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Modern very large-scale integration (VLSI) design requires the implementation of integrated circuits using 

electronic design automation (EDA) tools. Due to the complexity of EDA algorithms, there are numerous 

tool parameters that have imperative impacts on the chip design quality. Manual selection of parameter 

values is excessively laborious and constrained by experts’ experience. Due to the high complexity and lack of 

parallelization, most existing parameter tuning methods cannot make sufficient exploration in a large search 

space. In this article, we boost the efficiency and performance of parameter tuning with random embedding 

and multi-objective trust-region Bayesian optimization. Random embedding can effectively cut down the 

number of variables in the search process and thus reduce the runtime of Bayesian optimization. Multi- 

objective trust-region Bayesian optimization allows the algorithm to explore diverse solutions with excellent 

parallelism. Due to the ability to do more exploration in limited runtime, the proposed framework can achieve 

better performance than existing methods in our experiments. 
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 INTRODUCTION 

lectronic design automation ( EDA ) tools play a central role in modern VLSI design flow, which
omprises a front-end and a back-end flow. For example, Genus, a Cadence synthesis tool, delivers
 solution to the front-end flow. The physical design tool, e.g., Innovus, can be regarded as the
mplementation of the back-end flow, which contains multiple steps such as placement, clock tree
ynthesis, routing, and so on. There exist numerous parameters in tool-based flow. For example,
artitioning is the process of disassembling designs into more manageable block sizes. Setting
he parameter auto partition in Genus can enable the partition algorithm for our design. In
nnovus, congestion effort achieves the trade-off between the global placement runtime cost
nd the placement quality, which reveals how many areas within a chip floorplan will be difficult
o route. 

In the industry, the manual selection for tool parameters is widely applied by chip designers.
evertheless, such a method is extremely laborious and lacks scalability for newly-emerged design

f designers can only transfer limited prior knowledge. Chip designers also choose the exhaustive
earch for the parameter values. Unfortunately, it lacks efficiency since the enormous search space
estricts designers from enumerating each parameter value and retrieving the optimal one. There-
ore, an efficient parameter tuning methodology is crucial for improving VLSI design automation.

Given the difficulty, many researchers propose various solutions in academia [ 1 , 14 , 16 , 18 , 20 ,
6 , 32 , 34 , 35 ]. SynTunSys [ 35 ] is a self-evolving system for the parameter tuning of synthesis
ools, which is extended in [ 34 ]. LAMDA [ 26 ] is an auto-tuning algorithm for FPGA design clo-
ure utilizing the XGBoost algorithm [ 7 ] and design-specific features extracted from the design
ow. Reference [ 18 ] adopts the tensor decomposition idea from recommender systems and sug-
ests parameter values based on a neural network. Reference [ 1 ] optimizes placement parameters
ith a deep reinforcement learning framework based on handcrafted features and graph neural
etworks [ 15 ]. FIST [ 32 ] leverages the proposed feature importance sampling method and XG-
oost regressor to optimize the parameters. FlowTuner [ 19 ] incorporates ant colony optimiza-

ion ( ACO ) algorithms to build a cooperative co-evolutionary framework for parameter tuning.
he AutoTuner platform [ 16 ] integrates several optimization algorithms, such as evolutionary al-
orithm and tree-structured Parzen estimator [ 6 ]. Reference [ 20 ] utilizes Bayesian optimization

 BO ) to tune the tool parameters efficiently. PTPT [ 14 ] uses multi-objective BO to optimize VLSI
esign flow parameters, which can model the correlations among multiple objectives and obtain a
areto-optimal set of parameter values. 
In general, existing methods for VLSI design flow parameter tuning can be classified into two

ategories, i.e., heuristic search and model-based search. Heuristic search methods usually search
arameter values by successively applying minor changes according to pre-defined rules. Such
ules, e.g., the mutation criterion in the genetic algorithm, are applied based on a pre-determined
hreshold and current results quality, and so on. Most heuristic search methods require more iter-
tions to find the global optimum with a certain probability. Yet such convergence is still not guar-
nteed. Regarding solution quality, model-based methods often outperform the heuristic search
ethods. Model-based search methods are capable of efficient global search by balancing explo-

ation and exploitation based on a manually designed process [ 32 ] or the merits of a robust black-
ox model, e.g., the Gaussian process ( GP ) model [ 14 , 20 ]. BO, deep reinforcement learning, and
o on fall into this category. The black-box model utilized by the methodology can guide how to
xplore the search space and focus on regions that are likely to have excellent results. However,
wo limitations restrict current model-based search methods from improving performance and ef-
ciency further. Firstly, more parallelism is failed to exploit. Secondly, the high runtime cost is
ften consumed in training the black-box models. Notwithstanding that some arts have already
CM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 5, Article 74. Pub. date: September 2023. 
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Fig. 1. Runtimes per iteration of MOTPE [ 21 ], an efficient multi-objective Bayesian optimization method. 

(a) shows the runtimes of MOTPE with different numbers of parameters. The number of evaluated sam- 

ples is 1,024. (b) presents the runtimes of MOTPE with different numbers of evaluated samples. We test the 

algorithm with 134 parameters, the same as we use in the experiments in Section 4 . Table 1 presents infor- 

mation about the parameters. As the number of parameters or evaluated samples increases, the runtime for 

an iteration rises rapidly. 
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xtended the sequential optimization to the parallel flow [ 8 , 9 ] to solve the first limitation, the
untime cost may still become unacceptable for the VLSI design flow. The reason lies in two folds.
n the one hand, there exist many parameters in the search space, e.g., at least, more than a hun-
red parameters that can affect the quality of result ( QoR ). Moreover, the search space may
ontain uncountable candidate solutions due to non-discrete parameter values in the VLSI design
ow. Hence, it requires more optimization iterations to obtain a satisfactory result. On the other
and, as the algorithm continues to optimize, the black-box model is trained on a larger searched
ata size, which incurs high training runtime costs. Methods based on BO face the problem since
raining becomes more expensive as the optimization continues. 

VLSI design flow takes a long time to obtain the QoRs. The relation between the tool inputs and
he QoRs is so complicated that we can not model it with simple analytic functions. It fits the black-
ox optimization settings of BO. BO can make a trade-off between exploration and exploitation,
nabling an efficient global search. Methods based on BO have shown better performance than
ther methods such as genetic algorithm in existing research [ 14 , 16 ]. Therefore, we propose a
ramework based on BO that can solve the limitations mentioned earlier. 

To improve the efficiency of BO for VLSI design flow parameter tuning, we argue that the time
equired for calibrating the surrogate model and computing acquisition function must be reck-
ned with when navigating the huge searching space generated by a plethora of tool parame-
ers. Figure 1 (a) and Figure 1 (b) present the runtimes of an efficient multi-objective BO method

OTPE [ 21 ] on a problem with three objectives. Each bar in Figure 1 denotes the algorithm’s
untime per iteration. The method uses the evaluated samples as training data to train the surro-
ate model and select new promising data from the search space based on the surrogate model.
n Figure 1 (a), the number of evaluated samples is 1,024. It shows that the number of parameters
trongly influences the runtime, which inspires us to reduce the runtime of the parameter tuning
lgorithm via dimensionality reduction. In Figure 1 (b), the number of parameters is 134. As the
umber of evaluated samples increases, the runtime rises rapidly, which can become unaffordable.
or example, MOTPE with 4,096 evaluated samples costs 10,786 seconds to sample new promising
ata. Thus, keeping the number of evaluated samples for BO in an acceptable range is crucial to
revent the parameter tuning process from slowing down significantly. 
ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 5, Article 74. Pub. date: September 2023. 
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Our first improvement on the parameter tuning method is dimensionality reduction. Although
here are a large number of parameters in EDA tools that influence the QoR, some of them are more
mportant than others for a given circuit. For example, the congestion effort parameter is critical
or a circuit with potential congestion issues in the placement and routing processes. At the same
ime, the wire length optimization level may have less effect. In other words, the QoRs is strongly
ffected by a latent variable vector with lower dimensionality than the parameter space. This fact
otivates us to apply dimension reduction to the search space, i.e., utilizing low-dimension fea-

ures to represent the original high-dimension parameters. Although, we can implement dimen-
ionality reduction by selecting important parameters and ignoring others, it requires many ad-
itional data to estimate the importance of each parameter in a huge parameter space, which can
ignificantly slow down the parameter tuning process. 

We reduce the dimensionality of the search space with the random embedding method [ 28 ]. The
imensionality of a latent space that determines the results is named effective dimensionality d e .
ssuming the D-dimensional variable vector x has an effective dimensionality of d e , it is proved

n [ 28 ] that the optimal point of x can be found by optimizing the d e -dimensional variable vector
 

′ , which is mapped to the D-dimensional space with a random embedding matrix. The theory
nspires algorithm designers to cut down the number of variables by searching in a space with
ower dimensionality, which can effectively reduce the runtime of optimization algorithms. 

To enhance the efficiency of parameter tuning, we adopt an optimized multi-objective BO
ethod as our second improvement. Sequential algorithms suffer from the unsatisfactory effi-

iency. Parallel BO [ 8 , 9 ] conquers this challenge by sampling a batch of points at each iteration.
y sampling more points in one iteration, parallel BO can explore the search space better than se-
uential methods. However, as shown in Figure 1 (b), having many evaluated samples significantly
lows down the optimization process, which prohibits the parameter tuning method from having
 large batch size. Trust-region BO [ 10 , 12 ] enhances the parallelism by performing BO within
ultiple decoupled trust regions ( TRs ) simultaneously. Each trust region only uses a portion of

he evaluated samples to train the models, which can effectively reduce the runtime of BO and
chieve larger-scale parallelism. The adaptive sampling range of trust-region BO can avoid the
robable deterioration of search quality caused by the decrease in training data. 
The third improvement is an early-stopping mechanism that utilizes the feature of the EDA flow.
e also consider the multiple consecutive optimization stages in the de facto VLSI design flow,

.e., the results from the front-end flow strongly influence the QoRs obtained from the back-end
ow. Besides, the back-end flow consists of more stages and complex algorithms than the front-
nd, which incurs higher runtime costs than the front-end flow. This fact motivates us to select
arameter values that are more likely to have good QoRs based on the front-end results. We first
valuate multiple points with the front-end flow and select a portion of them that potentially have
igh QoRs to run the back-end flow. As a result, some samples that fail at the early-stage can
lso be abandoned, utilizing the finding that early-stage failure costs less time mentioned in [ 16 ].
revious methodologies neglect the interaction between the front-end and back-end flow. Unlike
hem, our algorithm is aware of the interaction accordingly to solve the problem. 

In accordance with the aforementioned arguments and observations, we propose REMOTune, a
arameter tuning framework for VLSI design flows with R andom E mbedding and M ulti- O bjective
rust-region BO. First, we reduce the number of variables for the optimization algorithm by gener-
ting the parameter values in a space with lower dimensionality. Second, we overcome the weak-
ess of sequential optimization by utilizing parallel BO. The high efficiency of trust-region BO [ 10 ,
2 ] contributes to the superiority of REMOTune. Finally, the non-dominated sorting [ 11 ] of the re-
ults from the early stage of the EDA flow can select the samples that are likely to surpass others
nd reduce the number of evaluations in the time-consuming back-end flow. 
CM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 5, Article 74. Pub. date: September 2023. 
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The main contributions of this article can be summarized as follows. 

—We propose an efficient algorithm for VLSI design flow parameter tuning. To overcome
the challenge of the enormous parameter space, we effectively reduce the number of vari-
ables with random embedding, which significantly saves the time spent on the optimization
method. 

—We enable parallel optimization in parameter tuning with an improved multi-objective
trust-region BO method. Optimizing in several decoupled regions can not only enable par-
allel evaluations but also reduce the runtime for the parameter tuning method. In addition,
we introduce a clustering step in the initialization of the method to ensure the diversity of
the TRs. 

—In the early stage of the EDA flow, we apply a non-dominated sorting mechanism to select
the samples that are likely to surpass others and reduce the number of evaluations in the
time-consuming back-end flow. 

—Experimental results show that the proposed framework can achieve significant improve-
ment compared with existing EDA flow parameter tuning methods. 

The rest of our article is organized as follows. Section 2 introduces some prior knowledge about
andom embedding and multi-objective optimization. Section 3 discusses the developed parameter
uning flow. Section 4 describes our experiments on VLSI design parameter tuning. The conclusion
nd future directions are discussed in Section 5 . 

 PRELIMINARIES 

.1 Bayesian Optimization 

O is an efficient framework for solving black-box optimization problems, where the relations
etween the inputs and outputs are too complex to model with some analytical functions. For a
roblem x 

∗ = arg min x ∈X 

f ( x ), BO utilizes a surrogate model to simulate the objective function
 = f ( x ). Typically, the surrogate model is a GP: : 

p (y | x ) = N(μ ( x ), Σ( x ) ) , (1)

here N( μ ( x ), Σ( x ) ) denotes a Gaussian distribution with a mean function μ ( x ) and a covariance
atrix Σ( x ). The GP can predict the mean and variance of the points, which can be used to make
 trade-off between exploitation and exploration. 

GP usually utilizes a covariance function k ( x 1 , x 2 ) to achieve non-linear modeling. For example,
he widely-used squared exponential function is defined as: 

k ( x 1 , x 2 ) = λ
2 exp 

(
−1 

2 
( x 1 − x 2 ) 

� Λ( x 1 − x 2 ) 
)
, (2)

here Λ = diag (λ−2 
1 , λ

−2 
2 , . . . , λ

−2 
D 

) is the diagonal length scale matrix and λ2 is a scaling factor. 
Given observations X = [ x 1 , x 2 , . . . , x N 

] , y = [ y 1 , y 2 , . . . , y N 

] , and a new point x t , the distribu-
ion of y t [ 30 ] is estimated by: 

p (y t | x t , X , y ) = N( k 

� ( X , x t ) K ( X , X ) −1 y , k ( x t , x t ) − k 

� ( X , x t ) K ( X , X ) −1 k ( X , x t ) ) , (3)

here k ( X , x t ) denotes the vector formed by the covariance values between [ x 1 , x 2 , . . . , x N 

] and
 t . K ( X , X ) is the intra-covariance matrix among [ x 1 , x 2 , . . . , x N 

] , whose element at the ith row
nd jth column is k ( x i , x j ). Equation ( 3 ) can explain why the runtime of BO rises rapidly as the
umber of observations increases, as shown in Figure 1 (b). As the number of data increases, the
ime to get K ( X , X ) −1 grows polynomially, which significantly slows down the computation of GP
n BO. Therefore, limiting the number of observations involved in the GPs can effectively reduce
he runtime of a parameter tuning method based on BO. 
ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 5, Article 74. Pub. date: September 2023. 
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BO uses an acquisition function to determine which datum to evaluate in the next step. Under
 single-objective optimization setting, the expected improvement ( EI ) is a popular acquisition
unction defined as: 

EI ( x ) = 

∫ +∞ 

−∞ 

max (y ∗ − y , 0 )p (y | x )dy . (4)

I ( x ) prefers low expected value or high uncertainty, which implements the trade-off between
xploitation and exploration. Maximizing the acquisition function usually requires a numerical
ptimization process, which costs more and more time as the number of variables increases. Thus,
imiting the number of variables can reduce the runtime of BO because less time is spent maxi-

izing the acquisition function. 
After selecting the test point, the evaluation result is used to train the surrogate model. The best

valuated result is regarded as the optimal value y ∗ = f ( x 

∗). BO does not assume any particular
orm for f ( x ), which makes it suitable for problems where the evaluation process is complicated
r the design of analytic models is difficult. 

.2 Multi-objective Optimization 

n EDA flows, there are multiple QoR metrics, such as performance, power, and area ( PPA ).
hus, the parameter tuning for EDA flows is intrinsically a multi-objective problem. In multi-
bjective optimization, we usually find the Pareto-optimal set rather than a single optimal result.
or a problem with M objectives, we denote the objectives of a test point x as a vector y = f ( x ).

n objective vector y 1 = [ y 
(1 ) 
1 , y 

(2 ) 
1 , . . . , y 

(M ) 
1 ] is said to dominate y 2 if 

∀i ∈ {1 , 2 , . . . , M }, y (i ) 
1 ≤ y (i ) 

2 and ∃j ∈ {1 , 2 , . . . , M }, y (j ) 
1 < y 

(j ) 
2 . (5)

 point x is Pareto-optimal if no evaluated point dominates it. The Pareto-optimal points are
alled the Pareto-optimal set. 

To compare results under a multi-objective setting, the hypervolume (HV) indicator is com-
only used to assess the quality of Pareto-optimal sets. Given a Pareto-optimal set P and a refer-

nce point r that typically denotes the worst case, the HV indicator can be defined as: 

HV ( P , r ) = Λ ��
�

⋃ 

x i ∈ P 
[ f ( x i ) 

(1 ) , r (1 ) ] × [ f ( x i ) 
(2 ) , r (2 ) ] × · · · × [ f ( x i ) 

(M ) , r (M ) ] 
��
�
, (6)

here x i is the ith point in the Pareto-optimal set. [ f ( x i ) 
(j ) , r (j ) ] denotes the range between the

th elements of f ( x i ) and r . Λ(·) refers to the Lebesgue measure. Figure 2 (a) illustrates the HV
ndicator in a 2-D space. It computes the area of a polygon that is the union of multiple rectangles.
ach rectangle is determined by a Pareto-optimal point and the reference point. In Figure 2 (b),
 new point enlarges the Pareto-optimal set and thus increases the HV. In simple terms, the HV
ndicator computes the size of the space covered by the Pareto-optimal set. 

In multi-objective BO, the acquisition functions are required to consider the Pareto-optimal set.
or example, expected hypervolume improvement ( EHVI ) [ 8 ] extends the idea of EI and acts
s a multi-objective acquisition function. Max-value entropy search ( MES ) [ 29 ] considers the
ptimization of the Pareto-optimal set from an information-theoretic perspective. 

 PROPOSED METHOD 

.1 Overview 

igure 3 shows the overview of the proposed framework. To obtain layout designs from the EDA
ow, we need to prepare the technology library, hardware description language ( HDL ) codes,
nd constraint files. The range of each parameter should also be specified. Given these files and
CM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 5, Article 74. Pub. date: September 2023. 
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Fig. 2. Illustration of the hypervolume indicator in a 2-D space. The hypervolume indicator computes the 

area of a polygon that is the union of multiple rectangles. Each rectangle is determined by a Pareto-optimal 

point and the reference point. (a) shows the 2-D hypervolume of four Pareto-optimal points. (b) is the 2-D 

hypervolume after adding the fifth point. The difference between (a) and (b) is the hypervolume contribution 

of the fifth point. 

Fig. 3. Overview of REMOTune, which consists of the initialization phase and the optimization phase. 
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he parameter space, REMOTune can optimize the parameters for the EDA flow and finally output
he Pareto-optimal parameter values. 

REMOTune consists of two phases, the initialization phase and the optimization phase. The
nitialization phase consists of two steps. First, we generate a random embedding matrix that can

ap a variable vector in a low-dimensional space R 

d to the original parameter space R 

D . Second,
e sample and evaluate multiple points, then utilize the K-Means++ clustering algorithm [ 27 ] to
artition the samples into T subsets, each of which is used to initialize a trust region. 
REMOTune optimizes the parameters with multiple decoupled TRs, which can run in parallel. At

ach iteration, we first train the GPs for each trust region. After training the surrogate models, we
ample a batch of points with Thompson sampling, considering the contribution to the HV. Second,
ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 5, Article 74. Pub. date: September 2023. 
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he sampled points are evaluated with the front-end flow, such as the synthesis tool Genus. Half
f them are selected by non-dominated sorting, which can select the points that are more likely to
mprove the Pareto-optimal set. In the non-dominated sorting, we select the points according to
areto-optimality and the crowding distance. Section 3.3.2 presents the details about this process.
inally, the selected points and their QoR results from the back-end flow (e.g., Innovus) are used
o update the Pareto-optimal set and added to the training data for the next iteration. 

.2 Initialization Phase 

n the initialization phase, we first generate a random embedding matrix for dimensionality re-
uction and second initialize the TRs with clustered points. 

3.2.1 Random Embedding. There are a large number of parameters in well-known EDA tools
uch as Genus and Innovus. The huge parameter space poses a great challenge to the parameter
uning methods. As discussed in Sections 1 and 2.1 , a large number of variables can increase the
untime of BO. Therefore, we try to optimize the parameters in a space with lower dimensionality.
n this article, we utilize random embedding to reduce the dimensionality of the search space.
ssuming that the parameter vector x is D-dimensional and a d e -dimensional latent variable vector
 

′ dominates the QoR results, it is proved in [ 28 ] that optimizing x 

′ is equivalent to optimizing
 if x = A x 

′ and each element of A is sampled from a standard Gaussian distribution. The theory
nspires us to reduce the dimensionality of the search space via random embedding. 

We normalize each parameter value in [ −1 , 1] for simplicity. Discrete parameters are also rep-
esented by real numbers in [ −1 , 1] . Thus, the parameter vector x has a box bound B D 

= [ −1 , 1] D .
he latent variable vector x 

′ is also limited in a pre-defined box B e = [ −b e , b e ] d e . In practice, the
arameter vector generated by x = A x 

′ is likely to fall outside [ −1 , 1] D and needs to be clipped. To
ncourage the searching inside B D 

, we generate the random embedding matrix A by optimizing
he following problem with the simulated annealing algorithm. 

A = arg min 

A 

(1 − p ( A x 

′ ∈ B D 

)) + γ × D K L (p A 

‖ϕ), (7)

here p ( A x 

′ ∈ B D 

) represents the probability that A x 

′ falls into B D 

, D K L (p ‖q) = 
∑ 

p (x ) log 

p (x ) 
q (x ) 

s the KL divergence, p A 

is the probability distribution of the elements of A , ϕ denotes the standard
aussian distribution, and γ is a weight parameter that makes a trade-off between the two terms.
he probability p ( A x 

′ ∈ B D 

) is evaluated by random sampling. Minimizing D K L (p A 

‖ϕ) ensures
hat the distribution of the elements of A is standard Gaussian. At each iteration, one row of the
mbedding matrix A is re-generated with a Gaussian random number generator, and the simulated
nnealing mechanism decides whether to accept the change or not. In this article, we do simulated
nnealing to improve the embedding matrix for 4096 iterations. At each iteration, we randomly
enerate 4,096 points and count the number of points that fall into B D 

to estimate the probability
( A x 

′ ∈ B D 

). The pre-defined box B e = [ −b e , b e ] d e is set to be [ −0 . 25 , 0 . 25] d e . Since the random
eneration of points are not time-consuming, the whole process of simulated annealing only costs
everal minutes. 

3.2.2 Sampling and Clustering. After the generation of A , we randomly sample multiple points
n B e , map them to the original parameter space B D 

, and evaluate them in the complete VLSI design
ow. To ensure the diversity of the TRs, we utilize the K-Means++ clustering algorithm to partition
he random samples into T subsets, where T is the number of TRs. Each cluster contains the initial
raining data of the corresponding trust region. The details of TRs are discussed in Section 3.3 .
n the absence of clustering, the search directions of the TRs do not have significant differences,
hich may lead to redundant searches in the optimization process. 
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ALGORITHM 1 : Initialization Phase 

Input: Number of initial points N i ni t , number of trust regions T 
Output: Trust regions { T R 1 , T R 2 , . . . , T R T } 

1: function Init (( N i ni t , T )) 
// 1. Generating the random embedding matrix 

2: Initialize A , each element A i, j is sampled from N(0 , 1 ); 
3: Optimize ( 7 ) with the simulated annealing algorithm; 

// 2. Sampling and Clustering 

4: Draw N i ni t quasi-random points from a Sobol sequence; 

5: Partition the N i ni t points into groups { C 1 , C 2 , . . . , C T } with the K-Means++ clustering algorithm; 

6: for i in {1 , 2 , . . . , T } do 

7: Map the points in C i to the original parameter space with A , then evaluate them with the complete 

EDA flow; 

8: Add the points in C i and their QoR results to the training data of T R i ; 

9: end for 

10: return { T R 1 , T R 2 , . . . , T R T }; 
11: end function 

 

t  

p

3

A  

o  

i  

r  

g  

b
 

d  

a  

c  

t  

t  

b  

a  

p
 

e  

t
t  

a  

l  

t  

a  

e
 

n  
The initialization phase is summarized in Algorithm 1 , which consists of two steps, generating
he random embedding matrix (lines 2 and 3) and initializing the Trs with the clustered initial
oints (lines 4–9). 

.3 Optimization Phase 

s discussed in Sections 1 and 2.1 , the number of observations has a huge impact on the runtime
f BO. As the number of data increases, the runtime for GP inference grows rapidly, which signif-
cantly slows down the computation of BO. Although this article aims to utilize parallel BO, the
untime of the optimization algorithm can become unaffordable as the number of evaluated points
rows, as shown in Figure 1 (b). Therefore, to reduce the runtime of REMOTune, we limit the num-
er of observations involved in the GPs by performing BO within multiple TRs simultaneously. 
Trust-region Bayesian optimization ( TuRBO ) [ 10 , 12 ] is a robust framework for high-

imensional black-box optimization that can avoid over-exploration by performing optimization in
daptive TRs. TuRBO is designed for the parallel evaluation setting with large batch sizes, which
an bring high throughput and thus minimize the end-to-end optimization time. It can provide
rust-region-level and batch-level parallelism based on the sequential model-based optimiza-

ion ( SMBO ) scheme. The TRs are decoupled and optimized in parallel. Within a trust region, a
atch of points are sampled and evaluated in parallel at each iteration. In this article, we design
n extended multi-objective trust-region BO algorithm that supports random embedding with im-
roved initialization and sampling methods. 
Figure 4 illustrates TuRBO in a 2-D space, where the circles with the same color represent the

valuated points belonging to the same trust region. TuRBO explores the search space with mul-
iple decoupled TRs. Each trust region has an adaptive edge-length L and a center point x ce nte r 

hat is selected from its evaluated points. A trust region uses its evaluated points to train the GPs
nd samples one or multiple points in the rectangle determined by the center point and the edge-
ength. Note that some evaluated points in a trust region can be outside the rectangle because
he center point and edge-length can be changed at any iteration. The edge-length is increased
nd decreased to encourage exploration and exploitation, respectively. Changing the center point
nables the trust region to travel around the search space and make better exploration. 

Optimizing in decoupled TRs has two significant advantages. First, it effectively reduces the
umber of training data and the size of the search space for BO. For a typical parallel BO algorithm,
ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 5, Article 74. Pub. date: September 2023. 
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Fig. 4. Overview of TuRBO. Each trust region has an adaptive edge-length L and a center point x ce nte r 

selected from its evaluated points. In each iteration, it samples one or multiple points in the rectangle deter- 

mined by the center point and the edge-length. The edge-length can be increased and decreased to encourage 

exploration and exploitation, respectively. 
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ll evaluated points are used as training data, and the algorithm needs to optimize the acquisition
unction in the whole space. Figure 1 (b) has shown that the runtime rises rapidly as the number
f training data increases. Nevertheless, in trust-region BO, a trust region uses only a portion of
ata. It maximizes the acquisition function in a limited space determined by the center point and
dge-length. Second, trust-region BO focuses on regions that potentially improve the QoR, avoid-
ng over-exploration in the immense space. This feature of TuRBO enables fast convergence and
educes the number of iterations. Due to the time-consuming EDA flow, it is of great importance
or the parameter tuning method to limit the number of iterations. Otherwise, the runtime of the
hole parameter tuning process can be unacceptable. 
The key points of the optimization phase are as follows. 

3.3.1 Trust-region Sampling. Our algorithm carries out BO in several decoupled TRs. A TR sam-
les new points in a hypercube with a center point x ce nte r and an edge-length L ∈ [ L min , L max ] .
t each iteration, it utilizes GPs to model the relation between the input variables and the output

esults, and sample one or several points within the trust region using Thompson sampling [ 17 ],
hich is an efficient substitute for acquisition functions. 
We select the center point x ce nte r,i for each trust region T R i . The center is the evaluated point

n T R i that has the highest hypervolume contribution ( HVC ), which is defined as the reduction
n HV if that point were to be removed. The HVC of point x is represented by HV C ( x , T R i ). The
dge-length L i is initialized with an empirical value and evolves according to the rules described in
ection 3.3.3 . We initialize the edge-length with 0.25. The basic idea of edge-length evolution is that
f the TR succeeds in enlarging the Pareto-optimal set, its edge-length is increased to encourage
xploration. Otherwise, the edge-length is decreased to facilitate exploitation. 

For the ith trust region whose center point is x ce nte r,i and edge-length is L i , the training data
onsist of the evaluated points in this trust region and the points from other TRs that are in the
ypercube with the same center and an edge-length of 2 L. This data-sharing mechanism can in-
rease the data diversity and improve the modeling ability of the models near the trust region with
ittle overhead. 

To generate a batch of data including b points, we use Thompson sampling to draw posterior
amples from the GPs. The 2 b points with the maximum hypervolume improvement ( HVI ) are
elected to run the front-end flow. Denoting the QoR results of evaluated points with Y te s te d,i ,
CM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 5, Article 74. Pub. date: September 2023. 
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VI of a sampled point x s ample d is evaluated by: 

H V I ( x s ample d ) = H V ( Pareto ( Y te s te d,i + ˆ f ( x s ample d ) ) , r ) − HV ( Pareto ( Y te s te d,i ) , r ) , (8)

here ˆ f ( x s ample d ) is the estimated QoR results obtained in the sampling process and Pareto (·)
omputes the Pareto-optimal set. 

3.3.2 Non-dominated Selection. After the sampling, we evaluate the 2 b points with the front-
nd flow and get the early-stage result f f ( x i ) of each point x i . Then we run a non-dominated se-

ection process inspired by NSGA-II [ 11 ] to find the better half of the samples, denoted by X s e le cte d .
he selection process iteratively executes the following steps until b samples are selected. 

(1) Get the Pareto-optimal set of the samples X s ample d and denote them with P s ample d . Re-
move the points in P s ample d from X s ample d . 

(2) Sort P s ample d according to the crowding distance of each point C D i = 
∑ M 

j= 1 C D i, j . To

compute CD i, j , the early-stage results f f ( x i ) are sorted by the jth dimension. We de-

note the two points near f f ( x i ) with f f ( x 

↑ 
i ) and f f ( x 

↓ 
i ) such that f f ( x 

↑ 
i ) 

(j ) ≥ f f ( x i ) 
(j ) ≥

f f ( x 

↓ 
i ) 

(j ) . The value CD i, j is computed by: 

CD i, j = 
f f ( x 

↑ 
i ) 

(j ) − f f ( x 

↓ 
i ) 

(j ) 

f f ( x 

↑, j ) (j ) − f f ( x 

↓, j ) (j ) 
, (9)

where x 

↑, j and x 

↓, j represent the points that have the maximum and minimum QoR results
in the jth dimension, respectively. The CD i, j values of x 

↑, j and x 

↓, j are set to +∞ . 
(3) If | X s e le cte d | ≤ b − | P s ample d |, add all points in P s ample d to X s e le cte d . Otherwise, select

the points in P s ample d according to the non-dominated sorting. The points with larger
crowding distances are selected first. 

The non-dominated selection can be regarded as an early-stopping mechanism that enables
s to explore more points while keeping the overhead at an acceptable level. The front-end flow
sually costs less time than the back-end, but it has a strong influence on the final QoRs. Non-
ominated selection enables us to explore more points with a little overhead and use the refined
amples to evaluate the results. We use half of the candidates empirically to make a trade-off
etween effectiveness and efficiency. Using fewer candidates has little gain on exploration while
sing more candidates leads to a high runtime overhead. In our experiments, it costs around 1 / 4
dditional runtime than the method without non-dominated selection but can explore much more
amples. 

3.3.3 Evaluation and Update. Finally, the selected points and their QoR results from the back-
nd flow are used to update the training data and the Pareto-optimal set. The edge-length L is
lso updated after the evaluation. It is initialized with L i ni t in the initialization phase and changed
ccording to the following rules. 

(1) If the best point or the Pareto-optimal set of one trust region is improved at the current
iteration, the success count of this trust region is increased. Otherwise, the failure count
is incremented. 

(2) When the success count of one trust region exceeds the success threshold τs , the edge-
length is increased to min { 2 L, L max } , encouraging the exploration in a larger space. The
success count is set to zero after changing the edge-length. 
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(3) When the failure count of one trust region exceeds the failure threshold τf , the edge-
length is set to L/ 2 , encouraging more fine-grained searches. The failure count is set to
zero after changing the edge-length. 

(4) If a trust region has L < L min , it is terminated and a new trust region is started. 

Algorithm 2 summarizes an optimization iteration of a trust region. Line 2 selects the center
oint of the trust region. Lines 3 and 4 show the TR sampling processes, respectively. Lines 5–10
resent the non-dominated selection step. Lines 12 and 13 show the evaluation of selected samples
nd the update of the trust region, respectively. In the optimization phase, we execute multiple
nstances of Algorithm 2 in parallel to explore multiple regions concurrently. 

LGORITHM 2 : Optimization Phase 

nput: Trust region T R i , batch size b 
utput: Updated trust region T R i 

1: function Optimize (( T R i , b)) 

// 1. Trust-region Sampling 

2: x ce nte r,i = arg max x HV C (x , T R i ) ; 
3: Train the Gaussian processes with the evaluated points in T R i and the shared data; 

4: Sample 2 b points according to H V I (x ) ; 
// 2. Non-dominated selection 

5: Map samples X s ample d to the original parameter space, evaluate them with the front-end flow, get

results Y f , sa mpled ; 

6: X s e le cte d = ∅ ; 
7: while | X s e le cte d | < b do 

8: P s ample d = Pareto ( Y f , sa mpled ); 
9: Sort P s ample d by the crowding distance, from largest to smallest; 

10: Add points from P s ample d to X s e le cte d , and remove the points from X s ample d ; 

11: end while 

// 3. Evaluate and update 

12: Map samples X s e le cte d to the original parameter space, evaluate them with the back-end flow, get

results Y s e le cte d ; 

13: Update the evaluated points and the edge-length with X s e le cte d , Y s e le cte d ; 

14: return T R i ; 

15: end function 

.4 The Complete Flow 

ccording to the discussion above, the proposed framework consists of two phases, the initializa-
ion phase and the optimization phase. Algorithm 3 presents the outline of our parameter tuning
ramework. Algorithm 1 is called in Line 2 to initialize the TRs. Lines 4 and 5 concurrently invoke
lgorithm 2 to carry out the optimization phase. 

 EXPERIMENTS 

.1 Experimental Settings 

We test REMOTune with a VLSI design flow consisting of Cadence Genus and Innovus 17.1. We
ptimize 134 parameters demonstrated in Table 1 . Every parameter corresponds to an option of a
ommand in Genus or Innovus. For synthesis, we consider the root attributes of Genus for design
artition, boundary optimization, control logic optimization, datapath optimization, multibit
nstances, etc. The parameters for the backend are inspired by AutoTuner [ 16 ] and PTPT [ 14 ],
hich have remarkable performance in academia or industry. For floorplan, we focus on the basic
arameters of the floorplan command. In terms of placement, we tune the awareness of timing,
CM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 5, Article 74. Pub. date: September 2023. 
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Table 1. Examples of the Flow Parameters 

Stage Total Parameter Examples Range 

Synthesis 105 

auto partition false/true 

control logic optimization basic/advanced/none 

synthesis general effort medium/low/high/express/none 

synthesis map effort high/low/medium/express/none 

Floorplan 7 
aspect ratio 0.5–2.0 

density target 0.5–1.0 

Global placement 10 

congestion effort low/medium/high 

timing effort medium/high 

power effort none/standard/high 

Detailed placement 3 
wire length optimization none/medium/high 

IR drop aware none/low/medium/high 

Routing 9 

timing driven false/true 

lithography driven false/true 

Si driven false/true 

via optimization false/true 

ALGORITHM 3 : The proposed REMOTune framework 

Input: Number of initial points N i ni t , number of trust regions T , batch size b, number of iterations M ax Iter 
Output: Pareto-optimal set P 

1: function PT (( N i ni t , T , b, M ax Iter )) 

2: { T R 1 , T R 2 , . . . , T R T } = Init ( N i ni t , T ); � Algorithm 1 

3: for iteration in {1 , 2 , . . . , M ax Iter } do 

// Note that the following loop can be run in parallel ; 

4: for T R i in { T R 1 , T R 2 , . . . , T R T } do 

5: T R i = Optimize ( T R i , b); � Algorithm 2 

6: end for 

7: end for 

8: Update the Pareto-optimal set and the shared data; 

9: end function 
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ower, congestion, wire length, etc. As for routing, we consider the optimization on via, wire,
iming, and so on. 

REMOTune is implemented with Python3. The BoTorch [ 5 ] toolbox is adopted to provide ac-
eleration for BO. We compare the proposed framework with reproduced state-of-the-art works
O [ 20 ], Recommender [ 18 ], FIST [ 32 ], PTPT [ 14 ], and AutoTuner [ 16 ]. We reproduce BO and
ecommender with BoTorch and PyTorch [ 22 ] toolboxes, respectively. FIST and PTPT are im-
lemented with scikit-learn [ 23 ]. Moreover, we use the MOTPE [ 21 ] algorithm and the toolbox
ptuna [ 3 ] for AutoTuner, which shows better final scores in [ 16 ]. BO, FIST, PTPT, and AutoTuner
re sequential model-based optimization ( SMBO ) methods. In the initialization of BO, PTPT,
nd AutoTuner, they randomly sample a certain number of points and used the points to train
he surrogate model. To ensure the diversity of initial points, FIST requires the random samples to
over various parameter values. In the optimization phase, BO and PTPT use GP surrogate models.
IST uses XGBoost as the surrogate model while AutoTuner uses a mixture-of-Gaussian model. To
core the candidates, BO uses EI as the acquisition function. PTPT maximizes the entropy while
IST randomly samples some points and randomly select a point in the Pareto-frontier. AutoTuner
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ses the EI of HV as the acquisition function. For Recommender, we randomly sample and evaluate
he initial points, then use them as the training set to train a neural network. After training, we
andomly sample thousands of candidates, predict their QoRs with the neural network, and select
he samples with the highest sums of the estimated PPAs to evaluate the QoRs. 

We apply REMOTune to the parameter tuning for RISC-V processors, RISCV32I [ 25 ], Ibex [ 13 ],
nd Rocket [ 4 ]. The technology node is TSMC 65 nm. The benchmarks RISCV32I , Ibex , and Rocket
ave 7 . 6 k , 8 . 1 k , and 14 . 2 k cells, respectively. We set the target clock periods to be 7 . 6 ns , 7 . 4 ns , and
 . 6 ns , respectively. In our experiments, BO, FIST, PTPT, and AutoTuner have 64 samples for ini-
ialization and 256 iterations for optimization. Following the settings in the papers, these methods
ubmit one trial at each iteration because they are designed to optimize the parameters sequen-
ially. Recommender is not a sequential optimization algorithm. Thus, we can pre-train the model
ith 4,096 random samples and use 256 points in the tuning process. The training data can be eval-
ated in parallel. However, due to the lack of efficient sampling method, Recommender encounters
any inferior points that have unsatisfactory QoRs. Only a small portion of samples can achieve

cceptable results. As for REMOTune, we use 64 samples for initialization and 128 iterations for
ptimization. REMOTune uses less iterations to prevent it from using more total runtime than oth-
rs, since the EDA tools dominate the total runtime and the non-dominated sorting mechanism
pends more time on the synthesis flow. We use an embedding size of 16, a batch size of 8, and
 TRs for RISCV32I and Ibex . For Rocket , we use an embedding size of 32, a batch size of 8, and
 TRs. REMOTune uses up to 256 threads. Each instance of EDA flow uses four threads. We observe
hat it is harder to improve the QoRs on Rocket than on other benchmarks. Thus, we use a large
mbedding size and more TRs on Rocket to enable a more fine-grained and thorough search. One
ossible reason of the difficulty may be that Rocket contains much low-level verilog code gener-
ted automatically, which limits the optimization space of the synthesis flow. In addition, we use
nly 64 iterations on Rocket to reduce the runtime. 
To evaluate the scalability of REMOTune, we also test the methods on BlackParrot [ 24 ] and

oom [ 33 ] processors, which have 43 . 2 k and 3 . 68 m cells, respectively. Since large benchmarks cost
uch more time to run the EDA flow, we reduce the numbers of initialization points and opti-
ization iterations. On BlackParrot , we use 1 / 8 initialization points and optimization iterations

ompared to RISCV32I . On Boom , we further limit the number of iterations to be 4 for REMOTune
nd 8 for others. 

The baseline result is obtained with the default parameter values determined by the tools. To
valuate the parameters, we compute the percentages of minimum clock period, total power, and
otal area of the standard cells to the baseline. Following AutoTuner, we get these results by pars-
ng the reports from the EDA tools. The following metrics are used to compare the parameter
uning methods: HV, maximum performance improvement ( MPI1 ), maximum power im-

rovement ( MPI2 ), maximum area improvement ( MAI ), maximum performance-power

mprovement ( MPPI ), and maximum performance-area improvement ( MPAI ). To compute
he HV, we use [150 . 0 , 150 . 0 , 150 . 0] as the reference point. MPI1, MPI2, and MAI are the maximum
mprovement of minimum clock period, power, and area, respectively. MPPI is the maximum im-
rovement of the product of the minimum clock period and the minimum power. MPAI is the
aximum improvement of the product of the minimum clock period and the minimum area. 

.2 Comparisons with SOTA Methods 

igure 5 shows the comparison of REMOTune with existing methods on the RISCV32I benchmark.
he models are initialized before Iteration #0 and the results at Iteration #0 are computed according

o the initial points and the first batch of points sampled by the trained models. Although most
ethods have the same number of initial points, REMOTune can achieve a better exploration of the
CM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 5, Article 74. Pub. date: September 2023. 
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Fig. 5. Comparison of different methods on the RISCV32I benchmark. The metrics are (a) hypervolume; (b) 

MPI1; (c) MPI2; (d) MAI; (e)MPPI. (f)MPAI. Random embedding enables REMOTune to have a better initial- 

ization with limited initial samples. REMOTune achieves a better HV than other methods, which indicates 

that the proposed method can find a better Pareto-optimal set. REMOTune also has the best MPI2, MAI, 

MPPI, and MPAI among the methods. 
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earch space due to the effective dimensionality reduction. It reduces the dimensionality to 16 and
hus it can roughly characterize the space with 64 initial samples. Therefore, REMOTune shows
etter performance than others after initialization. On the contrary, a limited number of initial
amples is not enough for the 134-dimensional parameter space, and most methods do not perform
ell at the beginning. REMOTune can enable an efficient exploration of the parameter space with

aster convergence and parallelism. Since the search space is smaller and the TRs support parallel
xploration, it can achieve better results within fewer iterations. 

As shown in Figure 5 , the proposed method achieves obviously better HV than others, which in-
icates that it can obtain a better Pareto-optimal set. Compared to AutoTuner, the proposed frame-
ork has a 4.4% improvement on HV, a 17.6% improvement on MPPI, and an 8.5% improvement
n MPAI. BO achieves a good MPI1, but does not perform well on other metrics. Figure 6 shows
he curves of HV and MPPI with respect to the EDA flow budget (parallel runs × iterations). The
ost significant gains in HV and MPPI come from the first few hundred samples, corresponding

o the beginning iterations. 
Tables 2 , 3 , and 4 present the comparison of parameter tuning methods on RISCV32I , Ibex , and

ocket benchmarks, respectively. H V 0 ,1 , H V 0 ,2 , and H V 1 ,2 denote the performance-power HV,
erformance-area HV, and power-area HV, respectively. These metrics can evaluate the ability
o explore the objective subspaces. On all benchmarks, REMOTune achieves better HVs than
xisting methods, which indicates that the proposed method can find better Pareto-optimal sets.
EMOTune acquires 4.17%, 4.94%, and 7.33% higher HVs than AutoTuner on RISCV32I , Ibex , and
ocket benchmarks, respectively. In terms of H V 0 ,1 , H V 0 ,2 , and H V 1 ,2 , REMOTune also achieves
he best results, which indicates that the proposed method can explore the objective subspaces
etter than others. Although some methods can obtain better results in individual directions,
heir limited ability to explore multiple QoR objectives simultaneously results in lower HVs than
he proposed method. 
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Fig. 6. The curves of (a) hypervolume (b) MPPI with respect to the EDA flow budget (parallel runs × itera- 

tions). 

Table 2. Comparison of Parameter Tuning Methods on RISCV32I Benchmark 

Method FIST [ 32 ] Recommender [ 18 ] BO [ 20 ] AutoTuner [ 16 ] PTPT [ 14 ] Ours 
HV( 10 5 ) 1.57 1.55 1.63 1.68 1.48 1.75 

HV 0 ,1 ( 10 3 ) 2.85 2.72 3.00 2.95 2.70 3.05 

HV 0 ,2 ( 10 3 ) 2.94 2.99 3.00 3.07 2.95 3.12 

HV 1 ,2 ( 10 3 ) 2.97 2.97 3.00 3.14 2.79 3.23 

MPI1(%) 3.16 2.54 5.00 3.81 3.56 4.38 
MPI2(%) 3.90 2.12 5.12 5.23 0.85 6.27 

MAI(%) 5.47 7.18 4.64 7.10 5.15 7.45 

MPPI(%) 6.94 4.51 9.88 8.83 4.37 10.38 

MPAI(%) 8.46 9.53 9.41 10.63 8.52 11.53 

Table 3. Comparison of Parameter Tuning Methods on Ibex Benchmark 

Method FIST [ 32 ] Recommender [ 18 ] BO [ 20 ] AutoTuner [ 16 ] PTPT [ 14 ] Ours 
HV( 10 5 ) 1.54 1.42 1.52 1.62 1.53 1.70 

HV 0 ,1 ( 10 3 ) 3.24 3.13 3.19 3.44 3.23 3.54 

HV 0 ,2 ( 10 3 ) 2.86 2.64 2.83 2.92 2.81 3.07 

HV 1 ,2 ( 10 3 ) 2.61 2.47 2.59 2.65 2.59 2.68 

MPI1(%) 10.26 8.30 9.47 11.89 10.29 14.03 

MPI2(%) 4.19 4.20 3.84 5.74 4.49 5.35 
MAI(%) −1.83 −4.36 −1.74 −2.42 −2.33 −1.62 

MPPI(%) 14.02 12.15 12.84 16.95 14.32 18.63 

MPAI(%) 8.62 4.30 7.89 9.76 8.20 12.84 
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Figure 7 shows the results of the methods on BlackParrot and Boom , where REMOTune
chieves the highest HVs on both large benchmarks. Due to the limited number of iterations,
ost methods do not perform well on these large testcases. On BlackParrot , REMOTune, and
ecommender have outstanding results. A common feature of these two methods is parallelism,
hich can explore more points than others within a few iterations and contribute significantly to

he performance. However, since the number of samples is further reduced on Boom , Recommender
annot maintain the high performance. With the dimension reduction mechanism, REMOTune can
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Table 4. Comparison of Parameter Tuning Methods on Rocket Benchmark 

Method FIST [ 32 ] Recommender [ 18 ] BO [ 20 ] AutoTuner [ 16 ] PTPT [ 14 ] Ours 
HV( 10 5 ) 1.47 1.19 1.35 1.50 1.31 1.61 

HV 0 ,1 ( 10 3 ) 3.03 2.79 2.93 3.16 2.85 3.35 

HV 0 ,2 ( 10 3 ) 3.02 2.75 2.94 3.16 2.84 3.18 

HV 1 ,2 ( 10 3 ) 2.42 1.85 2.19 2.23 2.20 2.51 

MPI1(%) 12.38 14.50 13.44 16.72 11.97 16.11 
MPI2(%) −0.51 −6.70 −2.99 −2.42 −2.83 1.57 

MAI(%) −1.01 −7.25 −3.32 −2.55 −3.39 −1.31
MPPI(%) 11.93 8.77 10.85 14.70 9.48 17.43 

MPAI(%) 11.50 8.30 10.67 14.60 8.99 15.01 

Fig. 7. Comparison of the methods on (a) BlackParrot ; (b) Boom . We use the abbreviations F., R., B., A., and 

P. to represent FIST, Recommender, BO, AutoTuner, and PTPT, respectively. Due to the limited number of 

iterations, most methods do not perform well on these large testcases. 
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etter model the search space with a very limited number of samples. Thus, it can keep a high per-
ormance on Boom . The experiments on large benchmarks show the effectiveness of REMOTune
nd highlight the importance of dimensionality reduction and parallelism. 

.3 Parameter Importance Analysis 

o understand the source of the QoR improvements from REMOTune, we compare the actual pa-
ameter values found by different methods. Due to a large number of parameters, we need to
ocus on a few important parameters. We estimate the importance of the parameters with auto-

atic relevance determination ( ARD ) [ 31 ]. The evaluated parameters of REMOTune and the
oR results are used as the inputs and outputs of ARD, respectively. Figure 8 (a) presents the stan-
ard deviations of the parameters, which are the average values from 100 ARD models. A larger
eviation indicates higher importance. From the ARD analysis, we can observe that the timing ef-
ort, synthesis generic effort, and synthesis mapping effort are critical parameters for the RISCV32I
estcase. It is consistent with our intuition. We can also find that the default value for x state has
 significant impact on the QoRs, which is not an obvious conclusion we can gain from intuition.
n addition, the congestion effort and wire length optimization may not have large influences on
he results. Figuring out the important parameters helps us analyze the parameter values and gain
xperience in parameter tuning. 

Figure 8 (b) shows the Pareto-optimal results of the tested methods on RISCV32I . REMOTune
ets multiple outstanding results, located in the lower left corner. Comparing the outstanding
oRs of REMOTune with the others on the important parameters, we can understand the im-
rovements from REMOTune. Table 5 shows the parameter values of a few representative points
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Fig. 8. Analysis of the results on RISCV32I . (a) Standard deviations of some parameters, obtained via au- 

tomatic relevance determination. We use abbreviations S, GP, DP, and RT for synthesis, global placement, 

detailed placement, and routing, respectively. (b) Ratios of the Pareto-optimal results of the tested meth- 

ods to the baseline on performance and power. REMOTune gets multiple outstanding results, located in the 

lower left corner. 

Table 5. Comparison of Parameter Values Found by Different Methods on Rocket Benchmark 

Point ID PI1 (%) PI2 (%) AI (%) timing effort generic effort mapping effort default x wire length opt. 

REMOTune1 2.8 5.1 2.1 medium high medium 1 medium 

REMOTune2 * 0.7 6.1 2.2 medium high medium 1 medium 

REMOTune3 0.2 4.7 6.2 medium high express 0 medium 

PTPT 1.4 −1.5 2.1 high medium high 1 medium 

AutoTuner1 2.2 0.5 4.9 high high high 0 medium 

AutoTuner2 0.6 2.4 3.2 high high high 1 medium 

BO 1.0 −2.7 −0.3 medium medium medium 1 medium 

Recommender 0.1 1.9 1.5 medium high express 1 medium 

FIST 0.8 1.4 0.6 medium high express 0 high 

∗: Apart from the mentioned parameters, REMOTune1 and REMOTune2 have many different parameter values. For ex- 

ample, REMOTune2 uses pre-place optimization while REMOTune1 does not. Thus, they have different QoRs. 
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ound by different methods on RISCV32I , where PI1, PI2, and AI refer to performance improve-
ent, power improvement, and area improvement, respectively. The parameters ‘timing effort’,

generic effort’, ‘mapping effort’, ‘default x’, and ‘wire length opt’ correspond to the five most im-
ortant parameters shown in Figure 8 (a). Note that the ‘express’ option provides a fast but not
horough optimization. According to Table 5 , AutoTuner prefers to use high timing, generic, and
apping efforts, which can produce satisfactory results at the expense of runtime. As a result, Au-

oTuner can surpass PTPT, BO, and Recommender. REMOTune usually uses a high generic effort
ith lower timing and mapping efforts, which can also lead to outstanding results. The massive
arallelism helps REMOTune to explore more possibilities under this setting and utilize the less
mportant parameters, such as the ‘enhanced global mapping’, to make further improvement. 

Table 6 shows the top-5 important parameters on RISCV32I , Ibex , and Rocket benchmarks.
e use abbreviations S, F, GP, DP, and RT for synthesis, floorplan, global placement, detailed

lacement, and routing, respectively. According to the table, the generic effort in synthesis is a
ommon important parameter among the three benchmarks. This finding highlights the impor-
ance of synthesis generic effort in the EDA flow. Density in floorplan is an important parameter
n larger designs Ibex and Rocket , as shown in Table 6 . On RISCV32I and Ibex , we find some im-
ortant parameters in the placement and routing processes, such as the timing effort in global
lacement, the wire length optimization in detailed placement, and the timing-driven level in
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Table 6. The Five Most Important Parameters on RISCV32I , Ibex , and Rocket Benchmarks 

Benchmark Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5 

RISCV32I timing effort (GP) generic effort (S) mapping effort (S) default x (S) wire length opt (DP) 

Ibex density (F) generic effort (S) force constant removal (S) aspect (F) timing driven (RT) 

Rocket density (F) generic effort (S) opt. constant 1 flops (S) preserve sync. logic (S) opt. constant hpins (S) 

Fig. 9. Runtime breakdowns of (a) REMOTune, (b) AutoTuner on RISCV32I benchmark in the optimization 

phase. (c) shows the ratios of runtime spent on the REMOTune’s initialization and optimization phases. 

The total runtime is composed of the optimization, synthesis flow, and physical design flow runtime. For 

the DSE methods, the bulk of the runtime is spent on the EDA flow. It takes less than 2% runtime of 

REMOTune and AutoTuner to execute the optimization. The initialization phase of REMOTune takes less 

than 3% of the runtime. 
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outing. These parameters can significantly affect the physical design flow and thus contribute a lot
o the QoRs on these two benchmarks. On Rocket , the majority of important parameters are from
he synthesis flow. Since the Verilog code of Rocket is generated automatically from the hardware
onstruction language at a higher level, there may be some redundancy in the code, which needs
o be optimized with synthesis options such as allowing constant 1 propagation through flip-flops
opt. constant 1 flops), merging the synchronous control logic near the flip-flops (preserve sync.
ogic), and allowing constant propagation through this hierarchical boundary pins (opt. constant
pins). 

.4 Runtime Analysis 

igure 9 (a) and Figure 9 (b) present the runtime breakdowns of REMOTune and AutoTuner on
ISCV32I benchmark. The total runtime includes the optimization, synthesis flow, and physical
esign flow runtime. According to the figures, most methods spend the bulk of their runtime on
he EDA flow. As an example, it takes less than 2% runtime of REMOTune to execute the optimiza-
ion process. Figure 9 (c) shows the ratios of runtime spent on the REMOTune’s initialization and
ptimization phases. The initialization phase takes only 2.8% of the runtime. Most of the runtime
s consumed by the optimization phase. 

Figure 10 shows the runtime comparison of the optimization methods. Recommender takes the
hortest runtime due to the simple sampling mechanism, parallel evaluation, and the fast training
f the neural network model. Due to the simple surrogate models and acquisition functions, FIST
nd BO are also fast within a limited number of iterations. Although REMOTune is not the fastest
ethod, it is able to explore significantly more points and achieve much better performance. 

.5 Ablation Studies 

EMOTune achieves better performance than others with the help of random embedding and
ulti-objective trust-region BO. Random embedding limits the size of the search space, which
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Fig. 10. Runtimes of the tested algorithms on (a) RISCV32I , (b) Ibex , and (c) ROCKET benchmarks. We use the 

abbreviations F., R., B., A., and P. to represent FIST, Recommender, BO, AutoTuner, and PTPT, respectively. 

Due to the simple models, FIST, Recommender, and BO achieve small optimization runtimes. REMOTune 

has a moderate runtime, which is still shorter compared to the EDA flow runtime. 

Fig. 11. Ablation study results. (a) compares REMOTune with and without random embedding. REMOTune 

with random embedding has significantly less runtimes than REMOTune without dimensionality reduction. 

(b) compares REMOTune and MOTPE with 16-dimensional inputs given the same number of evaluated sam- 

ples. After dimensionality reduction, MOTPE is still slower than REMOTune, which shows the high efficiency 

of trust-region BO. 
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ffectively reduces the runtime of the optimization algorithm. With a limited number of iterations,
t is easier to make a thorough exploration in a smaller space. Multi-objective trust-region BO
nables parallel optimization, which can explore multiple points at each iteration. By optimizing
n decoupled TRs, the runtime of multi-objective trust-region BO can be limited to an acceptable
ange. 

Figure 11 (a) compares the runtimes of an optimization iteration with and without random em-
edding. According to the results, random embedding can significantly save the runtime of the op-
imization algorithm. Moreover, due to the excellent parallelism of trust-region BO, we can explore
any points in limited iterations of optimization. Figure 12 presents the performance compari-

on. With a limited number of data points, random embedding helps REMOTune to make a thor-
ugh exploration, achieving significantly better performance than the algorithm without random
mbedding. 

In our experiments, REMOTune can explore 4,096 points in 128 iterations. The runtime of a
equential optimization algorithm can become unaffordable for so many data. Although random
mbedding is applicable to other multi-objective BO methods, their runtimes may be unsatisfac-
ory without trust-region BO. In Figure 12 (b), we compare the runtimes per iteration of REMOTune
nd MOTPE. In this experiment, both methods have 16-dimensional inputs. REMOTune exhibits
ower runtimes than MOTPE, which shows the high efficiency of trust-region BO. 
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Fig. 12. Ablation study that compares REMOTune with and without random embedding on (a) Hypervolume; 

(b) MPI1; (c) MPI2; (d) MAI. With random embedding, REMOTune can make a more efficient exploration in 

the search space, resulting in significantly better performance. 
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 CONCLUSION 

o enable parameter tuning in an enormous space, we have proposed REMOTune, a parameter tun-
ng framework for VLSI design flows, which reduces the number of variables for the optimization
lgorithm via random embedding and explores Pareto-optimal tool parameter configurations in
arallel by multi-objective trust-region BO. In our experiments, the proposed framework achieves
etter performance than existing methods. The extraordinary parallelism and efficient optimiza-
ion of REMOTune enable the exploration of more points in limited runtime, resulting in better
erformance than existing methods. It also has other possible advantages such as the robustness
gainst the non-determinism in EDA tools. REMOTune requires less iterations than existing meth-
ds to get a satisfactory result because it not only has better initialization under the same number
f initial samples but also achieves a faster convergence. Thus, it is also suitable for larger designs.
In the article, we have highlighted the importance of dimensionality reduction and parallelism

n VLSI design flow parameter tuning. Moreover, noticing the domain-specific feature that the
ront-end flow usually costs less time than the back-end flow, we have designed a pruning rule
o take advantage of this property. In future works, we expect to explore the methods to map
he parameters to a space with low dimensionality. Techniques like singular value decomposi-

ion ( SVD ) and sparse coding can be adopted. Besides, a better BO algorithm that incorporates
omain-specific knowledge can be utilized to further improve the efficiency of parameter tuning.
o enhance the scalability of parameter tuning algorithms, we can embrace asynchronous parallel
ptimization to enable large-scale optimization on distributed computing systems. The optimiza-
ion about technology nodes is done by the EDA tools and exposed to our algorithm as tool pa-
ameters. Since our method is process-agnostic, it can be appied to more advanced processes by
dding the process-specific parameters. 

The code of REMOTune is available at https://github.com/shelljane/REMOTune . We plan to sup-
ort the open-source platform OpenROAD [ 2 ] soon. 
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