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Abstract—Optimizing timing is critical to the design closure of
integrated circuits (ICs). However, most existing algorithms for
circuit placement focus on the optimization of wirelength instead
of timing metrics. This article presents a timing-driven placement
framework. It consists of a global placement stage based on net
weighting with momentum, and a detailed placement stage based
on the Lagrangian multipliers. By improving the precondition-
ers and timing engines to facilitate net weighting and discrete
local search, we have achieved superior timing improvement on
benchmarks from ICCAD 2015 contest, including worst negative
slack (WNS) and total negative slack (TNS).

Index Terms—Physical design, timing.

I. INTRODUCTION

C IRCUIT placement is an important VLSI design stage.
Placement aims at finding the optimal locations of circuit

components on a given chip layout [2]. Placement is often for-
mulated as a mathematical optimization problem with objec-
tive functions minimizing the cost of interconnects between
circuit components. In most previous placement frameworks,
the interconnect cost is modeled by the total wirelength of all
nets, which is estimated by half-perimeter wirelength (HPWL)
or other approximations. Besides being only an approxima-
tion, total wirelength pays equal attention to all nets instead
of focusing on timing-critical nets and paths. This is in contrast
to a timing-driven placement that specifically targets wires
on timing-critical paths which often yields immediate circuit
performance benefits.

Placement can be divided into a global placement stage and
a detailed placement stage, and timing optimization can be
applied to both stages. The goal of timing-driven global place-
ment is to achieve both roughly good worst negative slack
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(WNS) and total negative slack (TNS). Later, timing-driven
detailed placement pays more attention to WNS optimization
by perturbing the current placement solution locally around
critical paths. There are two types of timing-driven placement
optimization: net-based and path-based approaches.

In net-based approaches, optimization is done on nets
within the design. These approaches translate timing analysis
feedbacks into changes of net weights and other constraints in
order to optimize critical circuit regions. The weights of nets
can be computed statically once before placement optimization
based on either slack [3], [4], [5], [6] or sensitivity [7], [8], [9]
statistics. The drawback of such approaches is that the timing
analysis at earlier placement iterations are unreliable due to
frequently changing cell locations, leading to less effective
and representative net weights. Such drawback is remedied by
updating net weights dynamically across all placement itera-
tions [3], [10], [11], [12]. In addition to net weighting, timing
analysis results can also be used to limit the maximum net
lengths, which are called net constraint-based approaches [13],
[14], [15], [16], [17]. The formulation of net constraints varies
from particular placers [2].

In contrast to net-based approaches, path-based approaches
focus on direct optimization of critical timing paths [18], [19],
[20], [21]. They move cells on selected critical paths to explic-
itly reduce the delay of these paths. Such path-based objective
is often formulated as a mathematical programming problem to
optimize and can usually outperform net-based approaches in
terms of solution quality. However, as the number of paths can
grow near exponentially with the growth of design size, such
path-based approaches are poor in their runtime scalability.

Both the net-based and the path-based approaches have
strengths and weaknesses regarding different targets, such as
solution quality and turnaround time, which involve inevitable
tradeoff during any timing optimization. Generally, we prefer
less constrained approaches with knowledge of different place-
ment iterations and more runtime scalability to large designs,
especially considering the flexible cell placement formulation
during global placement.

In this article, we propose a timing-driven placement engine
with momentum-based net weighting in global placement and
the Lagrangian-based refinement in detailed placement. The
net-based approach is applied because of its scalability to
the global perturbation of cells in global placement. After
the timing-driven global placement, we further integrate a
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timing-driven detailed placement procedure to improve the
timing quality. We summarize the major contributions as
follows.

1) Momentum-Based Net Weighting Scheme: The net
weighting scheme is crucial in our timing-driven global
placement algorithm. At each timing iteration, every net
should be assigned a positive weight by incorporating
the current slack evaluation within the existing net crit-
icality. The net weights will be gradually updated to
keep the timing profile up-to-date by considering the
new weights, computed according to slacks, to be a
momentum term, which is analogous to the momentum
method that is widely used in backpropagation algorithm
for neural network training [22].

2) Preconditioning for Net Weighting: The preconditioner
proposed by the original ePlace [23] algorithm only con-
siders trivial net weights such that every net is equally
treated. Providing that critical nets should have higher
net weights for timing optimization, the numerical sta-
bility may get negatively affected, especially for those
cells incident to critical paths. The preconditioner will be
enhanced and generalized to adapt nontrivial net weights
in placement optimization.

3) Lagrangian-Based Refinement: After the timing-driven
global placement, a timing-driven detailed placement
inspired from [24] will be performed immediately to fur-
ther improve the timing quality. We use a high-quality
black-box timer to evaluate and analyze timing and
iteratively update cell locations.

4) Experimental results on the ICCAD2015 contest bench-
mark suites [25] show that we can achieve about 50%
improvements on TNS, and 30% improvements on WNS
on average, compared to the state-of-the-art placer [26]
after global placement and legalization. After that, we
can further make roughly 10% improvements on both
TNS and WNS in detailed placement. The timing quality
comparison is listed in Table II.

The remainder of this article is structured as follows.
Section II provides some preliminaries, including brief foun-
dations of nonlinear placement, static timing analysis (STA),
and timing optimization. Section III presents the descrip-
tions of our timing-driven global placement algorithms and
the detailed analysis. Section IV presents the timing-driven
detailed placement algorithms. After the algorithm sections,
Section V demonstrates the experimental results and some
related analysis, followed by Section VI summarizing the
whole paper.

II. PRELIMINARIES

A. Nonlinear Global Placement

In global placement, a circuit is modeled as a directed graph
where nodes represent cells and edges represent interconnects
between cells. A typical circuit graph contains millions of
nodes to be placed on the chip layout. We let N = (V, E)

denote this graph where V denotes the set of cells and E
denotes the set of interconnects, i.e., nets. Placement engines
try to assign two location vectors (x, y) in R

n corresponding

to all n cells to minimize the total wirelength of nets, denoted
as W(x, y). With net weights applied, the weighted sum of
wirelengths can be formulated as

min
x,y

∑

e∈E

weW(e; x, y) (1)

where we denotes the weight of net e ∈ E. To ease the
optimization of wirelength, modern placement engines adopt
smoothed approximations to the HPWL model W(e; x, y).
Smoothed approximations provide gradient information to cell
movements which are especially useful in nonlinear placement
frameworks which rely on the differentiability of objective
functions. One commonly used smoothed approximation of
HPWL is called weighted-average (WA) equations [27], [28]
as follows:

W̃x(e, γ ; x, y) =
∑

i∈e xie
xi
γ

∑
i∈e e

xi
γ

−
∑

i∈e xie
− xi

γ

∑
i∈e e−

xi
γ

W̃(e, γ ; x, y) = W̃x(e, γ ; x, y)+ W̃y(e, γ ; x, y) (2)

In (2), W̃x(e, γ ; x, y), W̃y(e, γ ; x, y) denote net wirelengths
across horizontal and vertical directions, respectively, and the
hyperparameter γ controls the approximation precision. This
equation is a drop-in replacement for the wirelength model
used throughout the rest of this article. Finally, the nonlinear
placement objective is formulated as

min
x,y

{
∑

e∈E

weW(e; x, y)+ λD(x, y)

}
(3)

where D(·, ·) denotes the density penalty to encourage cell
spreading and λ denotes the penalty multiplier.

To fully leverage the advantages of the gradient-based
numerical optimization methods, the objective in (3) should
be everywhere differentiable and its gradient should be feasi-
ble to compute numerically. The wirelength model W(e; x, y)
is a nonlinear approximation, so optimizing (3) is known as
nonlinear global placement.

B. Static Timing Analysis

The basis of a successful timing-driven placement lies in fast
and accurate timing computation through STA. STA evaluates
the delay-annotated circuit timing graph under worst-case and
best-case scenarios, and then computes its setup and hold tim-
ing performance. During this process, the signal arrival time
and constraints are propagated on the graph through logic
paths [29].

Specifically, the delay-annotated timing graph is directed
and acyclic, with each node denoting a circuit pin and each
edge denoting a directed connection between circuit pins
where the signal can pass through. The signal propagation
involves both a forward propagation and a backward propaga-
tion process, respectively, computing arrival times and required
arrival times of pins. For any pin p with arrival time denoted
as tat(p) and required arrival time denoted as trat(p), we can
define its slack as the difference between them

s(p) = trat(p)− tat(p). (4)
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Fig. 1. Overall flow of placement, including both global placement and detailed placement with timing optimization. Tasks of placement are described in
red boxes, while tasks of detailed placement are in cyan boxes.

Slack is a critical and widely used indicator of timing qual-
ity around every pin evaluated. The timing performance of a
whole placement solution is an ensemble of slacks on end-
point pins. By picking the smallest negative slack values, we
get the most commonly used WNS

swns = min
t∈Pend

s(t) (5)

here Pend denotes the set of endpoint pins, including flip–
flop (FF) inputs and output ports, and swns denotes the WNS
value. We assume at least 1 pin with negative slack value,
i.e., ∃t ∈ Pend s.t. s(t) < 0, which means there exists timing
violations in the current placement iteration. Apart from WNS,
TNS [17] is another well-known timing objective which sums
all negative endpoint slacks instead

stns = −
∑

t∈Pend

s(t)− =
∑

t∈Pend,s(t)<0

s(t). (6)

C. Timing Optimization

Timing-driven placement aims at improving the TNS and
WNS of the underlying design. While both metrics depict
the timing quality, they pay attention to different aspects of
the circuit timing behavior. WNS cares about the single most
critical signal path by definition, whereas TNS involves the
critical paths at all timing endpoints, possibly taking tens of
thousands of paths into consideration that expand to the whole
circuit topology. As a result, TNS incorporates a more global
view of timing optimization opportunities which turns out to
be useful in timing-driven global placement, whereas WNS is
more emphasized during detailed placement.

A complete timing-driven placement formulation with both
objectives and constraints can be presented as follows:

max s(x, y)

s.t. ρb(x, y) ≤ ρt ∀b ∈ B. (7)

In (7), the objective s(x, y) is a slack function that we need
to maximize, i.e., minimizing the absolute value of slacks. It
can be either WNS or TNS, or the combination of them. The
constraints are related to cell density which is sampled from
the m × m planar grids (i.e., bins) denoted as B on the circuit
layout. In each bin b ∈ B, ρb(x, y) and ρt denote the cur-
rent density and the target density, respectively. To encourage
cell spreading, we try to stop density overflows. The timing-
oriented objective s(x, y) replaces the total wirelength objec-
tive used in previous wirelength-driven analytical placement
algorithms while leaving cell constraints untouched. Contrary
to the wirelength functions with closed-form analytical rep-
resentations, slack metrics hardly incorporate explicit forms.
This leads to our choice of an indirect timing optimization
scheme by net weighting.

III. TIMING-DRIVEN GLOBAL PLACEMENT

The overall flow of the proposed placement framework,
including both global placement and detailed placement is
illustrated in Fig. 1 in detail. Tasks of placement are described
in red boxes, while tasks of detailed placement are in cyan
boxes. In this section, we focus on the timing-driven global
placement.

At the global placement stage, we expect to integrate STA
into the iterations of cell location updates during the gradient-
based optimization so that the placement solution can be
optimized in terms of timing. More specifically, we expect the
timing analysis tool to give us feedback about how good the
current placement is, which paths have an intensive impact in
terms of timing, and how such information can affect the cell
locations during the placement. We have to determine whether
the timing analysis should be performed at each optimization
step compared to modern gradient-based analytical placers. If
the current iteration is regular, we skip the timing optimization
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(a) (b)

Fig. 2. 4-pin net example of a Steiner tree and its corresponding RC tree con-
structed for net delay calculation. (a) Steiner tree example. (b) Corresponding
RC tree.

block and check convergence criteria directly. Otherwise, the
current iteration is determined to be a timing iteration, which
launches the net weighting process.

The timing optimization in global placement consists of
three consecutive steps: 1) RC tree construction; 2) STA; and
3) net weighting.

A. RC Tree Construction

Constructing RC trees is a crucial step required by our timer
to perform timing analysis. At the placement stage, we only
have cell locations without routing information, so we must
provide a policy to leverage coordinates and model timing
propagation. More specifically, for each net, we are supposed
to construct an RC tree that roots from its driving pin and
connects each sink pin.

Additionally, RC trees should be reconstructed for all nets
at every timing iteration, as the cell locations will change in
every backward step. Since it is computationally expensive to
construct RC trees at every gradient-based iteration in place-
ment optimization, two adjacent timing iterations should not
be too close. Therefore, the pin distribution of the same net
may vary significantly in two timing iterations, which forces
us to reconstruct RC trees for reliability.

Given a possibly illegal placement solution, the pin locations
of all nets are provided. Each time we perform the timing
analysis, the pin locations are considered fixed, until the next
cell location update iteration.

For each net, we start with the pins it connects. A FLUTE [30]
call will be performed to construct the rectilinear Steiner min-
imal tree of this net. The Steiner tree generally reflects the
internal timing propagation inside the timer we use. With the
help of Steiner trees, we can roughly model the routing solution
by inserting Steiner points. For any driving-sink pair in a net,
there exists a unique path in the corresponding Steiner tree,
which provides hints to calculate interconnect net delays.

Considering that the placement solutions will only affect the
interconnect timing modeling, we can apply Elmore’s delay
model [31] which is sufficient for timing-driven placement. We
illustrate the RC tree construction process from a simple 4-pin
net in Fig. 2(a) and (b). The generated Steiner tree is visual-
ized in Fig. 2(a). In contrast, the abstract RC tree hierarchy is
described in Fig. 2(b).

In Fig. 2(a), we have a simple 4-pin net that connects pins
p1, p2, p3, and p4, where p1 is the driving pin. The FLUTE [30]
will give us a Steiner tree rooting from p1, connecting sinks

Fig. 3. Elmore delay model for the above 4-pin net example.

with two Steiner points s1 and s2 added. The Steiner nodes are
inner nodes of the RC tree in Fig. 2(b), while a pin is either
a root or a leaf.

To build RC information from interconnections, we require
the resistance value per unit length r′ and the capacitance value
per unit length c′ predetermined for the given design. Each line
segment with length l contributes a resistance value r′l and a
capacitance value c′l.

B. Static Timing Analysis

The details can be enriched in Fig. 2(b) by adding several
abstract resistors and capacitors for edge segments in the RC
tree, illustrated in Fig. 3. In our framework, Elmore’s delay
model [31] is applied to approximate actual delays. More
specifically, we use �−model to break wires into RC sections.
After we fill the RC information into the RC tree initialized
by the timer, we then naturally proceed to the STA.

The resistance and capacitance values can be directly com-
puted according to the Manhattan distances given pin coordi-
nates. Note that cell overlaps exist in global placement, so the
coarse-grained interconnect timing model is enough to catch
the general criticality information.

The STA is crucial to obtain the timing profile at any tim-
ing point. It is performed at every timing iteration so that we
can keep the timing profile up-to-date. Once the slack values
are correctly calculated, we then smoothly proceed to the net
weighting part, which updates the net weights of all nets.

C. Momentum-Based Net Weighting

Every net is assigned a weight in the objective function
of wirelength-driven placement. Some prior knowledge of net
wirelength contribution can be a hint fed into the wirelength-
driven placer by adjusting net weights. A net with a higher
weight will be more sensitive to the updates of cell locations,
as a perturbation to its total wirelength will lead to a greater
impact on the objective we are optimizing. The optimizer will
implicitly tend to place cells such that the bounding boxes of
nets with higher weights can be smaller.

Critical nets have a more pronounced impact on the final
timing performance. Reducing the HPWL of a critical net will
lead to a more significant gain in timing. Without any doubt,
critical nets should be reasonably assigned higher weights to
guide the placer to place cells incident to them closer.

Net Criticality: We define criticality value in our placement
database as a guide to update net weights. The higher crit-
icality value of a net, the more critical it will be in timing
analysis. Therefore, we should assign higher criticality values
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to those critical nets according to the timing analysis report
at each timing iteration. For a specific net e, let ce and swns
denote its criticality value and the WNS of the circuit design,
respectively. The WNS swns directly comes from the timing
report. On the other hand, the criticality value c(m)

e of net e
at the mth timing iteration is calculated iteratively based on
the historical value c(m−1)

e and the momentum of the current
timing iteration. The momentum of criticality value of a net e
is defined as

cmom,e =

⎧
⎪⎨

⎪⎩

0, if swns ≥ 0(
se

swns

)+
, otherwise

(8)

where se is the net slack of e. In (8), function x+ = max{x, 0}
is the positive part of any real number x ∈ R. It is also known
as the rectified linear unit (ReLU) activation function in neural
network training.

If the WNS swns is non-negative, the net weights will all
remain unchanged. Otherwise, swns is negative, and the crit-
icality value of net e is defined as the positive part of the
slack ratio (se/swns), which means that only nets with neg-
ative slacks will be considered. If a net e has a negative
slack se < 0, its criticality momentum will be set to the ratio
(se/swns) = (|se|/|swns|). For net e, The higher the absolute
slack value |se| we compute, the higher criticality momentum
cmom,e it will have according to (8).

Intuitively, the net criticality should indicate the probability
of net e to be critical. Since the timer will report different
timing-critical paths at each iteration, we should also update
the criticality values iteratively. A critical net may be related
to multiple critical paths, and different nets may have differ-
ent negative slacks. Hence, the criticality update policy should
be strongly correlated to the negative slacks. Nets with higher
absolute slack values are thought to be more sensitive to tim-
ing metrics, so we are supposed to assign higher net weights
to them accordingly so that the placer will try to shrink its
bounding box.

Consider a specific net e. Define its criticality value at the
mth iteration as c(m)

e . From (8), we know that its net slack s(m)
e

and the WNS s(m)
wns can be calculated at each timing iteration by

STA. Then we obtain its momentum criticality value c(m)
mom,e of

net e at the mth iteration, which corresponds to the criticality
updates.

Net Weighting Scheme: We introduce a momentum-based
net weighting scheme. Consider a specific net e in the design.
The net weight of e is always positive (a net with zero weight
is ignored), so we decide to take its logarithm to discuss. Let
w̃(m)

e = log w(m)
e and �w̃(m)

e be the logarithmic net weight of
we and its increment at the mth timing iteration, respectively

w̃(m+1)
e = w̃(m)

e +�w̃(m)
e . (9)

Note that the base of the logarithm can be customized. In
fact, the addition operation in (9) is equivalent to a multipli-
cation without the logarithm. This way, we can guarantee the
positiveness of the net weights.

Considering that the criticality momentum at different tim-
ing iterations are independent of each other, we expect the net

weight w(m)
e to be emphasized by its criticality c(m)

e , which
accumulates the current criticality momentum. For any inte-
ger m ≥ 0, the increment and the logarithmic criticality can
be modeled by

�w̃(m)
e = c̃(m)

e

�w̃(m+1)
e = α�w̃(m)

e + ηc̃(m)
mom,e (10)

where the logarithmic criticality and its momentum are
defined as

c̃(m)
e = log

(
1+ c(m)

e

)

c̃(m)
mom,e = log

(
1+ c(m)

mom,e

)
. (11)

The decay coefficient α is a hyperparameter within [0, 1].
η > 0 is also a positive hyperparameter indicating the con-
tribution of the momentum term in the new weight increment.
The term �w̃(m)

e can be considered as the velocity, from (9).
The scheme in (9) and (10) is inspired by the momentum-

based gradient descent algorithm on backpropagation during
neural network training. In a typical backpropagation of train-
ing when optimizing f (w) where w represents the weights,
the momentum term should be −∇f so that the actual gradi-
ent increment �w value can be guided while remembering the
history update at each iteration. More specifically, one may use
α�w(m) − η∇f as the actual increment in the next iteration,
where α and η are interpreted as the decay factor and the step
size, respectively.

In net weighting, the net criticality may be unstable during
global placement. Therefore, here we apply the momentum
step to the update of the criticality values and the net weights
to smooth the increment of logarithmic net weights. If a net e
has a positive criticality ce > 0, its weight should be increased
according to the criticality magnitude. Besides, if a net is
reported to be critical at most timing iterations, it may have
a large net weight as we will keep increasing at most timing
iterations. The weight differences are acceptable as long as no
value overflow is reported.

We would like to adopt the notations in matrix calculus
where we use boldface to represent vectors, then the scheme
described in (9) and (10) can be reformulated as

�w̃(m+1) = α�w̃(m) + ηc̃(m)
mom (12)

where w̃(m), �w̃(m), and c̃(m)
mom indicate the logarithmic net

weights, their increments, and the transformed momentum
vector calculated by (8), respectively, at the mth timing
iteration. The update rule (12) is similar to the aforementioned
formula α�w(m)−η∇f . All vectors in (12) have the same size
that is exactly the total number of nets in the design. A simple
example illustrating the mechanism of momentum-based net
weighting works is shown in Fig. 4.

If the criticality momentum c̃(m)
mom,e of net e has a very

small magnitude in the late period of global placement, the
net weight increment �w̃(m)

e will approximately decay by the
factor α with the increment of iteration m, and consequently
the net weight w(m)

e will stabilize gradually. Therefore, we
can keep highlighting nets remaining critical during global

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 21,2023 at 03:51:42 UTC from IEEE Xplore.  Restrictions apply. 



LIAO et al.: DREAMPlace 4.0: TIMING-DRIVEN PLACEMENT 3379

Fig. 4. Visualization of a simple example illustrating the mechanism of how
the momentum vectors will affect the actual step.

placement according to (12). Here, the parameter η is simply
determined by 1− α to make (12) a linear combination.

Different from [10] and other similar dynamic net weight-
ing schemes, all nets are considered instead of those only on
critical paths. We do not analyze and extract the critical paths
explicitly in global placement. Instead, the nets with more
negative slack values are thought to be critical as they will be
assigned higher criticality values according to (8).

D. Preconditioning

Preconditioning is very critical to numerical optimization.
A conventional preconditioner usually aims at solving the
inverse matrix of the Hessian matrix H−1

f for unconstrained
optimization min f (x), so as to implement the exact Newton
direction −H−1

f ∇f . In real applications, the Hessian matrix
is never computed explicitly due to the huge computational
overhead. Therefore, the Hessian-free methods are preferred
in most of numerical optimization techniques.

In global placement problems, the industrial designs are
very likely to contain millions of instances, so it is impossible
to calculate the exact Hessian matrix at each global placement
iteration. The ePlace [23] preconditioner simply ignores non-
diagonal entries ([∂2f ]/[∂xj∂xj]), which is actually nonzero in
real applications. Eliminating all nondiagonal entries makes
the Hessian transformation −H−1

f ∇f an element-wise scaling
on the gradient ∇f .

The objective function f is set to (3) by default. Without loss
of generality, we only consider the horizontal cell locations
x ∈ R

n here. The ith diagonal entry of the Hessian matrix
H−1

f is given by

∂2f

∂x2
i

=
∑

e∈E

we
∂2W(e; x, y)

∂x2
i

+ λ
∂2D(x, y)

∂x2
i

(13)

where we is the net weight of net e, and D is the density
penalty of the circuit given the current placement.

In the ePlace [23] algorithm, the second-order derivative
term (∂2/∂x2

i )W(e; x, y) is computationally expensive due to
the complicated form of the WA model [27]. We also adopt

this approximation. More specifically, the second derivatives
will be binary and only when node vi ∈ V is incident to net
e ∈ E will the term be set to 1. This rule of thumb will
approximate the wirelength term in (13) as

∑

e∈E

we
∂2W(e; x, y)

∂x2
i

≈
∑

e∈Ei

we (14)

where Ei is the net subset incident to vi ∈ V . Note that
the net weighting scheme only affects the interconnects and
the wirelength term, so we are allowed to follow the same
computational approximation as [23] for preconditioning:

∂2D(x, y)

∂x2
i

= qi
∂2φi(x, y)

∂x2
i

≈ qi (15)

where qi is the quantity of electrical charge of the node vi ∈ V .
This coarse-grained approximation can save huge computa-
tional overhead. The approximate preconditioning matrix on
the horizontal direction will be

H̃fx,x = diag

⎛

⎝
∑

e∈E1

we + λq1, . . . ,
∑

e∈En

we + λqn

⎞

⎠. (16)

If the net weights are trivial, i.e., every net has a weight
of 1,

∑
e∈Ei

we will be degraded to |Ei| which represents
the total number of nets incident to vi. Together with the
vertical direction, the preconditioned gradient vector will be
∇fprecond = H̃

−1
f ∇f .

IV. TIMING-DRIVEN DETAILED PLACEMENT

Global placement provides a roughly good solution from
scratch. Compared to global placement with a clear form
of numerical optimization, detailed placement refines stan-
dard cell locations locally to further improve specific objec-
tives. The normal wirelength-driven detailed placement adopts
multiple discrete methods to further improve circuit wire-
length. In the timing-driven detailed placement, the tim-
ing metrics become the major objective. In this section,
we further improve the negative slacks via iterative local
search.

We use N = (V, E) to represent the set of net lists where
V is the set of standard cells. Let VPI and VPO be the set
of primary inputs and primary outputs. For any standard cell
(node) vi ∈ V , we use aL

i = tLat(pi) and aE
i = tEat(pi) to denote

the late and early arrival times of the output pi of vi. Similarly,
we use rL

i = tLrat(pi) and rE
i = tErat(pi) to denote the late and

early required arrival times of the output pi of vi. In addition,
let dL

ij and dE
ij denote the late and early delay values from node

vi’s output to node vj’s output, where vi : vi ∈ Fj, i.e., node vi is
a fan-in of vj ∈ V . In timing-driven detailed placement, timing
objectives should be considered more directly and explicitly, so
that we have more accurate estimation and are able to perform
precise refinement.

The general timing-driven detailed placement can be for-
mulated as follows:

min −
∑

j:vj∈VPO

ŝE
j −

∑

j:vj∈VPO

ŝL
j

s.t. ŝE
j ≤ 0, ŝL

j ≤ 0 ∀j : vj ∈ VPO
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aE
j − rE

j ≥ ŝE
j , aL

j − rL
j ≤ −ŝL

j ∀j : vj ∈ VPO

aE
i + dE

ij ≥ aE
j , aL

i + dL
ij ≤ aL

j ∀(i, j) : vi ∈ Fj

displacement and legality constraints. (17)

Here, notation ŝ = min{s, 0} simply means negative slacks.
Note that Fj should be empty for vj ∈ VPI, so the primary
inputs are actually not included in the above constraints. The
formulation in (17) from [24] aims at optimizing the TNS
objective, which is more intuitive than WNS. The latter one
is much more sensitive, and thus much harder to optimize.
However, a success of improving TNS will usually also lead
to the benefit of WNS.

The formulation in (17) is complicated as we have intro-
duced a lot of auxiliary variables s, a, r defined for valid nodes
vj ∈ V . There are various applications in gate sizing fac-
ing such a kind of optimization problem with complicated
constraints [32], [33]. A most widely adopted strategy is to
relax the timing constraints into objectives and solve it via
Lagrangian dual. More specifically, each constraint in (17) is
assigned a Lagrangian multiplier to formulate the objective
L(x, y, s, a, r,λ) (simplified as L in the following sections):

L = −
∑

j:vj∈VPO

(
1− λ̂E

j

)
ŝE

j −
∑

j:vj∈VPO

(
1− λ̂L

j

)
ŝL

j

+
∑

j:vj∈VPO

λE
j

(
ŝE

j − aE
j + rE

j

)
+

∑

j:vj∈VPO

λL
j

(
ŝL

j − rL
j + aL

j

)

+
∑

j:vj∈V

∑

i:vi∈Fj

(
λE

ij

(
aE

j − aE
i − dE

ij

)
+ λL

ij

(
aL

i − aL
j + dL

ij

))
.

(18)

The typical Lagrangian dual is to solve maxλ≥0 minx,y L.
However, the complicated formulation prevents us from solv-
ing it feasibly. Note that the auxiliary variables appear in
multiple terms. We rearrange the summation order and get

L =
∑

j:vj∈VPO

(
λE

j + λ̂E
j − 1

)
ŝE

j +
∑

j:vj∈VPO

(
λL

j + λ̂L
j − 1

)
ŝL

j

+
∑

j:vj∈V

(
f L
j (λ)aL

j − f E
j (λ)aE

j

)
+

∑

j:vj∈VPO

(
λE

j rE
j − λL

j rL
j

)

+
∑

j:vj∈V

∑

i:vi∈Fj

(
λL

ijd
L
ij − λE

ijd
E
ij

)
(19)

where the helper function f L
j (λ) for index j such that vj ∈ V

is defined as

f L
j (λ) =

{
λL

j −
∑

i:vi∈Fj
λL

ij, if vj ∈ VPO∑
k:j∈Fk

λL
jk −

∑
i:vi∈Fj

λL
ij, otherwise

(20)

and f E
j (λ) is defined similarly.

For any auxiliary variable ŝE
j , ŝL

j , aE
j , aL

j , rE
j , rL

j , where
vj ∈ V , the corresponding term in (19) is linear. The delay
values dE

ij and dL
ij are considered to be completely determined

by a placement solution (x, y).
Equation (19) is thought to be continuous but indifferen-

tiable. Consider the Karush–Kuhn–Tucker (KKT) optimality
conditions of (19). It is not difficult to obtain the complemen-
tary slackness condition λE

j + λ̂E
j = λL

j + λ̂L
j = 1 for any

vj ∈ V when taking partial derivatives with respect to the aux-
iliary variables ŝE

j , ŝL
j for every valid j. Additionally, we have

the flow conservation [34] when taking partial derivatives with
respect to aE

j , aL
j , rE

j , rL
j for every valid j

∑

i:vi∈Fj

λE
ij =

∑

k:j∈Fk

λE
jk ∀j : vj ∈ V\(VPI ∪ VPO)

∑

i:vi∈Fj

λL
ij =

∑

k:j∈Fk

λL
jk ∀j : vj ∈ V\(VPI ∪ VPO)

λL
j =

∑

i:vi∈Fj

λL
ij ∀j : vj ∈ VPO

λE
j =

∑

i:vi∈Fj

λE
ij ∀j : vj ∈ VPO. (21)

Any local minimum of (17) must satisfy the above
flow conservation in (21). Now that any local optimum
(x∗, y∗, s∗, a∗, r∗,λ∗) must admit a multiplier variable λ∗
satisfying (21), we directly reduce the solution space in
subproblem minx,y L by combining (19) and (21) as the
aforementioned auxiliary variables and their corresponding
multipliers can be reasonably canceled out

L(x, y,λ) =
∑

j:vj∈VPO

(
λE

j rE
j − λL

j rL
j

)

+
∑

j:vj∈V

∑

i:vi∈Fj

(
λL

ijd
L
ij − λE

ijd
E
ij

)
. (22)

Equations (18) and (22) are not generally equivalent. However,
they will be equivalent given a fixed λ satisfying the flow
conservation in (21). Compared to the original one, there are
much less variables in (22) as the auxiliary variables are can-
celed out. Hence, the new Lagrangian dual program should
be solving maxλ∈� minx,y L(x, y,λ) where set � is defined as
� = {λ ≥ 0 : λ satisfies (21)}.

Note that the first term
∑

j:vj∈VPO
(λE

j rE
j −λL

j rL
j ) in (22) will

not be affected by the movable cells, as the summation is taken
over weighted required arrival time values on primary outputs
which should be determined by the timing constraints. In other
words, we can naturally ignore the first term and focus on the
second term. Therefore, we must have

L∗(λ) =
∑

j:vj∈VPO

(
λE

j rE
j − λL

j rL
j

)

+min
x,y

∑

j:vj∈V

∑

i:vi∈Fj

(
λL

ijd
L
ij − λE

ijd
E
ij

)
. (23)

Now, the target is to solve maxλ∈� L∗(λ). Typically, a
numerical method should solve L∗(λ) and maxλ∈� L∗(λ) sepa-
rately. The former problem is called the Lagrangian relaxation
subproblem (LRS) and the latter one is called the Lagrangian
dual problem (LDP) in [24]. Unfortunately, we are unable to
numerically find the optimal or suboptimal solutions of LRS
or LDP like what we have shown in global placement. The
general heuristic flow include as follows.

1) A discrete local search to approximately solve LRS.
2) An overlap removal step to remove cell overlap.
3) An overall multiplier update according to STA results.
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Fig. 5. Simple example illustrating the discrete local search algorithm. The
delay values that should be considered when moving cell vj are marked in
cyan. All candidate locations of vj are included in the search window (the
cyan box).

We will introduce the three steps in detail one by one in
the following sections.

A. Discrete Local Search

Unlike the timing model applied in [24], we generally obtain
the delay values in (23) from the STA tool black box. Any
timing analysis engine can be integrated into the local search
to solve LRS problem.

Local Cost: From (23), the discrete local search tries to
minimize the second term of (22) as a subproblem

∑

j:vj∈V

∑

i:vi∈Fj

(
λL

ijd
L
ij − λE

ijd
E
ij

)

=
∑

(i,j):vi∈Fj

(
λL

ijd
L
ij − λE

ijd
E
ij

)
= 1

2

∑

j:vj∈V

cj(x, y,λ) (24)

where the summation is taken over all pairs (i, j) that vi ∈ Fj,
and the cost cj(x, y,λ) (simplified as cj) of vj is defined as

cj =
∑

i:vi∈Fj

(
λL

ijd
L
ij − λE

ijd
E
ij

)
+
∑

k:j∈Fk

(
λL

jkdL
jk − λE

jkdE
jk

)
. (25)

In (25), we consider both the fanins and fanouts of vj.
Therefore, each valid index pair (i, j) will be counted twice,
and that is why we need a (1/2) factor in (24). However,
generally minimize it from a global perspective is intractable.
A feasible workaround is to separate the global optimization
minx,y

∑
j:vj∈V cj into mini-problems minxj,yj cj for every mov-

able node vj. In this way, we move the movable nodes one
by one and solve the subproblem discretely from a local
perspective.

In the local search step, we fix the multipliers λ. When
moving a node vj, the delay values dL

ij, dE
ij , dL

jk, dE
jk, including

interconnect delays and the cell delays for valid indices i, k
will change accordingly, leading to the update of cost cj. Since
the relationship between cell location (xj, yj) and cj is indirect,
we enumerate all locations inside a window surrounding the
current location (xj, yj) to find the best one (x∗j , y∗j ) with the
minimum cost c∗j . Fig. 5 shows a simple example of the local
search algorithm.

Delay Estimation: In each iteration of our detailed place-
ment algorithm, the location of one node vj is updated, and
the circuit timing parameters, such as dL

ij, dE
ij , dL

jk, and dE
jk are

updated correspondingly. As there are a lot of iterations, the
timing update must be done efficiently. The timing update
consists of two tasks: 1) net parasitics update and 2) timing
propagation update. Both tasks incur a long runtime in current
STA engines, which pose difficulty on fast and agile detailed
placement flow.

To solve the aforementioned problems, we propose a fast-
timing update flow to assist our detailed placement iterations.
The flow includes two techniques: 1) local net estimation and
2) incremental timing update. The key observation is that the
movement of one node vj only affects the nets that are directly
connected to it. For example, in Fig. 5, the upstream nets
e1, e2 ∈ E and the downstream net e3 ∈ E will be affected
when moving vj ∈ V . Thus, we can approximate the timing
impacts by only updating the timing in a local region around
the moved node.

The movement of vj affects the parasitics of the surrounding
nets, leading to updates on Elmore delay parameters, such as
impulse values, load capacitances, and delays. As the Steiner
tree generation is expensive, we estimate the change to these
values instead of rebuilding the whole routing solution. For
an affected net e, we denote its driver pin by pe at coordi-
nate v(pe; xj, yj). A movement of vj from (xj, yj) to (x′j, y′j)
can change the coordinate of pe. For every driver or sink pin
p in net e locating at v(p; xj, yj), we define its scale ratio
r(p; x′j, y′j) as

r
(

p; x′j, y′j
)
=

⎧
⎪⎪⎨

⎪⎪⎩

W
(

e;x′j,y′j
)

W(e;xj,yj)
, if p is pe

‖v
(

p;x′j,y′j
)
−v
(

pe;x′j,y′j
)
‖1

‖v(p;xj,yj)−v(pe;xj,yj)‖1 , otherwise.

(26)

In (26), W(·) is the wirelength of e. More specifically, the
ratio defined above indicates the scale factor of the driving
net wirelength if p is a driver, and otherwise the scale factor
of the Manhattan distance between sink p and its driver pe

after the above cell movement.
After directly scaling the load capacity, impulse, and the net

delay by the factor defined in (26), we have estimated the net
parasitics affected by the local cell movement. We then per-
form an incremental 2-hop forward timing propagation on all
affected nets to obtain the estimated values of all dL

ij, dE
ij , dL

jk,

and dE
jk. In this way, we avoid the time-consuming full rout-

ing and timing update. The proposed estimation is effective as
long as the cell movement is small, which is the case in our
detailed placement flow.

Local Search Algorithm: The order of moving nodes may
heavily affect the placement solution, so a better strategy is
to search by the reverse topological order [24]. Note that the
delay values dE

jk and dL
jk contain the arc delay of cell vj itself.

All delay values are provided by the timer after a complete
STA. The detailed algorithm of the modified discrete local
search algorithm is described in Algorithm 1.

As shown in Algorithm 1, we will find the best location
of vj in the reverse topological order of every selected crit-
ical path. Consider the subprocedure of moving vj. Assume
that there are two fanins and two fanouts shown in Fig. 5. We
will retrieve delay values di1j, di2j, djk1 , and djk2 from the timer
to calculate the cost of the current location (xj, yj) according
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Algorithm 1 Local Search Algorithm

Require: The Lagrangian multipliers λE,λL for early and late
timing constraints both, the total number of most critical
paths k.

1: Use timer to perform static timing analysis.
2: Extract top k critical paths p1, . . . , pk, where pi stands for

the i-th most critical path;
3: Set the path index i = 1;
4: while i ≤ k do
5: for movable vj ∈ pi in the reverse topological order

do
6: Initialize the best cost c∗j ←+∞;
7: Initialize the best cell location (x∗j , y∗j ) to be the

current cell location;
8: for each candidate location (xj, yj) do
9: Estimate delay values dij for any i such that

vi ∈ Fj and djk for any k such that j ∈ Fk;
10: Calculate cost cj by Equation (25) according to

the delay values obtained above;
11: if cj < c∗j then
12: Update c∗j ← cj and (x∗j , y∗j )← (xj, yj);
13: end if
14: end for
15: Place node vj to the best cell location (x∗j , y∗j );
16: end for
17: end while
18: return the refined cell locations (x∗, y∗);

to (25). Note that the arc delay of vj will be included in di1j

and di2j. We will construct a local search window which is the
cyan box in Fig. 5. For example, the dashed lines visualize the
top left and the bottom right candidate locations of vj in the
7 × 3 search window. The location within the search win-
dow with the lowest cost will be selected as the best location
(x∗j , y∗j ).

B. Overlap Removal

Since cell overlap may still exist after the local search, we
should perform overlap removal to eliminate illegality. This
procedure is a mini-legalization, as legality constraints except
cell overlap must be guaranteed.

Inspired by [24], we introduce a fast algorithm to remove
cell overlaps while preserving the timing quality given by the
discrete local search solution.

The main idea is to iteratively search for the nearest legal
location for each cell, reducing the displacement from their
previously found locations. In each iteration, we add the can-
didate locations in the four directions to the search space and
find the closest one by managing a min-priority queue sorted
by the Manhattan distance from their original location.

It was noted that in some circumstances, nodes will
inevitably have large displacement when the region around
them is dense. In these cases, we prioritize those nodes that
be more critical to the timing information to be unaffected.
Therefore, unlike [24] which sorted nodes by their center hor-
izontal coordinates, we sort the nodes according to their slacks.

Algorithm 2 Overlap Removal Algorithm
Require: The slacks of movable nodes, the initialized row

structures R.
1: Sort movable nodes according to slack values;
2: for fixed macro M do
3: Insert M in the row structure;
4: end for
5: for movable vj ∈ V do
6: Initialize the min-priority-queue q with current node

location (xj, yj);
7: while q is not empty do (x∗j , y∗j )
8: if (x∗j , y∗j ) causes overlap then
9: Insert locations above, below, left and right of

(x∗j , y∗j ) in q;
10: else
11: Place node vj to the location (x∗j , y∗j );
12: Insert (x∗j , y∗j ) in the row structure;
13: Clear q;
14: end if
15: end while
16: end for
17: return the overlap-free solution;

Those with large negative slack values are considered as being
critical to timing improvement and we will have them fixed
first.

Algorithm 2 shows the detailed procedure for removing
overlaps. To reduce the time required by the algorithm,
we construct a segment tree, a kind of binary tree storing
information of intervals for each row to query or insert the
overlap rapidly.

C. Multiplier Update

The values of multipliers are extremely important in the
discrete local search process. Therefore, an efficient update
strategy can lead to effective timing improvement. The
multiplier update solves the LDP subproblem maxλ∈� L∗(λ).
Unfortunately, this optimization problem is intractable to solve
as we have both the dual feasibility λ ≥ 0 and the flow con-
servation (21) as constraints. A possible workaround should
be like the conventional projected gradient descent. In other
words, we make a gradient-descent-like move on λ, then
project the updated multipliers onto the constraint set � so
that they keep non-negative and satisfy the flow conservation
in (21).

Guth et al. [24] used a modified subgradient method to
update the multipliers according to STA results. Multipliers
at primary outputs and standard cells are updated according
to (27). Based on that, we additionally introduce rise and fall
edge information to obtain a more accurate delay estimation
since we use a more detailed STA tool

λL
ij
(m+1) =

(
aL

i + dL
ij

)(
aL

j

)−1
λL

ij
(m) ∀(i, j) : vi ∈ Fj

λE
ij

(m+1) = aE
j

(
aE

i + dE
ij

)−1
λE

ij
(m) ∀(i, j) : vi ∈ Fj
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TABLE I
STATISTICS OF THE ICCAD2015 CONTEST BENCHMARKS [25]

λL
j
(m+1) = aL

j

(
rL

j

)−1
λL

j
(m) ∀j : vj ∈ VPO

λE
j

(m+1) = rE
j

(
aE

j

)−1
λE

j
(m) ∀j : vj ∈ VPO. (27)

All the arrival times are extracted from STA. The timer
also calculates the delay values. With the help of (27), the
multipliers in the mth iteration λ(m) will be updated to λ(m+1)

that will be used in the following local search iteration.
After being updated, all multipliers need to be scaled in the

reverse topological order according to (21) to satisfy the flow
conservation condition [34]. Multipliers on critical paths tend
to increase rapidly under the effect of flow conservation, which
is in line with our expectation of increasing the net weights
on critical path

λ̂ij =
∑

k:vj∈Fk
λjk

∑
i:vi∈Fj

λij
λij. (28)

The multiplier update in (28) should be executed in the reverse
topological order. After a full step of multiplier update, the
parameter λ should satisfy the flow conservation requirement.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

We conducted experiments on the ICCAD 2015 contest
benchmark suites [25]. Parameters of the design are shown
in Table I. All the cases are relative large since most of them
contain a great number of cells and nets. Movable macros are
not included in any benchmark.

We implemented the proposed algorithm in C++ based on
the open-source placement tool DREAMPlace [26] and the
open-source timer OpenTimer [35]. Notably, we manage to
fully utilized GPU resources in both core placement [26] and
timing analysis [36]. For fairness of comparison, we use the
same default hyperparameter settings of DREAMPlace [26].

B. TNS and WNS Improvement

It is important to determine when we should set up obser-
vation, perform timing analysis and update net weights.
Performing a timing analysis in each iteration is not possi-
ble, as it introduces a huge overhead. Initially, all cells are
concentrated to the center of the layout and their locations
are highly overlapped so that reliable timing analysis results
cannot be given until cells are approximately uniform out by

density forces. In our experiments, we evaluate timing met-
rics and update net weights every 15 iterations after the 500th
iteration of the global placement. In addition, we update the
net weights using the manually customized hyperparameters
in (12). We use η = 1 − α and the decay factor α is set to
0.5 by default for all benchmarks. Since the large-scale bench-
marks may be affected by various factors, the optimal α may
also vary for different cases.

However, our detailed placement algorithm is highly sensi-
tive to timing metric, since the movement of cells on critical
path has a significant impact on the delay and affects the next
round of iterations. Therefore, we choose to build an RC tree
right after discrete local search and overlap removal at each
iteration. Additionally, because of the flow conservation condi-
tion, multipliers on critical paths may grow exponentially and
lead to inaccurate location prediction after too many iterations,
so we terminate our algorithm when no slack improvement is
observed and take the optimal solution. In our experiments,
the optimal solution will appears within ten iterations in most
cases.

Using the evaluation script provided by the ICCAD 2015
contest, we evaluate our global placement and detailed
placement solution after legalization. The results are listed
in Table II. As indicated in the table, compared with the
DREAMPlace [26] without any timing-aware optimization,
our algorithm can significantly improve both TNS (50.59%
on average) and WNS (38.15% on average) after the timing-
driven global placement and detailed placement, which con-
firms the effectiveness of our algorithm.

In addition, we implement the classic dynamic net weighting
scheme in [10] for a comparison. This net weighting scheme
is used for timing-driven quadratic placement and can The
results are listed in the second column of Table II. The best
result among all results is highlighted using boldface, and the
second one is colored with brown. As indicated in the table,
our algorithm can outperform [10] a lot on TNS, which brings
us a positive enlightenment that it is definitely useful consid-
ering timing-aware optimization at both global placement and
detailed placement stage.

Notably, we also compare our proposed algorithm to
the outstanding open-source end-to-end silicon compiler
OpenROAD [37] (code available in [38]) in Table II. The
timing-driven flag is turned on to incorporate net weighting
for timing optimization in global placement. OpenROAD [37]
has integrated RePlAce [39] as its global placer. The corre-
sponding results of OpenROAD [37] in Table II are collected
after legalization. In our experiments, we found that the default
parameter settings would induce divergence on the ICCAD
2015 contest benchmarks [25], so we slightly decreased the
cofmax value (default to 1.05) until the global placement con-
verged. The cofmax values in our experiments on the ICCAD
2015 contest benchmarks [25] are set to 1.02, 1.01, 1.02, 1.02,
1.05, 1.05, 1.015, and 1.05 for the eight benchmarks in order.
More details of the physical meanings of cofmax can be found
in the experiment section of RePlAce [39]. In addition, we
particularly set the stop overflow threshold (default to 0.1)
of superblue5 to 0.125 as there exists convergence diffi-
culty when OpenROAD [37] is trying to reduce the overflow.
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TABLE II
COMPARISON AMONG DREAMPLACE [26], DREAMPLACE [26]+[10], OPENROAD [37], OUR TIMING-DRIVEN GLOBAL PLACEMENT ONLY [1]

AND OUR ALGORITHM, INCLUDING BOTH GLOBAL AND DETAILED PLACEMENT. THE BEST RESULTS ARE EMPHASIZED WITH BOLDFACE,
AND THE SECOND-BEST RESULTS ARE COLORED IN BROWN. THE TNS UNIT AND THE WNS UNIT ARE 105 PS AND 103 PS, RESPECTIVELY

(a) (b)

Fig. 6. TNS and WNS values at each global placement iteration after the
300th iteration for superblue18. (a) TNS curve in placement. (b) WNS
curve in placement.

Compared to OpenROAD [37], our proposed algorithm in GP
and DP shows competivity on the two main timing objectives
TNS and WNS.

Compared to our previous work which only implements
optimization at global placement stage, our additional detailed
placement algorithm achieves further timing optimization on
both TNS and WNS. Although our net weighting scheme
at global placement stage outperforms other algorithms in
an average sense, it is still inferior in some benchmark
to [10]. And after detailed placement, our algorithm achieves
optimality in most benchmarks.

C. Visualization in Global Placement

To visualize the impact of net weighting on TNS and WNS
at global placement stage, we plot the TNS and WNS val-
ues on superblue18 after the 300th iteration in Fig. 6.
At the beginning, the cells kept repelling each other, thus
increases the wirelength while decreases TNS and WNS.
The blue curves indicate the result without any timing-aware
optimization, and the red ones show how the objective func-
tion oscillate under the influence of net weighting. The timing
iterations are emphasized with scattered red squares.

1) At almost every timing iteration, marked in red in Fig. 6,
TNS can be improved immediately, especially when the
balance of net weights starts to break down.

2) After one or two net weighting steps, the WNS
is quickly and significantly optimized. Thereafter, it
remains almost stable in the later stages of global
placement.

If our net weighting algorithm works for every net instead
of only some critical paths at a specific timing iteration, it
makes sense when optimizing the TNS, which may contain
many critical or near-critical paths. As for WNS, it may only
provide information about a few worst paths, which will be
optimized quickly when the net weighting is applied for the
first time. At later stages, other critical or nearly critical paths
will be considered more often, and this is an important reason
why it is difficult to optimize WNS further at global placement.

D. Wirelength and Runtime

We compare the circuit wirelength and runtime in Table III.
The HPWL results in Table III are scaled from that evaluated
by the ICCAD 2015 contest evaluation script. The site width
is lsite is 380 in all benchmarks of [25] and the DEF unit udef
is 2000. The relationship between the evaluated HPWL Weval
and the reported HPWL Wreport in Table III is determined by

Wreport = 10−6udef

lsite
Weval. (29)

Net weighting targets at optimizing timing objectives, regard-
less of wirelength quality loss. One may explicitly set an
upper bound to prevent net weights from becoming too large
if required so that the wirelength quality loss could be limited.
Table III reveals that our proposed net weighting and detailed
placement is still competitive compared to the outstanding
timing-driven version of OpenROAD [37] on wirelength and
runtime.

Since timing-driven placement has to perform STA and
translate the feedback to certain operations, it significantly
sacrifice runtime performance compared to DREAMPlace [26]
which is extremely fast to optimize cell locations on GPUs.

Compared to [26] without any timing-aware optimization,
we roughly take 5 times runtime to optimize negative slacks
in global placement. The detailed placement takes more time
to refine the solution as it has to recalculate the timing delay
for a huge amount of delay arcs. Although the runtime degra-
dation posed by timing analysis is significant and inevitable,
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TABLE III
HPWL AND RUNTIME COMPARISON OF TIMING-DRIVEN PLACEMENT AMONG DREAMPLACE [26], DREAMPLACE [26]+[10],

OPENROAD [37], OUR TIMING-DRIVEN GLOBAL PLACEMENT ONLY [1], AND OUR ALGORITHM, INCLUDING

BOTH GLOBAL AND DETAILED PLACEMENT. THE UNIT OF RUNTIME IS SECOND

Fig. 7. Overall runtime breakdown on the ICCAD2015 contest benchmark
superblue18, including both global and detailed placement.

our entire timing-driven global optimization consumes an
acceptable time compared to OpenROAD [37].

Fig. 7 plots the overall runtime breakdown on the bench-
mark superblue18 for both the global and detailed place-
ment. At the global placement stage, constructing an RC tree
is the main bottleneck, which is accomplished on CPUs and
thus very time-consuming, especially for large nets. Since
STA must be called multiple times to incorporate changes of
cell locations, the overhead of STA and RC tree construction
should be the focus of the acceleration.

At the detailed placement stage, we are facing the run-
time bottleneck dominated by the discrete local search, as we
need to estimate the delay change for a number of location
candidates. We set the window size to 63 × 5 and search
stride to 5× site width, which reach a balance between run-
time and placement quality. Note that our delay estimation
in Section IV-A is based on the assumption that each node will
not be moved too far away from the original location. A large
window size setting will give too many candidate locations,
resulting in large runtime overhead. Besides, a large displace-
ment may incur significant inaccuracy of delay estimation.
On the other hand, too small window size apparently would
prevent us from finding better cell locations as the solution
space is limited.

TABLE IV
COMPARISON OF TNS AND WNS RESULTS WITH DIFFERENT CELL

DELAY MODELS IN DETAILED PLACEMENT. THE TNS UNIT

AND THE WNS UNIT ARE 105 PS AND 103 PS, RESPECTIVELY

E. Detailed Placement Optimization

Since we adopt a more accurate cell delay model for
cost computation in our detailed placement, we also compare
the TNS and WNS results with different timing models in
Table IV. The first two columns are results obtained using the
rough linear delay model in [24]. It is confirmed in Table IV
that a more accurate delay model can lead to a significant
WNS improvement.

Differentiable timing-driven placement [40] is another pow-
erful technique to optimize timing in global placement. The
significant improvements of TNS and WNS can be observed
as they are integrated as penalty terms in the general objec-
tive of differentiable timing [40]. The gradient computa-
tion of the timing objectives in [40] is strongly bonded to
the delay model and directly implemented according to an
explicit form of gradients. Therefore, this approach is lim-
ited by the adopted timing model, resulting in unavoidable
inflexibility.

Table V indicates that our detailed placement is able to
further optimize TNS and WNS based on the results of the
differentiable-timing-driven placement [40]. We acquired the
placement solutions from Guo and Lin [40] for the initial-
ization of detailed placement. The slack improvement is up
to 10% for both TNS and WNS on the ICCAD2015 con-
test benchmarks [25], which confirms the effectiveness of the
detailed placement.
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TABLE V
COMPARISON OF TNS, WNS, HPWL, AND RUNTIME BEFORE AND AFTER OUR DETAILED PLACEMENT BASED ON THE RESULTS

OF DIFFERENTIABLE-TIMING-DRIVEN PLACEMENT [40]. THE TNS UNIT AND THE WNS UNIT ARE 105 PS AND 103 PS,
RESPECTIVELY. THE HPWL IS EVALUATED BY THE ICCAD 2015 CONTEST EVALUATION SCRIPT AND SCALED

ACCORDING TO (29). THE UNIT OF RUNTIME IS SECOND

VI. CONCLUSION

In this article, we propose a momentum-based net weighting
scheme for timing-driven global placement, enhance the pre-
conditioner accordingly and further improve timing quality in
the timing-driven detailed placement based on the Lagrangian
multipliers. The evaluation results on ICCAD2015 contest
benchmarks show that we can significantly improve both TNS
and WNS. We use different strategies to optimize timing in
these two stages, but both inspire us to notice the importance
of placement in physical design. Although most timing-aware
optimization methods are performed at incremental stages, it
is still very effective to consider timing at the earlier stages
of physical design, especially the global placement and the
detailed placement.
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