exploit the current best-known partition that effectively achieves higher Pareto hypervolume or
explore new partitions. The decision could be based on epsilon-greedy heuristics, upper confidence
bound, and so on. We leave these discussed solutions in our future work.

5 EXPERIMENTS

We conduct comprehensive experiments to evaluate BOOM-Explorer.

5.1 Experiments Settings & Evaluation Metrics

We utilize Chipyard [42] to generate various BOOM RTL designs. And we use 7-nm ASAP7 PDK
[29] for the VLSI flow. Cadence Genus 18.12-e012_1 is used to synthesize every sampled RTL de-
sign with 1 GHz timing constraints, and Synopsys VCS M-2017.03 is used to simulate the design
with different benchmarks. PrimeTime PX R-2020.09-SP1 is leveraged to get power values for all
benchmarks. All experiments are conducted in 80 cores of Intel(R) Xeon(R) CPU E7-4830 v2 @ 2.20
GHz with 1 TB main memory.

In the settings of BOOM-Explorer, DKL-GP is stacked with three hidden layers, each of which
has 1, 000, 500, and 50 hidden neurons, respectively, and it adopts ReLU as the non-linear transfor-
mation for deep kernels. The Adam optimizer [43] is used, with an initial learning rate equal to
0.001. BOOM-Explorer performs Bayesian exploration with 9 iterations. All experiments together
with baselines are repeated 10 times, and we report corresponding average results.

5.2 Benchmarks, Baselines & Evaluation Metrics

To assess each microarchitecture, we employ a set of benchmarks selected from bare models
[15]. These benchmarks include median, mt-vvadd, whetstone, mm, and so on. The benchmarks
have covered all kinds of RV64G instructions, e.g., integer-related, floating-point numbers-related,
memory-related instructions, and so on, and each benchmark focuses on testing specific instruc-
tion features. For example, mm focuses on multi-threaded memory reads and writes operations.
Since a BOOM design needs to handle various applications rather than specific instruction cate-
gories, we average the clock cycles and power values from these benchmarks to denote the design’s
performance and power. After warming up the design by executing the benchmark, we proceed
to measure the performance and power for a specific BOOM configuration. This process allows
us to obtain accurate performance and power values for the given microarchitecture, taking into
account any initial variability or transient effects that may occur during the warm-up phase.

Several representative baselines are compared with the diversity-guided BOOM-Explorer. The
ANN-based method [18] (shorted as ASPLOS’06) stacks ANN as the performance model for a
multiprocessor to conduct DSE. The regression-based method [27] (termed HPCA’07) leverages
regression models with non-linear transformations to explore the performance-power Pareto
frontier for POWER microprocessors. The AdaBoost-RT-based method [21] (abbreviated as
DAC’16) utilizes the orthogonal design sampling [49] and active learning-based AdaBoost regres-
sion tree models [28] to explore an Alpha21264-like microprocessor [8, 11]. The arts mentioned
above proved effective in exploring microarchitecture parameters in their works, respectively.
Therefore, it is requisite to compare these methodologies with our proposed methodology. The

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 1, Article 20. Publication date: December 2023.

BOOM-Explorer: RISC-V BOOM Microarchitecture Design Space Exploration 20:17

high-level synthesis (HLS) predictive model-based method [45] (named DAC’19) exploring
the HLS design is also chosen as our baseline. Although the starting point is different, their
method proved robust and transferable. We also compare diversity-guided BOOM-Explorer with
traditional machine learning models, including support vector regression (SVR) and tree-based
approaches such as random forest, XGBoost [50], and tree-structured Parzen estimator approach
(abbreviated as NIPS’11) [44]. In addition, we compare previous state-of-the-art Bayesian op-
timization approaches [46, 47] with our proposed methodology, since both methods adopt the
same optimization framework but are distinct in the design of initialization, surrogate model,
and acquisition function. We name the two state-of-the-art approaches as NIPS’19 and NIPS’22,
respectively. For fair comparisons, the experimental settings of the baselines are the same as
those mentioned in their papers. In traditional machine learning algorithms (SVR, random forest,
and XGBoost), since they are not fit for Bayesian optimization due to unavailable predictive
uncertainties, we leverage simulated annealing [51] to explore the design space. We also compare
the proposed methodology with the sequential optimization version of BOOM-Explorer [48]. All
algorithms explore the same design space, as defined in Table 1. In our future work, we will delve
into more intricate design spaces that encompass branch prediction algorithms, prefetching, and
additional objectives, such as area metrics. However, one caveat is that there is a resemblance
between microarchitecture and area values, akin to power values, where a larger area usually
corresponds to higher power dissipation. Meeting higher performance requirements often entails
employing more hardware resources, which, in turn, leads to a larger area.

To compare the diversity-guided BOOM-Explorer with all baselines, we utilize multiple met-
rics. These metrics include the Pareto hypervolume, the average distance to the reference set

(ADRS), and the overall running time (ORT). Pareto hypervolume and ADRS are two widely
used metrics in estimating the performance of DSE among multiple objectives. As mentioned in
Section 4.4, the Pareto hypervolume measures the volume of the space enclosed by all solutions on
the explored Pareto frontier and a user-defined reference point, where the computation of Pareto
hypervolume is defined in Equation (11). The ADRS computes the average distance between the
predicted Pareto frontier and the real Pareto frontier, providing insights into the quality and prox-
imity of the solutions to the golden results. Equation (16) lists the computation of ADRS.

ADRS(Γ,Ω) =
1

|Γ |
∑
γ ∈Γ

min
ω ∈Ω

f (γ ,ω), (16)

where f is the Euclidean distance function, Γ is the real Pareto frontier, and Ω is the predicted
Pareto frontier. The ORT measures the total running time of algorithms, including initialization,
exploring, and the VLSI runtime cost. The higher the Pareto hypervolume, the lower the ADRS
and ORT, the better the DSE algorithm is.

5.3 Evaluation Results

Figure 9 shows the predicted Pareto frontier obtained by the baselines and diversity-guided BOOM-
Explorer. The results show that the Pareto frontier generated by BOOM-Explorer and its diversity-
guided version is much closer to the actual Pareto frontier in general. Moreover, the diversity-
guided BOOM-Explorer improves the results visually.

The normalized Pareto hypervolume, ADRS, and ORT results are listed in Table 3. Three
summaries can be drawn from Table 3. First, BOOM-Explorer achieves an average of 18.75%
higher Pareto hypervolume, 35.47% less ADRS, and 65.38% less ORT compared to all baselines.
Specifically, BOOM-Explorer outperforms ASPLOS’06, HPCA’07, DAC’16, and DAC’19 by 70.13%,
66.55%, 28.65%, and 64.54% in ADRS, respectively. Meanwhile, it accelerates the exploration
by more than 88.19% compared with DAC’16. The improvement achieved by our method over

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 1, Article 20. Publication date: December 2023.

20:18 C. Bai et al.

Fig. 9. Comparisons between the predicted Pareto frontier and the real Pareto frontier of BOOM

microarchitectures.

Table 3. Normalized Experimental Results for Pareto Hypervolume, ADRS & ORT

Methodologies
Norm. Pareto Hypervolume Norm. ADRS

Norm. ORT
Val. Ratio Val. Ratio

SVR 1.1519 1.0000× 0.2400 1.0000× 1.0000×
Random Forest 1.1794 1.0238× 0.2263 0.9430× 0.9763×

XGBoost 1.3152 1.1417× 0.2171 0.9046× 1.0102×
ASPLOS’06 [18] 1.3266 1.1516× 0.1948 0.8116× 0.9436×
HPCA’07 [27] 1.3218 1.1475× 0.1907 0.7949× 0.8544×
NIPS’11 [44] 1.3547 1.1760× 0.1723 0.7181× 0.7506×
DAC’16 [21] 1.3886 1.2055× 0.1473 0.6141× 3.0102×
DAC’19 [45] 1.3395 1.1628× 0.1884 0.7852× 0.8973×
NIPS’19 [46] 1.5496 1.3452× 0.1178 0.4908× 0.3567×
NIPS’22 [47] 1.5625 1.3564× 0.1426 0.5944× 0.4436×

BOOM-Explorer w/o MicroAL [48] 1.4665 1.2731× 0.1441 0.6006× 0.3307×
BOOM-Explorer [48] 1.6280 1.4132× 0.1145 0.4773× 0.3555×

Diversity-guided BOOM-Explorer 1.6362 1.4203× 0.0915 0.3815× 0.3533×

previous approaches stems from a customized algorithm design explicitly tailored to the problem
at hand. Our method asks for fewer estimations using the VLSI flow while effectively modeling the
design space with as few samples as possible. Second, MicroAL contributes 11.00% and 20.53% to
exalt the Pareto hypervolume and ADRS. The results are obtained from the comparison between
BOOM-Explorer and BOOM-Explorer w/o MicroAL. It also illustrates that without MicroAL, the
performance of BOOM-Explorer would be close to DAC’16. If more time budget is allowed, then
we expect better results received from BOOM-Explorer. Third, incorporating diversity guidance
as a key enhancement, we achieve a significant improvement in the ADRS, surpassing BOOM-
Explorer by 20.09% with comparable ORT. The improvement on ADRS is larger than the Pareto
hypervolume, demonstrating that “outliers” can be explored. As discussed in Section 4.5, these out-
liers pertain to similar or smaller EIPV but closer to the real Pareto frontier. It is worth noting that
we partition the design space w.r.t. IntPhyRegister, as discussed in Section 4.5. Hence, the proposed
method has a better effect when we target to optimize for integer-intensive applications. Addition-
ally, previous state-of-the-art approaches (NIPS’19 and NIPS’22) receive a relatively good Pareto

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 1, Article 20. Publication date: December 2023.

BOOM-Explorer: RISC-V BOOM Microarchitecture Design Space Exploration 20:19

Table 4. Comparison with Two-wide BOOM

Methodology Microarchitecture Embedding
+ Average Clock Average Power

Cycles (watts)
Two-wide BOOM [12–14] [4, 16, 32, 12, 4, 8, 2, 2, 64, 80, 64, 1, 2, 1, 16, 16, 4, 2, 8] 74915.2963 6.0700 × 10−2

BOOM-Explorer [48] [4, 16, 16, 8, 2, 8, 2, 2, 32, 64, 64, 1, 3, 1, 24, 24, 8, 4, 8] 73333.7407 5.8600 × 10−2

Diversity-guided BOOM-Explorer [4, 16, 16, 8, 4, 8, 2, 2, 32, 64, 64, 1, 2, 1, 24, 24, 8, 4, 8] 73279.2820 5.8200 × 10−2

+ The parameters are in the same order as Table 1.

hypervolume and smaller ADRS more efficiently than other baselines. Like random forest and
XGBoost, the NIPS’11 baseline [44] adopts tree-based structures as the surrogate model but uses
Bayesian optimization. The NIPS’19 [46] and NIPS’22 baselines [47] leverage information-theoretic
acquisition function designs. Although, these baselines perform well in general DSE problems,
they achieve mediocre results compared to diversity-guided BOOM-Explorer largely due to the
missing customization in the algorithm design such as tightly coupled with expert knowledge.

5.4 Comparison of Pareto-optimal BOOM Microarchitectures

We compare Pareto-optimal microarchitectures explored by proposed algorithms and human im-
plementations [12–14] on more benchmarks to study how each BOOM microarchitecture balance
the performance and power. The Pareto-optimal microarchitectures have similar parameter set-
tings, as listed in Table 4.

Pareto-optimal designs found by BOOM-Explorer and diversity-guided BOOM-Explorer have
the same decode width as the two-wide BOOM. However, the Pareto-optimal design reduces hard-
ware components on the branch predictor (i.e., RasEntry, BranchCount, etc.), entries of the reorder
buffer, and so on, but enlarges instructions issue width, load queue (LDQ), store queue (STQ),
and so on. Moreover, it has different cache organizations, e.g., different associate sets. Because LSU
introduced in Section 2.1 tends to become a bottleneck of the microarchitecture, the Pareto-optimal
design increases hardware resources for LDQ and STQ, increasing associate sets and miss status

handling register (MSHR) entries for D-cache to overcome more data conflicts. Furthermore,
the Pareto-optimal design found by diversity-guided BOOM-Explorer reduces the resources of re-

turn address stack (RAS) and branch target buffer (BTB), since they affect the tradeoff less for
the same branch prediction algorithm [30]. It also reduces the instruction issue slot but increases
the I-cache associative sets. Both Pareto-optimal designs achieve a better tradeoff on power and
performance by reducing redundant hardware resources while increasing necessary components
on critical paths [52].

We evaluate these microarchitectures with more benchmarks. Table 4 shows the average clock
cycles and power values for all these benchmarks. These benchmarks are chosen from different ap-
plication scenarios, e.g., add-int, add-fp, and so on, are from ISA basic instructions, iir, firdim,
and so on, are from DSP-oriented algorithms [53], compress, duff, and so on, are from real-time
computing applications [54], and so on. Figure 10 shows the comparison of performance and power
values, respectively. For all of these benchmarks, BOOM-Explorer’s design runs approximately
2.11% faster and, at the same time, dissipates 3.45% less power than the two-wide BOOM. The
solution from diversity-guided BOOM-Explorer achieves 2.18% faster and 3.99% better on power
dissipation than human implementations.

5.5 Effectiveness of MicroAL

To assess the effectiveness of MicroAL, we conduct an ablation study on the effectiveness of Mi-
croAL. We investigate the integration of MicroAL to some baselines, which allows us to modify
the initialization algorithm that is not tightly coupled with the exploration procedure. Specifically,

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 1, Article 20. Publication date: December 2023.

20:20 C. Bai et al.

Fig. 10. Comparisons of explored BOOM microarchitectures with more benchmarks.

Fig. 11. We integrate MicroAL into chosen baselines to investigate the MicroAL’s effectiveness on the nor-

malized Pareto hypervolume and ADRS.

we conduct MicroAL with SVR, random forest, XGBoost, ASPLOS’06 [18], HPCA’07 [27], NIPS’11
[44], NIPS19 [46], and NIPS’22 [47].

Figure 11 lists the comparative results on the Pareto hypervolume and ADRS when we integrate
MicroAL to baselines. Two summaries are drawn from Figure 11. First, integrating MicroAL into
baselines can improve an average of 8.06% Pareto hypervolume, and 12.15% ADRS. For example,
when we integrate MicroAL into SVR, the Pareto hypervolume can be increased by approximately
18.08% while the ADRS is reduced by a large margin. Second, MicroAL can have negative effects
on some benchmarks like NIPS’19 [46]. Although integrating MicroAL to NIPS’19 [46] results in
a similar Pareto hypervolume, it degrades the ADRS by 25.16%. We argue that the reason behind
the phenomenon is that we leverage single-task GP models to individually model the performance
and power. In contrast, the samples generated by MicroAL are highly different. Therefore, the built
surrogate models are rather “weak.” However, objective-related features can be utilized to capture

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 1, Article 20. Publication date: December 2023.

BOOM-Explorer: RISC-V BOOM Microarchitecture Design Space Exploration 20:21

the distinctions between MicroAL’s samples. So, a good co-design between the initialization and
the surrogate model is significant.

6 CONCLUSIONS

In this article, BOOM-Explorer is proposed to explore the Pareto optimality within the BOOM mi-
croarchitecture design space efficiently. Several techniques, including MicroAL, DKL-GP, EIPV, and
diversity-guided parallel exploration, are proposed in diversity-guided BOOM-Explorer, following
two lessons learned from prior arts. Experimental results with RISC-V Berkeley-Out-of-Order Ma-
chine under 7-nm technology show that our proposed methodology achieves an average of 18.75%
higher Pareto hypervolume, 35.47% less average distance to reference set, and 65.38% less overall
running time compared to previous approaches. Adapting BOOM-Explorer for other microproces-
sors requires mild changes, including additional expert knowledge and the VLSI flow support. We
hope to see more research emerging in our community to improve microarchitecture design space
explorations of RISC-V microprocessors.

REFERENCES

[1] RISC-V. 2023. Wikipedia, Wikimedia Foundation. https://en.wikipedia.org/wiki/RISC-V
[2] Philippe Magarshack and Pierre G. Paulin. 2003. System-on-chip beyond the nanometer wall. In ACM/IEEE Design

Automation Conference (DAC’03). IEEE, 419–424.
[3] Yunsup Lee, Andrew Waterman, Henry Cook, Brian Zimmer, Ben Keller, Alberto Puggelli, Jaehwa Kwak, Ruzica Jevtic,

Stevo Bailey, Milovan Blagojevic, Pi-Feng Chiu, Rimas Avizienis, Brian Richards, Jonathan Bachrach, David Patterson,
Elad Alon, Borivoje Nikolic, and Krste Asanovic. 2016. An agile approach to building RISC-V microprocessors. IEEE

Micro 36, 2 (2016), 8–20.
[4] James E. Smith. 1998. A study of branch prediction strategies. In IEEE/ACM International Symposium on Computer

Architecture (ISCA’98). 202–215.
[5] George Z. Chrysos and Joel S. Emer. 1998. Memory dependence prediction using store sets. In IEEE/ACM International

Symposium on Computer Architecture (ISCA’98). 142–153.
[6] Sparsh Mittal. 2016. A survey of recent prefetching techniques for processor caches. Comput. Surv. 49, 2 (2016), 1–35.
[7] Todd Austin, Eric Larson, and Dan Ernst. 2002. SimpleScalar: An infrastructure for computer system modeling. IEEE

Trans. Comput. 35, 2 (2002), 59–67.
[8] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness,

Derek R. Hower, Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish,
Mark D. Hill, and David A. Wood. 2011. The GEM5 simulator. ACM SIGARCH Comput. Archit. News 2 (2011), 1–7.

[9] Trevor E. Carlson, Wim Heirman, and Lieven Eeckhout. 2011. Sniper: Exploring the level of abstraction for scalable and
accurate parallel multi-core simulation. In IEEE International Conference on High Performance Computing (HiPC’11).
1–12.

[10] Daniel Sanchez and Christos Kozyrakis. 2013. ZSim: Fast and accurate microarchitectural simulation of thousand-core
systems. ACM SIGARCH Comput. Archit. News 41, 3 (2013), 475–486.

[11] Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian, Rico Amslinger, Matteo Andreozzi, Adrià
Armejach, Nils Asmussen, Brad Beckmann, Srikant Bharadwaj, Gabe Black, Gedare Bloom, Bobby R. Bruce, Daniel
Rodrigues Carvalho, Jeronimo Castrillon, Lizhong Chen, Nicolas Derumigny, Stephan Diestelhorst, Wendy Elsasser,
Carlos Escuin, Marjan Fariborz, Amin Farmahini-Farahani, Pouya Fotouhi, Ryan Gambord, Jayneel Gandhi, Dibakar
Gope, Thomas Grass, Anthony Gutierrez, Bagus Hanindhito, Andreas Hansson, Swapnil Haria, Austin Harris, Tim-
othy Hayes, Adrian Herrera, Matthew Horsnell, Syed Ali Raza Jafri, Radhika Jagtap, Hanhwi Jang, Reiley Jeyapaul,
Timothy M. Jones, Matthias Jung, Subash Kannoth, Hamidreza Khaleghzadeh, Yuetsu Kodama, Tushar Krishna, Tom-
maso Marinelli, Christian Menard, Andrea Mondelli, Miquel Moreto, Tiago Mück, Omar Naji, Krishnendra Nathella,
Hoa Nguyen, Nikos Nikoleris, Lena E. Olson, Marc Orr, Binh Pham, Pablo Prieto, Trivikram Reddy, Alec Roelke, Mah-
yar Samani, Andreas Sandberg, Javier Setoain, Boris Shingarov, Matthew D. Sinclair, Tuan Ta, Rahul Thakur, Giacomo
Travaglini, Michael Upton, Nilay Vaish, Ilias Vougioukas, William Wang, Zhengrong Wang, Norbert Wehn, Christian
Weis, David A. Wood, Hongil Yoon, and Éder F. Zulian. 2020. The GEM5 simulator: Version 20.0+. arXiv preprint

arXiv:2007.03152 (2020).
[12] Krste Asanovic, David A. Patterson, and Christopher Celio. 2015. The Berkeley Out-of-order Machine (BOOM): An

Industry-competitive, Synthesizable, Parameterized RISC-V Processor. Technical Report. University of California at
Berkeley.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 1, Article 20. Publication date: December 2023.

https://en.wikipedia.org/wiki/RISC-V

20:22 C. Bai et al.

[13] Christopher Patrick Celio. 2017. A Highly Productive Implementation of an Out-of-Order Processor Generator. eScholar-
ship, University of California.

[14] Jerry Zhao, Ben Korpan, Abraham Gonzalez, and Krste Asanovic. 2020. SonicBOOM: The 3rd generation Berkeley
Out-of-Order Machine. In Workshop on Computer Architecture Research with RISC-V (CARRV’20).

[15] RISC-V Unit Tests Benchmark Suites. 2023. GitHub. https://github.com/riscv-software-src/riscv-tests
[16] Vinod Kathail, Shail Aditya, Robert Schreiber, B. Ramakrishna Rau, Darren C. Cronquist, and Mukund Sivaraman.

2002. PICO: Automatically designing custom computers. IEEE Trans. Comput. 35, 9 (2002), 39–47.
[17] David Brooks, Pradip Bose, Viji Srinivasan, Michael K. Gschwind, Philip G. Emma, and Michael G. Rosenfield. 2003.

New methodology for early-stage, microarchitecture-level power-performance analysis of microprocessors. IBM J.

Res. Devel. 47, 5.6 (2003), 653–670.
[18] Engin Ïpek, Sally A. McKee, Rich Caruana, Bronis R. de Supinski, and Martin Schulz. 2006. Efficiently exploring ar-

chitectural design spaces via predictive modeling. ACM Int. Conf. Archit. Supp. Program. Lang. Oper. Syst. 40, 5 (2006),
195–206.

[19] Tejas S. Karkhanis and James E. Smith. 2007. Automated design of application specific superscalar processors: An
analytical approach. In IEEE/ACM International Symposium on Computer Architecture (ISCA’07). 402–411.

[20] Christophe Dubach, Timothy Jones, and Michael O’Boyle. 2007. Microarchitectural design space exploration using an
architecture-centric approach. In IEEE/ACM International Symposium on Microarchitecture (MICRO’07). IEEE, 262–271.

[21] Dandan Li, Shuzhen Yao, Yu-Hang Liu, Senzhang Wang, and Xian-He Sun. 2016. Efficient design space exploration
via statistical sampling and AdaBoost learning. In ACM/IEEE Design Automation Conference (DAC’16). 1–6.

[22] Hossein Golestani, Rathijit Sen, Vinson Young, and Gagan Gupta. 2022. Calipers: A criticality-aware framework for
modeling processor performance. In ACM International Conference on Supercomputing (ICS’22).

[23] Brian A. Fields, Rastislav Bodik, Mark D. Hill, and Chris J. Newburn. 2003. Using interaction costs for microarchitec-
tural bottleneck analysis. In IEEE/ACM International Symposium on Microarchitecture (MICRO’03). IEEE, 228–239.

[24] Stijn Eyerman, Lieven Eeckhout, Tejas Karkhanis, and James E. Smith. 2009. A mechanistic performance model for
superscalar out-of-order processors. IEEE Trans. Comput. 27, 2 (2009), 1–37.

[25] Chen Bai, Jiayi Huang, Xuechao Wei, Yuzhe Ma, Sicheng Li, Hongzhong Zheng, Bei Yu, and Yuan Xie. 2023. ArchEx-
plorer: Microarchitecture exploration via bottleneck analysis. In IEEE/ACM International Symposium on Microarchi-

tecture (MICRO’23). IEEE/ACM.
[26] Richard E. Kessler. 1999. The Alpha 21264 microprocessor. IEEE Micro 19, 2 (1999), 24–36.
[27] Benjamin C. Lee and David M. Brooks. 2007. Illustrative design space studies with microarchitectural regression

models. In IEEE International Symposium on High Performance Computer Architecture (HPCA’07). 340–351.
[28] Durga L. Shrestha and Dimitri P. Solomatine. 2006. Experiments with AdaBoost.RT, an improved boosting scheme for

regression. Neural Comput. 18, 7 (2006), 1678–1710.
[29] Vinay Vashishtha, Manoj Vangala, and Lawrence T. Clark. 2017. ASAP7 predictive design kit development and cell

design technology co-optimization. In IEEE/ACM International Conference on Computer-Aided Design (ICCAD’17).
992–998.

[30] André Seznec and Pierre Michaud. 2006. A case for (partially) TAgged GEometric history length branch prediction. J.

Instruct.-level Parallel. 8 (2006), 23.
[31] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Rimas Avižienis, John Wawrzynek, and

Krste Asanović. 2012. Chisel: Constructing hardware in a Scala embedded language. In ACM/IEEE Design Automation

Conference (DAC’12). 1212–1221.
[32] Shuhan Zhang, Fan Yang, Dian Zhou, and Xuan Zeng. 2020. An efficient asynchronous batch Bayesian optimization

approach for analog circuit synthesis. In ACM/IEEE Design Automation Conference (DAC’20). 1–6.
[33] Qi Sun, Tinghuan Chen, Siting Liu, Jin Miao, Jianli Chen, Hao Yu, and Bei Yu. 2021. Correlated multi-objective

multi-fidelity optimization for HLS directives design. In IEEE/ACM Proceedings Design, Automation and Test in Eu-

rope (DATE’21).
[34] Carl Edward Rasmussen. 2003. Gaussian processes in machine learning. In Summer School on Machine Learning.

Springer, 63–71.
[35] Kai Yu, Jinbo Bi, and Volker Tresp. 2006. Active learning via transductive experimental design. In International Con-

ference on Machine Learning (ICML’06). 1081–1088.
[36] Yuzhe Ma, Subhendu Roy, Jin Miao, Jiamin Chen, and Bei Yu. 2018. Cross-layer optimization for high speed adders: A

pareto driven machine learning approach. IEEE Trans. Comput.-aid. De. Integ. Circ. Syst. 38, 12 (2018), 2298–2311.
[37] Yuzhe Ma, Ziyang Yu, and Bei Yu. 2019. CAD tool design space exploration via Bayesian optimization. In ACM/IEEE

Workshop on Machine Learning CAD (MLCAD’19). 1–6.
[38] Chris Williams, Edwin V. Bonilla, and Kian M. Chai. 2007. Multi-task Gaussian process prediction. In Annual Confer-

ence on Neural Information Processing Systems (NIPS’07). 153–160.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 1, Article 20. Publication date: December 2023.

https://github.com/riscv-software-src/riscv-tests

BOOM-Explorer: RISC-V BOOM Microarchitecture Design Space Exploration 20:23

[39] Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P. Xing. 2016. Deep kernel learning. In Artificial

Intelligence and Statistics. PMLR, 370–378.
[40] Amar Shah and Zoubin Ghahramani. 2016. Pareto frontier learning with expensive correlated objectives. In Interna-

tional Conference on Machine Learning (ICML’16). 1919–1927.
[41] Richard S. Sutton and Andrew G. Barto. 1998. Introduction to Reinforcement Learning. Vol. 135. MIT Press, Cambridge,

MA.
[42] Alon Amid, David Biancolin, Abraham Gonzalez, Daniel Grubb, Sagar Karandikar, Harrison Liew, Albert Magyar,

Howard Mao, Albert Ou, Nathan Pemberton, Paul Rigge, Colin Schmidt, John Wright, Jerry Zhao, Yakun Sophia Shao,
Krste Asanovic, and Borivoje Nikolic. 2020. Chipyard: Integrated design, simulation, and implementation framework
for custom SoCs. IEEE Micro 40, 4 (2020), 10–21.

[43] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980

(2014).
[44] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. 2011. Algorithms for hyper-parameter optimization.

In Annual Conference on Neural Information Processing Systems (NIPS’11).
[45] Shuangnan Liu, Francis C. M. Lau, and Benjamin Carrion Schafer. 2019. Accelerating FPGA prototyping through

predictive model-based HLS design space exploration. In ACM/IEEE Design Automation Conference (DAC’19). 1–6.
[46] Syrine Belakaria, Aryan Deshwal, and Janardhan Rao Doppa. 2019. Max-value entropy search for multi-objective

Bayesian optimization. In Annual Conference on Neural Information Processing Systems (NIPS’19).
[47] Ben Tu, Axel Gandy, Nikolas Kantas, and Behrang Shafei. 2022. Joint entropy search for multi-objective Bayesian

optimization. In Annual Conference on Neural Information Processing Systems (NIPS’22). 9922–9938.
[48] Chen Bai, Qi Sun, Jianwang Zhai, Yuzhe Ma, Bei Yu, and Martin D. F. Wong. 2021. BOOM-Explorer: RISC-V BOOM

microarchitecture design space exploration framework. In IEEE/ACM International Conference on Computer-Aided

Design (ICCAD’21). IEEE, 1–9.
[49] Kai-Tai Fang and Yuan Wang. 1993. Number-theoretic Methods in Statistics. Vol. 51. CRC Press.
[50] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A scalable tree boosting system. In ACM International Conference

on Knowledge Discovery and Data Mining (KDD’16). 785–794.
[51] Peter J. M. Van Laarhoven and Emile H. L. Aarts. 1987. Simulated annealing. In Simulated Annealing: Theory and

Applications. Springer, 7–15.
[52] Brian Fields, Shai Rubin, and Rastislav Bodik. 2001. Focusing processor policies via critical-path prediction. In

IEEE/ACM International Symposium on Computer Architecture (ISCA’01). IEEE, 74–85.
[53] V. Zivojnovic, J. Martinez, C. Schläger, and Heinrich Meyr. 1994. DSPstone: A DSP-Oriented benchmarking method-

ology. In International Conference on Signal Processing, Applications & Technology.
[54] Metin Kuzhan and Veysel Harun Şahın. 2020. MBBench: A WCET benchmark suite. Sakarya Univ. J. Comput. Inf. Sci.

3, 1 (2020), 40–50.

Received 31 May 2023; revised 15 September 2023; accepted 8 October 2023

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 1, Article 20. Publication date: December 2023.

