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Abstract—In advanced technology nodes, aging effects like
negative and positive bias temperature instability (NBTI and
PBTI) become increasingly significant, making timing closure
and optimization more challenging. Unfortunately, conventional
critical path (CP) selection tools used in reliability-aware design
flow cannot accurately identify CPs under different aging con-
ditions. To address this issue, we propose an aging-aware CP
selection flow comprising two parts: 1) critical cell detection and
2) path criticality (PC) computation. We employ graph-attention
(GAT) networks to predict the critical cells in the aged circuits,
and a PC computation algorithm that takes into account circuit-
level and transistor-level parameters to generate PC rank lists.
Our experimental results demonstrate that our GAT model out-
performs classical machine learning models in detecting critical
cells. Additionally, compared with the commercial tool, our aging-
aware flow achieves an average accuracy of 99.52%, 98.69%, and
97.20% for top-10%, top-5%, and top-1% path sets, respectively,
in five industrial designs subjected to different aging conditions
and workloads.

Index Terms—EDA, machine learning, timing analysis.

I. INTRODUCTION

THE INTEGRATED circuit under advanced technologies
causes an increasing demand for design reliability. The

most critical reliability bottlenecks for deep-submicron designs
are the aging effects of transistors, namely, negative bias tem-
perature instability (NBTI) in PMOS and positive bias temper-
ature instability (PBTI) in NMOS [1], [2], [3], [4], [5], [6].
Path delay can significantly and nonlinearly degrade over
time due to aging effects, which have been demonstrated
through theoretical analysis and experiments. Eventually, a cir-
cuit might exhibit failure if the delay variations on critical
paths (CPs) exceed the defined timing constraints.
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Fig. 1. (a) Example showing how the path, which was uncritical before
aging, became critical after aging. (b) Error rate of the top-10% path sets on
four benchmarks in 10-year aging experiments.

To solve this issue, a reliability-aware circuit design flow
has been developed to predict the design margin accurately [1].
This flow utilizes aging-aware SPICE, which estimates design
performance after aging through testbench simulations. SPICE
can interface with various commercial application program-
ming interfaces (APIs), including MOS reliability analysis
(MOSRA) [7], open modeling interface (OMI) [8], and TSMC
modeling interface (TMI) [9], to perform aging-aware timing
analysis [5]. However, it is not practical to perform aging-
aware SPICE for large-scale circuit netlists while considering
the prohibitively expensive computation cost [3]. To balance
reliability accuracy and simulation efficiency, aging-aware
SPICE must simulate a small set of true CPs.

CP selection is usually performed with ranking slack val-
ues in the reliability design flow. For different requirements,
the top-10%, top-5%, and even top-1% CPs can be chosen for
design optimization. However, typical timing analysis tools
(such as PrimeTime [10]) cannot take the aging effects into
account. Since different cells exhibit various timing behaviors
caused by aging, the CP ranking may be changed [3]. Fig. 1(a)
presents an example of two real timing paths (i.e., the delay
values are measured using HSPICE), where their timing crit-
icality ranking is changed due to aging effects. It illustrates
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that the overall path delays have been affected differently while
suffering from aging effects in the same circuit. The error rates
increase with the timing and reach 16.88%, 18.93%, 19.32%,
and 20.43% on the four open-source circuits in 10-year aging
experiments, as shown in Fig. 1(b).

A general solution to identify all CPs accurately is aging-
aware static timing analysis (STA), which contains two
essential parts: 1) workload analysis and 2) aging-aware tim-
ing library [3], [11], [12], [13], [14], [15], [16]. Workload
analysis estimates signal probability (SP) profiles using a
logic simulator with varying testbenches under different work-
ing scenarios. And aging-aware timing library creates cell
timing-degradation libraries under different aging stress con-
ditions through circuit simulations. By analyzing the cir-
cuit timing, it generates CP sets based on cell-level timing
results.

However, the accuracy of CP selection results cannot meet
the design requirement simply based on the results of aging-
aware STA [17]. Aging effects have a strong dependence on
different operation conditions, such as supply voltage, temper-
ature, and SP [5]. Usually, these parameters are not spatially
or temporally uniform, but vary significantly from cell to cell
and from time to time [2]. Due to the complex dependence on
operating conditions, the exhaustive aging-aware library with
various operating conditions will be extremely expensive in
computation and memory, which is impractical in the appli-
cation [17]. It is still a tremendous challenge to predict the
aging-induced timing degradation efficiently and accurately
using the aging-aware timing library in aging-aware STA.
Thus, the CP selection results are not accurate sufficiently
based on cell-level timing results generated via aging-aware
STA.

To improve the accuracy of CP selection after aging-aware
STA, we shift the focus toward the critical cell detection and
the computation of path criticality (PC). Critical cells found
on real CPs after aging are detected, while PC reflects the
impact of the identified critical cells on path slack. By detect-
ing these critical cells and computing PC, circuit PC ranking
lists can be accurately and effectively generated for selecting
aging-aware CPs. Accurately estimating aging-induced delay
degradation with an appropriate size model under complex
operating conditions is impractical [17]. However, detecting
critical cells based on their relative importance, which is influ-
enced by aging effects and circuit structure, is a feasible
alternative [17], [18], [19].

This article proposes an advanced aging-aware CP selection
flow. It includes a deep joint representation graph attention
network-based (GAT-based) learning framework for detecting
critical cells, as well as a practical algorithm for computing PC
to rank the CPs. In our learning framework, given a circuit rep-
resented as a graph, deep autoencoders automatically generate
low-dimensional representations of both the circuit’s struc-
ture and attributes for each cell using multiple graph-attention
(GAT) layers. The high-quality embeddings can capture both
circuit’s structural and cell attributes information (including
aging-related information) jointly. After this, the correspond-
ing decoder functions can reconstruct both the topological

Fig. 2. Aging-aware SPICE simulation flow.

structure and nodal attributes. The disparity between the origi-
nal and the estimated node data (i.e., reconstruction errors) can
help find critical cells in the circuits, which can be formulated
as an anomaly detection problem on an imbalanced dataset. By
using the disparity value, our framework can achieve critical
cell detection fast and accurately. Finally, a PC computation
algorithm considering critical cell impacts is developed to gen-
erate CPs. The key contributions of this article are summarized
as follows.

1) We develop an end-to-end dual GAT autoencoder that
seamlessly models the attributed circuit networks and
conducts critical cell detection in a uniform framework.

2) We propose an algorithm to calculate the PC based on
the results of critical cell detection. The higher the crit-
icality of the path, the more necessary it is to perform
aging-aware SPICE, and the more important it is to
improve the timing performance of the path under aging
effects.

3) We leverage a parallel training and inference scheme
with multiple GPUs to achieve speedup on the overall
modeling process. And the PC computation algorithm is
parallelly performed on multithreading.

4) The experimental results indicate the proposed GAT
autoencoder outperforms conventional machine learn-
ing models in terms of detection accuracy. Besides, the
proposed flow can output true CP sets accurately and
effectively under different aging conditions. It is helpful
to achieve superior design reliability results on industrial
designs.

II. PRELIMINARIES

A. Aging-Aware SPICE Simulation

Aging-aware SPICE simulation can provide accurate aging-
aware timing analysis [5]. As shown in Fig. 2, there are two
major steps.

1) Given the circuit netlist and standard parasitic exchange
format profiles (SPEF profiles), PrimeTime [10] helps
generate SPICE deck templates from the design database
for particular paths of interest. The SPICE deck tem-
plates are transistor-level netlists of timing paths and
includes the capacitive cross-coupling structure and the
parasitic information.

2) Based on the SPICE deck templates and different
testbenches, the commercial SPICE simulation tool
(HSPICE in this article [20]) with the MOSRA aging
model [7] is adopted to perform the aging simulation
on each extracted timing path.

Then SPICE can generate the transistor-level aging-aware tim-
ing results. MOSRA in HSPICE offers an accurate solution
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Fig. 3. Aging-aware STA flow. The workload profiles are generated via
logic simulator (Modelsim in this work) and the aging-aware timing library
is generated via cell-level characterization via PrimeLib.

for analyzing the timing degradation. The aging-aware SPICE
is accurate but has a prohibitive runtime cost for large-scale
circuits.

B. Aging-Aware STA

Conventional CP selection after aging is directly based
on the aging-aware STA [3], [21], [22], [23], as shown in
Fig. 3. The aging-aware STA can get all the slacks of tim-
ing paths after aging at cell-level in the design, and then
CP selection is performed based on the results. Compared
with traditional STA flow, aging-aware flow contains two extra
parts: 1) workload analysis and 2) cell-level characterization
for the aging-aware timing library. There are many studies
about workload analysis to obtain signal probabilities and
activity factors for all the cells in the circuits under differ-
ent working testbenches. With commercial EDA tools like
Modelsim, their inferred signal probabilities and activity fac-
tors have a high accuracy [3], [21], [24]. However, there are
only a few studies about cell-level characterization for aging-
induced cell delay degradation, which include look-up table
(LUT)-based [3], [11], [12], [13], and machine learning-based
methods [14], [15], [16].

The LUT based methods use cell-level simulation mod-
els to avoid unacceptable runtime but have lower accuracy.
In [11], the researchers propose LUT-based gate delay mod-
els to capture the impact of NBTI-induced threshold voltage
shift of PMOS transistors on the corresponding cell delay
degradation. However, both the PBTI effect in NMOS transis-
tors and the slope of rising/falling signals are not considered.
Kiamehr et al. [12] proposed to use an aging-aware standard
cell library, extending the standard cell library by considering
different input signal probabilities. In [3], an accurate LUT-
based method is introduced to estimate both NBTI-induced
and PBTI-induced delay degradations of each cell. However,
all these methods are limited to modeling the operating con-
ditions under which LUT is built. In addition, the model
size grows exponentially with the inputs and internal nodes
increase in the logic cell.

Machine learning-based methods [14], [15], [16] can make
a better tradeoff between the aging-aware timing library accu-
racy and model size, which are more popular and practical
in industrial. Additionally, Synopsys just recently announced
PrimeLib [25], a new characterization solution that will also
support ML-based cell library characterization. However, the
aging effect in each gate in the circuit is independently mod-
eled in classical machine learning methods. Their accuracy
cannot always meet reliability-aware design requirements.

Fig. 4. Distribution of the top-10% CP delays for the design with timing wall
(under one global timing constraint) and without timing wall (under multiple
timing constraints).

C. Motivation

For a design with a single global timing constraint, the
purple part of Fig. 4 shows the distribution of the top-10%
CP delays. There is a timing wall problem where most of
the top paths have similar slacks. Conversely, for a design
with multiple timing constraints, the yellow part of Fig. 4
shows the distribution of the top-10% CP delays. The delay
from 0.13 to 0.24 ns exhibits a uniform distribution and the
timing wall problem is smoothed. According to [24], [26],
and [27], designs without timing wall problems are also very
common and reasonable in the reliability-aware design flow. In
the classical design flow, the synthesis tool with a global tim-
ing constraint only focuses on the CP and allows other paths
to become near-critical to optimize area and power. In the
reliability-aware design flow, the synthesis tool with multiple
timing constraints allows naturally fast paths to obtain smaller
delay values and larger timing margins. Hence, the timing
constraint greatly varies depending on the set of paths being
considered. It is crucial to accurately identify the aged top-
K% paths and simulate them via aging-aware SPICE to acquire
accurate delay values. Performing timing optimization manu-
ally on these paths becomes necessary at the end stage of
the design flow. Aging-aware STA offers less accuracy as
compared to aging-aware SPICE in large-scale designs [10].
Thus, CP selection through aging-aware STA may lead to inac-
curate results. Balancing accuracy with runtime cost poses a
challenging tradeoff.

We summarize two problems of conventional aging-aware
STA while applying them to CP selection.

1) All the LUT-based and conventional machine learning-
based aging-aware timing libraries model the delay
degradation of aging for each cell independently. These
methods give limited considerations about circuit struc-
ture. However, the delay degradation of the target gate in
circuits is influenced by all neighbor cells significantly
while considering aging effects [2], [5]. Therefore, these
methods are not sufficient to predict the aging-induced
delay degradation accurately when the circuit structure
is complex in advanced technologies.

2) In the progress of aging-aware STA, the timing analy-
sis is achieved on the cell-level. Thus, transistor-level
process parameters in the technology profiles are totally
ignored. However, the aging-induced delay is sensitive to
process parameters under some extreme aging conditions
(long runtime and large workloads) [5]. It makes the lim-
ited accuracy of cell-level timing results generated via
aging-aware STA.
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Fig. 5. Relationships between the used potential CP set P and all paths.

D. Potential Critical Path Set and Top-K% Path Set

The number of potential CPs that reside in a slack
threshold can be prohibitively large. It causes an extremely
low efficiency while achieving true CP selection. In this
work, we focus on ensuring timing margins and adjusting
timing constraints after aging through aging-aware CP selec-
tion. Thus, a large number of paths that are unlikely to cause
a delay problem (like timing violation) and false paths can
be removed. The potential CP set P that we generate via
PrimeTime, consists of the worst 10 paths at each endpoint
(nworst 10) and the worst path through each cell (nworst 1).
Identical paths are merged, and top-K% paths are paths with
top-K% smallest slacks under aging-aware SPICE simula-
tion within the potential CP set. The relationships among the
top-K% path set, the potential CP set P and all paths are
shown in Fig. 5. Moreover, the size of P is determined by
the experimental settings nworst on each endpoint and cell,
and influences the efficiency and accuracy of CP selection. To
ensure appropriate settings, we employ results from transition
fault testing to generate potential CPs, similar to the approach
proposed in [28].

E. Problem Formulation

We focus on figuring out the aging-affected CPs fast and
accurately, to improve the design reliability and efficiency. The
problem formulation is shown as follows.

Problem 1 (Aging-Aware CP Selection): Given a design of
netlist, technology profiles, power consumption profiles, SPEF
profiles, workload files, and timing reports via aging-aware
STA, accurately select the CPs with small runtime costs after
aging happens under specific conditions.

F. Overall Flow

In this article, Problem 1 is divided into two tasks: 1) critical
cell detection, which are cells on the CPs and 2) PC compu-
tation, which is based on critical cells and other cross-layer
parameters in the circuit. From the perspective of recent
machine learning research, critical cell detection should be cast
as an anomaly detection task. Since the circuit netlist is able
to be represented as a graph easily, we use GAT to learn the
latent representations of gates. In order to adopt a graph learn-
ing method, we model a circuit as an attributed network. An
attributed network G = {V,E, X} is defined as an undirected
graph consisting of: 1) a node set V = {v(1), v(2), . . . , v(n)},
where |V| = n; 2) an edge set E, where |E| = m; and

3) node attributes X ∈ R
n×k, where ith row vector xi ∈

R
k(i = 1, . . . , k) is the attribute information for the ith node.

In this article, the attributed network G is represented by an
attribute matrix X for node features, an adjacency matrix A
for topological structure, and a label vector y. In addition, we
give the definition of the CP and cell here.

Definition 1 (CP): The timing paths with top-K% smallest
path slacks within the potential CP set under aging-aware
SPICE simulation.

Definition 2 (Critical Cell): The cells are on CPs.
Task 1 (Critical Cell Detection): Given a set of circuit

netlists represented by attributed networks, our objective is to
detect the anomalous nodes (critical cells), which differ sig-
nificantly from the majority of the reference normal nodes in
circuits (uncritical cells) while considering the structure and
attribute information.

Task 2 (PC Computation:) Given a potential CP set gener-
ated via aging-aware STA, our objective is to quantify the PC
of each timing path in the set accurately based on the criti-
cal gate detection results and other transistor-level parameters.
CPs can be selected using the final PC ranking lists.

III. GAT-BASED CRITICAL CELL DETECTION

In this section, we introduce the critical cell detection frame-
work in detail. Each cell on top-K% paths in the potential
CP set is regarded as an anomaly. The value K is flexi-
ble. As shown in Fig. 6, the framework consists of three
essential components: 1) deep structure autoencoder, nonlin-
ear attribute autoencoder and 2) logistic classifier. The deep
structure autoencoder contains two parts, including a structure
encoder and a decoder. The encoder comprehensively captures
the latent structure information of circuits and generates new
node embeddings E by taking the original circuit attribute
networks G = {V,E, X} as input. The decoder is used to
reconstruct the original circuit structure based on the embed-
ding results E and outputs the reconstruction error RA from a
circuit network structure perspective. Similar to deep struc-
ture autoencoder, nonlinear attribute autoencoder generates
attribute embeddings Z for cell attributes X through attribute
encoder and reconstructs original attribute information through
attribute decoder. It can output the reconstruction error RX

from the cell attributes perspective. Taking reconstruction error
from both circuit structure and cell attributes S as input, a
logistic classifier is used to find critical cells whose joint
reconstruction errors are much larger than others.

A. Initial Dataset Generation

Original Attributes: Before leveraging GAT in the graph
learning framework, the original attribute matrix X needs to
be given. These initial attributes are related to the timing aging
effect, including transistor-level and cell-level information,
which have an important influence on aging-aware critical
cell detection. The transistor aging phenomenon occurs due
to the formation of interface traps (breaking of Si − H bonds
at the Si − SiO2 interface) and oxide traps (capturing of
charges in the oxide vacancies within the dielectric). For all
cells in the netlist, the aging effects under various operating
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Fig. 6. Framework of GAT-based critical cell detection. The input is a netlist graph represented in an adjacency matrix and its original node attributes. There
are three key parts: circuit structure deep autoencoder, circuit attribute deep autoencoder, and critical cell detection classifier. Note that the GAT layers help
us to get node embedding in the circuit structure deep autoencoder.

TABLE I
ORIGINAL CELL ATTRIBUTES USED IN OUR GAT

conditions cause different delay degradations due to trap
generation. Thus, we select some important circuit parame-
ters to represent initial attributes based on domain knowledge
and parameter sweeping experiments, as shown in Table I.
Typically, the attributes contain circuit, operational, and tim-
ing information. This information is from the netlist, power
consumption profiles, workload files, SPEF files, and timing
results via aging-aware STA.

The cell slack plays an important role when CP selection in
classical verification flow, which is the main reason for timing
failures.

The signal probability has a great impact on trap generation.
Higher SP of cells causes a greater operation cycle of transis-
tors. As a result, more interface traps and oxide traps will be
generated inside the transistors of the cell, i.e., the aging rate
of the cell will increase. The SP is workload dependent [29].
We follow the previous method [24], [30] to obtain the SP of
each cell from workload profiles. In order to generate work-
load profiles, we run logic simulations using Modelsim [31]
based on some input vectors. As there is no specific application
for our benchmark circuits and the workload is always highly

unpredictable during the design stage, the input vectors used in
our work are generated randomly. For evaluating the efficiency
of our proposed technique under different workloads, we test
our work when the average signal probabilities are differ-
ent. Note that the workload in our work can be changed for
other representative applications, which can be obtained by
system-level definitions.

The working temperature impacts the speed of transis-
tor trap generation significantly. As it increases, the rate of
interface and oxide trap generation increases, bringing thresh-
old voltage to increase faster and the transistor’s mobility to
decrease faster. This includes both the PBTI effect in NMOS
transistors and the NBTI effect in PMOS transistors. The tem-
perature and power consumption of a chip are tightly coupled.
Thus, we follow the previous method [21], [24], [29] to get the
temperature of each cell based on power consumption profiles
extracted from Design Compiler [32]. The detailed progress
is introduced as follows: 1) divide the chip layout into sev-
eral rectangular grids; 2) estimate the leakage and dynamic
power of each cell in the circuit based on workload profiles
and SPEF profiles using Design Compiler; 3) generate the
power consumption files for each cell by adding the leak-
age and dynamic power; and 4) obtain temperatures of each
cell based on power consumption profiles using the publicly
available tool HotSpot [33].

The input signal slew and outputload capacitance have an
influence on threshold voltage degradation and transistor
mobility. Thus, they should be considered while analyzing
aging-induced delay degradation.

There are more details of the attributes illustrated in Fig. 6.
For determining the initial attributes of a target cell d, we
take the information of its fanins {a, b}, siblings {c, e}, and
fanouts {f, g} into account. However, these manually engi-
neered features are not sufficient to detect critical cells. To
get better node representations, we leverage GAT to perform
graph representation learning.

Labels: Every node has a binary label y(v), v ∈ V. We set “0”
(negative) as uncritical and “1” (positive) as critical. Critical
cells are located on the top-K% paths, while the remaining
cells are deemed uncritical. The value of K can be adjusted
to meet different requirements. Labels can be obtained from
aging-aware SPICE flow (as shown in Fig. 2).
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Algorithm 1 Circuit Node Structure Embedding Methodology
Require: Circuit netlist graph: G = {V,E, X}; Adjacency

matrix: A; Node attributes matrix: X : {x(v) : ∀v ∈ V};
Search depth: D; Weight matrices and bias of trans-
form layer: WT and bT ; Weight matrices of GAT-layers:
{Wd,∀d ∈ {1, ..., D}}.

Ensure: Node structure embedding: E : {e(v)
D : ∀v ∈ V}.

1: e(v)
0 ← ReLU(WTx(v) + bT),∀v ∈ V; � Transformer layer

2: for d← 1 to D do
3: for v ∈ V do
4: Compute α

(vu)
d−1 via Equation (1), u ∈ Nv;

5: g(v)
d ← e(v)

d−1 +
∑

u∈Nv
α

(vu)
d−1 · e(u)

d−1 � Aggregation

6: e(v)
d ← σ

(
Wd · g(v)

d

)
; � Encoding

7: end for
8: end for

B. Circuit Structure Deep Autoencoder

As shown in Fig. 6, the circuit structure deep autoencoder
contains two important parts: 1) structure encoder and
2) structure decoder. For the encoder part, it encodes cir-
cuit graph G = {V,E, X}, represented with a adjacency matrix
A and cell attribute matrix X, into the latent node embed-
ding E. It consists of an attribute transform layer and GAT
layers. For the decoder component, it tries to reconstruct the
original circuit structure based on the latent node embedding
E generated through the encoding network. After encoding
and decoding, we can get the reconstruction error RA for
each cell. Especially, in GAT layers, multiple layers of encod-
ing functions are stacked to extract features from multihop
neighborhoods.

Structure Encoder: In the first step of structure encoder, we
use one learnable layer to transform the initial cell attributes
X:{x(v) : ∀v ∈ V} into latent representation E0: {e(v)

0 : ∀v ∈ V}
with the ReLU activation function (line 1). WT and bT are
the trainable weight and bias parameters. The transformer can
help obtain high-level node attributes with sufficient repre-
sentations. In the second step of node embedding, given the
transformed cell embedding e0, deep learning GAT layers are
then employed to aggregate the representation from neigh-
borhoods (called aggregators) and to encode nodes attributes
(called encoders). In our work, an aggregator and an encoder
can be performed in a GAT layer. Aggregators gather the
attribute information from the node’s neighbors via attention
coefficients α, which indicate the importance of neighbor-
hood attributes to the target node. And encoders are applied to
achieve nonlinear transformation by a weight matrix and acti-
vation function. The embedding process is performed multiple
times for collecting more structural information. After the final
embedding finishing, the structure decoder takes the result E
as input and decodes it to reconstruct the original network
structure.

Suppose that all the parameters in GAT layers are obtained
after training. The progress of node embedding is con-
cluded in Algorithm 1. Based on the given attributed network
G = {V,E, X}, Algorithm 1 takes the node attributes X:

{x(v):∀v ∈ V} defined in Section III-A as inputs, and output
the node embeddings E: {e(v):∀v ∈ V}. Since the node embed-
ding is expected to aggregate the information from multiorder
neighbors for getting more accurate representations, a search
depth D is specified to indicate the neighborhood region range
(i.e., defined as hop).

In the aggregator, it takes the representations of target node
v and nodes in the neighbor set Nv generated in the (d− 1)th
iteration as input. Then it generates a new representation for
node v denoted by g(v)

d based on attention coefficients (line 5).
The attention coefficients are obtained via feed forward neu-
ral networks as shown in Fig. 7. They are further normalized
via the softmax function to make coefficients easily compara-
ble across different neighbors. For instance, we can calculate
attention coefficients α

(ij)
d as follows:

α
(ij)
d =

exp
(

LeakyReLU
(
(ad)

�
[
e(i)

d ‖e(j)
d

]))

∑
f∈N(i)

exp
(

LeakyReLU
(
(ad)

�
[
e(i)

d ‖e(f )
d

])) (1)

where i is the target node and the j is its neighbor belongs to
neighborhood set Ni. ·� represents transposition and ‖ is the
concatenation operation. ad ∈ R

2Kd is the trainable weight vec-
tor. The negative input slope of LeakyReLU nonlinear function
is set as 0.2.

In the encoder, a nonlinear transformation is performed to
encode the aggregated representation with a weight matrix
Wd ∈ R

Kd×Kd−1 and an activation function (ReLU). The exam-
ple shown in Fig. 7 illustrates the procedure of achieving node
embedding when D = 2. Obviously, the node embedding out-
put E is combined with the information of d-hop neighbors
after d iterations.

Structure Decoder: Once the maximum depth D is reached,
we can obtain the embedding feature matrix E after aggre-
gating the neighbor node attributes. Structure decoder takes it
as inputs to reconstruct the original network structure to get
estimated adjacency matrix Â: {e(v)

D : ∀v ∈ V}, as shown in 2

Â = sigmoid
(

EE�
)
. (2)

Given a certain node, if the connectivity values can be
approximated through the structure reconstruction decoder, it
means the node is normal with a high probability from the
perspective of structure information. Otherwise, the connec-
tivity values cannot be well reconstructed, which implies that
its structure information does not conform to the patterns of
the major normal nodes, and the node may be anomalous with
high probability. Therefore, we use the structure reconstruc-
tion error RA = A− Â to indicate the probability of anomaly
with respect to network structure for critical cells detection.

C. Circuit Attribute Deep Autoencoder

The circuit attribute deep autoencoder contains an attribute
encoder and an attribute decoder. In encoding progress, it
encodes cell attribute information X into new embedding Z,
while the decoder tries to reconstruct the original cell attributes
based on the latent embedding Z. Finally, the reconstruction
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Fig. 7. Illustration to compute the node embedding for node 1 with GAT-layers when D equals 2. And the procedure to compute the attention coefficient
between node 1 and node 2 based on a single-layer feedforward neural network. Kd is the dimension of the embedding results the dth GAT layer and K0 = 32
in the feature transform layer.

error RX for each cell from the circuit attribute perspective
can be generated.

Attribute Encoder: In the attribute encoder, we use two non-
linear transform layers to get attribute embeddings Z based on
the transposed attribute matrix X�. It helps improve critical
cell detection accuracy. The progress can be formulated as
follows:

Z0 = σ
(
(X)�W(1)

A + b(1)
A

)
(3)

Z = Z0W(2)
A + b(2)

A (4)

where W(1)
A and W(2)

A are the learnable weights in the two
nonlinear transforming layers; and b(1)

A and b(2)
A are the learn-

able bias. After training, the weights and bias can be used for
unseen designs directly without retraining in our work.

Attribute Decoder: The inputs of the attribute decoder are
the node embeddings E and the attribute embeddings Z, which
are generated through the structure encoder and the attribute
encoder, respectively. Similar to the structure decoder, the
attribute decoder is used to decode the original node attribute.
Interactions between network structure and node attribute are
jointly captured. Note that different from the structure decoder,
no activation function is utilized in the attribute decoder for
the arbitrary-valued attribute

X̂ = EZ�. (5)

Then with the attribute reconstruction error matrix RX =
X − X̂, we can predict anomalies in the attributed networks
from the attribute perspective. It can help improve critical cell
detection accuracy in our work.

D. Critical Cell Detection Classifier

We define the anomaly score S : {s(v):∀v ∈ V} of each node
as the reconstruction error from both network structure and
node attribute perspective

S = (1− β)
∥
∥A− Â

∥
∥

2 + β
∥
∥X − X̂

∥
∥

2 (6)

where β is the parameter that tradeoffs structure reconstruction
and attribute reconstruction. And it is defined as 0.5 in our
work. After computing all anomaly scores of nodes in given
circuits, the minimum score among anomalies is regarded as
a threshold number at first. Then all the anomaly scores need
to be normalized with it, and the results are s(v)

N ∀v ∈ V. In the
critical cell detection classifier, the sigmoid function is used
to estimate the probability of a cell belonging to critical or
uncritical cells

ŷ(v) = 1

1+ e−s(v)N

∀v ∈ V. (7)

E. Training Progress

For graph learning (including circuit structure autoencoder
and circuit attribute autoencoder), uncritical cells are used
while in the training progress. The training objective of graph
learning is to minimize the reconstruction errors of both
network structure and node attribute for uncritical cells. After
achieving the objective, uncritical and critical cells can be dis-
tinguished and classified based on the anomaly score s(v). And
the loss function of graph learning is defined as follows, where
Vun is the uncritical cells set:

Lossg =
∑

v∈Vun

s(v). (8)

For the critical cell detection classifier, all cells (critical
cells and uncritical cells) are used in the training progress.
The training objective of a critical cell detection classifier is
to maximize the reconstruction errors of critical cells. After
achieving the objective, the anomaly scores of critical cells
(anomalies) can be much larger than uncritical cells (normal
nodes). The target is achieved by using a supervised logistic
classifier in our work. Then, the loss function of the classifier
is defined as follows:

Lossc = −1

n

∑

v∈V
y(v) log ŷ(v) +

(
1− y(v)

)
log

(
1− ŷ(v)

)
(9)
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Fig. 8. Illustration of PC computation.

where y(v) is the label of each cell, which is obtained from
aging-aware SPICE flow (as shown in Fig. 2). ŷ(v) is the prob-
ability value of each, which is obtained from our critical cell
detection classifier. n is the number of nodes in V. Finally, the
overall loss function in the training progress of our GAT-based
work is defined as follows:

Lossall = Lossg + Lossc. (10)

The Adam [34] algorithm is utilized for optimization with a
0.001 learning rate. The overall proposed model is trained in
an end-to-end fashion, which means all the parameters in the
network can be trained without any manual assistance.

IV. PATH CRITICALITY COMPUTATION

After a multistage GAT model is trained, it can identify
critical cells in a netlist. However, the aging-induced delay
of cells imposes different effects on the path delay even
though all of them are critical cells. In order to select CPs
accurately, we must define the detailed numerical relationship
between critical cells and paths. In this section, we proposed
an algorithm to identify which critical cells significantly
degrade path timing performance and calculate PC. According
to our observations, the critical cell with different types,
driving strengths, and locations has different influences on
the PC.

As shown in Fig. 8, we can directly get the related cross-
layer parameters by analyzing the circuit information. The
location information L can be collected from cell-level tim-
ing results, which indicates the cell positions in the timing
paths. The output load is obviously different for cells located
in the fan-in-cones, which further affects the cell delay.

Moreover, we use the number of transistors T in the tar-
get cell to represent the feature of cell types. The cell types
contain DFF, BUFF, NOT, AND, NAND, OR, NOR, XOR, and
XNOR with multi-inputs. According to the physical principles,
the cell delay can be defined as the charging and discharging
time of transistors in the circuit. Thus, the size of transis-
tors applied in the cell can represent the feature of driving
strength R. These values can be directly obtained from the
standard cell library. All these data must be normalized to
be LN , TN , and RN . The PC of path j can be calculated as
follows:

PCj =
∑

i∈Nj

(
L(i)

N + T(i)
N + R(i)

N

)
· ŷ(i) + S(j)

N (11)

Fig. 9. Proposed parallel flow of CP selection. On multiple GPUs, we
achieve graph learning in parallel to get a trained model under different aging
conditions. And compute the PC on a multicore machine. Finally, a CP can
be selected based on the path rank list.

where Nj is the cell set of path j. ŷ(i) is the result of GAT-
based critical cell detection which means whether the cell is
critical or uncritical for aging-aware timing analysis. S(j)

N is the
normalized path slack of path j.

As an output, the CP ranking lists after aging can be
obtained via the proposed algorithm. Furthermore, the designer
can use the ranking list to improve the circuit performance and
reliability more efficiently by focusing on true CPs.

V. AGING-AWARE CRITICAL PATH SELECTION

The overall aging-aware CP selection flow is proposed in
Fig. 9 with four different aging conditions, including 1-year,
3-year, 5-year, and 9-year. Given the circuit netlist, SPEF pro-
files, technology profiles, power consumption profiles, poten-
tial CP sets, and cell-level aging-aware timing results, our
flow can generate accurate critical timing paths without run-
ning aging-aware SPICE. The cell-level aging-aware timing
results and potential CP sets are generated by aging-aware
STA using PrimeTime [10] and PrimeLib [25]. The workload
profiles are generated through workload analysis using logic
simulator Modelsim [31]. Additionally, the power consump-
tion profiles are generated via Design Compiler [32]. The SP
profiles are computed based on workload profiles and tem-
perature profiles are computed based on power consumption
profiles.

First, we take the initial attributes defined in Section III-A
as inputs. Then the GAT-based trained model in Section III
can help us to achieve critical cell detection considering aging
effects based on cell attributes and circuit structures. The PC of
all the potential CPs can be computed by our proposed algo-
rithm in Section IV. According to PC ranking lists, we can
select the CPs under different requirements. Thus, the prob-
lems of aging-aware STA proposed in Section II-C can be
solved by our advanced aging-aware CP selection flow, includ-
ing a GAT-based trained model for critical cells detection and
a practical PC computation, demonstrated in Fig. 9.
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Different from conventional machine learning methods
which just focus on cell features, the graph learning framework
in our work can aggregate the circuit structural information
and cell features to generate a better representation for each
cell in the circuit. The new representation helps detect criti-
cal cells on CPs effectively and accurately, which is because
the influence of aging effects on the target cell and neigh-
bor cells are all considered. We define PC to quantify the
detailed numerical effect of critical cells on path delay after
aging considering both transistor-level process parameters and
circuit-level information. There is an obvious improvement
in CP selection accuracy based on the PC rather than cell-
level timing results according to the experiments on industrial
designs.

In our flow, there are multiple pretrained critical cell detec-
tion models. However, the training process is time consuming,
which limits the efficiency of our GAT-based framework. It is
necessary to leverage a parallel training scheme with multiple
GPUs. In our training scheme, we can parallelize it by par-
titioning the chunk-based dataflow over multi-GPUs. Each
GPU processes one graph in our parallel framework with a
complete and dependent adjacency matrix and node represen-
tation matrix. Finally, the main thread gathers all these results,
calculates the loss, and then does backpropagation to update
the model. Besides, our parallel PC computation is based on
main-sub threads architectures achieved with Pthreads. There
is only one main thread that can create multiple sub threads
and manages the shared memory. The sub thread is used to
collect related parameters, including cell locations, cell types,
and transistor sizes, and compute the PC for timing paths.
Benefiting from the parallel technology, all the process of crit-
ical cell detection and PC computation can be performed on
multiple GPUs and CPUs to achieve speedup on the overall
flow.

VI. EXPERIMENTAL RESULTS

The experiments are performed on five unseen industrial
designs implemented in 16-nm technology. The potential CP
set is generated via aging-aware STA based on our settings.
The false paths, including timing paths across asynchronous
clock domains, are removed. Statistics of designs used in our
experiments are summarized in Table II, where #Cells #10%-
Ps, and #CCs indicate the number of cells, top-10% CPs, and
critical cells on these paths in the netlist, respectively. Note
that the ground truths of top-10% CPs and critical cells are
obtained from the transistor-level aging-aware results of paths
in potential CP set. The results are generated via aging-aware
SPICE using HSPICE [20]. The GAT is implemented with
PyTorch and trained on a Linux machine with 32 cores and 4
NVIDIA Tesla V100 GPUs in parallel. The total memory used
in training is 128 GB. The benchmark circuits used for train-
ing and testing the GAT-based model contain all ISCAS’89,
IWLS’05 circuits, and other renowned industrial designs syn-
thesized with TSMC16nm technology. The details of these
designs used for training are listed in Table II. As discussed
in Section III, search depth is a crucial parameter that affects

TABLE II
TRAINING AND TESTING BENCHMARK INFORMATION

TABLE III
CP SELECTION ACCURACY (%) BASED ON THE POTENTIAL CP SET

WHEN THE BASELINE RESULTS ARE GENERATED THROUGH

AGING-AWARE SPICE BASED ON ALL PATHS

the performance of a GAT learning framework. According to
the experimental results of detection accuracy after learning for
300 epochs, the search depth is set to 3 for all experiments.
Furthermore, we can achieve top-5% and top-1% CP selec-
tion by fine-tuning our labeled critical cells in the training set.
For example, if the top-1% paths are required to be selected,
the cells on the top-1% paths after aging-aware SPICE in the
training set will be regarded as critical cells. After training, the
GAT-based critical cell detection method can figure out cells
on aging-aware top-1% paths without aging-aware SPICE for
unseen designs.

A. Efficiency of Potential Critical Path Set

We use PrimeTime to generate the potential CP set P for
each design, utilizing our specified settings: nworst 10 on
endpoints and nworst 1 through cells. To test the effective-
ness of our approach, we use aging-aware SPICE to generate
ground truths on a path set consisting of almost all paths, with
nworst 10 000 at each endpoint (the number of exacted timing
paths at each endpoint being less than 10 000). We then com-
pare the accuracy of CP selection using our method based on
the original path set P for small designs with ground truths.
Statistics of these small designs used in the experiments are
summarized in Table II. The results are displayed in Table III.
For instance, we generate the top 10% path set for the b1
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TABLE IV
CRITICAL CELL DETECTION ACCURACY COMPARISON

design using the potential path set. Next, we compare this path
set with the top 187 paths generated by aging-aware SPICE
using almost all timing paths of the b1 design. According to
the results, the potential CP set is reasonable, demonstrating
its potential in achieving true aging-aware CP selection.

B. Accuracy of Critical Cell Detection

We compare the critical cell detection performance of the
GAT-based framework with the state-of-the-art machine learn-
ing methods, including LOF [35], SCAN [36], AMEN [37],
Radar [38], Anomalous [39], and Dominant [40]. Each time
we use open-source designs in Table II for training and the
industrial designs for testing while using different machine-
learning methods. For head-to-head comparisons, the objec-
tives of our work and other machine learning methods are the
same for maximizing the reconstruction errors of critical cells.
The ground truths of critical cells after aging are selected
through aging-aware SPICE shown in Fig. 2. The experimen-
tal results in Table IV show that the proposed framework
significantly outperforms all baselines.

For the D1 circuit, our framework outperforms LOF [35]
by 49.1%, SCAN [36] by 60.5%, and AMEN [37] by 48.5%
because LOF and SCAN consider only network structure
or node attribute. AMEN [37] is designed for anomalous
neighborhoods rather than the node itself, so the method’s
detection accuracy cannot meet the requirement for the current
reliability-aware circuit design flow. Besides, the residual anal-
ysis [38] and cur matrix decompositions-based method [39]
are not sensitive to network sparsity. They meet bottle-
necks for large-scale designs with limited learning ability.
Thus, our framework increases the detection accuracy by
29.3% compared with Radar [38] and 25.6% compared with
Anomalous [39] for the largest design D5. Compared with
more recent Dominant [40], our work achieves gains by
13.6%, 10.9%, % 17.3%, and 23.9% on the five industrial
designs, respectively. Compared with the single structure
encoder used in Dominat, two separate encoders, including
circuit structure and attribute encoder, are proposed in our
work. They can jointly achieve node embedding and attribute
embedding, which considers the complex interactions between
network structure and node attribute. The improvement helps
achieve higher detection accuracy.

In addition, our GAT-based model is tested under different
workloads and the results are shown in Table V. The different
workloads in these experiments include random input vectors
with average SP equaling 0.5, 0.6, and 0.7. Similar methods to
obtain workloads are used in [24] and [30]. From the results,

TABLE V
CRITICAL CELL DETECTION ACCURACY OF OUR GAT-BASED

METHOD UNDER DIFFERENT WORKLOADS AND

THE STANDARD DEVIATION (σ ) OF THEM

it is obvious that our GAT-based critical cell detection method
can achieve high detection accuracy under different workloads,
which reaches 0.989, 0.988, and 0.988 under three kinds of
workloads. Moreover, the small values of standard deviation
(σ ) under different workloads illustrate that our work can
obtain accurate critical cells stably. Obviously, the GAT-based
model can obtain significantly stronger performance in distin-
guishing between critical and uncritical nodes than classical
learning models. The model training progress is a little timing-
consuming, with about 12 h on a single GPU. However, the
parallel training method on multiple GPUs can help us achieve
a 6× speedup on our servers.

C. Performance of Critical Path Selection

Using the results of aging-aware SPICE as ground truths,
Tables VI–VIII show the CP selection accuracy results of our
work, the method used in ICCAD13 [24] and aging-aware STA
under different aging and workload conditions. Fig. 10 shows
the runtime cost comparison. The aging-aware SPICE is
achieved using HSPICE [20] and MOSRA aging model [7].
The aging-aware STA is achieved using the commercial STA
tool (PrimeTime) [10] and the aging-aware timing library cell
characterizes tool (PrimeLib) [25].

The aging-induced timing degradation of circuits is
workload-dependent. For illustrating the efficacy of our frame-
work under different workloads, our method is tested under
different workload profiles when the average SP equals
0.5, 0.6, and 0.7. Based on (12), we compute the average
delay error of wrong CPs selected via aging-aware STA,
ICCAD13 method [24], and our work (DELAY_EORasta,
DELAY_EORicc and DELAY_EORours)

DELAY_EOR· =
∑

p1∈Pspice
Dp1 −

∑
p2∈P· Dp2

NP
wrong·

(12)

where Pspice represent the CP set generated by aging-
aware SPICE. P· represent the CP set generated by
ICCAD13 method [24], aging-aware STA, or our work.
Dp represents the real delay of timing path p generated
by aging-aware SPICE. NP

wrong· represent the number of
wrong paths in CP set generated via aging-aware STA,
ICCAD13 method [24], or our work, compared with aging-
aware SPICE. The results of DELAY_EOR· are listed in
Tables IX and XI where a smaller value means better
performance.

Accuracy Under Different Aging Conditions: Under a 1-year
aging condition, the average accuracy of aging-aware STA can
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TABLE VI
CP SELECTION ACCURACY (%) COMPARISON (AVERAGE SP EQUALS 0.5)

TABLE VII
CP SELECTION ACCURACY (%) COMPARISON (AVERAGE SP EQUALS 0.6)

TABLE VIII
CP SELECTION ACCURACY (%) COMPARISON (AVERAGE SP EQUALS 0.7)

reach 92.66 However, it drops with the value of K% from 10%
(92.66%) to 5% (91.55%) and 1% (87.50%). Then, our frame-
work can achieve an obvious accuracy improvement. Under
a 9-year condition, it can be seen that the average accuracy
of aging-aware STA is just 77.19%, 82.02%, and 85.57% on
top-1%, 5%, and 10% path set. It indicates that the aging-
aware STA cannot predict aging-induced timing degradation
on timing paths accurately under serious aging conditions.
Compared with the poor performance of aging-aware STA,
the average accuracy of our framework can achieve 96.25%,
98.12%, and 99.43% as shown in Table VI, which can meet
the high-reliability requirement.

Accuracy Under Different Workload Conditions: From the
results shown in Tables VI–VIII, it is obvious that the aver-
age accuracy of aging-aware STA drops with the increment
of the average SP. When the average SP equals 0.5, the accu-
racy of top-K% path sets generated by aging-aware STA reach
87.50%, 91.52%, and 92.66% under 1-year aging condition.
However, the accuracy of the top-1% path set generated by
aging-aware STA drops to 81.91% when the average SP equals
0.7. Compared with inaccurate aging-aware STA, the accu-
racy of top-K% path sets generated by our work can achieve
97.79%, 98.96%, and 99.58% as shown in Table VIII. It means
our work can generate accurate CPs under different workloads.

Delay Error of Wrong CPs: As shown in Table IX,
it is obvious that DELAY_EORasta is much larger than
DELAY_EORours. In addition, the results of aging-aware STA

increase significantly under more serious aging conditions.
However, the results of our work can always keep at a very
low level. For wrong CPs selected by aging-aware STA, the
average delay error on five industrial circuits under 9-year
aging conditions reaches 50.81, 43.40, and 32.02 ps in the
top 1%, 5%, and 10% path sets. However, the average error
of wrong CPs selected by our work reduces to 1.96, 1.15,
and 0.25 ps. The large delay error on wrong CPs selected
via aging-aware STA brings overdesign on these wrong paths,
which degrades the circuit timing performance and improves
the power consumption significantly. On the other hand, the
large delay error causes low timing yield on final tape-out cir-
cuits, because the delay of unselected true CPs is considered
optimistically without fixing the timing violations.

Runtime: As shown in Fig. 10, the runtime cost of our
work is 75.58 s on average for different designs scaling from
80k to 130k cells. The method used in ICCAD13 [24] can
achieve more accurate selection than aging-aware STA, but the
average runtime cost reaches 952.24 s which is much larger
than aging-aware STA and our work. Compared with aging-
aware SPICE using 32-threads, we can achieve an average
86.8× speedup using 1-thread on our benchmark circuits. Note
that, we achieve parallel CP selection flow for multiple aging
conditions (as shown in Fig. 9). The fast work is beneficial
to improving design efficiency in the reliability-aware design
flow. And there is nearly no increment in runtime under 1-year
conditions and 9-year conditions, while traditional methods
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TABLE IX
AVERAGE DELAY ERROR (PS) OF WRONG CPS SELECTED VIA AGING-AWARE STA, ICCAD13, AND OUR WORK

(a)

(b)

Fig. 10. Runtime comparison among aging-aware SPICE, aging-aware STA,
and our work under (a) 1-year and (b) 9-year aging conditions.

need to analyze a more complex circuit with aging. Note
that the runtime contains an aging-aware static STA based
on PrimeTime, which means our work can be integrated into
the current reliability design flow easily without more runtime
overhead.

Summary: Compared with the ground truths generated via
aging-aware SPICE, it is obvious that the average accuracy of
aging-aware STA decreases when the aging effect is becom-
ing serious. In the worst case (9-year aging condition and the
average SP equals 0.7), the average accuracy of top-K% path
sets generated by aging-aware STA reaches 69.81%, 75.77%,
and 78.83% on five industrial designs. More importantly, the
average delay error of wrong CPs is larger than 30 ps under
a 1-year aging condition and 40 ps under a 9-year aging con-
dition. However, the accuracy top-K% path sets generated by
our work reaches 96.50%, 98.49%, and 99.49% as shown in
Table VIII even in the worst case. Compared with the method
proposed in [24] based on analyzing each transistor, the effi-
ciency of our work is much higher. In summary, our work can
achieve CP selection accurately and efficiently.

D. Performance on Designs With Timing Wall Problems

Tables X and XI show the CP selection accuracy and
average delay error result of our work, ICCAD13 [24] and
aging-aware STA for designs with timing wall problems. Each

(a) (b) (c)

Fig. 11. Ratio of critical and uncritical cells on (a) Top-1%, (b) Top-5%,
and (c) Top-10% paths.

testing design is resynthesized with a tight global timing con-
straint, and the average SP for workload conditions is 0.7.
The accuracy of aging-aware STA for designs with timing
wall problems surpasses that of designs synthesized with
multiple timing constraints, with an average accuracy of
80.77% for top-1% CP selection under 9-year aging condi-
tions. Nonetheless, our work achieves an average accuracy
of 97.94%, significantly outperforming aging-aware STA. The
average errors of wrong CPs selected by aging-aware STA
are 27.18, 19.26, and 14.52 ps, while the results of our work
reduce to mere 1.59, 1.00, and 0.25 ps.

E. Relationship Between Critical Cells and Paths

When selecting CPs, the critical arcs play more important
roles than critical cells. However, detecting critical arcs can
be inefficient when runtime and memory usage are limited
due to the exponential increase in the number of arcs as cells
increase. Despite this, there is a strong connection between
critical cells and paths, as evidenced by studies, such as [17],
[18], and [19]. In fact, more than 90% of cells on top-10%
paths are critical, as seen in Fig. 11. Therefore, it is valid to
select CPs based on detecting critical cells.

VII. CONCLUSION AND FURTHER WORK

This article introduces an aging-aware CP selection flow that
includes a GAT-based critical cell detection framework and
PC computation algorithm The end-to-end critical cell detec-
tion framework can distinguish the critical cells in the unseen
circuits accurately considering aging effects. Then, the PC
computation algorithm can generate PC rank lists based on the
detection results and other cross-layer parameters. Compared
with traditional machine learning methods, the proposed GAT
model can achieve superior accuracy in critical cell detection.
Experimental results show that the proposed flow can achieve
high accuracy on industrial designs, while the aging-aware
STA cannot meet. There will be two significant improvements
in our further work: first, the combination of our current work

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 23,2023 at 02:43:33 UTC from IEEE Xplore.  Restrictions apply. 



5018 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 12, DECEMBER 2023

TABLE X
CP SELECTION ACCURACY (%) COMPARISON FOR DESIGNS WITH TIMING WALL PROBLEMS

TABLE XI
AVERAGE DELAY ERROR (PS) OF WRONG CPS SELECTED VIA DIFFERENT METHODS FOR DESIGNS WITH TIMING WALL PROBLEMS

with other false path identification techniques would result
in a more automated approach to aging-aware CP selection.
Second, efficient and accurate selection of CPs based on the
identification of critical arcs can be achieved through sampling
and transferring the learned information of arcs.
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