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Abstract—Over the past few years, super-resolution (SR)
processing has achieved astonishing progress along with the
development of deep learning. Nevertheless, the rigorous require-
ment for real-time inference, especially for video tasks, leaves
a harsh challenge for both the model architecture design and
the hardware-level implementation. In this article, we propose
a hardware-aware acceleration on embedded GPU devices as
a full-stack SR deployment framework. The most critical stage
with dictionary learning applied in SR flow was analyzed in
details and optimized with a tailored dictionary slimming strat-
egy. Moreover, we also delve into the programming architecture
of hardware while analyzing the model structure to optimize the
computation kernels to reduce inference latency and maximize
the throughput given restricted computing power. In addition,
we further accelerate the model with 8-bit integer inference by
quantizing the weights in the compressed model. An adaptive
8-bit quantization flow for SR task enables the quantized model
to achieve a comparable result with the full-precision baselines.
With the help of our approaches, the computation and commu-
nication bottlenecks in the deep dictionary learning-based SR
models can be overcome effectively. The experiments on both
edge embedded device NVIDIA NX and 2080Ti prove that our
framework exceeds the performance of state-of-the-art NVIDIA
TensorRT significantly and can achieve real-time performance.

Index Terms—Edge computing, neural network compression,
super-resolution (SR).

I. INTRODUCTION

UPER-RESOLUTION (SR) is an important class of
graphical processing techniques that plays an important
role in the digital image era. The SR task aims at generating
or recovering high-resolution (HR) video frames given frames
with low-resolution (LR). Among all existing approaches,
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the naive solution is to interpolate the LR image with RGB
value collected bilinear or bicubic from spatially invariant
nearest-neighbor pixels. Advanced development of deep learn-
ing in computer vision has stimulated a group of powerful
SR approaches with impressive performance for SR. From
conventional convolution neural networks [2] to novel gen-
erative adversarial networks [3], [4], various methods have
appeared in the last decade. Recently, by introducing dictio-
nary learning methods with pixel-level local feature fusion
operations [5], [6], the image quality of generated HR images
or videos is further improved with richer color/texture details
recovered thanks to the idea of dictionary learning and pixel-
level local feature fuse operations. As algorithms get perfor-
mant, the efficient and optimized deployment of such deep
learning-based SR methods on hardware has gradually become
the new spot of attention.

A variety of previous methods have been proposed for the
domain-specific deployment of different deep learning algo-
rithms on different hardware platforms, [7], [8], [9], [10].
Among which most deployed models are design for object
classification [11], detection [12], [13], neural language pro-
cessing (NLP) [14], etc. Regardless of their wide scenario
coverage and different task data format, these models still
share similar deep learning operators in their implementation
with each other and therefore require no explicit special tech-
nique. The most common operators are convolution, pooling,
softmax, fully connected operation, etc. In consideration of
the popularity of these operators, vendor-provided commercial
tools usually apply some customization and achieve state-of-
the-art performance on these operators by using fixed, manually
written hardware codes. For example, TensorRT [15] exceeds
other tools on NVIDIA GPUs and Intel MKL-DNN [16] has
the dominating inference latency on Intel CPUs.

Despite the effectiveness and usability of these vendor-
provided commercial deployment tools, SR algorithms still
face some complex and thorny problems which hinder the
models from traditional Deep learning optimization strate-
gies. To realize the objective of real-time inference (i.e., equal
or more than 25 frames/s), some particular properties of SR
algorithms need to be considered. First, deep learning-based
SR models hold completely opposite algorithmic process-
ing logic to other mainstream task models. Traditional DNN
models spatially scale down the input frame layer-by-layer
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Fig. 1. Time breakdown of the inference flow of state-of-the-art SR model.
We divide the inference time into three major categories: 1) dictionary
query and filtering step; 2) convolution operation; and 3) data reformatting,
concatenation, or other operations.

while embedding and learning the hidden feature, e.g., VGG,
GoogleNet, MobileNet, ResNet, Faster R-CNN, etc. Such a
down-sampling operation deliberately retains the volume of
the feature map as the embedding tensor size increase in
depth, to some extent relieving the communication and com-
putation pressures from features and weights. On the other
hand, to recover more pixel-wise color/texture details, SR
models usually keep or scale up the input frame. In this
case, the feature map volume is much larger than the weights,
therefore becoming the dominating factor that makes the cur-
rent off-the-shelf memory optimization techniques ineffective.
Jung et al. [17] also discovered similar phenomenons. Second,
unlike some traditional widely used operations, e.g., convolu-
tion and pooling, some domain-specific tensor operations such
as local pixel-shuffle and dictionary learning appear exclu-
sively in SR task, which remains unsolved through various
techniques and exacerbate these challenges. In comparison,
as shown in Fig. 1, these novel operations in SR are time-
consuming and may need special computation reorganizations
and parallelisms. Due to these challenges, the existing solu-
tions are nonoptimal, even the state-of-the-art commercial tool,
e.g., TensorRT.

This article proposes several specific techniques to tackle
those mentioned challenges. First, we bring in an agile yet
robust SR model compression strategy to reduce the size
of large models with dense parameters and heavy compu-
tation. Structured pruning was utilized to delicately select
and slim down the SR dictionaries. Meanwhile, the strat-
egy needs to reserve the most important dictionaries and
remarkably accelerate some serial computation iterations with
no accuracy degradation. Second, we also strive to achieve
optimal hardware-level implementation of tensor operations
given the SR models and specific hardware resources. The
GPU architecture is discussed in details. Both memory/cache
resources and computing power are considered constraints of
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inference efficiency. Performance and number of feasible hard-
ware implementations are restricted by these restrictions. Some
invalid and inefficient designs are dropped and a novel design
space searching algorithm based on Bayesian optimization is
proposed focusing on efficiently finding the optimal design
parameters in regard of these hardware limitations. As a result,
we manage to reduce the communication cost and further
improve bandwidth usage. Last but not least, we reorganize
the original large task into many smaller subtasks and run
these subtasks in parallel.

The main contributions of this article are listed as follows.

1) We build a specifically designed engine to remarkably
accelerate dictionary learning, especially on extremely
large data for the first time.

2) We propose a model slimming strategy for SR dictionary
queries, which greatly reduces computation and commu-
nication workloads from the large data frames and heavy
dictionary-related computation.

3) We propose a targeted 8-bit adaptive quantization
approach to further compress the SR model and realize
further acceleration.

4) We analyze both resources- and workloads-aware con-
straints dedicated for GPUs to guide the search for
optimal hardware implementations.

5) Our method achieves faster and real-time SR process-
ing on edge embedded GPU NVIDIA Jetson Xavier NX
and server-level 2080Ti, in comparison with TensorRT.
Runtime breakdowns are visualized in Fig. 1.

The following pages of this article are organized. Section II
briefly introduces the deep SR models, dictionary learning, the
GPU programming background, and the low-bit scale quanti-
zation. Section III demonstrates our acceleration approaches
from algorithm level to hardware level. Section V demon-
strates the experiments and results. Finally, we conclude this
article in Section VI.

II. PRELIMINARIES
A. Super-Resolution Algorithms and Dictionary Learning

The objective of SR algorithm is to reconstruct an HR image
with details recovered from an LR input. A variety of meth-
ods have been proposed in the past few decades since the SR
algorithm can be widely applied in many scenarios.

Given a high/low-resolution image pair, the corresponding
relation is a transformation process described in (1). The HR
vectorized image y € RHWs” g applied with a down-sampling
of scale s and a blurring filter to obtain the LR counterpart
x € RV where we denote W and H as the width and height
of the image

x = SHy (1)

where H € RIS denotes a blurring operation (e.g., Gaussian
Blurring) and S € RHWXHWS® ig the down-sampling operation.
The objective of SR is simply reversing such process: given an
LR x, the task needs to up-scale and deblur to restore y. One
of the obstacles is that the transformation (1) is ill-posed. That
is to say, each LR x may not necessarily correspond to a single
unique [y] and may possibly have more than one valid solution.
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In this way, the problem is notoriously challenging to solve
because we cannot learn a naive inverse transformation. On the
other hand, in some real scenarios, HR y data is inaccessible.
For example, sometimes LR x is directly taken from a digital
camera, or the HR information is permanently lost through
data communication. In these cases, the reverse transformation
is even more difficult to derive.

Some earlier approaches adopt naive basic linear interpola-
tion methods, e.g., bilinear and bicubic interpolations to tackle
these challenges. Despite the simplicity and straightforward-
ness, these methods inevitably neglect some content varieties
and local structures. Afterward, some dictionary learning algo-
rithms are proposed to bridge the mapping gap, embedding the
mapping relationships between the HR space and LR space
numerically. With training on the embedding and query pro-
cess, the model learns how to map LR patches to HR patches.
Intuitively HR patches are regarded as a spatial combination
of LR patches, and now the learning objective is to gener-
ate combination coefficients. Recently, deep learning model
performance has been leaping forward impressively, which
stimulates a variety of new methods which can learn dictionar-
ies and combination coefficients better with great performance
in HR quality [6], [18], [19].

The general processing flow of the deep dictionary learning-
based SR model is illustrated as follows. First, the input LR
image is vectorized as x € RPW and sliced into patches
of k*. Upsampled matrix B € RY WXk jg composed of HWs?
upsampled LR patches with size k*. Second, some transforma-
tion operations are conducted to transform the LR batches into
HR batches. The ith pixel y; in the HR image vectory RHWS®
is obtained via integrating the neighboring pixels of batch B;
(i.e., the ith row of B) centered at the coordinate of y;. This
pixel-level operation can be formulated as

yi=FBl

i

with F; = ®;D 2)

where F; € R!*¥ denotes the integration coefficient vec-
tor (also known as a filter). Furthermore, filter F; together
with combination coefficient vector ®; € R'*L can be jointly
regarded as a linear combination of dictionary D € RLXK* The
predefined dictionary D is fixed during model inference, while
the coefficients ®; are the goal to compute under the real-
time requirement. As (2) formulates the pixel-level operation,
image-level transformation is represented accordingly in

y=FB'", with F = D (3)

with F € RIW? <K and @ ¢ REWSXL @ [20], [21], [22]
have made some attempts to learn the coefficient matrix @
and dictionary D. To save the effort of learning both objec-
tives, linearly assembled pixel-adaptive regression network
(LAPAR) [6] utilizes a predefined D composed of a series
of Gaussian (G) filters as well as some difference of Gaussian
(DoG) filters to speed up the learning process. The coeffi-
cient matrix @ is produced as the output of a residual network
(details about the network will be covered in Section II-B).

Considering the communication patterns of (3), ® and B
usually occupy much more bandwidth than D, i.e.,

HWs*> x L+ HWs® x k> > L x k*. 4)
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Fig. 2. Architecture of LAPAR [6].

The dictionary D is the key point when considering the com-
putation patterns. It determines whether and how to compute
given the data in ® and B, which plays as a bridge and trans-
lator to connect ® and B. According to D, some unnecessary
data, if no harm to the performance, can skip being loaded
to the on-chip cache, and the corresponding computation can
be skipped. The special role of D in dictionary learning dis-
tinguishes itself from typical deep learning algorithms by
considering more than weights and features. Once the dic-
tionary is optimized, both communication and computation
bottlenecks can be simultaneously resolved.

B. SR Model Architecture

By convention, dictionary learning-based models com-
prise layers of residual blocks, followed by convolutions,
pixel-shuffle operations, and the most important dictionary
assembling, etc.

We take LAPAR [6], the state-of-the-art SR model
LAPAR [6] as an example to explain the model structure and
inference flow. The inference flow can be divided into four
stages as shown in Fig. 2. At the first stage, the input image
x is up-scaled with bicubic interpolation to generate patch
matrix B. Second, LaparNet also takes x as input and generate
the coefficient matrix @ as the output. LaparNet model include
several local fusion blocks (LFBs) [23], pixel-shuffle layers,
and some convolution layers, where each LFB is structured by
residual blocks and following concatenations, multiplications,
and short-cut additions. In the third stage, the dictionary
assembling is applied to retrieve the transformation matrix F
by querying the predefined dictionary D with @. The final
stage obtains the HR image y with details restored by filtering
the up-sampled B with F, i.e., y = FB'. It is necessary to
analyze the dictionary learning module in detail to efficiently
deploy the SR models on GPU, which has been ignored in
previous work.

C. GPU Programming Architecture

NVIDIA provides a well-designed high-level abstraction of
their GPU architecture as shown in Fig. 3, which enables the
software engineers or algorithm designers to access hardware
resources and write easy and convenient low-level hardware
implementations. Streaming multiprocessors (SMs) are key
computation modules within GPU hardware architecture. Each
SM has independent shared memory units, control logic,
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Fig. 3.  GPU memory hierarchy and communication mode.

several processing blocks, etc. Within each SM, each single
processing block is composed of a batch of computation cores
(CUDA cores, Tensor Cores, and etc.), register files, load/store
units, etc.

NVIDIA provides CUDA programming model [24] in order
to help implement computation tasks with parallelism on GPU.
The programming model is designed as follows. A host device
(CPU) is included to control the data movement or execu-
tion of CUDA kernels. Kernels will be launched and run on
a device (GPU) to realize a parallel computation, as shown
in Fig. 3. Each kernel will be launched with a computation
grid, and multiple blocks will be assigned to each cell of the
grid. Following the single instruction multiple threads (SIMTs)
mechanism, each block is further partitioned into a group of
threads. Each thread runs the same piece of code with dif-
ferent data synchronously. Each kernel will launch all threads
to execute the same code piece at once after the program is
compiled. Meanwhile, different thread blocks may execute in
order, given hardware resource constraints.

D. Low Precision Inference

Nowadays, 32-bit single-precision floating-point is the
mainstream data format for most deep learning applications.
Quantization is a technique used to reduce model infer-
ence latency with high throughput integer instructions or
even lower bit data formats without significant accuracy loss.
Reference [25] has shown that on NVIDIA GPU, math-
intensive tensor operators can reach 16x speed-up with 8-bit
signed integer data format in comparison with FP32 while
memory-intensive tensor operators reach up to 4x speed-up.

Many post-training quantization (PTQ) methods were
proposed to quantize models to 8-bit without retraining safely.
Nagel et al. [26] implemented 8-bit quantization in a data-free
style. Nagel et al. [27] proposed a layer-wise calibration strat-
egy by minimizing the Hessian of task loss. Banner et al. [28]
proposed an analytical solution for quantization clipping range
selection. Some previous research even explored very low-
bit quantization, all the way to ternary (2-bit) or even binary
(1-bit) data format [29], [30], [31], [32], [33].

Scale quantization, also known as symmetric quantization,
is an efficient approach with good support of GPU hardware
support. Each floating-point parameter is transformed into an
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8-bit integer with a range mapping
€
S= T (5)
i= clip(round()—c), b=l Ly pb=l 1) 6)
s

where x is the original floating-point number, x is the quan-
tized integer. The quantization process in (6) can be regarded
as three consecutive steps: 1) scaling; 2) rounding; and 3) clip-
ping. First, floating-point x is multiplied with a scaling factor s
and rounded to the nearest neighboring integer. After that, the
integer is clipped by range [—2°~! + 1,20=1 — 1] to fit in
the representative range of 8-bit. In the case of 8-bit signed
integer, the range is [—127, 127]. The corresponding clipping
range in floating point value is [—¢, €] and scaling factor s
is calculated by (5). For multiplication of 2 tensors A and B
with scale factors s4 and sp, the quantized computation can
be simply conducted as

A-B=A-B-s4-sp. @)

III. OPTIMIZATION OF DEPLOYMENTS ON GPU
A. Dictionary Slimming

The most performant lightweight SR algorithm LAPAR [6],
shows state-of-the-art ability even with a compact model size
(num. of params < 1M). However, this lightweight architec-
ture still cannot fulfill the requirement of real-time inference
even with the powerful NVIDIA TensorRT [15]. Considering
the distinction of the SR task, the large spatial scale of feature
maps instead of the number of parameters is the key factor
in the inference speed. The running time breakdown is in
Fig. 1. As shown in Fig. 1, dictionary learning is the bottle-
neck and takes the largest percentage of time cost. This can
be explained by the fact that existing commercial tools do not
provide customized support for certain special operations or
extreme-scale feature maps and only have efficient and reli-
ably tailored implementation for most common DNN layers,
such as conv, ReLLU, and BN, which may result in a large time
cost for some computation graphs.

Slimming the dictionary not only can save some computa-
tion costs but also ease communication pressure on hardware.
We propose a dictionary slimming strategy to compress the
dictionary. Ideally, it requires a valid dictionary D to be infor-
mative enough to provide sufficient embedding data for the
restoration of image details. However, on the other hand, we
do not expect the dictionary D to be too bulky with redundant
information. By slimming the dictionary, a desired slim dictio-
nary D can perform inference under the harsh speed require-
ment without significant accuracy degradation. We control the
slimming effort with a sparsity threshold « € (0, 1) which
reflects the sparsity of the dictionary D € REXF | After slim-
ming, the most essential « - L items from L will be reserved.
Note that aggressive slimming of the dictionary to ratio « is
difficult and may not lead to the optimum. To simplify the
problem, we slim the dictionary iteratively while gradually
reducing the sparsity from 1 to «. At each iteration ¢ with the
sparsity o;, with a; < o;—1 set, We retain the most important
oL items in the current dictionary and regard the others. At
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next iteration, the current sparsity goal is updated ;41 = oy —
Ay, to further prune more items. After pruning out redundant
items, we still need to fine-tune the LaparNet to adapt to the
newly slimmed dictionary by minimizing the reconstruction
error. The problem can be formulated as follows:

L 2
1
B.W =argmin_|Y — ) Bi®D
B.w N i=0 2
s.t. ® = LaparNet(X, W)
1Bllo <aL (3

where N is the batch size of the input images. W denotes
the parameters in LaparNet, whose output is the coefficient
vector @. Y is the output tensor after querying the original
unpruned dictionary with no fine-tuning. Selector 8 determines
which item of D is pruned. ith item of D will be neglected if
Bi=0.

In addition, we make further modifications to (8) by taking
the final filtering stage of SR flow into consideration by eval-
uating the final image. We formulate the reconstruction error
between the compressed model generated image and ground
truth HR image Hy, into

1 2
B. W = arg min — HHg, — Fy.4B" H
B.W N 2

L
st. Fwg=)_ B®D

i=0
® = LaparNet(X, W)
Bllo < L. 9)

Both B and W are the optimization objectives. We simplify
the problem and solve it efficiently by alternatively optimizing
each objective. At first, we search the optimal selector 8 to
fulfill requirement of sparsity «; with fixed LaparNet param-
eters. At second step, we fix § and tune the parameters W to
minimize the reconstruction error in (9). Direct optimization
of selector 8 with 1-0 norm constraint is NP-hard. However,
we can optimize the sparsity by using LASSO regression with
a ¢ regulation term [34] added to the original loss function,
as shown in

1 2
ﬂ:argmlnﬁHHg,—FWﬁBTH + AlBI
8 2

s.t. 1Bl < aL. (10)

The complete selection strategy is illustrated in Algorithm 1.

Before channel selection, we need to prepare a set of cali-
bration data, including output feature maps of LaparNet before
querying the dictionary as well as corresponding HR ground-
truth images. We control the sparsity by carefully adjusting
regulation weight A in (10). We search the 8 greedily by start-
ing with a small A. After each iteration, we double the value
of A, forcing a stronger sparsity regulation until the required
« is achieved. At the end of slimming, in case of the step
size A gets too large after the exponential update, we apply a
binary search within the range [X;, A;+1] to delicately adjust
the slimming ratio close to a1, as shown in lines 12-20 in
Algorithm 1.
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Algorithm 1 Dictionary Selection Strategy

2
: Input: D € RLxk , small A, target «, tolerance €;

1

2: Input: pre-trained Wy, coefficient matrix ®;

31«0, 00« 1.0, g < 1R yg < 1eRE;

4: & < reconstruction error > Equation (9)

5: repeat

6: oy < ar — Aa;

7. )\'l‘+1 <~ )\,t;

8: while |B;y1lo > @s41 - L do

9: Fix W;, update ;1| < argming L (W,, BD)
+ret11B1; > Equation (10)

10: )“l+1 «~ 2. )“t+1

11: end while
12: Mefr <= 05415 Aright <= A 15
13: while |41 - L—|Bipiy| > €L do

14: Ayl = 1/2()\left + )Vright);

15: Fix W;, update ;1| < argming ZL(W;, BD)
+Ar111B1;

16: if | ,3,+JO < azy1 - L then

17: Meft <= det13

18: else if |8;41|, > o4 - L then

19: )\right < A3

20: end if

21: end while
22: Fix B,y 1, update W;, | < arg miny .Z(W, B, 1D);
> Equation (11)
23: t=t+1;
24: until o; <

After the selector 8 optimization, we need to fine-tune the
parameters W accordingly, as shown in Algorithm 1
1 2
W = argmin — | Hy — Fw BT | (11)
w N 2

However, tuning all parameters in LaparNet at each iteration
may cost too much computation power and time. As shown
in (11), The D’ is the dictionary which is the compressed
dictionary with layers neglected in the previous LASSO step.
To efficiently adjust the output of LaparNet for the newly
compressed dictionary D', we simply reconstruct the param-
eters of the last layer before the dictionary query instead.
To achieve fast tuning, we use linear regression to learn a
channel-wise factor for original parameters, which is more
efficient. Parameters in the last layer Wy are weighted with a
regression coefficient y at each channel. In this way, we can
reformulate this parameter-tuning step from (11) to (12). y
is a channel-wise coefficient to scale the parameters on each
channel of updated parameters W™ .

After the tuning, a new coefficient matrix &’ will be gener-
ated to query the slimmed dictionary D'. The visualization of
the complete dictionary query and filtering flow after slimming
is shown in Fig. 4

L
1
arg min I_V HHg, — E ;/,-FW,D/B—r
Y i=0

4

2
new

p =yWp. (12)

Slimming the dictionary will not affect the performance of
the original SR model according to Fig. 5. Information embed-
ded in the dictionary is sparse enough, and a well-trained
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Fig. 4. Visual illustration of dictionary slimming, the upper flow represents
original dictionary query and filtering, namely, stage 3 + stage 4 in Fig. 2,
The flow below demonstrates the slimming process of the dictionary query.
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Fig. 5. SISR performance of our model with different dictionary compression
ratios in comparison with other SR methods. LAPAR-A (Per.%) represents
our model with dictionary size shrunk to Per.%. PSNR means peak signal-
to-noise ratio. SSIM means structural similarity index measure. PSNR and
SSIM are two common metrics to measure the quality of images. The higher,
the better.

model can capture useful information even with some items
being zero-out. In experiments, we show the dictionary can be
slimmed to 10% of its original size without noticeable accu-
racy loss. For a fair comparison, the compressed model also
outperforms other widely used SR models, e.g., [35] and [36].

B. Constraint-Based Optimization of Deployments on GPU

Although the slimming of the dictionary size may acceler-
ate the dictionary query to some extent, the following filtering
operation is still a bottleneck of the inference latency. The
filtering operation comprises a Hadamard product of two ten-
sors and a reduce-sum on the channel to flatten the tensor into
a 2-D image. Such computations are common in SR tasks
but neglected by the current mainstream deployment tools. In
this section, we propose a domain-specific low-level design
by utilizing the parallelizing mechanism of GPU to improve
the computation throughput from a hardware perspective. An
example of the proposed computation engine is shown in
Fig. 6.

First, we will discuss how to implement the Hadamard
product and reduce-sum in a parallel style within the cur-
rent inference flow. During the inference stage, all tensor
data (including images and filters) is always consecutively
stored in (N, C, H, W) style in linear memory addresses, which
denotes (batch size, channel, height, width)
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Fig. 6. Example of the proposed computation engine for image filtering

operation.

dimensions of each tensor. Given that both computation opera-
tions are spatially independent, the calculation of value at each
2-D location index on the map of size H x W can be assigned to
different computation units separately, as visualized in Fig. 6.
The color of the data represents which block they are sent to
compute. For example, the data in purple and data in orange
are separately assigned to block 0 and block 1. We deliberately
manipulate the thread assignment to make data at the consecu-
tive 2-D location being assigned to the same block as much as
possible. More specifically, we try to assign consecutive data
to consecutive threads. Meanwhile, data with the same index
but from various channels are assigned to the same thread.
For example, the data at location (1, 1) and data at (1,2)
are assigned to thread O and thread 1 in block O accordingly
for all channels. The Hadamard Product starts with element-
wise multiplication of F and B. Then, the products at each
channel are accumulated to render the final HR images. Both
steps can be computed for each 2-D location index parallelly.
In other words, the computation assigned to each thread is
equivalent to the multiplication of two vectors, where each
pair of vectors are data along the channel dimension from F
and B at the same 2-D location. In our implementation, each
thread applies addition and multiplication simultaneously by
adding the intermediate product of each channel to the final
result. All threads are launched to run the same code piece
in parallel delicately to avoid getting stuck in the paradox of
thread divergence [24]. Moreover, we also consider the cache-
memory mechanism and try to avoid frequent interaction in
our design. As shown in Fig. 3, each SM holds an exclusive
shared memory/L1 cache for all blocks inside. We manage to
minimize the cache miss rate by assigning consecutive data
from memory to consecutive blocks of the same SM for each
channel.

On the other hand, parallelism cannot be extended infinitely.
We need to consider complicated limits from both the hard-
ware level and programming model level, which significantly
affect the performance of the parallel implementation. First,
the number of assigned threads, blocks, and etc. will determine

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 21,2023 at 03:56:36 UTC from IEEE Xplore. Restrictions apply.



3216

the computation patterns. However, since the computing capa-
bilities of different GPU devices can be distinct and various,
the corresponding limits on the thread/block configuration vary
as well. For further illustration, let us take the edge device
NVIDIA Jetson Xavier NX as an example which has a Volta
microarchitecture embedded GPU. At the hardware level, each
NX device has six SMs in the architecture. Each SM’s shared
memory size (on-chip memory) is fixed at 96 kB. There are
four physical processing blocks inside each SM, where each
processing block holds 16 FP32 cores, 8 FP64 cores, 16 INT32
cores, 2 Tensor cores, and a 64 kB shared register file. At the
programming model level, the computation kernel is launched
as a computation grid where each cell in the grid is a thread
block. Note that the concept of thread block here is a vir-
tual concept, which is not the same as the previous processing
block. One thread block will be assigned to a single SM. While
discussing hardware resource limit, we need to introduce the
concept of warp, which is the basic execution unit in NVIDIA
GPU that holds 32 consecutive threads. In the current SIMT
architecture, each thread block will be further divided and
assigned to many warps after being scheduled to an SM. The
warp scheduling in GPU is orderless within each thread block.
The only restriction is the number of active warps regarding
the SM resources. Once a warp idles for the race conditions,
the SM is free to schedule other available warps. The number
of warps for a thread block can be determined as follows:

(13)

Threads Per Block
Warps Per Block =

Warp Size

where Warp Size = 32 for mainstream NVIDIA GPUs. The
number of warps in a thread block is also constrained by the
programming model to fit the sizes of warp schedulers, instruc-
tion registers, and etc. Besides, memory bound also needs to
be considered. There are two levels of data sharing among
parallel executions: 1) sharing data in the shared register files
among the parallel threads in the same processing block and
2) sharing data among the processing blocks in the same SM.
Both may cause a race condition: multiple threads accessing
the same data in the memory simultaneously. We need to bal-
ance the contradiction between parallelism and congestion by
carefully selecting an appropriate block size. The size of a
block is restricted by both the size of input data and avail-
able on-chip resources. Meanwhile, once the resources are
available, the tasks will be assigned to occupy the resources
to accelerate the computations as much as possible. In other
words, the parallelism is maximized so as to reach the upper-
bound value of resource utilization. We denote the size of input
data to be D = H x W x C, which is 3-D. The threads blocks
can also be regarded as 3-D with size (ny, ny, n;). Based on
the detailed analysis above, we can formulate a series of con-
straints to this optimization problem. We assume each GPU
has S SMs inside, where each SM holds P processing blocks.
We assume that each processing block has R register files,
and the maximum threads number is each warp in WS. The
CUDA programming model also sets a warp number limit to
each block Ty,. T, denotes input data assigned to each SM
(evenly). Each processing block will manage and schedule the
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Fig. 7. Visualized solution space. The solution points below the dotted points
are legal configurations.

computational resources inside implicitly, and the computa-
tional resources constraints Ty, is prefixed at a constant value
given fixed compute capability. The number of warps 7 in
each processing block is upper-bounded by both 7, and T§,.
Another constraint comes from the input data size. Therefore,
these constraints can be formulated as

T, =HxWxC)/§xPxR)
T < min(T,, Tyy,)

ny Xnyxn, <WSxPxT
1<n.<H

l<n,<W

1 <n,<C.

(14)

By applying these constraints, we can reduce the search space
by ignoring wasteful choices and therefore saving optimization
workloads. For example, for T € [T}, Tyy], these T values are
legal while on-chip resources are not fully utilized, and the
system parallelism can be further improved. The search space
regarding these constraints is visualized in Fig. 7. To the best
of our knowledge, we are the first to take these constraints for
deployments of DNN models on GPUs into consideration, as
compared with e.g., [37].

Although the search space is compressed by the constraints
listed above, the optimization process may still not be fast
enough because each candidate configuration’s on-board com-
pilation and execution is considerably time-consuming. We
choose Bayesian Optimization to better sample candidate val-
ues nx, ny, and nz than grid search or manual tuning [38], [39],
which shows superior efficiency in searching by utilizing
the full information gained from past experiments. The core
components of Bayesian optimization consist of a probabilis-
tic surrogate model S(-) to fastly evaluate inference latency,
and an acquisition function A(-) to select the most informa-
tive candidates which hold largest upper confidence bound
(UCB) [40]. First, we randomly sample a small batch of
configurations N from search space N to initialize the sur-
rogate model, which is a Gaussian process (GP) model in our
implementation. The complete searching process is shown in
Algorithm 2. After several rounds of sampling and updating
the surrogate model, we choose the final configuration with
the best inference speed.

IV. ADAPTIVE §-BIT QUANTIZATION

As shown in Fig. 1, The inference latency of the dic-
tionary query and filtering step was significantly reduced
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Algorithm 2 Configuration Search Process
1: Input: search space N, round 7', surrogate model S(-), acquisition
function A(-);
: Get initial samples: N <« Sample(N);
. Get sample performance: P < Eval(N); > On-board test
: Get Optimimal in sample: (ny,y ,)*, p* « argmax, P;

2
3
4
5: for i < range(lﬁl, T) do
6.
7
8

X.,V.ZEN

SO (nx, ny, nz), Ny < Fit(P, N); > Fit GP Model

(nx,y,2)i < argmax,, . )eN ASOKI(nx,y,2)s N, nx,y,2);
> On-board test
> Add to samples

© pi < Eval((ny, ny, n7));
9: P« PUp;,N < NU (nxy2)i;
10: if p; > p* then

11: (nx, ny, nz)* « (nx,y,z)i§
12: p* < pis

13: end if

14: end for

15: Output: (ny, ny, n7)*;

by dictionary compression and hardware constraint-aware
optimization. After these steps, typical deep learning opera-
tors such as convolution and ReL.U in LaparNet become the
most time-consuming stage, occupying up to 70% of inference
time.

Different from other computer vision tasks such as object
detection or classification, SR is a fine-grained task where the
RGB value of HR images is recovered. We adopt the 8-bit
PTQ technique to further accelerate the inference by fully
increasing the math throughput of hardware using 8-bit data
type for both weight and activations of LaparNet. The reason
why we choose the simple 8-bit quantization instead of some
other SOTA quantization methods is threefold: First, the RGB
value of each pixel ranges from O to 255, which can be repre-
sented using no less than 8 bits. In this way, 8-bit is the lower
bound bit-width to avoid significant information loss. Second,
the priority of maintaining accuracy is higher than the model
compression, so we do not necessarily need to quantize the
model to lower bits aggressively. Last but not least, 8-bit inte-
ger computations are well supported by the current mainstream
accelerator with mature hardware and software support

By convention, the rounding step in (7) is a simple yet
fixed rounding-to-nearest action, which is intuitive. And the
naive approach for clipping range selection is to minimize the
KL-divergence of activations at each layer

o = argmin Dg; (actg pi| lactrp3o) (15)
o

where act denotes the activation value distribution, which can

be derived from a calibration set. KL-divergence is capable

of measuring the information loss of clipping and rounding

of quantization by calculating the entropy of quantized and

unquantized data distribution.

Nevertheless, KL-divergence-guided clipping scale cannot
avoid apparent performance degradation, despite its effective-
ness in minimizing layer-wise information loss from quanti-
zation. As we conduct the naive scale quantization, both peak
signal-to-noise ratio (PSNR) and structural similarity index
measure (SSIM) drop significantly even lower than baseline
methods, as shown in Fig. 8. Nagel et al. [27] first raised
doubts over the most common rounding-to-nearest step used
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Fig. 8. SR performance of 8-bit inference in comparison with SOTA baseline
SR methods and original Lapar-A model. Lapar-A(10%) represents the model
with the dictionary shrunk to 10% size. Lapar-A(10%)-8 bit represents the
model with naive 8-bit scale quantization. Lapar-A(10%)-ours is our adaptive
8 bit approach.

in integer quantization. Since the quantization clipping and
rounding can be regarded as a weight value shift to the orig-
inal full-precision network, which leads to a value difference
in coefficient vector @ extracted from LaparNet, resulting in
a performance degradation

(X, W, AW) =loss(X, W+ AW) —loss(X, W) (16)
where W is the weight and X is the input. Aw is the weight
value shift from rounding and clipping and, degradation W is
evaluated by the task loss change from quantization. However,
direct optimization of such value differences is not easy. As
quantization aims to minimize the disturbance on the final
result, we can simplify the optimization goal with an equiva-
lent objective: minimizing SR task loss difference. Then, we
can expand the equation by second-order Taylor expansion, as
indicated by [27]. The objective of minimizing the accuracy
loss can be derived

argmin E[loss(X, W + AW) — loss(X, W)]
AW

~ argmin E [AWTVWIOSS(X, W)
AW

+ AWTVZ loss(X, W)AW]. (17)

The rounding-to-nearest step focuses on minimizing the
weight shift AW, which may not be the optimal choice.
The first term in (17) is negligible as the convergence of
training leads the first-order gradient Vwloss(X, W) to be
close to 0. Therefore, the objective of quantization falls to
the second term where V%VIOSS(X, W) is Hessian matrix.
Reference [41] has mathematically proved this second-order
error optimization can be transformed into (18), where A®
denotes the value difference in coefficient vector ® before
and after the quantization and V%loss(X , W) is the Hessian
regarding coefficient vector ®. Such transformation enables
the optimization as the coefficient vector difference A® is
much easier to acquire during the forwarding inference step

argmin E [AWT V%VIOSS(X, W)AW]
AW

~ argmin E [AQTvﬁ,loss(X, W)A<I>].
AW

(18)

To adjust the value of AW, the original scale quantization is
modified with fixed rounding-down and a controllable adaptive
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Fig. 9.  Visualization of quantization submodule for V optimization. We

divide LaparNet with each submodule either stacked with less than 4 layers
or ended with an Short-Cut node. In practice, most submodules share the
same structure with a residual block in LaparNet.

term V added before clipping

W+ AW = clip(round(¥> +o(V), —e, E) (19)
where V is a continuous variable in real number, which can be
regarded as a tunable parameter and updated through gradient
descent during optimization. The rectified sigmoid function
o(-) [42] is to force the adaptive value within range [0, 1
and has nonvanishing gradient around 0 or 1. The overall
optimization objective is

—_—

argmin E[A@Tvéloss(x, W)A(I)]
\ %4

+ AZ(I —20(V;) — 1|T). (20)
L

The second regularization term is to encourage o (V))

to converge to value 0/1 with an appropriately annealed

hyperparameter t.

Although we have the formulation in (20), it is still challeng-
ing to optimize all V for the whole network considering the
size of the model. We optimize the above objective function
with a finer granularity by dividing the network into a series of
quantization submodules and tuning the V of each submodule
iteratively. In this way, we are able to reduce the complexity
of optimizing V and concentrate more on the submodule-wise
quantization error. As the size of the submodule shrinks down,
the computational complexity is smaller to optimize V for each
submodule. On the other hand, finer-grained submodules may
possibly lead to local optimal for each submodule and deviate
from global optimal solution. As shown in Fig. 9, we choose
the submodule size delicately after different trials to reach
the highest restored accuracy. Given the network structure of
LaparNet, we choose each single residual block as a single
submodule and quantize submodules one by one with the first
term in (20). The first term of objective in (20) is approxi-
mated by the /2-norm of difference in quantized/unquantized
output tensors ||®wiaw — <I>W||}2r at each submodule.

V. EXPERIMENTAL RESULTS
A. Experimental Setup

Hardware Implementation: We validate our high-
performance accelerator on NVIDIA Jetson Xavier NX,
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an edge device with embedded GPU. Metrics, including
acceleration ratio and SR quality, are all compared with
the state-of-the-art tool NVIDIA TensorRT to show the
performance. NX integrates an ARM v8.2 64-bit CPU
processor and a 384-core NVIDIA Volta GPU with 48 Tensor
Cores. For a fair comparison, we choose 15W of power as
the experimental setting, where it delivers up to 21 TOPS
computing power. The clock frequency of the ARM processor
is 2-core 1900 MHz, and 4/6 core 1400 MHz. The clock
frequency of the GPU processor is 1100 MHz. The accuracy
comparison is evaluated on NVIDIA GeForce RTX 2080 Ti
with 4352 FP32 FPUs (CUDA cores) and 544 Tensor cores
for accuracy evaluation via PyTorch.

Software Implementation: The experimental environment is
CUDA 11.0 and TensorRT 7.1.3. We use 32-bit floating point
precision data type for full-precision evaluation and 8-bit inte-
ger data type for quantized model evaluation. The model-level
training and accuracy evaluation are based on the official
LAPAR code repository [54].

Dataset: The proposed accelerator is evaluated on com-
mon single image SR (SISR) Set5 [55], Setl14 [3], B100 [56],
Urban100 [57], Mangal09 [45] dataset.

B. Performance Evaluation

To validate the speed-up effectiveness of our design, we
make comparisons with the original model on both NVIDIA
Jetson Xavier NX and RTX 2080 Ti devices. To show the
generalization ability and soundness, we measure the infer-
ence in different input frame sizes and different scale ratios.
The results are in 32-bit floating point precisions, and run-
ning times are shown in Table I. We successfully realize
SR with the output of 540P quality to real-time inference.
Our design surpasses the PyTorch with 352.27% faster infer-
ence on 2080 Ti. Overall, Our design surpasses TensorRT
with 144.49% inference speed on 2080 Ti and 156.28%
on Jetson Xavier NX on average. Furthermore, in compar-
ison with TensorRT, our accelerator realizes an impressive
+27.45%~77.56% speed-up. It is interesting to notice Jetson
Xavier NX presents more obvious acceleration than 2080 Ti.
This implicitly verifies that our design is more effective for
embedded GPUs with limited computation and communication
resources.

In Table II, we also compare the quality of SR results
with other famous models as baseline methods to show the
performance of our design. The performance metrics are
PSNR and SSIM, both are the mainstream common met-
rics to measure the qualities of restored HR frames. Higher
values indicate better performance. Although our model is
a compressed version with 90% of the dictionary slimmed
out while the other baselines are not, it is still superior
to almost all of the baseline models on both of these two
metrics.

To verify the sparsity in the dictionary and the correspond-
ing acceleration potentials, we conduct an ablation study on
the slimming ratio in Fig. 10. 100% denotes the original dic-
tionary without compression. It shows that for different scales,
the time costs decrease linearly to the compression ratio. The
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TABLE I
INFERENCE TIME (MS) AND ACCELERATION RATIOS

Input size Scale NVIDIA GeForce RTX 2080 Ti NVIDIA Jetson Xavier NX
put s PyTorch  TensorRT  Ours Acc. (PyTorch)  Acc. (TensorRT) | TensorRT Ours Acc. (TensorRT)
X2 6.94 1.30 1.02 x680.39% x127.45% 12.37 9.04 x136.84%
64 x 64 x3 8.26 1.94 1.40 %590.00% x138.57% 22.62 14.28 X 158.40%
x4 9.86 2.79 1.88 x524.46% x 148.40% 35.83 20.54 x174.44%
X2 8.74 3.59 2.66 x328.57% % 134.96% 52.12 37.25 x139.92%
128 x 128 x3 13.04 6.19 4.16 x313.46% x 148.80% 90.33 54.26 X 166.48%
x4 18.07 9.71 6.13 X294.78% x158.40% 144.34 81.29 x177.56%
X2 17.12 12.40 9.25 x185.08% x134.05% 177.57 124.12 x143.06%
180 x 320 x3 30.83 21.66 14.63 x210.73% x 148.05% 325.07 200.02 x162.52%
x4 44.69 34.69 22.12 x202.03% x156.82% 534.99 318.60 x167.92%
X2 67.36 50.26 37.47 x179.77% x134.13% 748.72 530.23 x141.21%
360 x 640 X3 105.32 88.45 59.20 x177.90% x149.41% 1466.91 973.25 x150.72%
x4 406.93 141.08 91.09 x540.02% x 154.88% - - -
Average \ - \ 61.43 31.17 20.91 x352.27% x144.49 % \ 328.26 214.81 x156.28 %

Inference time on NVIDIA Jetson Xavier NX with input size 360 x 640 and scale 4 is not available due to the memory limit

of the edge device.

TABLE 11
COMPARISONS ON MULTIPLE BENCHMARK DATASETS OF OUR MODEL (FULL-PRECISION) AND OTHER POPULAR SR NETWORKS.
THE DICTIONARY IN OUR MODEL IS COMPRESSED TO 10% OF ORIGINAL SIZE FOR EVALUATION. PERFORMANCE METRICS
ARE PSNR/SSIM. THE MAC IS CALCULATED CORRESPONDING TO A 1280 x 720 HR IMAGE. BOLD: BEST RESULTS

Scale | Method | Params | MAC | Set5 | Setl4 | B100 | Urbanl00 | Mangal09
SRCNN [43] 57K 53G 36.66/0.9542 | 32.42/0.9063 | 31.36/0.8879 | 29.50/0.8946 | 35.74/0.9661
FSRCNN [35] 12K 6G 37.00/0.9558 | 32.63/0.9088 | 31.53/0.8920 | 29.88/0.9020 | 36.67/0.9694
VDSR [36] 665K 613G 37.53/0.9587 | 33.03/0.9124 | 31.90/0.8960 | 30.76/0.9140 | 37.22/0.9729
DRRN [44] 297K 6,797G | 37.74/0.9591 33.23/0.9136 | 32.05/0.8973 | 31.23/0.9188 | 37.92/0.9760
X2 LapSRN [45] 813K 30G 37.52/0.9590 | 33.08/0.9130 | 31.80/0.8950 | 30.41/0.9100 | 37.27/0.9740
SRFBN-S [46] 282K 680G 37.78/0.9597 | 33.35/0.9156 | 32.00/0.8970 | 31.41/0.9207 | 38.06/0.9757
FALSR-A [47] 1,021K 235G 37.82/0.9595 | 33.55/0.9168 | 32.12/0.8987 | 31.93/0.9256 -
SRMDNF [48] 1,513K 348G 37.79/0.9600 | 33.32/0.9150 | 32.05/0.8980 | 31.33/0.9200 -
TPSR [49] 60K 14G 37.38/0.9583 | 33.00/0.9123 | 31.75/0.8942 | 30.61/0.9119 -
SESR-M11 [50] 27K 6.3G 37.58/0.9593 | 33.03/0.9128 | 31.85/0.8956 | 30.72/0.9136 | 37.40/0.9746
Ours 528K 153G 37.98/0.9604 | 33.59/0.9181 | 32.19/0.8999 | 32.09/0.9281 | 38.60/0.9771
SRCNN [43] 57K 53G 32.75/0.9090 | 29.28/0.8209 | 28.41/0.7863 | 26.24/0.7989 | 30.59/0.9107
FSRCNN [35] 12K 5G 33.16/0.9140 | 29.43/0.8242 | 28.53/0.7910 | 26.43/0.8080 | 30.98/0.9212
VDSR [36] 665K 613G 33.66/0.9213 | 29.77/0.8314 | 28.82/0.7976 | 27.14/0.8279 | 32.01/0.9310
%3 DRRN [44] 297K 6,797G | 34.03/0.9244 | 29.96/0.8349 | 28.95/0.8004 | 27.53/0.8378 | 32.74/0.9390
SelNet [51] 1,159K 120G 34.27/0.9257 | 30.30/0.8399 | 28.97/0.8025 - -
CARN [52] 1,592K 119G 34.29/0.9255 | 30.29/0.8407 | 29.06/0.8034 | 28.06/0.8493 -
SRFBN-S [46] 376K 832G 34.20/0.9255 | 30.10/0.8372 | 28.96/0.8010 | 27.66/0.8415 | 33.02/0.9404
Ours 575K 96G 34.35/0.9267 | 30.33/0.8420 | 29.11/0.8054 | 28.12/0.8523 | 33.48/0.9439
SRCNN [43] 57K 53G 30.48/0.8628 | 27.49/0.7503 | 26.90/0.7101 | 24.52/0.7221 | 27.66/0.8505
FSRCNN [35] 12K 5G 30.71/0.8657 | 27.59/0.7535 | 26.98/0.7150 | 24.62/0.7280 | 27.90/0.8517
VDSR [36] 665K 613G 31.35/0.8838 | 28.01/0.7674 | 27.29/0.7251 | 25.18/0.7524 | 28.83/0.8809
4 DRRN [44] 297K 6,797G | 31.68/0.8888 | 28.21/0.7720 | 27.38/0.7284 | 25.44/0.7638 | 29.46/0.8960
LapSRN [45] 813K 149G 31.54/0.8850 | 28.19/0.7720 | 27.32/0.7280 | 25.21/0.7560 | 29.09/0.8845
CARN [52] 1,592K 91G 32.13/0.8937 | 28.60/0.7806 | 27.58/0.7349 | 26.07/0.7837 -
SRFBN-S [46] 483K 1,037G | 31.98/0.8923 | 28.45/0.7779 | 27.44/0.7313 | 25.71/0.7719 | 29.91/0.9008
TPSR [49] 61K 4G 31.10/0.8779 | 27.95/0.7663 | 27.15/0.7214 | 24.97/0.7456 -
SplitSR (HI=2) [53] 94k 99G 31.53/0.8950 | 28.18/0.7887 | 27.28/0.7458 | 25.20/0.7704 -
SESR-M11 [50] 32.14K 1.85G 31.27/0.8810 | 27.94/0.7660 | 27.20/0.7225 | 25.00/0.7466 | 28.73/0.8815
Ours 640K 76G 32.15/0.8944 | 28.61/0.7817 | 27.59/0.7366 | 26.14/0.7873 | 30.39/0.9072

dictionary query and filtering can be up to roughly x20 faster
than the original version.

C. Quantized 8-Bit Analysis

We show the practicability of our adaptive 8-bit PTQ by
comparing it with other baseline methods on all five bench-
marks and different upscaling factors. During the implemen-
tation process, we find out the tensor multiplication operation

is sensitive to low-bit quantization and strongly affects the SR
task accuracy. One possible reason is that large tensor multi-
plication may cause a wide activation value distribution, which
may lead to information loss after clipping on the range during
quantization. Therefore, we manually tick off the quantization
node for the “mul” operation and analyze the effectiveness of
other steps in our quantization flow. As shown in Table III
that even compressed with quantized 8-bit inference, our
approach still achieves comparable or even better performance
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Fig. 10. Time consumption of the dictionary query and filtering with different
compression ratios. Different input image sizes and scaling factors (from 2
to 4) are evaluated. (a) Input size 64 x 64. (b) Input size 128 x 128. (c¢) Input
size 180 x 320. (d) Input size 360 x 640.

TABLE 11T
PERFORMANCE EVALUATION OF OUR FULLY COMPRESSED LAPAR-A
(10%) AT 8-BIT INFERENCE ON ALL BENCHMARKS WITH OTHER
UNQUANTIZED FULL-PRECISION (FP32) STATE-OF-THE-ART
BASELINE METHODS

Benchmark | Scale | Baseline (SOTA) | Ours (8-bit)

X2 37.82/0.9595 37.87/0.9597

Set5 %3 34.29/0.9255 34.30/0.9262
x4 32.13/0.8937 32.07/0.8926

X2 33.55/0.9168 33.47/0.9169

Setl4 X3 30.29/0.8407 30.27/0.8410
x4 28.60/0.7806 28.50/0.7798

X2 32.12/0.8987 32.07/0.8983

B100 %3 29.06/0.8034 29.02/0.8035
x4 27.58/0.7349 27.45/0.7334

X2 31.93/0.9256 32.00/0.9268

Urban100 %3 28.06/0.8493 28.10/0.8514
x4 26.07/0.7837 26.07/0.7857

X2 38.06/0.9757 38.28/0.9750

Mangal09 X3 33.02/0.9404 33.41/0.9429
x4 29.91/0.9008 30.24/0.9047

with other SOTA
precision.

We also analyze the inference speed of our implemented
8-bit inference. As shown in Table IV, we achieve significant
speed-up even in comparison with our previous ICCAD2021
work. In general, our quantized implementation is 49.25%
faster. More specifically, the acceleration ratio increases as
the input size gets higher. The inference flow switches from
compute-bound to memory-bound when the model and tensor
size are bigger. Therefore, in this case, the low-bit inference
is more effective. As for the full-precision “mul” operation,
such kernels are already well optimized for GPU devices. As
we profile the time consumption, all “mul” kernels combined
only hold < 2% of total inference time, including the data

baseline methods implemented in full

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 10, OCTOBER 2023

TABLE IV
QUANTIZED 8-BIT ACCELERATION ANALYSIS IN COMPARISON WITH
FULL-PRECISION ICCAD21 [1]. “MUL” DENOTES THE TIME
CONSUMPTION OF “MUL” KERNEL AND CORRESPONDING
DATA TRANSFORMATION

Input size | Scale | ICCAD21 (mul) [1] ~ Ours (8-bit) | Acc.
X2 1.02 (0.04) 1.02 x100.00%
64 x 64 X3 1.40 (0.10) 1.36 x102.94%
x4 1.88 (0.09) 1.91 x98.43%
X2 2.66 (0.18) 2.09 x127.27%
128 x 128 X3 4.16 (0.19) 3.40 x122.35%
x4 6.13 (0.20) 5.13 x119.49%
X2 9.25 (0.43) 5.85 x158.12%
180 x 320 x3 14.63 (0.44) 10.33 x141.63%
x4 22.12 (0.44) 16.55 x 133.66%
X2 37.47 (0.98) 20.72 % 180.84%
360 x 640 X3 59.20 (1.01) 36.49 x162.24%
x4 91.09 (1.02) 63.33 x143.83%
Average ‘ - ‘ 20.92 (0.42) 14.02 ‘ x149.25%

transformation. We show the time consumption of “mul” ker-
nels at different scale and input size in Table IV. This way,
such a full-precision kernel will not introduce much overhead
to the processing speed.

We also conduct a detailed ablation study to verify the effec-
tiveness of each method applied in our quantization flow, as
shown in Table V. For data calibration and tuning of the adap-
tive variable V, we use Mangal(09 as the validation and test
dataset.

D. Discussions

We demonstrate the remarkable performance of domain-
specific high-performance SR accelerator with all the experi-
ment results, which is more effective for edge embedded GPU
NVIDIA Jetson Xavier NX with limited power and hardware
resources. Within our approaches, the key idea is to conquer
the difficulties from dictionary learning algorithms used in SR
task, which hold particular memory and computation patterns
and are not feasible for existing deployment toolkits. Another
challenge is the large sizes of both the input frame and the
intermediate feature map, which bring huge memory pressure
to hardware.

Moreover, as shown in Fig. 11, it is easy to notice a
performance-scale tradeoff for SR task. Different models
should be delicately selected for different hardware resources
and scenarios. Although some models are compact with fast
inference and large frames, they are somewhat limited in accu-
racy and may not restore enough texture details in HR frames.
For a fair comparison of SR task scaling up to 720P with
x4 ratio under our consistent GPU hardware setting, although
some super-lightweight SOTA models such as SESR-M11 [50]
or TPSR [49] can infer under 3 ms per frame, the HR accu-
racy may not meet some requirement, as shown in Fig. 11. On
the other hand, another SOTA baseline SplitSR [53] is more
performant than former two baselines, however, with a much
higher inference time 19 ms. Meanwhile, our dictionary-based
approach shows a ruling performance over all other baselines
within 16 ms per frame.
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TABLE V
ABLATION STUDY ON THE PERFORMANCE INFLUENCE OF EACH QUANTIZATION OPTION. PERFORMANCE METRICS ARE PSNR/SSIM. THE
LEFT-MOST COLUMN IN BOLD Is ORIGINAL FULL-PRECISION FP32 LAPAR-A FOR COMPARISON WITH NO QUANTIZATION APPLIED

Methods | oOriginal | (a) | (b) | (c)
Quantized v
Naive-8bit v
Exclude mul v
Adaptive-8bit
X2 | 38.65/0.9772 | 33.97/0.8977 | 37.74/0.9711 | 38.50/0.9762
X3 | 33.51/0.9441 | 31.30/0.8626 | 33.06/0.9415 | 33.45/0.9437
x4 ‘ 30.38/0.9073 ‘ 29.26/0.8381 ‘ 30.02/0.9036 ‘ 30.32/0.9065

325

Ours
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FSRCNN
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Fig. 11. Comparison between our proposed model after compression and

other lightweight methods (<1M parameters) on Set5 for x4 setting. Circle
sizes are set proportional to the numbers of parameters. “Ours” denotes our
full-size LAPAR model and “Ours-C16, 8, 4 denote our LAPAR models with
embedding channel number reduced from 32 to 16, 8, and 4.

In addition, we added a Pareto curve in Fig. 11 to show
the flexibility of our deployed dictionary-based algorithm. To
plot the curve, we shrink our model from full-size to 1.56%,
which is close to the size of the smallest baseline model. We
reduce the model size by directly halving the embedding chan-
nel number of all residual blocks at each point from 32 to
16, 8, and 4. As shown in Fig. 11, our deployed algorithm
achieves the highest performance-scale efficiency at channels
32, 16, and 8, except for the extremely compressed 4-channel
case, which has slightly poorer PSNR than SESR-M11 [50].

To the best of our knowledge, our proposed accelerator is
the first to achieve superior performance on SR applications
on edge embedded GPUs.

VI. CONCLUSION

In this article, we design a domain-specific
high-performance accelerator for SR deployment with a
model originating from LAPAR. In our framework design,
we propose a dictionary slimming strategy to extract the most
informative dictionary items for efficient inference. We also
designed a hardware-aware acceleration engine to fully utilize
the limited hardware resources for inference optimization.
Moreover, we make trials on low-bit inference with an
adaptive 8-bit quantization strategy to further accelerate the
process. Based on various evaluation results, our system

outperforms the state-of-the-art tool TensorRT, and PyTorch
on edge embedded GPU NVIDIA Jetson NX and 2080 Ti
significantly, without quality degradation.
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