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Efficient Arithmetic Block Identification With
Graph Learning and Network-Flow
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Abstract—Arithmetic block identification in gate-level netlists
plays an essential role for various purposes, including mali-
cious logic detection, functional verification, or macro-block
optimization. However, current methods usually suffer from
either low performance or poor scalability. To address the issue,
we come up with a novel framework based on graph learning
and network flow analysis, that extracts desired logic components
from a complete circuit netlist. We design a novel asynchronous
bidirectional graph neural network (ABGNN) dedicated to rep-
resentation learning on directed acyclic graphs. In addition, we
develop a convex cost network-flow-based datapath extraction
approach to match the predicted block inputs with predicted
block outputs. Experimental results on open-source RISC-V CPU
designs demonstrate that our proposed solution significantly out-
performs several state-of-the-art arithmetic block identification
flows.

Index Terms—Arithmetic, graph neural networks (GNNs),
logic gates, predictive models, representation learning, task
analysis, wires.

I. INTRODUCTION

ARITHMETIC block identification in gate-level netlists
has emerged as an essential procedure for numerous

datapath optimization or functional verification methodolo-
gies. For example, in symbolic computer algebra (SCA)-based
multiplier verification [2], [3], it is required to detect all the
half adders from the multiplier netlist. Another use case is
discussed by Wei et al. [4], where a detected arithmetic block
can be replaced by more advanced intellectual property (IP)
macros. Moreover, the demand for hardware Trojan detec-
tion has been pointed out in several papers [5], [6], [7] to
ensure circuit security and authenticity, especially under the
globalization of the semiconductor design and fabrication pro-
cess. Aside from the applications mentioned above, there is
an additional technical reason behind the need for such a
“reverse engineering” approach: after logic synthesis and tech-
nology mapping, most high-level components (e.g., function
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declaration, modules, etc.) are flattened into netlists of Boolean
gates, as mentioned in [8]. Given all the facts stated above,
arithmetic block identification is indeed worth exploring.

Traditional methods for arithmetic block identification are
usually classified as either functional methods [9], [10] or
structural methods [6], [11], [12], [13], [14]. Structural meth-
ods focus on circuit topology while omitting the circuit
functionality [15]. For instance, Li et al. [13] have introduced
the shape hashing technique to generate candidate words by
clustering wires with similar local topology. To be more spe-
cific, a k-hop depth-first search is executed on the graph,
starting from each wire, where the serialization of a wire
is constructed using the wire and cell information on the
search path. Some studies consider a different scenario in
which a reference (golden) library of circuits is provided,
reducing the problem to matching subcircuits with predefined
pattern circuits. Rubanov [12] formulated the subcircuit match-
ing problem as a regularized quadratic assignment problem
(QAP) to simultaneously minimize both graph distance and
vertex label distance, which is solved by a nonlinear version
of the iterative Kaczmarz method (KM). Structural methods
can usually detect target components efficiently because of the
customized algorithms. However, the heuristic methodology
also indicates their mathematical incompleteness [1]. On the
other hand, functional methods inspects the circuit function-
ally to look for target arithmetic blocks. Subramanyan et al. [9]
have built a functional approach upon the above shape hashing
method by using cut enumeration. They enumerate all 6-
feasible cuts and then group equivalent cuts with permutation-
independent Boolean matching. In this way, all the cuts within
the same equivalence class are likely to match the same func-
tion from the given library. Subramanyan et al. [9] have further
proposed to formulate the module matching problem as an
equivalence checking problem, with the help of quantified
Boolean formula (QBF). To conclude, functional methods are
accurate and solver-ready, but usually at the cost of ultralong
runtime [1].

Recent advances in machine learning, especially deep learn-
ing, have offered new ideas for solving recognition problems.
Silva et al. [16] developed a flow that converts conjunc-
tive normal form (CNF) clauses into images, which are later
rescaled to the target size and fed into the deep neural network
classifiers. Fayyazi et al. [17] proposed a special data struc-
ture, termed level-dependent decaying sum (LDDS) existence
vector, to compactly represent circuit topology. The exis-
tence vector (EV) encodes each circuit vertex using all its
neighboring vertices. However, these solutions only work on
small-scale circuits and suffer from poor scalability.
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Fig. 1. Graph learning enables netlist fuzzy matching.

To address the above concerns, we propose a graph learning-
based arithmetic block identification framework, as illustrated
in Fig. 1. The framework can conduct efficient arithmetic
block fuzzy matching. We choose graph neural networks
(GNNs) as the preferable fuzzy matching technique since a
netlist can be naturally converted into a directed acyclic graph
(DAG). Intuitively, GNNs aggregate information from neigh-
borhoods to automatically generate proper embeddings for
each node, which are helpful in downstream tasks. However,
most existing popular GNN models, such as GraphSAGE [18]
and GIN [19], are designed to deal with general graphs or
undirected graphs. To say in other words, they are not well
optimized for DAGs. Meanwhile, several works have been
proposed that explored customized GNN for DAGs and have
achieved state-of-the-art performance in many DAG tasks, e.g.,
testing point insertion, neural architecture exploration, and
high-level delay prediction [20], [21], [22], [23], [24], [25].
Nevertheless, they are not targeted at or well suited for
arithmetic block identification. Therefore, we further design
a new variant of GNN, asynchronous bidirectional GNN
(ABGNN), that is customized for netlist embedding with
excellent performance as well as high efficiency.

This article makes the following contributions.
1) For the first time, to the best of our knowledge, we

present a graph learning-based framework that performs
efficient fuzzy matching on arithmetic blocks.

2) We design a novel GNN architecture customized for
netlist representation learning.

3) We analyze several practical challenges and develop a
convex cost network-flow-based approach that matches
the predicted inputs with outputs.

4) We conduct experiments on open-source RISC-V CPU
designs synthesized by industrial tools, which confirms
the effectiveness and efficiency of our proposed frame-
work compared with other state-of-the-art macro-block
detection solutions.

5) We also carried out a comprehensive ablation study to
analyze the effectiveness of the proposed techniques.

II. PRELIMINARY

A. Related Works to DAG Embedding

Recently, there have emerged several works that aim to
develop graph learning models for DAG. DAGNN [20] builds
a multilayer neural network that produces a representation for
a DAG driven by the partial order. Ma et al. [21] first applied
GNNs to DAGs in electronic design automation (EDA). It
takes a simple strategy to deal with the directional information,

assigning different weights to predecessors and successors
in the aggregation function. D-SAGE [25] treats the DAGs
as heterogeneous graphs and applies separate aggregators to
collect information from the two directions. Based on this
unique architecture, D-SAGE manages to extract directional
information and achieved state-of-the-art performance in oper-
ation delay prediction for FPGA HLS. However, the previous
works do not account for direction when sampling neighbor-
hoods, resulting in identical search depth in both directions,
which is suboptimal for arithmetic block identification since
fanin and fanout directions are not equally important (details
in Section IV-C). Besides, they follow a synchronous message-
passing scheme, which may not be compatible with netlists.
In general, these works explored GNNs tailored for DAGs,
but they are not aimed at or well optimized for netlists and
arithmetic block identification. This motivates us to design a
GNN architecture customized for netlists.

B. Problem Definition

The gate-level netlist of an electric circuit consists of a
list of gate-level circuit components (e.g., AND gates) and
their interconnects. Gate-level netlists are generated by logic
synthesis tools, which convert the behavior specification of
a circuit into logic gate implementation. Mathematically, a
gate-level netlist can be naturally represented as a DAG, with
vertices representing circuit components and edges represent-
ing wires between them. We say a gate-level netlist is flattened
if only primitive gates are instanced, while the design hierar-
chy is unknown. Within a netlist, arithmetic blocks are the
building blocks that perform simple arithmetic operations,
such as integer addition or multiplication. The input boundary
nodes of an arithmetic block are defined as the gates whose
output wire is an input to the block. Similarly, we can define
the output boundary nodes. In general, our goal is to identify
the arithmetic blocks located in a flattened netlist.

Problem 1 (Arithmetic Block Identification): Given a flat-
tened gate-level netlist, identify the target arithmetic blocks
located in the netlist, e.g., adders, multipliers, etc. To be more
specific, identify the boundary nodes of the target blocks.

III. FLOW OVERVIEW

Before diving into algorithmic details, we first provide a
high-level overview of our proposed arithmetic block identifi-
cation flow. Given a design netlist, we begin by converting it
into a DAG. The DAG is fed to our designed ABGNN (intro-
duced in Section IV) to generate node embeddings. The node
embeddings are further used to predict arithmetic block bound-
ary (introduced in Section IV-A). Then, we run a network
flow-based algorithm (introduced in Section V) to match the
predicted input boundary nodes with the predicted outputs
boundary nodes. We illustrate the overall flow in Fig. 2.

IV. DESIGNING GRAPH NEURAL NETWORK FOR DAGS

GNNs have emerged as a promising approach for graph
analysis. They follow an iterative neighborhood aggrega-
tion scheme to capture the structural information within
nodes’ neighborhoods. GNNs have achieved state-of-the-art
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Fig. 2. Our arithmetic block identification flow.

performance on a variety of graph tasks, such as node classi-
fication, link prediction, and graph classification. Nonetheless,
it is still critical to customize GNN architecture according to
the actual task to earn the best result. This section discusses
how we design a novel GNN architecture dedicated to DAG
representation learning in our arithmetic block IO boundary
prediction task.

A. Machine Learning Target Formulation

We begin with the discussion on target formulation.
Essentially, the arithmetic block identification problem is to
“detect” instances of objects with target semantics in the graph,
which sounds like a graph version of the object detection task
in computer vision. A very related problem is subgraph match-
ing, which looks for a subgraph in a large target graph that is
isomorphic to the query graph. Despite the intuitive descrip-
tions, solving such problems is indeed very challenging for the
community due to 1) the NP-complete nature of the problem
and 2) the requirement to consider graph topology, node fea-
tures, and/or edge features at once. Although some techniques
have been proposed to tackle subgraph matching, based on
either combinatorial search (e.g., VF2 [26] and RI [27]) or
neural networks (e.g., GMNN [28] and NeuroMatch [29]), we
are not aware of any effective method to directly deal with the
graph detection problem.

Given that, we propose to formulate a node classifica-
tion problem to circumvent the hard-to-solve graph detection
problem. Specifically, our neural model targets to predict the
boundary of arithmetic blocks, namely, to predict input/output
nodes of target blocks. Another alternative problem formula-
tion is to predict the region covered by the arithmetic blocks,
which is inferior, as will be demonstrated in Section VI-E.
Note that a wire can be both an input to one arithmetic block
and an output from another arithmetic block (consider the two
consecutive expressions c = a + b and e = c + d, where c is
the output of the first adder and the input of the second adder).
Therefore, we split the boundary prediction problem into two
separate binary classification tasks, namely, input prediction
and output prediction. We train a feedforward neural network

to consume the representation vectors generated by GNN and
carry out the prediction. In binary classification, we use the
binary cross entropy as the loss function

L = −y log (p) − (1 − y) log (1 − p) (1)

where y is the ground truth of the prediction, and p is the
prediction of the model.

B. General Graph Neural Network

Before diving into the technical details of our ABGNN
model, we deliver a formal introduction to general GNNs,
partly following the notations in GIN [19]. Let G = 〈V, E〉
denote a graph, where V = {v1, v2, . . . , vn} is the vertex set,
and E ⊆ V × V is the edge set. Considering a K-layer GNN,
the propagation of the kth layer is represented as

a(k)
v = AGGREGATE

({
h(k−1)

u : u ∈ N (v)
})

h(k)
v = COMBINE

(
a(k)

v , h(k−1)
v

)

where h(k)
v is the representation vector of vertex v after k

iterations, h(0)
v = xv (xv is the initial node feature of v),

and N (v) denotes the neighboring nodes of v. Many GNN
variants with different choices of AGGREGATE function (e.g.,
mean, sum, etc.) and COMBINE are proposed, which are cru-
cial to the model performance. The expressive power of such
GNNs is theoretically proved [19] to be upper bounded by the
Weisfeiler-Lehman graph isomorphism test, which is achieved
when both AGGREGATE and COMBINE are injective functions
over multisets.

C. Bidirectional Graph Neural Network

We first deal with the directed property of “DAGs.” Each
edge in a directed graph is assigned a two-way direction, which
naturally captures various real-life relations. In our netlist, the
edge direction represents the current flow direction. In other
words, it indicates the execution order of the circuit. Therefore,
it is intrinsic to represent a netlist as a directed graph.

However, most existing GNN models are dedicated to undi-
rected graphs. One historical reason is due to earlier spectral
GNN models [30], [31], [32] built upon the analogy to convo-
lutional neural networks (CNNs). In spectral GNN models, a
graph convolution is defined as the multiplication of a signal
x ∈ R

N with a filter gθ = diag(θ) parameterized by θ ∈ R
N

in the Fourier domain, namely

gθ � x = Ugθ U�x

where U is the matrix of eigenvectors of the normalized
graph Laplacian L = IN − D−(1/2)AD−(1/2) = U�U�. In
this definition, U�x is considered the graph Fourier trans-
form of x, which relies on the fact that the (real symmetric)
normalized graph Laplacian L admits an eigendecomposition.
Unfortunately, this property does not hold for a directed graph.
One straightforward way is to relax the directed graph to an
undirected graph by symmetrizing its adjacency matrix, which
inevitably results in information loss.

Our designed bidirectional GNN is greatly motivated by the
design of heterogeneous GNNs [33], [34]. As discussed in the
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Fig. 3. Bidirectional information aggregation for the vertex v. Two sepa-
rate GNNs are utilized to aggregate information from the fanin cone (hP

v , in
orange) and the fanout cone (hS

v , in blue), respectively. The final embedding
(hv, in purple) is given by the combination of the representation vectors from
both directions.

previous work [33], one of the challenges in designing het-
erogeneous GNN is “how to aggregate feature information of
heterogeneous neighbors by considering the impacts of differ-
ent node types.” In arithmetic block identification, the role of
a gate depends on both its fanin and fanout cones. Therefore,
combining information from both directions is required to gen-
erate representative node embeddings. Furthermore, the fanin
and fanout cones are not of equal importance in arithmetic
block identification. For instance, the fanin cone rooted at a
node n, which may contain structural information of a target
block, is unquestionably more useful in determining whether n
is an output boundary node. On the other hand, input boundary
detection might be dominated by fanout information. This puts
the demand to decouple the neighborhood to achieve optimal
search depth in both directions. In particular, information from
the two directions should be collected and aggregated sep-
arately, with different search depths (the number of GNN
layers). Hereafter, we denote the transpose graph as G�, which
contains a directed edge (u, v) if and only if G contains the
reversed edge (v, u).

To encode the edge directions and fully decouple the
bidirectional neighborhood, each vertex only aggregates
information from its predecessors. In other words, information
flows from a node x to a node y only if there is an edge (x, y).
To realize bidirectional information aggregation, we apply two
GNNs, one for G and one for the transpose graph G�, to gener-
ate two embedding vectors hP

v and hS
v for each vertex. Ideally,

the two embedding vectors collect information from the prede-
cessors (i.e., fanin cone) and the successors (i.e., fanout cone),
separately. Thus, the final embedding of each vertex is given
by the combination of both hP

v and hS
v

hv = COMBINE
(

hP
v , hS

v

)
. (2)

The placeholder COMBINE can be any common reduction
function such as mean, max, or sum. In our practice, we
simply concatenate the two vectors for the final embedding.
We illustrate the bidirectional information aggregation scheme
in Fig. 3.

D. Asynchronous Graph Neural Network

We move to the Acyclic property of DAGs, which by defi-
nition contain no cycles. That is, if we start from any vertex v,
walking through the graph along the edge directions, we will

never come back to v. Although it sounds irrelevant to GNN
design, we now demonstrate the possibility of improving GNN
efficiency by utilizing the acyclic property.

We begin with an analogy to event-driven logic simula-
tion, using the Chandy–Misra–Bryant (CMB) distributed-time
algorithm [35] as an example. To enable parallel logic sim-
ulation with the CMB algorithm, circuit elements exchanged
timestamped messages, and different elements consume events
simultaneously at distinct simulation times. Conceptually, each
element receives timestamped messages from its predecessors
and consumes the messages at the earliest timestamp when-
ever all predecessors are ready. As a result of consuming
the messages, the logic element updates its own local time
and delivers one or more timestamped messages to its suc-
cessors [36]. Fig. 4(a) illustrates the event message scheme
assuming a unit delay for each gate. At timestamp 0, the pri-
mary inputs, a, b, and ci are ready, which triggers the execution
of gate p since both its inputs are ready. After a unit delay,
gate p sends out its message, which then triggers the exe-
cution of gate s together with ci. Similarly, gate s processes
its inputs and sends out its output at timestamp 2. The orig-
inal CMB algorithm is regarded as an approach to carry
out asynchronous, distributed simulation on multiprocessor
message-passing architectures [35].

On the contrary, typical GNNs work in a synchronous way.
In a synchronous message-passing scheme, all messages flow
on edges simultaneously in each iteration, such that every
vertex receives messages from its neighbors and updates its
representation in every iteration. The message-passing process
in general synchronous GNNs is depicted in Fig. 4(b). We can
see that all the nodes send out messages to their successors in
both iterations 0 and 1, resulting in high computational costs.

Motivated by the CMB algorithm and the acyclic nature
of the netlist, we propose an asynchronous GNN architec-
ture, resembling the asynchronous message-passing scheme
for logic simulation. To embed a target vertex v, consider its
fanin cone rooted at v. The message-passing process begins at
the cone’s leaf nodes and proceeds through the cone to v. At
each “timestamp,” (i.e., each iteration of GNN message pass-
ing), only the vertices that received messages at the previous
timestamp deliver messages to their direct successors. Fig. 4(c)
shows an example to embed node s using such an asyn-
chronous GNN. In iteration 0, only nodes a and b send out
their messages to p, while in iteration 1, node p and node ci
send out their messages to s. Obviously, asynchronous GNN
executes as efficiently as logic simulation while being more
efficient than synchronous message passing.

Formally, for a target vertex v, the aggregation scheme of the
kth iteration of a depth-� asynchronous GNN can be described
as follows:

a(k)
{i:D(i,v)=�−k} = AGGREGATE

({
h(k−1)

u : u ∈ N (i)
})

h(k)
{i:D(i,v)=�−k} = COMBINE

(
a(k)

i , h(0)
i

)
(3)

where D(i, v) is the distance between vertices i and v in the
graph, and h(0)

i is the initial feature of vertex i. The bold-
face indices highlight the distinction between an asynchronous
GNN and a general synchronous GNN. In other words, in
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(a) (b) (c)

Fig. 4. Comparison between (a) distributed logic simulation, (b) synchronous GNN message passing, and (c) asynchronous GNN message passing.

the kth iteration of a depth-� asynchronous GNN, only those
vertices whose distance to the root v is � − k is active and
aggregates information from its predecessors. Then, for each
active node, the aggregated information is combined with its
initial feature to update its own message, which will be sent
to its predecessors in the next iteration. In this way, unlike
synchronous GNNs, messages are passed through each edge
exactly only once (in the embedding of each node), saving a
significant amount of computational effort.

E. Dealing With Data Imbalance

The data imbalance issue refers to the phenomenon that
the class distribution of a data set is biased. Imbalanced
classifications pose a challenge for predictive modeling as
most of the machine learning algorithms used for classi-
fication were designed around the assumption of an equal
number of examples for each class [37]. For example, it is
observed that the model would easily lean toward majority
classes [38], invalidating some standard metrics like accuracy
(since they may cause misinterpretation of data). We refer
readers to [39] for a comprehensive review. In our dataset, the
negative nodes account for over 99% of the total, revealing a
severe imbalance.

Methods to address data imbalance can be divided into
two categories, namely, data-level methods and algorithm-level
methods. Data-level methods seek to alter the distribution of
the training dataset so that standard algorithms for balanced
data can work well. Algorithm-level methods, on the other
hand, keep the training dataset unchanged while adjusting the
training/inference algorithm. We now introduce two techniques
adopted in our training.

1) Oversampling: Oversampling is one of the most pop-
ular data-level methods used in machine learning. We adopt
the basic version of it, called random minority oversampling,
which supplements the training data with multiple copies
of some of the minority classes [37]. Some more advanced
oversampling methods (e.g., SMOTE [40]) have also been
proposed, which we leave for possible future work. We do
not favor the opposite method, undersampling of the majority
class, because it discards a portion of available data.

2) Cost Sensitive Learning: Cost-sensitive learning [41]
assigns different penalties to different types of misclassifi-
cation errors. Mathematically, if Cij refers to the cost for
predicting class j when the actual class is i, the optimal
prediction for an example x is given by

argmin
i

∑
j

p(j|x)Cij

where p(j|x) is the estimated probability of example x being
in class j.

We encode cost-sensitive learning into the loss function by
decoupling the total loss L into two parts, namely, the loss on
the positive samples (Lpos) and the loss on the negative sam-
ples (Lneg). Since negative samples predominate, we assign a
penalty weight α (α < 1) to the negative loss, so that the con-
tribution of negative nodes to the total loss function is reduced,
which compensates for the imbalance between sample classes.
The weighted loss function can be formulated explicitly as

L = (Lpos + αLneg
)
/N (4)

where N is the total number of samples.

F. Putting It All Together

In previous sections, we propose two unique GNN architec-
tures, namely, bidirectional and asynchronous, based on the
directed and acyclic properties of the target graph (DAG),
respectively. As the two structures are orthogonal, they can
be combined in our final GNN architecture, ABGNN. We
evaluate the performance of ABGNN in Section VI-E.

V. INPUT–OUTPUT MATCHING

A. Network-Flow-Based Datapath Extraction

In the previous sections, we deal with the problem of block
boundary detection, that is identifying the boundary nodes of
target arithmetic blocks from a flattened netlist. Particularly,
it predicts the input and output nodes of target blocks. In
some applications, however, this is insufficient, and we need
to further match the input bits with the corresponding output
bits. In this section, we present a network-flow-based algo-
rithm for extracting the datapaths within an arithmetic block
that match the block inputs with outputs. The problem has
gained great attention under the name “datapath extraction,”
since it is believed that datapath-aware physical synthesis
may achieve higher performance. Readers are referred to the
study [42] for a survey on datapath extraction approaches and
datapath-driven placement methodologies. For now, we illus-
trate the feasibility of the network-flow approach for arithmetic
block IO matching, and leave the other possible solutions
for future work, as it is beyond the main scope of this
article.

Problem 2 (Block Input–Output Matching): Given an
(unordered) block input set S = {a0, . . . , an−1, b0, . . . , bn−1}
and an (unordered) block output set T = {o0, o1, . . . , om−1}
such that T[m−1 : 0] = A[n−1 : 0] � B[n−1 : 0], where �
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(a) (b)

Fig. 5. Illustration of fake inputs, using a 2-bit ripple carry adder oi = ai + bi as an example. The numbers “v/cp, ct” above each flow edge give the
value of flow going through it, its total capacity, and the cost of sending a unit of flow through it, respectively. The bold edges indicate a flow of value two
passing through it while there is a unit flow on the rest colored edges. The flow paths are denoted by orange or blue colors, where orange represents wrong
paths and blue (either dark or shallow) denotes correct paths. Particularly, there is no actual flow passing through the dotted paths in (b). Input/output nodes
that fail to be matched are marked with orange colors. (a) Naive maximum flow might fail to handle the challenge of fake inputs. Here, a fake input e1 is
involved. (b) Compared to naive maximum flow, min-cost flow manages to deal with fake inputs. The bounding boxes highlight the comparison between the
wrong (dotted shallow orange) paths and the correct paths (shallow blue). It is obvious that the correct paths have lower costs and are thus chosen by our
min-cost flow.

is an arithmetic operation, e.g., addition, multiplication, etc.
Our task is to identify datapaths from S and T such that 1) all
nodes in S and T are covered and 2) each datapath starts from
ai or bi and ends at oj, where 0 ≤ i, j ≤ n − 1.

Once the datapaths have been extracted, experts can eas-
ily group the input/output nodes, since datapaths within the
same arithmetic block are much closer and more related to
one another than datapaths from different blocks.

Inspired by networkflow-based datapath bit slicing [43], we
formulate the problem as a maximum flow problem. We add
a pseudo source node S∗ and a pseudo sink node T∗ in the
graph and add edges from S∗ to every node in S, as well as
every node in T to T∗. The newly added edges from S∗ to
nodes in S are assigned unit capacity, while the rest edges are
assigned a capacity of 2 (unit capacity for multipliers). Then
we run a maximum-flow algorithm to find the routes between
S and T . Ideally, since the total input capacity equals the total
output capacity, all the inputs and outputs can be matched.
However, this does not necessarily hold given fuzzy, imperfect
predictions of target block boundaries. In the following part,
we discuss some practical challenges and propose customized
techniques to address them.

Before diving into the technical details, we first introduce
a hypothesis that will be applied to simplify the problem.

Hypothesis 1: Given a true output node oi ∈ S, the closest
wire to oi in the predicted input set are probably aj or bj that
belongs to the same block. This can also be analogous to true
input nodes.

The hypothesis is based on the observation that the total
target block regions occupy only a small portion of the whole
circuit area. As a result, the fake input/output nodes are most
likely not located within the target block regions. For any fake
input wire e outside a target block b, the path from e to an
output of b will first go through an input of b, implying that
the outside fake input is farther to the block output than some
block outputs. The same is true for fake output nodes.

To support the above hypothesis, we conduct some statisti-
cal analysis on our dataset. For each true block output oi ∈ T ,
we calculate the distance (the length of the shortest path) from
oi to each predicted input wire. It is found that Hypothesis 1

holds for 97.6% of the block outputs, which confirms the
universality of the above hypothesis.

B. Dealing With Practical Challenges

1) Fake Inputs/Outputs: Theoretically, we assume that all
the block inputs/outputs are involved in S/T, and there are
no fake inputs/outputs. However, due to the imperfection of
GNN prediction, some true input/output nodes may be missed
and some fake nodes may be included. We refer to the above
challenge as “fake inputs/outputs.” Fig. 5 gives some exam-
ples, where a fake input e1 is involved in Fig. 5(a). Under this
situation, the path from the fake input e1 to o0 may occupy a
unit of capacity on edge (o0, T∗), causing a missing true input
a0 as well as a false datapath e1 → o0.

To alleviate the potential performance degradation caused
by fake inputs/outputs, we propose replacing the naive
Maximum Flow algorithm with the Minimum Cost Flow algo-
rithm. This is based on Hypothesis 1, which indicates that
the wrong datapaths are longer than the correct datapaths. So
by assigning each edge with unit weight, our new algorithm
prefers the correct datapaths (which are shorter) over the false
ones for a lower cost. For instance, in the above example
shown in Fig. 5(b), the false datapath e1 → o0 will not be
picked since it is longer than the correct datapath a0 → o0.

2) Shared Inputs: Another practical challenge is that some-
times the same inputs may be shared by multiple target blocks.
In this scenario, a shared block input requires increased capac-
ity to match multiple block outputs. A naive solution is to
assign a larger capacity to each input edge. However, this
might cause capacity preemption, as illustrated in Fig. 6(a),
where a0 is the matched input to both o0 and o′

0. In the case
of Fig. 6(a), a0 and b0 are of the same distance from o0, indi-
cating that the two datapaths a0 → o0 and b0 → o0 are of the
same cost and indistinguishable for o0. Since b0 is assigned
with a larger capacity, the capacity on edge (o0, T∗) might
be only occupied by a flow of value two from b0. Similarly,
there might be a flow of value two from d0, leaving no capac-
ity balance a0. From the above example, we can see that extra
capacity may lead to overallocation of flow on one datapath
that preempts another.
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(a) (b)

Fig. 6. Condition of shared inputs. For simplicity, we use two 1-bit ripple carry adders o0 = a0 + b0 and o′
0 = a0 + d0 as an example. It can be seen that

the input bit a0 is matched to two different outputs o0 and o′
0. To distinguish between edges of different costs, we marked edges with larger cost with dotted

lines [note that the meaning represented by “dotted” here differs from that in Fig. 5(b)]. The flow paths are colored orange or blue, with blue denoting correct
(target) paths and orange denoting wrong paths. Input/output nodes that fail to be matched are marked with orange colors. (a) Min-cost flow without convex
cost plan fails to handle the challenge of shared inputs. (b) Correct solution (min-cost) given by our convex cost scheme.

To address this issue, a larger flow should be allowed to pass
through each input node while keeping the flow paths from
the same input node separable. Based on this, we propose
introducing a convex cost scheme. The cost on edge (a, b)

in the convex cost scheme is formulated as a piecewise linear
convex function, which is no longer a constant value but varies
with the flow value passing through. Let Ce

ab(xab) denote the
cost of sending xab units of flow along edge (a, b), a typical
piecewise linear convex cost function is illustrated in Fig. 7.
Here, the keyword “convex” means that any line connecting
two points (e.g., the dotted orange line connecting points P1
and P2 in Fig. 7) lay above the function. Formally, the cost
function can be written as follows:

Ce
ab(xab) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

c0 + k1 × xab, x0 ≤ xab < x1

c0 + k1 × x1 + k2 × (xab − x1), x1 ≤ xab < x2

. . . , · · ·
c0 + ∑n−1

i=1 ki × (xi − xi−1)

+kn × (xab − xn−1), xn−1 ≤ xab ≤ xn.

(5)

We follow a standard way [44] to realize the Convex Cost
Scheme. To begin, a split operation S(n, w1, . . . , wn) on edge
(a, b) is composed of two steps: 1) remove edge (a, b) and
add n internal vertices t1, t2, . . . , tn and 2) for each internal
vertex ti, add two edges (a, ti) and (ti, b) with a unit capacity
to connect a and b, whose total cost is wi. The above operation
S(k, w1, . . . , wn) enables the piecewise cost function since the
split paths (a → ti → b) will be filled up in the order of
cost to achieve lowest total cost. Suppose w0 = 0 and ∀i > 0,
wi ≥ wi−1, the cost function can be written as follows:

Ce
ab(xab) =

xab∑
i=0

wi. (6)

Fig. 8 gives an example to illustrate the above procedure.
We apply the Convex Cost Scheme to all the edges that

connect to any input node. Specifically, for any input node
ai ∈ S, we apply S(n, wi

1, . . . , wi
n) to each in edge of a and

S(n, wo
1, . . . , wo

n) to each out edge of a. In this way, any target
datapath ai → oi is divided into multiple paths with varying
costs and thus different priorities.

Fig. 6(b) gives an example to illustrate the effectiveness of
our algorithm. For simplicity, here we set n = 2, w1 = 1,
and w2 = 5. The dotted edges are of larger cost. Similarly,
let Cp

ab(xab) denote the minimum cost of sending xab units of

Fig. 7. Typical piecewise linear convex function.

Fig. 8. Example of the split operation with n = 2.

flow from a to b. For the output edges (o0, T∗) and (o′
0, T∗),

there are three ways to fill up their capacities: 1) Cp
b0o0

(2)

+ Cp
a0o′

0
(1) + Cp

d0o′
0
(1); 2) Cp

b0o0
(1) + Cp

a0o0(1) + Cp
d0o′

0
(2);

and 3) Cp
b0o0

(1) + Cp
a0o0(1) + Cp

a0o′
0
(1) + Cp

d0o′
0
(1). It can be

easily calculated that the minimum cost of the first and second
solutions is 24 while the minimum cost of the third solution
is 20. Then, it is obvious that the third solution, which is also
the correct solution, will be chosen. In practice, we set n = 2,
w1 = 1, and w2 = 6.

C. Discussion of Limitations

Although the proposed algorithm can handle several practi-
cal challenges, it is not complete. One of the main limitations
is that it may perform badly when Hypothesis 1 does not hold.
Given a target output oj, suppose there is a fake input wire
e ∈ S that e is the same or less distant from oj than the
matched input ai. In this case, our min-cost flow may choose
the incorrect datapath e → oj for a lower cost.

To make up for the above drawback, we propose running
another naive maximum flow, the result of which is combined
with that of the convex min-cost flow to form a final solution.
However, this might lead to a higher false positive rate (FPR)
since more datapaths are extracted. Therefore, we propose the
following filtering strategies.
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1) Remove Intermediate Datapaths: In general, an extracted
datapath is contained within a single arithmetic block.
However, the inputs of a block B1 might be matched to
the outputs of another block B2 at times. These datapaths
are likely to include some additional inputs/outputs, such
as B1 outputs or B2 inputs. Based on the observation, we
remove datapaths containing multiple inputs or outputs.

2) Filter Overlong Datapaths: We remove datapaths whose
length exceeds a predefined threshold based on the fact
that fake datapaths are likely to be longer than correct
ones. In practice, we set the threshold for adders to 10
and multipliers to 15.

VI. EXPERIMENTS

A. Setup

Our arithmetic block detection framework is implemented
using DGL [45] and PyTorch [46]. The input–output matching
algorithms are developed upon networkx [47]. We also refer
to the EPFL logic synthesis libraries [48] when we reimple-
ment the baseline methods. We train and evaluate the models
on a Linux machine with 1 GeForce RTX 2080 Ti GPU, 32
Intel Xeon CPUs at 2.20 GHz, and 32-GB memory. For fair-
ness, we run each experiment five times and take the average
performance. And for all the baseline models, we tune them
and select the optimal hyperparameters for each task.

B. Dataset

The dataset we use comes from open-source RISC-V CPU
designs [49], including Rocket [50], a 5-stage in-order scalar
core, and Berkeley Out-of-Order (BOOM) Core [50], an out-
of-order superscalar RV64G core. We use BOOM as the
training set and leave Rocket as the testing set. The netlists
are synthesized with Synopsys Design Compiler using the
SAED 32/28-nm Digital Standard Cell Library. For each cir-
cuit, different designs are generated by dc through synthesizing
with various design constraints. Since the design compiler will
corrupt the design hierarchy by default to optimize circuit
performance (i.e., across boundaries), labeling the boundary of
blocks becomes difficult. We propose first using the commands
“set compile_ultra_ungroup_dw false” and “compile_ultra −
no_autoungroup” to turn off the automatic ungrouping. This
step generates a hierarchical netlist “hier-netlist.v,” where
the boundary information of the target arithmetic blocks is
preserved. The command “ungroup-all-flatten” is then used
to flatten the netlist and perform cross-module optimization,
resulting in the final flatten netlist “netlist.v.” Since the wire
nomination keeps the same in hier-netlist.v and netlist.v, we
can label the flattened netlist with the help of the hierarchical
one. It is worth noting that the above options are not required
in the inference phase since prediction can be conducted with-
out boundary information, as long as we have other ways
to evaluate the prediction results, e.g., manually checked by
experts.

We list the details about the generated netlists in Table I.
In general, we evaluate the methods on two types of arith-
metic blocks: 1) adder and 2) multiply accumulator. The
Boolean functions of the two block types are s = a + b

TABLE I
STATISTICS OF THE DATASET

and s = a ∗ b + c, respectively. Compared to adders, multiply
accumulators that combine addition and multiplication are
more complicated. The inputs of an accumulator s = a ∗ b + c
can be divided into two groups: 1) addition inputs, e.g., c,
which we define as input-1, and 2) multiplication inputs, e.g.,
a and b, defined as input-2. Since the local structure of the
two input types differs, we separate input-1 prediction from
input-2 prediction.

C. Baselines

Some representative literature works [4], [14], [17] that
cover functional methods, structural methods, and machine
learning-driven methods are implemented as the baseline
methods for comparison. In the functional approach [14],
all cuts are enumerated and grouped into permutation-
independent equivalence classes. Candidate words are then
aggregated within each class based on signal propagation or
common support signal. The authors further propose a candi-
date word propagation procedure to form new words. An opti-
mistic estimation of the algorithm’s performance upper bound
is made by simply including all the potential words, without
considering the results of symbolic simulation or equivalence
checking. Wei et al. [4] conducted structural identification by
constructing xor-forests based on the connection hierarchy.
To be more specific, they use cut enumeration to identify all
xor-trees, and then build the xor-forests by identifying carry-
out signals. These xor-forests are possible instances of adders.
Fayyazi et al. [17] proposed to learn a special vector, LDDS
EV, to represent circuit topology. The proposed EV counts
the number of gate types within the local neighborhood with
distance-based penalty weights. For the sake of fairness, the
oversampling technique is also applied during training.

D. Evaluation of Boundary Detection

Performance comparison on arithmetic block boundary
detection is first made between our method and all baseline
approaches [4], [14], [17]. Since the structural approach [14] is
customized for adders, it was not applied to identify multiply
accumulators. From Tables II and III, it can be concluded
that our proposed method greatly outperforms prior works,
achieving over 90% average hit rate (HR) in all the bound-
ary detection tasks. The other machine learning approach [17]
achieves the second-best performance in the case of adder
detection, which confirms the excellent adaptability of deep
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TABLE II
PERFORMANCE COMPARISON ON ADDER BOUNDARY DETECTION. THE CASE “MIXED” REFERS TO A DESIGN WITH MIXED ADDER ARCHITECTURES.
WE EMPHASIZE THE BEST RESULTS WITH BOLDFACE AND THE SECOND-BEST RESULTS WITH BLUE COLOR. HR IS USED FOR EVALUATION, WHICH

IS DEFINED AS THE NUMBER OF CORRECTLY PREDICTED (INPUT/OUTPUT) BOUNDARY NODES OVER THE TOTAL NUMBER OF TARGET

(INPUT/OUTPUT) BOUNDARY NODES

TABLE III
PERFORMANCE COMPARISON ON MULTIPLY ACCUMULATOR BOUNDARY DETECTION. HR IS USED FOR EVALUATION

learning methods. The method by Subramanyan et al. [14] is
able to cover lots of words composed of replicated functional
bitslices, and therefore achieves an acceptable HR, at the cost
of much higher runtime. The approach by Wei et al. [4] is
stable for the more regular architectures (Cond-sum, Kogge-
Stone), but does not perform well given complicated or highly
optimized structures (Hybrid, Ling), resulting in unsatisfactory
average HR.

E. Ablation Study on ABGNN

We conducted comprehensive experiments to evaluate our
proposed GNN architecture and demonstrate its outstanding
capability in DAG representation learning. The models were
trained for 100 epochs, taking around 2 h.

Bidirectional Depths Selection: The depth of a GNN model
indicates the number of search hops. Larger search hops result
in a broader search scope, allowing more structural information
to be aggregated, which may benefit the recognition. On the
other hand, the increased search scope is more likely to involve
interference information and might suffer from the oversmooth-
ing issue. Furthermore, the neighboring information from the
two directions may not be of equal importance. For exam-
ple, let node n be an input wire of block B; the fanout cone
rooted at n, which contains the structural information of B,
is unquestionably more useful in determining whether n is an
input node. Therefore, it is natural to specify different network
depths for the two directions, depending on the specific task.
We carefully select proper fanin depth and fanout depth after
comparing the performance of models with different depths.
In practice, we set the (fanin depth, fanout depth) as (1, 4)
for adder input prediction, (3, 0) for adder output, (2, 4) for

accumulator input-1, (0, 5) for accumulator input-2, and (4, 3)
for accumulator output prediction.

Comparison With State-of-the-Art GNNs: To fully demon-
strate the effectiveness of our proposed techniques, our
ABGNN is compared with several state-of-the-art GNNs,
including GAT [51], GIN [19], GraphSAGE [18], and
D-SAGE [25] on the Rocket dataset. As listed in
Tables IV–VIII, ABGNN shows its superiority on DAG rep-
resentation learning with a higher average recall and F1 score
than the baseline methods. Among all the baselines, D-SAGE
is the most similar to ours, which also considers bidirec-
tional information combination. However, the identical search
depth for both directions (fanin/fanout) in D-SAGE leads to
performance degradation. As previously stated, information
from the two directions plays different roles in the bound-
ary identification tasks, implying distinct optimal search depth
for fanin and fanout. Consequently, the completely separate
bidirectional information collection in our model fits the sce-
nario better, resulting in superior performance. Furthermore,
the decoupling operation reduces the neighborhood scale sig-
nificantly so that the oversmoothing issue is alleviated. As a
result, it allows deeper models and thus better performance.
Particularly, ABGNN greatly outperforms other models by
more than 10% on the task of accumulator input-2 bound-
ary prediction. The performance gain benefits from the deeper
architecture of ABGNN. Since the scale of a single-direction
neighborhood is much smaller than that of a full neighbor-
hood, ABGNN suffers less from the oversmoothing issue and
allows for larger search depth. As a result, ABGNN shows
its superiority in complex cases that requires a deeper view.
To sum up, our proposed ABGNN is shown to be superior to
state-of-the-art GNNs on netlist representation learning.
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TABLE IV
PERFORMANCE COMPARISON BETWEEN DIFFERENT GNN MODELS ON ADDER INPUT BOUNDARY DETECTION

TABLE V
PERFORMANCE COMPARISON BETWEEN DIFFERENT GNN MODELS ON ADDER OUTPUT BOUNDARY DETECTION

TABLE VI
PERFORMANCE COMPARISON BETWEEN DIFFERENT GNN MODELS ON MULTIPLY ACCUMULATOR INPUT-1 BOUNDARY DETECTION

TABLE VII
PERFORMANCE COMPARISON BETWEEN DIFFERENT GNN MODELS ON MULTIPLY ACCUMULATOR INPUT-2 BOUNDARY DETECTION

Ablation Studies: In the following part, we conduct some
ablation studies to demonstrate the efficacy of the proposed
techniques. Due to limited space, we only show the aver-
age performance on the two types of arithmetic blocks. We
first make a comparison between the asynchronous and syn-
chronous message-passing scheme to find out its effect. A
synchronous model (BGNN) is built by replacing the message-
passing scheme in ABGNN with a synchronous one while
remaining the model architecture. To be fair, we leave the
other hyperparameters the same, e.g., the number of layers.

The results are listed in Table IX. It can be seen that the
asynchronous scheme reduces the model’s inference time by
20.0% and 20.7% for input and output boundary identification,
respectively, with no performance degradation.

We also conducted experiments to demonstrate the effects of
bidirectional information aggregation, as listed in Table IX. A
unidirectional model (AGNN) is built with no fanout layers for
output boundary detection and no fanin layers for input identi-
fication. It is found that bidirectional information aggregation
improves recall by 7.4% and F1-score by 11.3% for the output
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TABLE VIII
PERFORMANCE COMPARISON BETWEEN DIFFERENT GNN MODELS ON MULTIPLY ACCUMULATOR OUTPUT BOUNDARY DETECTION

TABLE IX
ABLATION STUDY OF ABGNN. BGNN REFERS TO A SYNCHRONOUS

BIDIRECTIONAL MODEL, AND AGNN REFERS TO AN ASYNCHRONOUS

UNIDIRECTIONAL MODEL

task, while for the input task, the improvement is 2.2% and
2.3%, respectively. The results indicate that information from
a single direction is insufficient in the boundary prediction
problem. Therefore, combining representations learned from
both directions is necessary.

Furthermore, we compare the two different problem formu-
lations mentioned in Section IV-A, namely, region detection
and boundary detection. It is worth noting that we adopt the
latter one in our final solution. For region detection, the idea
is to assign a positive label to all the nodes within the target
arithmetic block (including I/O nodes). Table IX shows the
performance of ABGNN in the two tasks. As can be seen,
ABGNN performs far better in boundary detection than in
region detection. The result indicates that internal nodes are
not as distinct as boundary nodes.

F. Evaluation of Input–Output Matching

In this part, we conducted experiments to measure the
performance of our proposed convex cost network-flow-based
input–output matching approach. For accumulators, we run
two separate flows f1 and f2 to match input-1 nodes and input-2
nodes with the output nodes, respectively. Since the input-1
nodes serve as operands for addition, f1 resembles adder input–
output matching. On the other hand, f2 is close to multiplier
input–output matching. Due to limited space, we only discuss
the results of the matching for input-2 because it deserves
more attention.

In the following part, two metrics are used for evaluation.
1) Hit Rate: The most important metric defined as the pro-

portion of matched true input/output nodes to total target
input/output nodes and

2) False Positive Rate: A metric that depicts the propor-
tion of fake input/output nodes involved in the results,
defined as the number of fake input/output nodes divided
by the total number of matched input/output nodes.

(a) (b)

(c) (d)

Fig. 9. Performance comparison on input–output matching algorithms when
combined with baseline GNN models. Here, we take the average performance
on inputs and outputs. (a) Adder HR. (b) Adder FPR. (c) Accumulator HR.
(d) Accumulator FPR.

We compare the performance of our convex cost network-
flow-based algorithm with the naive maximum-flow-based
one proposed in the previous work [1]. All the algorithms
have been combined with the filtering techniques proposed
in Section V-C to reduce the false-positive rate. The results
are listed in Tables X and XI. It can be seen that our newly
proposed approach outperforms the previous approach. On
average, it achieves a HR gain of 2.1%–4.7% at the cost of
0.0%–1.4% increase in FPR. Overall, our proposed algorithm
only misses 3.8% inputs and 0.4% outputs while involving
less than 5% fake nodes. On the other hand, the performance
is degraded for accumulators. We can see a miss rate of 0.5%
for inputs and 4.9% for outputs, as well as around 10% fake
nodes. More specifically, both methods perform badly in the
case of NAND-based multiply accumulators. Combined with
the results from Table VII, we speculate that the degrada-
tion might be caused by lost input/output nodes due to the
fuzzy prediction of GNN models. We also conducted experi-
ments to evaluate the efficacy of our approach combined with
the baseline models. As can be seen from Fig. 9, our match-
ing algorithm outperforms the previous maximum-flow-based
method in all the cases. Specifically, our approach achieves an
average HR gain of 2.2% for adders and 3.0% for multiply
accumulators, at the cost of less than 0.5% increase in FPR.
The results fully demonstrate the efficacy of our proposed
algorithm and its superiority over the previous work.
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TABLE X
PERFORMANCE COMPARISON ON ADDER INPUT–OUTPUT MATCHING. HR AND FPR ARE HIT RATE AND FPR, RESPECTIVELY

TABLE XI
PERFORMANCE COMPARISON ON MULTIPLY ACCUMULATOR INPUT–OUTPUT MATCHING (INPUT-2 WITH OUTPUT)

VII. CONCLUSION

Identifying arithmetic blocks is a vital procedure for vari-
ous tasks like malicious logic detection and logic optimization.
In this work, we propose a graph learning-based arithmetic
block identification framework that efficiently recognizes the
boundary of arithmetic blocks. To boost the performance of
the whole framework, we propose a specialized GNN archi-
tecture for netlist representation learning, which outperforms
existing dominantly used GNNs. We further develop a con-
vex cost network-flow approach to match the input and output
wires predicted by the GNN models. Experimental results have
confirmed the superior our framework: compared with state-
of-the-art structural, functional, and machine learning-based
block mapping schemes, our framework achieves the high-
est sensitivity with the fastest runtime in adder and multiply
accumulator identification from an open-source RISC-V CPU
design (the Rocket core). Moreover, our proposed input–output
matching algorithm handles several practical challenges and
outperforms previous works.
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