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RL-OPC: Mask Optimization With
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Abstract—Mask optimization is a vital step in the VLSI man-
ufacturing process in advanced technology nodes. As one of
the most representative techniques, optical proximity correction
(OPC) is widely applied to enhance printability. Since conven-
tional OPC methods consume prohibitive computational over-
head, recent research has applied machine learning techniques
for efficient mask optimization. However, existing discrimina-
tive learning models rely on a given dataset for supervised
training, and generative learning models usually leverage a
proxy optimization objective for end-to-end learning, which
may limit the feasibility. In this article, we pioneer introducing
the reinforcement learning (RL) model for mask optimization,
which directly optimizes the preferred objective without lever-
aging a differentiable proxy. Intensive experiments show that
our method outperforms state-of-the-art solutions, including
academic approaches and commercial toolkits.

Index Terms—Design for manufacturing, mask optimization,
reinforcement learning (RL), optical proximity correction (OPC).

I. INTRODUCTION

THE CONTINUOUS shrinking of geometries in the mod-
ern VLSI has become a great challenge for manufac-

turing. Therefore, various resolution enhancement techniques
(RETs) have been developed. As one of the most represen-
tative RETs, optical proximity correction (OPC) is vital to
improving printability and attracts great attention from both
academia and industry.

OPC aims to rectify the pattern to compensate for distor-
tions resulting from the diffraction effect of the light during
lithography. Fig. 1 depicts the effectiveness of OPC on a sim-
ple via pattern. It can be observed in Fig. 1(a) that directly
applying the target pattern as the mask pattern, i.e., without
conducting OPC, leads to a large distortion on the printed
contour. Fig. 1(b) shows OPC can significantly improve the
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Fig. 1. (a) Directly applying target pattern as mask pattern leads to large
distortion on the printed contour. (b) OPC significantly improves the fidelity
of the printed contour.

fidelity of the printed contour. Existing OPC solutions can
be classified into several categories, including rule-based
OPC [1], model-based OPC [2], [3], [4], inverse lithography
technique (ILT) [5], [6], and machine learning (ML)-based
OPC [7], [8], [9], [10], [11]. Rule-based OPC employs empir-
ical correction rules as correction guidance. However, its
efficiency and dependency on prior knowledge and empirical
data are challenged by the extreme scaling of modern VLSI
design. Conventional model-based OPC refines the mask itera-
tively based on lithography simulation. The edges of a pattern
are fractured into segments that are moved inward or outward.
Kuang et al. [2] proposed to optimize the edge placement error
(EPE) and mask robustness through multistage optimization.
Su et al. [3] built a fast OPC flow that adaptively optimizes
the tradeoff between EPE and process variations.

To further increase the solution space, ILT-based meth-
ods treat mask optimization as an inverse imaging problem,
which conducts numerical optimization on the pixels of a
mask image. Conventional ILT approaches [5], [6] consider
the design target and process window simultaneously to
achieve high printability. However, the scalability of ILT is
a major concern due to the intensive computation in the
forward lithography simulation and backward gradient com-
putation, which constrains ILT to be applied only to a portion
of design patterns. Hence, model-based OPC and ILT are
complementary in main-stream OPC solutions.
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The advancement of ML techniques has catalyzed the
research of exploring efficient and intelligent solutions in VLSI
design and manufacturing [12], including mask optimization.
Existing learning-based OPC methods mainly involve dis-
criminative models and generative models. Jiang et al. [7]
constructed an OPC acceleration framework and a mask print-
ability prediction model, which predicts EPE during the OPC
workflow and guides the edge movements. Generative mod-
els [9], [10] mainly leverage generative adversarial networks
(GANs) to generate the desired mask for a given target pattern,
which may also serve as a superior initialization for conven-
tional OPC engines. Chen et al. [10] developed DAMO to
handle high-resolution input. In general, learning-based meth-
ods are dependent on a labeled dataset and are trained in a
supervised manner based on a loss function. However, several
issues exist in these two aspects. Regarding the dataset, since
the ML models are trained on a dataset that contains design
patterns and corresponding masks from a specific OPC engine
(mostly a commercial tool), their performance is constrained
by the dataset quality. Since the principle of supervised learn-
ing is to approximate a function that perfectly fits the dataset,
although the ML model is trained perfectly, the OPC results
are still not expected to reliably surpass the results in the
original dataset. Regarding the loss function, learning-based
methods rely on a differentiable objective to perform gradient
descent. Considering that the primary metrics, e.g., EPE and
process variation band (PV band), are calculated in a discrete
manner and cannot be directly applied in gradient propagation,
learning-based methods leverage proxy objectives for approxi-
mation, including intersection over union [10] and squared L2
error [9]. However, guidance from the aforementioned proxy
objectives aims to minimize the pixel-wise difference between
the generated mask (or contour) and the reference mask (or
contour), which does not align with the primary metrics per-
fectly and hence leads to a quality gap of the final OPC
results.

There are multiple objectives to be considered in mask
optimization tasks, including wafer image quality and mask
robustness against process variation. To optimize the two
objectives, existing model-based OPC approaches generally
split the optimization procedure into different subroutines for
different evaluation metrics. Thus, the optimized result of the
former stage is easily perturbed by the latter modifications. For
instance, [2] involves two successive stages of EPE and PV
band minimization. However, the solution space of the latter
stage, i.e., PV band optimization, is limited because of poten-
tial new EPE violations (EPEVs), with which another round
of EPE refixing should be launched.

On the other hand, ILT-based methods generally perform
multiobjective optimization by integrating the evaluation met-
rics into the objective function. For instance, the cost function
of [6] is designed as the weighted summation of EPE and PV
band. Standard PV band measurement requires multiple lithog-
raphy simulations to obtain printed images under all process
conditions and involves Boolean operations like XOR among
all printed images. However, this is not applicable to ILT since
ILT requires a continuous objective function. Alternatively,
conventional ILT methods [6] measure PV band by the sum of

the image difference between different printed images and the
target image to approximate the PV band, which may result
in PV band inaccuracy. Meanwhile, since ILT suffers from
intensive computational overhead, for efficiency improvement,
the PV band is measured among simulation results under a
small set of representative process corners. Hence, the PV
band approximation and the pruned process corners both lead
to potential inaccuracy for PV band measurements, and thus
ruin the PV band optimization in ILT.

In order to address these issues in mask optimization for
modern VLSI design and manufacturing, we propose rein-
forcement learning (RL)-OPC, a mask optimization framework
based on RL, for simultaneous optimization of mask quality
and robustness. RL-OPC aims to train an agent which interacts
with and learns from the environment and performs automatic
optimization for mask correction based on Q-learning [13]. For
each movable edge of the target pattern, the agent extracts the
local pattern feature and determines its moving direction, and
then receives a reward from the environment by performing
lithography simulation to justify the effectiveness of this move
and learns from these experiences, i.e., the Q-value of each
action for a specific local pattern. Once the agent is trained, it
can determine how to correct the mask by sequentially moving
all the edges of an input pattern. RL-OPC has several advan-
tages over discriminative OPC models and generative OPC
models. On the one hand, the proposed RL-OPC does not rely
on any dataset as a reference, which can potentially achieve
superior qualities on OPC results. On the other hand, RL-OPC
can be trained without introducing a differentiable proxy met-
ric in OPC but can directly optimize discrete OPC objectives.
Compared with the aforementioned model-based methods, RL-
OPC simultaneously minimizes EPE and PV band by building
a multiobjective RL framework. Compared with ILT, RL-OPC
involves more precise PV band measurement which utilizes the
standard measuring strategy and enumerates more intensive
process corners. Moreover, it should be noted that RL-OPC
is a good complement to all existing learning-based OPC
methods. Using the generated mask of existing learning-based
methods as the initialization of RL-OPC leads to substan-
tial improvement in mask quality and runtime. We conduct
intensive experiments to validate the effectiveness of RL-OPC
and demonstrate its superiority in the quality of the generated
masks. Overall, our main contributions can be summarized as
follows.

1) We propose an RL-based OPC framework that tack-
les mask optimization in modern VLSI design and
manufacturing.

2) A deep Q-learning approach is developed to directly
optimize the nondifferentiable objectives, i.e., EPE and
PV band, which is more effective than conventional gen-
erative learning models that utilize a proxy differentiable
objective such as L2 loss for mask optimization.

3) A multiobjective RL framework is built to simultane-
ously minimize EPE and PV band by branching the
network for two individual and parallel tasks and aggre-
gating their Q-values to generate the optimal decision.

4) We demonstrate and validate that RL-OPC can be fur-
ther enhanced by using a pretrained OPC learning
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Fig. 2. General RL framework.

model to generate an initial mask as the input to boost
efficiency.

5) Experimental results demonstrate that RL-OPC out-
performs state-of-the-art learning-based OPC methods
and commercial tools with more than 61% and 24%
improvement in reducing the contour distortion, respec-
tively, along with mask robustness enhancement by 2.9%
and 2.4%. Moreover, we also demonstrate the poten-
tial of integrating existing OPC learning models with
RL-OPC, achieving 40% mask quality improvement and
1.58× speedup.

The remainder of this article is organized as follows.
Section II discusses the preliminaries, including a brief
illustration of Q-learning and evaluation metrics, followed
by the problem formulation. Our proposed algorithm will
be explained in Section III. Section IV demonstrates our
implementation details, experimental results, and quantitative
comparisons, followed by a conclusion in Section V.

II. PRELIMINARIES

A. Reinforcement Learning and Q-Learning

RL investigates how intelligent agents attempt to optimize
a goal function by interacting with its environment and thus
making sequential decisions. RL involves a set of optimization
instances named state S, and a set of actions A per state. The
agent transitions from state s to state s′ by performing an action
a ∈ A, and receives a reward r(s, a) from RL environment
as evaluation, as demonstrated in Fig. 2. The action selection
model is called policy π , and the RL agent aims to learn a
policy that maximizes accumulative reward.

Q-learning is an RL algorithm that learns the scores of each
action a corresponding to the given state s, and the score is
called Q-value, which is denoted as Q(s, a).

The mathematical formulation of Q(s, a) is as follows:

Qπ (s, a) = Eπ

[
T∑

t=0

γ trt|s0 = s, a0 = a

]

= r(s, a)+ γ
∑
ai∈A

π
(
ai|s′

) ∗ Qπ
(
s′, ai

)
(1)

where π(a|s) refers to the probability of action a is decided
by policy π with input s, and γ is the discount factor. For
clarity, we omit the policy notation π in the following sections.
Since it is impossible to enumerate all possible trajectories for
the accurate accumulated reward expectation, in practice, the

Fig. 3. Example of EPE measurement.

Fig. 4. Example of PV band measurement.

Q-value expectation is generally approximated as follows [14]:

Q(s, a) = r(s, a)+ γ max
a′

Q
(
s′, a′

)
(2)

where s′ indicates the next state. Therefore, the Q-value is
updated by

Q(s, a) = Q(s, a)+ α

[
r(s, a)+ γ max

a′
Q

(
s′, a′

)− Q(s, a)

]
(3)

where α is the learning rate. In this article, we adopt the deep
Q-learning method, which employs a deep neural network as
the Q-value approximator [15]. Upon receiving state s as input,
the network outputs the estimated Q-value Q(s, a) w.r.t each
possible action a.

B. Evaluation Metrics

Before giving the problem definition, we first introduce the
evaluation metrics in the OPC problem.

Definition 1 (EPE): EPE refers to the vertical or horizon-
tal misalignment, i.e., Manhattan distance from the lithography
contour to the desired contour of the target pattern, as shown in
Fig. 3. Each via will be processed edge by edge, and the mea-
sure points are placed at the center of each edge. EPE value is
measured as the perpendicular distances between the lithog-
raphy contour and desired edges at corresponding measure
points.

Definition 2 (PV Band): The PV band is measured as the
area between the outermost printed edge and the innermost
printed edge among all process conditions, as shown in Fig. 4.
It is used to evaluate the robustness of a mask against process
variations.

C. Problem Definition

With these evaluation metrics, we aim to optimize mask
quality and mask robustness against process variations through
mask optimization.

Problem 1: Given a target design, the objective of mask
optimization is to generate the corresponding lithography mask
so that the distortion of the corresponding printed contour eval-
uated by EPE and the mask robustness under process variations
evaluated by the PV band are optimized.
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III. METHODOLOGY

A. RL Environment

A mask optimization flow includes subresolution assist
feature (SRAF) insertion, OPC, and lithography compliance
check. In RL-OPC, the SRAFs have been generated in all
cases. An RL agent is trained based on given cases, which
can sequentially determine the offsets of edges and optimize
the corresponding masks.

The key concepts of RL-OPC formulation in our implemen-
tation are illustrated below.

1) State (s): A state s represents a local window centered
at a via pattern, which consists of the patterns within
the local window, including via patterns and SRAFs.

2) Action (a): An action a refers to an index and direction
of the next moving edge. In our problem, the dimen-
sion of the action space is 12, which is spanned by four
edges per via {left, right, top, bottom} and three pos-
sible moving directions {inner, outer, unchanged}. The
moving distance is 1 nm by default per action, which
can be naturally extended to adopt larger steps.

3) Reward (r): Reward r corresponds to the mask qual-
ity and robustness improvement after applying action a
to an instance at state s. In RL-OPC, the mask qual-
ity improvement is represented by EPE and PV band
reduction.

4) Transition (st, at, rt, st+1): The next state st+1 is gener-
ated when action a is applied on state st. With the corre-
sponding reward rt, a transition (st, at, rt, st+1) includes
the mapping relationship to be studied among states,
actions, and rewards. A transition buffer is maintained
to store the transitions.

In RL-OPC, an agent continuously interacts with its envi-
ronment in sequential decision making over a limited number
of discrete iterations. At the beginning of each iteration, the
agent receives a state st containing a window centered at a
target pattern. It then selects action at from a set of possi-
ble actions referring to its policy π in the form of a neural
network parameterized by θ , which approximates the Q-value
of the actions. After committing the action, the target pattern
is modified. Then, the agent receives the next state st+1, while
the reward rt is obtained by calculating the EPE and PV band
reduction after lithography simulation. This procedure contin-
ues until the maximum number of steps is achieved. Since the
agent iteratively fetches the next state st+1 and rewards rt in
interaction with the environment, the continuous update of the
state forms a trajectory

s0
a0−→ (s1, r1)

a1−→ . . .
aT−1−→ (sT , rT) (4)

with the maximum number of steps T allowed. The goal of
the agent is to maximize its long-term reward

Gt =
T∑

k=0

γ krt+k (5)

where γ is a decay factor.

B. RL-OPC Framework

Fig. 5 reveals an overview of our RL-OPC framework. A
deep convolutional neural network parameterized by θπ is

(a)

(b)

Fig. 5. (a) Forward process of RL-OPC. (b) Training illustration of RL-OPC.

adopted as the approximation for the Q-function. Given a
target design pattern, the agent updates each edge of the pat-
tern iteratively and sequentially. Our framework, respectively,
performs the following steps in each iteration: 1) encode local
features of each state st; 2) the agent maps the input state to
the next action at, from which the next state st+1 is generated;
3) feed state st+1 into lithography simulator, and a reward r
is computed; 4) push collected transitions (st, at, r, st+1) into
replay buffer; and 5) update model θπ , and repeat steps 1)–5).

Feature Encoding: After SRAF insertion, a local window
centered at a via is extracted with all the other patterns inside,
including surrounding SRAFs and other via patterns, as its
local feature. The window size is set to 1500 nm× 1500 nm.
Intuitively, we can directly transform the extracted window
into an image and use the pixel-based representation as the
feature, which has also been applied in previous works on
lithography modeling [16] and OPC [9], [11]. However, such
a large image may lead to huge computation overhead and
memory consumption, impacting the efficiency of training and
inference.

To alleviate this issue, we leverage a more compact lay-
out representation. Squish pattern has been demonstrated to
be a promising compact representation of the layout pattern
in various manufacturability problems [17]. As demonstrated
in Fig. 6, the encoded pattern consists of one binary matrix
indicating the placement and two vectors indicating distance.
The layout clip is first split into grids by superposing scan
lines on shape edges.
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Fig. 6. Example of encoding binary pattern into squish pattern. The resulting
binary matrix indicates relative placement, and vectors indicate distance.

The grid is then turned into matrix M, where entries with
nonzero values indicate that the grid contains pattern geometry.
Regarding the representations of the two pattern types: via
and SRAF, there are two possible solutions for their encoding
strategy: encode into different categories [10], [16] or treat
identically [18], [19]. The first strategy considers the distinct
lithographic effects of the two types of patterns, while the
second solution simulates the mask in the real lithography
process, where they both appear as cutouts on the same mask.
While the two representations are both practical, we choose to
treat the two types of patterns identically in RL-OPC. Hence,
the entries in M are assigned 1 if the corresponding grids
contain via or SRAF patterns, and otherwise 0.

The two vectors δx and δy indicate the horizontal and vertical
grid sizes, respectively. For example, in Fig. 6, the horizontal
grid sizes are {40, 90, 70, 70, 14, 40, 16} nm, and the verti-
cal grid sizes are {11, 40, 17, 66, 70, 68, 68} nm, both start
from the lower left corner. Note that the dimension of the input
to the agent should remain unchanged for any local window,
and the naive squish pattern representation cannot be utilized
since the dimension of M is undetermined, although window
sizes are identical. To meet the requirement, we further convert
the squish pattern into an adaptive squish pattern [17], which
is used as the feature representation of the state s and fed
to the agent. To restrict the input dimension, more scan lines
are added until the desired dimension of M is met, with δx

and δy being scaled and duplicated accordingly. To determine
the locations of new scan lines with low variances attained in
grid sizes δ, the problem can be formulated mathematically as
follows:

min
s

∥∥δ′
∥∥∞

s.t. δ′i = δi
/

si ∀i
si ∈ Z

+ ∀i∑
i

si = d. (6)

The geometry information before and after scaling is denoted
as δ and δ′, the scaling and duplicating operation is encoded
in s, and the desired number of scan lines in one direction is
denoted by d. The underlying idea is to split the large grids in
the original squish representation until M reaches the satisfac-
tory dimension of dy×dx. To formulate a standard input for a
convolutional neural network, the scaled geometry information
vectors δ′x and δ′y are duplicated for dy and dx times, respec-
tively, forming two dy × dx matrices. Combined with M, the
three matrices with identical resolution are concatenated with
the dimension of 3× dy × dx.

Decision: With encoded state st as input, the network out-
puts a vector containing 12 elements, corresponding to 12
possible actions: move 1-nm inward, remain unchanged, and
move 1-nm outward for four edges. The decision procedure
appears as follows:

at = arg max
a

Q(st, a|θt) (7)

where θt is the parameters of the network on the t-th step. The
selected action at is then applied for mask updating.

Reward Calculation: As is demonstrated in Fig. 5(a), next
state st+1 is generated after applying action at to st. The cor-
responding EPE and PV band of state st+1 are then obtained
from lithography simulation. Our reward function is designed
as follows:

rEPE
t = |EPEt| − |EPEt+1| + c

|EPEt+1| + ε

rPVB
t = PVBt − PVBt+1

Areavias

rt = rEPE
t + βrPVB

t . (8)

EPEt and PVBt refer to the EPE and PV band value of
the layout at step t, respectively. Areavias refers to the total
area of all vias in the input layout. c and ε are two predefined
constants, and β denotes the weight coefficient. We design the
reward function in a normalized temporal difference manner to
restrict the reward range, thus benefiting model convergence.
Meanwhile, since the lower bound of EPE is zero, a con-
stant c is added to the numerator of the first term to keep the
reward accumulated when the agent reaches the local optimum
with a small EPE, thus encouraging convergence. The transi-
tion (st, at, rt, st+1) is then pushed into the replay buffer for
network θπ updating.

Agent Training: The network updating procedure is depicted
in Fig. 5(b). Similar to the standard training strategy in Q-
learning, a replay buffer is maintained to record the historical
data, i.e., past transitions. After inference, with the new tran-
sition stored, we randomly sample a batch of transitions
(si, a, r, si+1) over the whole buffer.

As suggested by the Bellman equation, the target Q-
value regarding the state–action pair at the sampled step is
computed as

y = r + γ max
a′

Q
(
s′, a′; θ)

(9)

where γ is the discount factor. Based on the expected Q-value
y, a gradient descent step could be performed over θt by

θ ′ = θ + α∇θ (y− Q(s, a; θ))2. (10)
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Algorithm 1: RL-OPC Framework
Input: θ0: Initial Q-network parameters;
M: initial mask; M̃: real-time updated mask; γ : discount
factor; T: maximum number of steps; TB: number of
steps for filling replay buffer.
Output: θ : Q-network parameters. Optimized mask.

1 Replay buffer B← {};
2 N ← Number of vias in M;
3 EPE0, PVB0 ←LithoSim(M);
4 for i← 0 to N do
5 Get state si

0 from the initial mask;
6 for t← 0 to TB do
7 Randomly select an action at;
8 si

t+1, rt ← EnvInteract(si
t, at, M̃);

9 Put (si
t, at, rt, si

t+1) to B;

10 M̃← M;
11 for t← 0 to T do
12 for i← 0 to N do
13 at ← θt(si

t) by eq (7);
14 si

t+1, rt ← EnvInteract(st, at, M̃);

15 Put (si
t, at, rt, si

t+1) to B;
16 Randomly sample (st′ , at′ , rt′ , st′+1) from B;
17 Update Q network θ by eq. (9), eq. (10);

18 return M̃, θ ;
19 Def EnvInteract(st, at, M̃):
20 Modify the mask M̃ by at;
21 Get state st+1 from M̃;
22 EPEt+1, PVBt+1 ←LithoSim(M̃);
23 rt ←Calculate reward by eq. (8);
24 return st+1, rt;

The network is updated once a new transition is added to the
replay buffer.

The learning and inferring procedure is presented in
Algorithm 1. The agent first randomly samples action regard-
ing each via, after which lithography simulation is performed.
The agent then collects the transitions to fill the replay buffer,
and samples transitions from the buffer to update the policy
network. In the inferring stage, the agent processes each sin-
gle via by generating TE sequential actions, and the mask is
real-time modified and evaluated once any action is decided.
The agent processes all vias in a cyclical order. Since the
mask is up-to-date, when encoding the local feature of each
via, the historical modifications on its neighboring vias will
be considered.

C. Multiobjective RL

Recall that in DQN, a deep neural network is employed as
the policy, which takes the state as input and outputs Q-values
w.r.t all possible actions. Thus, a feature extractor is employed,
and the encoded feature vector is fed into a projection head to
predict the Q-values. Since the target is to minimize EPE and
PV band, a straightforward way is to integrate the goals into

Fig. 7. Network structure with shared feature extractor and two projection
heads. Dim(A) denotes that the output dimension is identical to the action
space.

the reward function [20]. Hence, the Q-value consists of the
expected accumulative reward of both EPE and PV band and
is computed in a coarse-grained manner. However, physically
EPE and PV band indicate the distortion of printed contour
and the mask robustness, respectively. Specifically, target Q-
value considering both EPE and PV band may result in the
difficulty of network training a single projection head since
identical network parameters are enforced to adapt to distinct
tasks.

Hence, in addition to dual-optimization in the reward
function (8), we further propose to optimize the two objectives
in a more fine-grained manner.

Motivated by some multitask learning approaches that
employ a shared feature extractor and distinct task-specific
layers [21], [22], [23], in RL-OPC, a backbone-branching
approach is performed to minimize the two objectives
simultaneously, with their individual preference for dif-
ferent objectives being considered. As demonstrated in
Fig. 7, following a shared feature extractor, we employ
two independent projection heads to accommodate the two
predictive tasks, i.e., EPE and PV band. Hence, the network
outputs two Q-value vectors, each with the same dimension of
action space, and represents the Q-values w.r.t two objectives
corresponding to all actions. We then aggregate the vectors to
the final Q-value as follows:

Q(s, a) = w1QEPE(s, a)+ w2QPVB(s, a) (11)

where QEPE(s, a) and QPVB(s, a) separately refer to the
outputs of the two projection heads, and wi is a coeffi-
cient factor for weight adjustment. Q(s, a) is then utilized
for decision and network updating, as illustrated in (7)
and (10). Thus, the feature analysis of the two distinct
tasks is decomposed from the backbone level for better
adaptation.

D. ML-Based Initialization

If we inspect the principle of RL-OPC, it can be noted
that RL-OPC can be further enhanced by taking a good ini-
tial mask, which can be generated by a preprocessing OPC
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TABLE I
NETWORK PARAMETERS OF EMPLOYED PROJECTION HEAD.

FC REFERS TO A FULLY CONNECTED LAYER

model. We train a prediction model to generate coarsely opti-
mized masks to validate the idea, which we utilized as the
initial layer pattern for RL-OPC. Note that it is an optional
step in the entire flow, and it can also be replaced by
other approaches, including ML-based methods, traditional
model-based methods, or human expertise. We employ a con-
volutional neural network θpre and adopt the same adaptive
squish pattern representation as described in Section III-B
as the model input to train a simple prediction model in
a supervised learning manner. We generate the OPC results
from a commercial tool of an EDA vendor, which are used
as the labels for training. For each edge of the via pattern,
we encode their offsets into signed integers y that indicate
the direction and distance of deviation. Hence, the label of
every single via appears as a vector with a dimension of
four, referring to the expected offsets of the four edges. The
loss function is the conventional mean-square error that is
formulated as

L = ∥∥ypre − f
(
s; θpre

)∥∥2
2. (12)

Before RL launches, the original layout is first fed into this
preprocessing model to generate coarsely optimized results,
which are then used as the initialization of the RL process.

IV. EXPERIMENTS

We implement the proposed framework in Python with the
PyTorch framework on a CentOS-7 machine with an Intel i7-
5930K 3.50-GHz CPU and Nvidia GeForce RTX 3090 GPU.
For comparison with model-based and ML-based methods, we
adopt the designs from [18], which contains a set of layouts
with diverse amounts and placements of via patterns in the
format of GDSII. The clips are with 2 μm× 2 μm large, and
the vias are identical 70 nm× 70 nm square. For comparison
with ILT, due to the lack of a unified benchmark, we adopt
the designs from [24] which comprises 2048 nm × 2048 nm
clips with 65 nm × 65 nm vias. Calibre from Siemens EDA
is utilized for SRAF insertion. For all layouts, we sample the
states by placing a 1500 × 1500 nm2 window at the center
of each via. The states are then encoded into 3 × 224 × 224
adaptive squish pattern [17]. The same operations are applied
to the original layout patterns, including target via contour and
identical SRAFs. Finally, the two 3× 224× 224 matrices are
merged, and the dimension of RL-OPC network input becomes
6× 224× 224.

ResNet-18 [25] is employed as the feature extraction
backbone, following which the preprocessing model in
Section III-D utilizes an output layer with a dimension of four.
Regarding the RL network, as demonstrated in Section III-C,
two identical projection heads are employed for Q-value
computation, consisting of a three-layer MLP. The detailed

TABLE II
RL-OPC ENHANCEMENT OVER INITIALIZATION

network structures of the projection head are presented in
Table I.

Adam optimizer is utilized, with the learning rate set to
10−4. We adopt L1 loss as the loss function. After the next
action is decided and applied to the current state, the mod-
ified mask is fed into the lithography simulator to evaluate
its quality. The replay buffer is a first-in–first-out queue when
new transitions are pushed in. Before the RL process launches,
we fill the replay buffer by randomly selecting from the 12
actions and applying to each via to generate the transitions and
perform offline network updating using the randomly gener-
ated replay buffer for five epochs. The maximum capacity of
the replay buffer is set to 2000 transitions, and the sampling
batch size while learning is set to 10. During the optimization
process, while the design space exploration with temporarily
increasing EPE is allowed, a reset mechanism is maintained:
if the EPE value exceeds the historical best EPE for more
than 60%, the mask will be reset to the best historical state.
The maximum budget of RL forward steps T is a user-defined
parameter depending on the users’ demand on runtime, and is
set to 10 in this section. Hence, RL-OPC runs for correspond-
ing steps and outputs the best mask ever achieved within the
limit. The multiobjective coefficient factors w1 and w2 in (11)
are identically set to 1 by default, and the reward discount
factor γ is set to 0.9. Hyperparameters c, ε, and β in (8) are,
respectively, set to 1, 0.1, and 1 by default.

A. Feasibility of RL-OPC

To prove the effectiveness of RL-OPC, we first compare
the initial masks generated by the preprocessing module and
the RL-OPC in terms of EPE and PV band, as revealed in
Table II. On average, RL-OPC reduces the EPE value by 43%,
indicating the EPE drop of >1.5 nm per via.

The exploring curve of RL-OPC is revealed in Fig. 8,
where the x-axis and the y-axis refer to forward steps and
EPE numbers, respectively. During the optimization process,
the mask with the historical best EPE will be recorded and
updated, which RL-OPC outputs upon reaching the maximum
step. As the figure depicts, RL-OPC explores the diverse solu-
tion space and places impressive improvements on input layers
containing different pattern numbers. On average, our method
takes 1.28 steps per via to optimize all cases to final states,
and the corresponding runtime is less than 2 s per via.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 24,2023 at 05:53:40 UTC from IEEE Xplore.  Restrictions apply. 



LIANG et al.: RL-OPC: MASK OPTIMIZATION WITH DEEP RL 347

TABLE III
COMPARISON WITH STATE-OF-THE-ART METHODS ON THE TEST DATASET. EPE, PV BAND, AND RUNTIME ARE

MEASURED IN NANOMETERS (nm), SQUARE NANOMETERS (nm2), AND SECONDS (s), RESPECTIVELY

Fig. 8. EPE trajectories of six cases during the RL-OPC optimization process,
corresponding to Cases 1–6 in Table III.

TABLE IV
COMPARISON WITH ILT

The results visualization are revealed in Fig. 9. It contains
SRAF patterns, target patterns, RL-OPC results, and printed
contours from the simulator. The legend is identical to Fig. 1.

B. Comparison With Previous Arts

1) Model-Based and Learning-Based Methods: We com-
pare our framework against state-of-the-art learning-based
OPC methods (GAN-OPC [9] and DAMO [10]) and a com-
mercial tool Calibre [26] that performs model-based OPC
in terms of EPE and PV band. Note that RL-OPC in this
section adopts initialization from the preprocessing module in
Section III-D.

Fig. 9. Lithography simulation results of our method on multiple layouts
with different numbers of vias. (a)–(d) correspond to Case 3, Case 7, Case 5,
Case 8 in Table III, respectively.

As is demonstrated in Table III, RL-OPC achieves the best
EPE values in most test cases. Reported EPE values refer to
the sum of EPEs of the entire layout. EPE/via denotes the
averaged EPE values per via within each layout, and max EPE
denotes the EPE on the most critical via. Specifically, our
method achieves 61% improvement in averaged EPE value
and 3% on averaged PV band than GAN-OPC. Compared with
DAMO [10], RL-OPC can reduce the EPE by more than half
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TABLE V
COMPARISON OF MULTIOBJECTIVE AGGREGATION W/WO

MULTIHEAD NETWORK STRUCTURE

and reduce the PV band by 2%. Moreover, compared with the
commercial tool, RL-OPC outperforms Calibre in both EPE
and PV band metrics by 24.5% and 2%, respectively. Overall,
RL-OPC exceeds the compared methods in both metrics and
balances between mask quality and runtime. For a few cases
where other methods perform better, RL-OPC can serve as a
complementary step over these methods, which is illustrated
in Section IV-E.

2) ILT: Furthermore, we compare RL-OPC against an ILT
method [6] in terms of mask quality and runtime, where an
open-source implementation [27] is adopted as the baseline.
Note that the EPEVs are measured in [6] instead of EPE val-
ues, which refers to the number of EPE measure points where
EPE values exceed a predefined threshold. Hence, we follow
the same criteria to evaluate the mask quality by EPEVs and
PV band in this section, and the EPE threshold is set to 10
nm. As is revealed in Table IV, RL-OPC is capable of gen-
erating masks that are competitive with ILT. Among the ten
test cases with various numbers of vias, the number of EPEVs
is reduced by 30%. Meanwhile, a slight improvement in the
PV band is achieved by RL-OPC, with a 43% improvement
in runtime.

C. Comparison Between Strategies for Multiobjectives

We further conduct an ablative experiment to verify the
effectiveness of multihead network structure in handling
multiobjective tasks. Table V compares the quantitative EPE
and PV band results of utilizing single-head and multihead
backbone as the policy network. “Single head” suggests that
the feature extractor is followed by one projection head, and
the output Q-values are directly applied in the action deci-
sions. The table reveals that the results of the multihead
network structure slightly exceed those of the single-head
model. In EPE evaluation, the multihead network reduces the
EPE by 2.2% on average. A slight reduction can also be
observed w.r.t PV band, proving the effectiveness of RL-OPC
in accommodating multiple objectives.

D. Comparison on Large Layout

To prove the scalability of RL-OPC, we conduct an
experiment on a large layout and compare RL-OPC and

TABLE VI
COMPARISON OF RL-OPC AND CALIBRE ON THE

LARGE LAYOUT WITH 188 VIAS

Fig. 10. Comparison of EPE results.

Calibre in terms of EPE, PV band, and runtime. We utilize
a 15 μm× 40 μm synthesized layout that comprises 188 vias
and employ the splitting algorithm from [10] to break the lay-
out into 80 split windows in 2 μm × 2 μm. The number of
vias in each split window varies from 1 to 5. For compari-
son, we test RL-OPC and Calibre on each split window and
push the generated masks into the Calibre lithography sim-
ulator for evaluation. The numerical results are revealed in
Table VI. The results are categorized by the number of vias
in their input clip, and “case #” refers to the number of split
windows in each category. Since the number of vias in each
clip varies, the reported average results are the mean values
among all vias instead of categories or clips. RL-OPC obtains
competitive EPE results and a slight drop of 23 nm2 in the PV
band per via against Calibre. Regarding runtime, we utilize two
Nvidia GeForce RTX 3090 GPUs, each accommodating one
RL-OPC process. For a fair comparison, two Calibre processes
are simultaneously launched for all clips. As Table VI depicts,
RL-OPC is 85.8 s faster than Calibre on the 80 clips, which
achieves 1.44× speedup on average compared with Calibre.

E. Enhanced With Existing Generative Methods

As we mentioned, RL-OPC can be further boosted with a
pretrained OPC model. We integrate RL-OPC with a genera-
tive model [9], which serves as the initialization of RL-OPC.
We denote this hybrid OPC model as hybrid RL-OPC.

The following sections analyze the enhancement in EPE,
PV band, and runtime with hybrid RL-OPC and compare it
with Calibre, as Figs. 10–12 depict.

In the figures, GAN-OPC and Calibre represent that only
GAN-OPC and Calibre are utilized for mask optimization,
respectively.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 24,2023 at 05:53:40 UTC from IEEE Xplore.  Restrictions apply. 



LIANG et al.: RL-OPC: MASK OPTIMIZATION WITH DEEP RL 349

Fig. 11. Comparison of PV band results. PV band per via is revealed for
clarity.

Fig. 12. Comparison of runtime.

The EPEs after launching RL-OPC are significantly reduced
in all test cases. A notable decrease in EPE happens in Cases
1 and 2. On average, the integrated OPC flow reduces the EPE
by 32% compared with Calibre. Since the PV band values vary
due to different numbers of vias among the testcases, the PV
band per via is compared in Fig. 11 for clarity. Compared to
Calibre, results from hybrid RL-OPC are reduced in all cases,
and drop by 62 nm2 per via on average. Regarding runtime,
we measure the time cost when reaching the best EPE value
as the runtime for RL-OPC. As depicted in Fig. 12, hybrid
RL-OPC can be more efficient than Calibre, which achieves
1.58× speedup with a 40% reduction on EPE in comparison
with Calibre.

F. Runtime Analysis

We further conduct runtime analysis toward the RL steps in
RL-OPC. Each RL step comprises four behaviors: 1) policy
inference; 2) Calibre I/O; 3) lithography simulation; and
4) memory buffer updating. At the beginning of each step,
the RL agent reads the input layouts and generates a mod-
ified output design, both in GDSII format. Calibre is then
employed to perform lithography simulation. Note that since
we lack structural data that can be directly embedded into the
Calibre workflow, extra operations like I/O and preprocessing
are required to accommodate the GDSII input. Hence, those
extra operations are individualized as “Calibre I/O.” Finally,
with the evaluations from the lithography simulator, the new
transition is pushed into the memory buffer and the next RL
step is launched. We run RL-OPC for 20 steps, and the average
runtime per step is approximately 5.46 s, with the proportions
of each behavior demonstrated in Fig. 13.

Fig. 13. Runtime of each behavior in an RL step.

(a) (b)

Fig. 14. Two examples of feature extraction on (a) rectangle and (b) polygon.

“Calibre I/O” occupies 77.16% of the runtime, indicating
that 4.21 s out of 5.46 s are irrelevant with the RL approach.
Regarding this runtime overhead, as depicted in Algorithm 1,
every step in RL-OPC involves interaction with the lithography
simulator, and the simulator we can access is only compati-
ble with Calibre tool. Hence, we have to employ the GDSII
file as the exchange format between RL agent and Calibre,
and the runtime on I/O grows linearly since more RL steps
are required for optimizing on larger layouts. Therefore, the
runtime overhead by Calibre I/O can be eliminated if there is
a standalone implementation of lithography simulation, with
which the mask evaluation of RL-OPC can be performed
internally without invoking any external tools. Currently, for
fair comparison where only the runtime for RL computing and
lithography simulation is involved, the precise runtime of RL-
OPC should exclude “Calibre I/O,” and hence is 1.25 s per
step.

V. DISCUSSION

In this section, we further discuss some future extensions of
RL-OPC, including some problems that may be encountered
and the potential solution. The topics include 1) extension to
metal layer; 2) efficiency enhancement; and 3) parallel running
on clips.

A. Metal Layer Extension

Although current RL-OPC aims at mask optimization on
the via layer, it can be further extended to general patterns
on the metal layer. The insight of RL-OPC is to learn the
mapping from layout patterns to mask quality improvement,
i.e., accumulated reward. Hence, the key to RL-OPC’s adap-
tation to the metal layer becomes the definition of state,
action, and reward on general polygons. In this section,
we provide two examples of rectangles and polygons for
demonstration.
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1) For a relatively simple pattern like a rectangle, we
assume it contains n segments with a fixed segment-
ing strategy. The state s could be formulated by placing
the feature-extracting window at the center of the rect-
angle and encoding the region into a squish pattern as
Fig. 14(a). The dimension of the action space becomes
3n in this situation, spanned by n segments and three
possible moving directions {inner, outer, unchanged},
with the default stride set to 1nm. The reward can still
be formulated as in (8), denoting EPE and PV band
reduction on the layout after applying a to s.

2) For complex polygons, we provide an example of
an L-shape pattern as demonstrated in Fig. 14(b).
In this situation, RL-OPC could perform fine-grained
optimization on the segment level. The state could be
formulated by placing the local window at the center
of each segment. Hence, the extracted feature corre-
sponds to the segment instead of the entire pattern.
The action a could be defined as the moving direction
{inner, static, outer} and stride of the segment being
processed. The reward could be formulated by (8). In
case the segment-by-segment optimization is too time
costly, parallel processing could be launched on distant
segments for efficiency improvement. Meanwhile, the
order of segments being processed could be decided by
ranking the EPE values on their nearest measure point
for boosting.

Therefore, RL-OPC is adaptive to general polygons, which we
leave as a future direction.

B. Further Efficiency Improvement

Similar to previous model-based OPC techniques [2], [3],
the efficiency of RL-OPC could be further improved by adap-
tively assigning the priority of vias awaiting. We first assume
that an epoch is completed when all vias are processed once.
Although RL-OPC processes each via in a cyclical manner,
their order within a single epoch is undetermined. Hence, the
efficiency of RL-OPC could be improved by dynamically rank-
ing the real-time EPEs of each via at the beginning of each
epoch, and starting from the critical ones.

On the other hand, RL-OPC’s efficiency could be improved
by training an evaluation network in replacement of the
lithography simulator. Hence, an actor–critic framework [28]
could be formulated, where the actor generates modifica-
tions to the mask which is evaluated by the critic. In this
way, the framework simulates the behaviors of conventional
model-based approaches but prevents the expensive lithogra-
phy simulation.

C. Parallel Running on Clips

Section IV-D mentioned that the large layout is first split
into multiple clips where RL-OPC is parallel launched. One
potential problem is that the patterns on the boundaries might
be disturbed by its neighboring clips due to light diffraction.
Apart from setting overlapping areas in splitting, one possi-
ble solution is maintaining a shared replay buffer among the
neighboring clips. By real-time uploading the modifications

in the neighboring clips to the replay buffer, they could be
considered in updating the local RL agent. However, the inter-
clip correlation is still yet to be solved, not only in RL-OPC
but also in any layout-splitting-related approach, and future
research is expected in this field.

VI. CONCLUSION

In this article, we present RL-OPC, an RL-based mask
optimization framework that undertakes wafer image distor-
tion in the manufacturing process. Different from conventional
learning-based approaches like discriminative models and gen-
erative models, RL-OPC does not rely on a supervised dataset
generated by other OPC engines; meanwhile, RL-OPC is com-
patible with nondifferentiable objectives. Experimental results
show that RL-OPC outperforms learning-based approaches
and a commercial toolkit. Also, we prove that RL-OPC is
effective in tuning results from other methods, thus further
enhancing mask qualities.

Our future research focuses on the scalability of RL-OPC
in mask optimization of large-scale chips. On the one hand,
a network can be trained to replace the expensive lithography
simulation for EPE calculation, which can further accelerate
the process. On the other hand, parallel computation tech-
niques can be explored to simultaneously optimize multiple
instances when dealing with the full-chip scale layout. We
hope our work can stimulate more research in this direction.

REFERENCES

[1] O. W. Otto et al., “Automated optical proximity correction: A rules-based
approach,” in Proc. SPIE, 1994, pp. 278–293.

[2] J. Kuang, W.-K. Chow, and E. F. Y. Young, “A robust approach for
process variation aware mask optimization,” in Proc. IEEE/ACM Design,
Autom. Test Eurpoe (DATE), 2015, pp. 1591–1594.

[3] Y.-H. Su, Y.-C. Huang, L.-C. Tsai, Y.-W. Chang, and S. Banerjee, “Fast
lithographic mask optimization considering process variation,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 35, no. 8,
pp. 1345–1357, Aug. 2016.

[4] A. Awad, A. Takahashi, S. Tanaka, and C. Kodama, “A fast process
variation and pattern fidelity aware mask optimization algorithm,” in
Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), 2014,
pp. 238–245.

[5] A. Poonawala and P. Milanfar, “Mask design for optical
microlithography—An inverse imaging problem,” IEEE Trans.
Image Process., vol. 16, pp. 774–788, 2007.

[6] J.-R. Gao, X. Xu, B. Yu, and D. Z. Pan, “MOSAIC: Mask optimiz-
ing solution with process window aware inverse correction,” in Proc.
ACM/IEEE Design Autom. Conf. (DAC), 2014, p. 52.

[7] B. Jiang, H. Zhang, J. Yang, and E. F. Young, “A fast machine
learning-based mask printability predictor for OPC acceleration,” in
Proc. IEEE/ACM Asia South Pacific Design Autom. Conf. (ASPDAC),
2019, pp. 412–419.

[8] A. Gu and A. Zakhor, “Optical proximity correction with linear regres-
sion,” IEEE Trans. Semicond. Manuf., vol. 21, no. 2, pp. 263–271,
May 2008.

[9] H. Yang, S. Li, Z. Deng, Y. Ma, B. Yu, and E. F. Y. Young, “GAN-
OPC: Mask optimization with lithography-guided generative adversarial
nets,” IEEE Trans. Comput.-Aided Design Integr. Circuits Systems
(TCAD), 2020, pp. 1–6.

[10] G. Chen, W. Chen, Y. Ma, H. Yang, and B. Yu, “DAMO: Deep agile
mask optimization for full chip scale,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Design (ICCAD), 2020, pp. 1–9.

[11] H.-C. Shao et al., “From IC layout to die photograph: A CNN-based
data-driven approach,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 40, no. 5, pp. 957–970, May 2021.

[12] G. Huang et al., “Machine learning for electronic design automation:
A survey,” ACM Trans. Design Autom. Electron. Syst., vol. 26, no. 5,
pp. 1–46, 2021.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 24,2023 at 05:53:40 UTC from IEEE Xplore.  Restrictions apply. 



LIANG et al.: RL-OPC: MASK OPTIMIZATION WITH DEEP RL 351

[13] C. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8,
pp. 279–292, May 1992.

[14] R. Bellman, “Dynamic programming,” Science, vol. 153, no. 3731,
pp. 34–37, 1966.

[15] V. Mnih et al., “Playing Atari with deep reinforcement learning,” 2013,
arXiv:1312.5602.

[16] W. Ye, M. B. Alawieh, Y. Lin, and D. Z. Pan, “LithoGAN: End-to-end
lithography modeling with generative adversarial networks,” in Proc.
ACM/IEEE Design Autom. Conf. (DAC), 2019, p. 107.

[17] H. Yang, P. Pathak, F. Gennari, Y.-C. Lai, and B. Yu, “Detecting multi-
layer layout hotspots with adaptive squish patterns,” in Proc. IEEE/ACM
Asia South Pacific Design Autom. Conf. (ASPDAC), 2019, pp. 299–304.

[18] K. Liu et al., “Adversarial perturbation attacks on ML-based CAD: A
case study on CNN-based lithographic hotspot detection,” ACM Trans.
Design Autom. Electron. Syst., vol. 25, no. 5, pp. 1–31, 2020.

[19] H. Yang, S. Li, Y. Ma, B. Yu, and E. F. Young, “GAN-OPC: Mask
optimization with lithography-guided generative adversarial nets,” in
Proc. ACM/IEEE Design Autom. Conf. (DAC), 2018, p. 131.

[20] Q. Xu et al., “GoodFloorplan: Graph convolutional network and rein-
forcement learning-based floorplanning,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 41, no. 10, pp. 3492–3502, Oct. 2022.

[21] R. Caruna, “Multitask learning: A knowledge-based source of inductive
bias,” in Proc. 10th Int. Conf. Mach. Learn., 1993, pp. 41–48.

[22] R. Qin, Q. Liu, G. Gao, D. Huang, and Y. Wang, “MRDet: A multihead
network for accurate rotated object detection in aerial images,” IEEE
Trans. Geosci. Remote Sens., vol. 60, pp. 1–12, 2022.

[23] D. Keshwani, Y. Kitamura, S. Ihara, S. Iizuka, and E. Simo-Serra,
“TopNet: Topology preserving metric learning for vessel tree recon-
struction and labelling,” in Proc. 23rd Int. Conf. Med. Image Comput.
Comput. Assist. Intervent., 2020, pp. 14–23.

[24] Y. Ma et al., “A unified framework for simultaneous layout decomposi-
tion and mask optimization,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 39, no. 12, pp. 5069–5082, Dec. 2020.

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), 2016, pp. 770–778.

[26] “Calibre design solutions.” 2023. [Online]. Available: https://eda.sw.
siemens.com/en-US/ic/calibre-design/

[27] S. Zheng et al.. “OpenILT: An open-source platform for inverse lithog-
raphy technique research.” 2023. [Online]. Available: https://github.com/
OpenOPC/OpenILT/

[28] V. Konda and J. Tsitsiklis, “Actor–critic algorithms,” in Proc. Adv.
Neural Inf. Process. Syst., vol. 12, 1999, pp. 1–7.

Xiaoxiao Liang received the B.E. degree from the
School of Artificial Intelligence and Automation,
Huazhong University of Science and Technology,
Wuhan, China, in 2020, and the M.S. degree
from the Department of Electronic and Computer
Engineering, The Hong Kong University of Science
and Technology, Hong Kong, in 2021. She
is currently pursuing the Ph.D. degree with
the Microelectronics Thrust, The Hong Kong
University of Science and Technology (Guangzhou),
Guangzhou, China.

Her current research interests include computer-aided VLSI design, and
design for manufacturability.

Yikang Ouyang received the B.E. degree from the
School of Electronics and Information Technology,
Sun Yat-sen University, Guangzhou, China, in
2022. He is currently pursuing the Ph.D. degree
with the Microelectronics Thrust, The Hong Kong
University of Science and Technology (Guangzhou),
Guangzhou.

His current research interests include fast circuit
modeling and graph neural networks in EDA.

Haoyu Yang received the Ph.D. degree from The
Chinese University of Hong Kong, Hong Kong, in
2020.

He is currently a Senior Research Scientist with
the Design Automation Research Group, NVIDIA,
Austin, TX, USA. His research interests include AI
for electronic design automation, AI for computa-
tional lithography, GPU acceleration, and machine
learning security.

Dr. Yang received the Best Paper Award
from IEEE TRANSACTIONS ON SEMICONDUCTOR

MANUFACTURING in 2022 and the Best Paper Award Nomination from
ASPDAC 2019. He is also the recipient of the 2019 Nick Cobb Scholarship
from SPIE and Mentor Graphics.

Bei Yu (Senior Member, IEEE) received the
Ph.D. degree from The University of Texas at
Austin, Austin, TX, USA, in 2014.

He is currently an Associate Professor with the
Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Hong
Kong.

Dr. Yu received nine best paper awards from
IEEE TRANSACTIONS ON SEMICONDUCTOR

MANUFACTURING in 2023, DATE 2022, ICCAD
2021 and 2013, ASPDAC 2021 and 2012, ICTAI

2019, Integration, the VLSI Journal in 2018, ISPD 2017, SPIE Advanced
Lithography Conference 2016, and six ICCAD/ISPD contest awards. He has
served as the TPC Chair of ACM/IEEE Workshop on Machine Learning for
CAD, and in many journal editorial boards and conference committees. He
is an Editor of the IEEE TCCPS Newsletter.

Yuzhe Ma (Member, IEEE) received the B.E. degree
from the Department of Microelectronics, Sun
Yat-sen University, Guangzhou, China, in 2016, and
the Ph.D. degree from the Department of Computer
Science and Engineering, The Chinese University of
Hong Kong, Hong Kong, in 2020.

He is currently an Assistant Professor with
the Microelectronics Thrust, The Hong Kong
University of Science and Technology (Guangzhou),
Guangzhou. His research interests include agile
VLSI design methodologies, machine-learning-

assisted VLSI design, and hardware-friendly machine learning.
Dr. Ma received the Best Paper Awards from ICCAD 2021, ASPDAC 2021,

and ICTAI 2019, and the Best Paper Award Nomination from ASPDAC 2019.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 24,2023 at 05:53:40 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


