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Machine Learning in 
Advanced IC Design:  
A Methodological Survey

 With An Aggressive scaling of the CMOS 
technology, the number of transistors integrated into 
a design exponentially increases. The IC design flow 
contains architectural design, circuit design, physical 
design, verification, manufacture, packaging, secu-
rity, and power management, as shown in Figure 1. 
The large-scale integration and complicated design 
flow lead to enormous challenges in IC designs. For 
example, costly explorations in huge design spaces 
are required at the circuit design stage to obtain 
implementations that satisfy all design specifications 

and achieve optimal per-
formance. Besides, the 
time-consuming simula-
tion at the verification 
stage, such as lithography 
simulation, leads to low 
efficiency for large-scale 
IC designs.

To address the chal-
lenges described above, 
machine-learning (ML) 

techniques have been employed in IC designs and 
have already achieved impressive success in various 
applications. Due to its learning ability from data, 
cutting-edge research takes advantage of MLML to 
improve the performance and efficiency of tradi-
tional optimization algorithms. The advantage of 
ML in IC designs is that it provides an accurate and 
efficient performance evaluation in several IC design 
stages. Besides, ML transforms the traditional analyti-
cal simulation and optimization problem into a data-
to-data mapping problem, which opens a door for 
IC developers with limited knowledge backgrounds.

This article provides a comprehensive survey of 
ML methodologies in advanced IC design. Unlike 
existing survey articles [1], [2], [3], [4], which 
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introduce relevant research by sequential design 
steps, this article summarizes the state-of-the-art 
research based on the taxonomy of ML method-
ologies. The benefits of this survey are threefold: 
1) it shows a development course where feature 
representations of IC designs are learned more 
efficiently and accurately, along with the develop-
ment of ML methodologies; 2) the development of 
ML methodologies in advanced IC designs is pro-
moted by the state-of-the-art ideas of customization 
for vanilla learning methods from the methodology 
view; and 3) the potential insights are inspired to 
address more IC design challenges by borrowing 
ML methodologies from resolved problems.

Overview
ML techniques learn a model from sample data 

(training data) to make decisions or predictions on 
unseen data [5]. Traditional ML algorithms mainly 
focus on learning a prediction model. The features 
must be manually extracted in such an algorithm. 
Then these features are input into the model to gen-
erate prediction results [5]. Such ML models are 
shallow since they rely on handcrafted features, 
instead of learning features from the model itself.

Deep models have been introduced to automat-
ically extract features from raw data by the model 
itself [6]. Such models adopt several nonlinear fea-
ture conversions from the original raw data. Most 
deep models are based on deep neural networks 
(DNNs), where neurons are connected by synapses 
into a network, and neurons are organized into lay-
ers. DNNs can extract and abstract features layer by 
layer to outperform shallow models in dealing with 
difficult tasks, for example, IC design.

There are many types of DNNs, for example, 
convolutional neural networks (CNNs) and graph 
neural networks (GNNs). CNNs are widely used to 
extract effective features from image-based data [7], 
while GNNs are used to obtain an effective feature 
representation from irregular grid-based data [8]. 

Based on various DNNs, deep generative models 
[9], [10] and deep reinforcement learning tech-
niques [11] are developed. With approximating a 
statistical distribution with DNNs, deep generative 
models are used to generate new samples satisfying 
a specific probability distribution [9], [10]. Deep 
reinforcement learning incorporates various DNNs 
to help agents learn how to reach their goals [11]. 
They are also widely used and customized to guide 
IC designs effectively and have already achieved a 
good performance.

In the following sections, we will systematically 
and comprehensively introduce ML methodologies 
and their applications in IC designs. These ML meth-
odologies include shallow models, CNNs, GNNs, 
generative models, and reinforcement learning. ML 
methodologies and their cutting-edge applications 
in IC designs are categorized as shown in Table 1.

Shallow models
Shallow models, as shown in Figure 2, are tradi-

tional ML algorithms. The handcrafted features from 
waveforms, circuits, or layout characteristics are pre-
processed to convert as a feature vector xi. Typical 
preprocessing methods include normalization and 
dimension reduction and increase. Then this shal-
low model f is then used to predict the label ŷi.

To determine the parameters w of the shallow 
model, this model should be trained with a training 
data set. The training objective of the shallow model 
is to minimize the average difference between model 
predictions and real labels of all samples [5], which 
can be formulated as follows:

min , , , ;
w x x x wE y r y y f( ) ( ) ( )( )[ ]∼ P L  (1)

where y is the ground-truth label, Pr(x,y) is the real 
data distribution, and L is the loss function to eval-
uate the difference between model predictions and 
real labels. According to f, the shallow models can 
be classified as linear and nonlinear.

Figure 1. IC design flow.
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Linear models

1) Background: Typical linear models include linear 
regression and logistic regression. Figure 3a illus-
trates a linear model, where the input feature xi is 
first multiplied with the model parameter wi and 
the multiplication result is accumulated to predict 
the corresponding label. The linear model can be 
easily fit or trained with the least-square method.

2) Application to IC designs: Hardware attacks are 
a hardware security and reliability concern. Tra-
ditional mitigation schemes bring a high imple-
mentation overhead. A linear model is used to 
fast detect and identify hardware attacks in [14] 
and [15]. The memory access data and memory 
behaviors are selected as the handcrafted fea-
tures. Due to the low computational complexity 
and simplicity, the linear model is deployed on 
the chip for real-time detection and identification 
with low implementation overhead.

Power management has an extra implementa-
tion overhead for a multicore system. To reduce 

implementation overhead, Clark et al. [16] proposed 
an on-chip power management design, where a lin-
ear model is adopted to predict future traffic load 
for routers. Several network throughput parameters 
are selected as the handcrafted features. However, 
the typical linear model assumes that parameters 
have independent effects on the predicted value. 

 
Table 1. ML methodologies and IC designs.

Figure 2. Shallow learning-based framework.

Figure 3. (a) Linear model. (b) ANN.
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The variations in a linear regression model have a 
different impact on the predicted power. A binning 
approach is developed to predict task performance 
on all core types [17]. A workload throughput and 
power prediction model contains different linear 
layers, where the output of each layer relies on the 
memory or compute metrics.

Due to its simplicity, the linear model is used at 
the verification stages, such as timing and reliabil-
ity. Considering strong correlations among different 
processes, voltage, and temperature (PVT) analysis 
corners, and a linear regression model is proposed 
to predict the timing performance of unobserved 
PVT corners [12]. The path information, cell types, 
and clock specifications are selected as handcrafted 
features to input into the model. Then the model out-
puts an estimated delay value in the path. Logistic 
regression is employed to detect electromigration 
(EM) violations [13]. A logistic sigmoid acts on a typ-
ical linear regression for binary classification. The 
netlist-level net-specific and layout-level neighbor-
hood-related information is selected as handcrafted 
features to input into the model.

Nonlinear models

1) Background: The relationship between extracted 
features and predictions is complicated. Linear 
models fail to provide such a complicated capa-
bility that nonlinear models can address. The 
typical nonlinear models include artificial neu-
ral networks (ANNs) [5] as shown in Figure 3b, 
Gaussian process (GP) [62], nonlinear support 
vector machines (SVMs) [63] and random forest 
[64]. ANNs use a nonlinear activation function, 
such as rectified linear unit (ReLU) and Sigmoid, 
as shown in Figure 4a, to enhance the nonlinear 
representation. Nonlinear SVM and GP use a ker-
nel function, as shown in Figure 4b, to implicitly 

map samples from the original feature space to a 
high-dimensional space, where the linear insepa-
rability problem in the original feature space can 
be solved. However, proposing a suitable kernel 
function for a specific task is difficult. An alterna-
tive scheme is the adaptive basis function model. 
Random forest is an adaptive basis function 
model, where the basis functions are the regions 
of input features and the weights are given in 
each region [64].

2) Application to IC designs: Nonlinear models have 
been widely applied in IC designs to capture com-
plicated and nonlinear correlations. The increas-
ing design-verification iterations are caused by 
complicated design rules and constraints at 
the advanced process node. A nonlinear SVM is 
proposed to predict detailed-route design rule 
checking (DRC) violations after global routing so 
that DRC violations can be predicted without a 
runtime-intensive detailed route [26]. A layout is 
partitioned into several small grids. Then several 
netlist and layout parameters, such as connected 
pins and cell/pin density, are selected as hand-
crafted features. The SVM model finally outputs 
the DRC hotspot prediction for each grid. An ANN 
model is used to rapidly evaluate layout feasibil-
ity by estimating the correlation among all the 
sensitive interconnect parasitics [27]. There is a 
high nonlinear relationship between hardware 
configuration and performance. Analytical-based 
performance evaluations are computationally 
expensive. Zhuo et al. [19] and Cao et al. [28] 
employed a support vector regression (SVR) for 
fast power estimation by taking input signal and 
hardware configuration as inputs. In [18], the 
nonlinear SVR and GP regressions are employed 
to estimate adder performances. The regressors 
replace the industry electronic design automa-

Figure 4. (a) Activations. (a) Feature space mapping by the kernel.
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tion (EDA) tool to fast obtain power, delay, and 
area. The circuit structure information and tool 
settings are selected as handcrafted features.

Unlike other shallow nonlinear models, GP can 
provide predictions with uncertainties. The predic-
tion and uncertainty can be combined as a metric 
to efficiently collect training data, which is Bayesian 
optimization. In other words, the training data set is 
expanded by selecting the most informative data at 
each iteration. To reduce the runtime of the EDA tool 
and improve learning efficiency at the design stage, 
Bayesian optimization-based design space explora-
tion techniques are proposed to fast and efficiently 
determine design parameters and EDA tool settings 
for digital design [20], [21], [22], analog design [23], 
and hardware deployment [24].

Regression forest has been employed in IC 
designs. A regression forest models the relationship 
between the Pareto hypervolume of search trajec-
tory and design to make a better tradeoff among 
design objectives [25]. Pareto hypervolume is used 
as a metric to evaluate the quality of a solution set for 
multiobjective optimization [20].

Convolutional Neural Networks
A layout naturally represents an image consisting 

of design information. Deep-learning models are 
introduced to extract features from a layout by the 
mode itself. As shown in Figure 5, CNNs are one of 
such models, which consists of convolutional layers, 
pooling layers, and fully-connected (FC) layers [6]. 
This section introduces the two basic types of layers 
and two advanced modules.

Typical CNN structure

1) Background: The motivation of a convolutional 
layer is to extract features from layouts, as shown 
in Figure 5. Figure 6a shows the convolution 
operations, where the size of the input feature is 

M × N × D. The small tensor with the size U × V × D 
is called a filter. A slice of a filter is called a ker-
nel. Multiple filters modify the input feature by 
slicing through it left to right and top to bottom 
with multiply-accumulate operations. The result 
of such operations is adjusted by an activation 
function to generate the output feature map with 
size M ′ × N ′ × P.
To reduce the required amount of computations 

in the subsequent layers, a pooling layer is usu-
ally added after a convolutional layer. Figure 6b 
illustrates two types of pooling, maxpooling, and 
meanpooling. Both types of pooling operations first 
partition the feature map into several blocks. After 
that, maxpooling (meanpooling) takes the maxi-
mum (average) value in a block as the value in the 
modified feature map.
2) Application to IC designs: In recent years, CNNs 

have been widely used in IC designs. Traditional 
analytical-based manufacturability and reliability 
verifications are performed on the layout, which 
is time-consuming. In [31], CNNs detect lithogra-
phy hotspots fast, as shown in Figure 5. The layout 
is partitioned into several small blocks (tiles). 
Afterward, each block’s discrete cosine transform 
coefficients are encoded as a feature tensor and 
fed into a CNN model to detect lithography hot-
spots. However, only small blocks are input into 
this hotspot detector to detect lithography hot-
spots in its central region. To deal with a large-
scale layout, lots of computational resources will 
be consumed. Chen et al. [32] proposed a faster 
two-stage region-based lithography hotspot detec-
tion framework, which can mark multiple hotspot 
locations within a region whose size is much 
larger than a block (tile). Unlike the manufactu-
rability issue, the IR-drop reliability issue relies on 
time-related factors. In [33], power density distri-
bution is input into a CNN to predict the maxi-
mum IR drop. A maximum module is designed to 
lead to the peak IR drop.

Figure 5. Typical CNN structure.
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The different designs have different layout sizes. 
There is not enough data set to train a model for 
each size. A feasible scheme is that a model sup-
ports varying size inputs. To support varying size 
input tensors or predict a violation heatmap, as 
shown in Figure 7, all FC layers are replaced with 
convolutional layers and deconvolutional layers to 
construct a fully convolutional network (FCN) [65]. 
The deconvolutional layers are implemented via var-
ious interpolation methods. In industry, global rout-
ing is performed for DRC hotspot prediction after 
the placement stage. However, trial global routing is 
time-consuming. In [34], FCN is used to predict DRC 
hotspots without global routing. Specifically, the 3-D 
input tensor consists of macros, for example, intel-
lectual property macros, global long-range rectangu-
lar uniform wire density (RUDY), and global RUDY 
pins. A well-trained FCN-based model is expected 
to predict performance and guide design to facili-
tate design closure. For the performance prediction 
model, the gradients with respect to the input layout 

represent the sensitivity of performance. In [29], a 
congestion heatmap prediction model is added to 
the typical cost function to guide routing. In [30], 
a routability heatmap prediction model is added 
to the typical cost function to guide placement. 
The routability-aware placement is formulated as a 
deep-learning training problem so that it can be han-
dled by deep-learning toolkits on advanced hard-
ware platforms.

Advanced modules

1) Background: Attention is one of the advanced 
modules to enhance feature representation [66]. 
It assigns different weights to each part of the 
input and extracts more critical information to 
enable the model to make more accurate judg-
ments. The attention maps are calculated from 
channel and space dimensions. In Figure 8a, a 
shared multilayer perceptron (MLP) is used to 
extract two features from the outputs of two pool-
ing branches in the channel attention module. 

Figure 7. FCN.

Figure 6. (a) Convolution operation. (b) Pooling operations.
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In Figure 8b, the maxpooling, meanpooling, and 
convolutional layers are stacked to obtain spatial 
attention from a channel-refined feature. Based 
on the attention mechanism, the transformer is 
proposed in many sequence-to-sequence tasks 
[67]. They both contain multihead attention 
modules to extract information at different loca-
tions globally.

2) Application to IC designs: Attention is a light-
weight general-purpose module so that it is easy 
to be integrated into various CNNs. To enhance 
efficient representations of layout features, the 
attention module is integrated into CNNs to 
detect lithography hotspots [35]. The attention 
module sequentially generates a 1-D channel 
attention map and a 2-D spatial attention map. 
The obtained attention maps are multiplied with 
the input feature via a broadcasting mechanism. 
To mark multiple hotspot locations within a 
region in a large-scale layout, a one-stage detector 
consisting of a transformer module is proposed 
to identify lithography hotspots [36]. The output 
is the coordinates and size of the bounding box 
that lithography hotspots within.

Graph Neural Networks
A netlist represents a graph. For example, as 

shown in Figure 9, each device is represented as 
a node, and each interconnection is represented 
as an edge. The design parameters of each device, 
such as channel length and width for the transis-
tor, are used as features. An embedding method 
generates new features by aggregating original 
features from the neighborhoods to the node itself. 
The embedding methods followed by typical neu-
ral networks form GNNs. The embedding methods 
contain graph convolution, graph attention (GAT), 
and graph pooling.

Graph convolution

1) Background: A typical graph convolution lever-
ages the spatial relationship among nodes to aggre-
gate information and generates node embedding 
[8]. For example, two graph convolutional layers 
are used to generate node embedding of node M1 
from all nodes within a 2-hop distance, as shown 
in Figure 9. In practice, the feature dimension 
relies on the number of device parameters, such as 
channel length and width for the transistor. Here, 
we assume that a feature dimension is a concrete 
number. In the first layer, the input feature dimen-
sion of each node is assumed as 10. For node M2, 
the aggregation input is a matrix, whose size is 6 × 
10, since there are five neighborhood nodes and 
the node M2 itself. Then an aggregation operation, 
such as mean operation over nodes, is performed 
to reduce node dimension to 10. The aggregated 
feature vector is the input into an encoding mod-
ule to extract feature information and obtain a fea-
ture vector with 100 dimensions.

2) Application to IC designs: In IC designs, many 
works try to use typical GNNs with graph con-
volution, named graph convolutional networks 
(GCNs) and their variants. To avoid signal mis-
match, some specific circuit structures and 
devices must be identified as constraints at the 
analog physical design stage. The typical method 
relies on manual identification, which needs rich 
domain knowledge. To automatically identify 
these structures and devices, in [37], all devices 
and their pins are represented as nodes. Then a 
typical GCN model is used to annotate pairwise 
constraints. Kunal et al. [38] proposed GANA to 
create circuit hierarchy trees and classify circuits 
into subblocks for analog circuits.

GCNs are customized for IC characteristics to 
improve modeling ability. Traditional analytical 

Figure 8. Attention (a) channel attention and (b) spatial attention.
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softmax enhances the nonlinear representation. 
To enhance the modeling ability, GAT introduces 
multiple attention maps αi,j to aggregate feature 
information along edges, as shown in Figure 10b.

2) Application to IC designs: GAT embedding tech-
nology is customized to improve inductive learn-
ing ability in IC designs. Inductive learning is 
reasoning from observed designs to general rules. 
A model needs an excellent inductive learning 
ability to apply different and new designs. Device 
parameters, net parasitics, and length significantly 
have a significant influence on IC performance. 
In traditional design flow, they are obtained with 
physical design. A ParaGraph with GAT is pro-
posed to predict net parasitics and device param-
eters at the netlist level without physical design 
[41]. Previous node embeddings are concate-
nated with the aggregated neighbor embeddings. 
Different edge types are independently grouped. 
A self-attention layer is added between the aggre-
gations of each group to improve inductive 
learning ability. In [42], GNNs with GAT are cus-
tomized to estimate preplacement net length by 
capturing a more efficient feature representation 
of the node and its neighbors. GNNs scale the 
neighbors’ contribution and GAT uses learnable 
weights to decide the contribution of nodes. Both 
source and target nodes’ features are concate-

methods at the netlist level are computationally 
expensive at the verification and test stage. Ma et al. 
[40] customized a GCN classifier to fast insert obser-
vation points into netlists for testing. The digital 
netlist is transferred into a directed graph, where the 
edge direction is defined as the signal propagation 
direction. Then two learnable model coefficients 
are assigned to distinguish different signal propa-
gation directions in the embedding layer. Based on 
this idea, a heterogeneous GCN is developed fast to 
identify aging-prone transistors at the analog netlist 
level since the analog netlist is heterogeneous [39]. 
A heterogeneous directed multigraph is used to rep-
resent an analog netlist by assigning different model 
coefficients.

Graph attention

1) Background: The typical graph convolution may 
fail to learn an efficient node embedding from a 
graph with dense connections. To discriminately 
aggregate the feature information, the learnable 
weights, named attention maps, are assigned to 
each edge to indicate the importance, which is 
the GAT mechanism [68]. As shown in Figure 10a, 
an attention map αi,j is obtained by an FC layer, 
where feature vectors of two interconnected 
nodes hi and hj with parameter matrix W are 
used as inputs and a1,a2,…,a2m are neurons. The 

Figure 9. Netlist, graph representation, and graph convolution.
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nated with their edge features to input into edge 
convolution. The embedding results of all layers 
are input into the last layer to capture global and 
local information.

Graph pooling

1) Background: Unlike node embedding, graph pool-
ing encodes the whole graph as a feature vector. 
An effective method is DIFFPOOL, which clusters 
nodes and abstracts each cluster as a node [69]. 
Multiple DIFFPOOL layers gradually reduce the 
node number until there is only one node.

2) Application to IC designs: The SPICE-based sim-
ulation is costly to obtain circuit performances, 
such as gain for the analog circuit. It is desired 
to use the graph learning method to fast and 
accurately predict performances without SPICE 
simulation. The DIFFPOOL-based graph learn-
ing models are employed to predict analog 
circuit performances [43], [44]. Then the mod-
els guide placement [44] and sizing [43] to 
facilitate design closure. In monolithic 3-D IC, 
the surface roughness will produce voids in 
the dielectric, resulting in delay defects. Delay-
fault diagnosis provides early feedback to the 
foundry and facilitates yield learning. The DIFF-
POOL-based graph learning framework utilizes 
the circuit netlist and failure log files to fast 
diagnose delay-fault [45].

Generative Models
In some ML tasks, distribution needs to be learned 

from the training data to generate new samples 
whose distribution is the same as the training data. 
These tasks can be performed by the generative 

model, which contains variational autoencoders 
(VAEs) [9] and generative adversarial networks 
(GANs) [10].

Variational autoencoder

1) Background: The latent variable z is introduced 
to model dependencies among different dimen-
sions of x. Thus, a model P(xz) needs to trans-
fer the distribution of z to x. To learn the real 
distribution Pr(x) from training data, instead of 
one-to-one mapping, a model Q(zx) is used to 
transfer the distribution of x to z. To extract the 
most information from the training data x, the 
model Q(zx) is predetermined to be independ-
ent and identically distributed, whose means and 
covariances are modeled by neural networks.  
A VAE [9] consists of an inference network fI(x;φ) 
(transfer the distribution of x to z) and a gener-
ative network fG(z;θ) (transfer the distribution of 
z to x), as shown in Figure 11. The inference net-
work approximates distribution Q(zx;φ). The 
generative network approximates distribution 
P(xz;θ). φ and θ denote the model parameters. 
z and ^x are obtained via sampling from approx-
imated distributions Q(zx;φ) and P(xz;θ), 
respectively. By introducing a prior P(z;θ), the 
objective of VAE is to maximize the likelihood

Ez z x x z

z x z

∼Q P

KL Q P

| |

|

; ;

;

φ

φ

( ) ( )[ ]

− ( ) ( )( )

log

, ;

θθ

θθ
 (2) 

  where KL(⋅,⋅) denotes the Kullback–Leibler diver-
gence, which measures the difference between 
two distributions. Formulation (2) is optimized 
via a gradient-based method.

2) Application to IC designs: There usually exist many 
implementations of the same design to achieve 

Figure 10. (a) Attention mechanism. (b) Multihead attention.
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similar performance. For example, given a post-
placement layout, it is possible that different rout-
ing results may achieve similar performance [46]. 
Analog physical design has complicated design 
constraints to improve signal transmission quality 
and prevent mismatches. Typical design-verification 
iterations bring a low design efficiency. A typical 
VAE is used to predict routing regions by mimick-
ing the sophisticated manual routing approaches 
[46]. The routing-related features, such as pins of the 
entire design and interested nets, are extracted from 
placement layouts to input into VAE, as shown in  
Figure 11. VAE captures the human design experi-
ence and knowledge. Moreover, the predicted rout-
ing region probability map is added to the objective 
to guide performance-driven routing.

It is necessary to assume that Q(zx) is an 
explicit distribution family, whose parameter dis-
tributions are approximated by a neural network. 
However, this assumption limits the capabilities of 
the neural network.

Generative adversarial networks

1) Background: To use neural networks to construct 
an implicit distribution instead of an explicit 

parameterized distribution family, GANs use 
adversarial training to make samples generated 
from neural networks satisfy the real distribution 
[10]. As shown in Figure 12, GANs consist of a 
discriminator network and a generative network. 
Here, we assume that GANs are used to gener-
ate a legal mask. The former judges whether a 
sample (mask) is from real data (reference legal 
mask) or the generative network. The latter gen-
erates samples (masks) whose source cannot be 
distinguished by the discriminant network. The 
discriminator network fD(x;φ) is to distinguish a 
sample x from the real distribution Pr(x) or the 
generative model fG(z;θ). To train the discrimi-
nant network, in the minimizing cross-entropy 
manner, the loss function is maximized with 
respect to φ as follows:

E

E
x x

z

x

z

∼ ( )

∼ ( )

( )[ ]

+ − ( )( )( )[ ]

P

P

r
f

f f

D

z D G

log ;

; ;

φ

φlog 1 θθ
 (3) 

  where φ and θ are model parameters in the discri-
minant network and generative network. The loss 
function of the generative network is defined as

min log
θθ

θθEz z z
∼ ( ) − ( )( )( )[ ]P 1 fD fG ; ; .φ  (4)

Figure 11. VAE.

Figure 12. GANs.
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2) Application to IC designs: The noise sensors need 
to be placed at suitable locations to monitor volt-
age emergencies and judge whether the power 
specification for packaging is satisfied or not. 
Traditional methods need a massive number of 
samples to achieve accurate placement. Due to 
its generative ability, a GAN is developed to effi-
ciently produce more noise maps with a limited 
number of samples [52].

Unlike the aforementioned typical GAN, the con-
ditional GAN (CGAN) is proposed to learn how to 
generate fake samples with a specific condition, 
instead of random noise z ∼ N(0,I) [70]. Compared 
with the typical GAN, CGAN requires the generated 
features not only to fool the discriminator network, 
but also to be close to the ground truth.

The CGAN is customized for IC designs at the man-
ufacture, verification, and physical design stages. 
Lithography proximity effects must be compensated 
by inserting assist features and correcting mask pat-
tern shapes. Traditional lithography simulation is 
drastically time-consuming. Yang et al. [50] proposed 
a CGAN model to achieve good mask optimization 
without expensive lithography simulation. It does 
not ensure the generator obtains a high-quality mask. 
The discriminator performs prediction on target-mask 
pairs instead of masks. To achieve a high-resolution 
layout mask optimization, a robust high-resolution 
CGAN model is presented to perform mask optimiza-
tion [51], where three subdiscriminators are used to 
perform at three different scales, respectively. 

The high-quality clock trees need to be synthe-
sized by optimizing key desired power, wirelength,  
and so on. However, a huge number of candidate 
parameters have to be searched. Liu et al. proposed 
to utilize CGAN to perform the clock tree synthesis 

(CTS) optimization and classification tasks [47]. The 
conditional input can allow the model to refine the 
generative network and optimize unseen designs. The 
model can recommend parameter sets to designers, 
which leads to optimized clock trees. EM-induced 
IR drop is one of the major failure effects for power 
grid networks. The traditional EM-induced IR drop 
analysis is very expensive. CGAN is proposed to fast 
analyze EM-induced IR drop in power grid networks 
[49]. The time variable is used as the condition for 
the generator and discriminator. The discriminator 
network is developed to distinguish the voltage maps 
output from the generative network or the real EM-in-
duced voltage map. In analog layout, well generation 
is essential in establishing the bulk regions. However, 
traditional manual well generation requires a careful 
design with rich experience to satisfy performances 
and design specifications. In [48], CGAN is developed 
to generate the layout result with generated wells 
automatically. One customization of CGAN is that the 
input and output share the geometries in the place-
ment result.

Reinforcement Learning
RL enables an agent to learn an optimal policy 

via “trial and error” in an interactive environment to 
achieve the maximum reward [11]. RL is formulated 
as a Markov decision process (MDP) with a 4-tuple 
(S,A,P,R), where R is a reward. A is a set of actions 
taken by the agent. S is a set of states. P is the proba-
bility of transition from one state to another by taking 
an action. A policy π(as) decides the next action 
a under the current state s. When the state is st at a 
timeslot t, the agent takes an action at ∈ A to transit 
itself to a new state st+1) with a reward rt+1. The state 
transition probability is defined as P(st+1st, at, …, 

Figure 13. MDP.
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s0, a0) = P(st+1st, at). As shown in Figure 13, when 
the initial state is s0, the agent takes an action a0 to 
the state s1 with a reward r1. Here, we take the macro 
placement as an example. Each state is a placement 
layout and each action is selecting a macro to place 
a location. Given a policy π(as), MDP is a trajectory 
τ = s0, a0, s1, r1, a1, …, rT-1, aT-1, sT, rT, whose probabil-
ity isP Ps0( )∏ ( ) ( )=

−

+t
T

t t t t ta s s s a0
1

1π | | , . T is the last 
timeslot index. The total reward of the trajectory is 
defined as G rτ( ) = ∑ =

−

+t
T

t0
1

1, where rt+1 is the reward.
According to the RL target, its objective is obtain-

ing a policy π(as) to maximize the expected 
reward J(θ) 

J P Pθθ
θθ

( ) = ( )[ ] = ( )



∼ ( ) ∼ ( )E Eτ τ

π
τG s s V s

0
 (5)

where θ is learnable parameters in the policy func-
tion. Vπ (s) is the state value function, which denotes 
the expected total reward by performing the policy 
π from the state s. s0 denotes the initial state of the 
trajectory τ. According to the Markov property, the 
state-action value function can indicate the total 
reward when the policy and action are performed at 
a state [11]. To maximize the expected reward, value 
function-based methods, policy function-based 
methods, and actor–critic algorithms are used to 
determine an optimal policy π(as).

Value function-based methods

1) Background: The value function evaluates policy 
π. Since there is larger cardinality in the state set 
S and action set A, the exhaustive evaluation of 
all policies brings a low efficiency. An iteration 
method is more feasible, where the value func-
tion and policy are optimized, alternatively.

2) Application to IC designs: Dynamic voltage fre-
quency scaling (DVFS) technique is used to effec-
tively and dynamically save power on chips. In 
[53], an RL method is used to assign voltage and 
frequency to each core to improve global perfor-
mance under a power budget. Each state consists 
of instructions, current power, voltage, and fre-
quency. The reward is defined as the core through-
put indicating the preference for the action that 
achieves high performance. The policy is chosen 
to maximize the reward. Moreover, neural networks 
approximate the value function with continuous 
states and actions. In [54], a generated network 
approximates the value for each DVFS algorithm, 
and a target network is used to train the parameters 

for producing the target values. Typical value func-
tion-based methods need to sufficiently explore 
the large state space to learn an optimal policy, 
which causes a long convergence time. In [55], the 
value function parameters are initially obtained 
from offline data and incrementally updated on 
new training examples. As a result, the conver-
gence time is reduced. Meanwhile, the research 
is performed within a local neighborhood of the 
state as predicted by the current policy.

However, the value function-based methods may 
cause a relatively significant change in the value 
function when the policy is updated. It has a nega-
tive influence on convergence.

Policy function-based methods

1) Background: Instead of optimizing the value 
function, policy function-based methods directly 
search for an optimal policy in the policy space 
without the help of the value function. Thus, 
they can overcome the drawbacks of value func-
tion-based methods.

2) Application to IC designs: Topology synthesis and 
placement are critical tasks. Topology synthesis 
is to find an optimal analog circuit structure 
under specified constraints. Placement is used to 
place cells and macros on the layout. Traditional 
analytic-based methods and heuristics may 
cause suboptimal results and time-consuming 
optimization processes. An RL-based topology 
synthesis method is proposed to automatically 
find an optimal analog circuit structure [56]. 
All complete or incomplete circuit topology is 
encoded as a state. Action is defined as selecting 
a basic block from the predetermined library 
to connect to the current circuit structure. The 
reward relies on circuit completeness and per-
formance. An RL-based placement method is 
developed to automatically place macros [57]. 
As shown in Figure 13, a partial placement solu-
tion is a state, and placing a macro is an action. 
The reward is defined as the weighted summa-
tion of congestion of the placement and proxy 
wirelength. The policy gradient method is used 
to update policy network parameters.

However, policy function-based methods are 
difficult to obtain enough samples when there is a 
large search space. It is easy to get stuck in the local 
optimum.
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Actor–critic algorithm

1) Background: The actor–critic algorithm com-
bines the value function-based and policy 
function-based methods. The policy function is 
modeled as an actor to update a policy in the 
direction given by the critic. The value function is 
modeled as a critic to evaluate the actor (the cur-
rent policy function). Both policy and value func-
tions are parameterized with neural networks so 
that they can be updated at each iteration.

2) Application to IC designs: Transistor sizing has 
a significant influence on circuit performance. 
Traditional sizing relies on empirical and manual 
decisions or analytical models. However, empiri-
cal and manual decisions may bring suboptimal 
performance and analytical-based methods have 
poor generalization. An actor–critic algorithm 
is proposed to perform sizing in a given circuit 
schematic [58]. The transistor sizing is formu-
lated as a continuous space search problem. 
A sequence-to-sequence model encodes the 
states to find a sizing solution. The action is the 
predicted size of each transistor, such as channel 
length and width. The reward function consists 
of design specifications and hard constraints. An 
encoder–encoder framework is constructed by 
an off-policy actor–critic algorithm [71] to map 
the states to actions. Later on, GNNs are used to 
enhance agents in [59] since the circuit topology 
can naturally represent a graph. A shared FC layer 
with a device-specific encoder is used as the first 
layer of the critic to encode different actions. The 
same actor–critic algorithm is developed to per-
form parameter tuning in logic synthesis [60] and 
placement [61].

Open Challenges and Promising 
Directions

ML has achieved great success, but the IC design 
still has some open challenges. In this section, we 
discuss these open challenges and provide potential 
solutions from two aspects: scalability and design 
guidance.

ML training in large-scale IC designs
In modern IC design methodologies, ML-based 

models are widely used to perform inference 
since they do not require expensive simulations. 
Besides, deep learning brings an excellent feature 

representation to achieve better accuracy. How-
ever, industrial designs have become increasingly 
large, and large-scale IC brings vast challenges. 
Inputting the entire design will cause out-of-mem-
ory issues on GPU. The current solution is partition-
ing the entire design into several small parts. For 
example, the layout is partitioned into several clips 
to input into an ML model for manufacturability ver-
ifications [31]. The postlayout netlist is partitioned 
into several subgraphs to input into an ML model 
for reliability verification [39]. Then ML-based mod-
els replace traditional analytical methods to per-
form fast simulation and verification. However, this 
solution cannot capture the long-range contextual 
information in the layout or netlist. The reliability 
verification, such as EM verification [72], relies on 
stress conditions, such as the waveform, voltage, 
and current in each net. These stress conditions are 
propagated from the terminals of the design. Cur-
rently, these stress conditions have to be obtained 
by the expensive SPICE simulation. Then each 
small part with its stress conditions is input into an 
ML-based model to perform simulation and verifi-
cation [72]. A potential solution for running time 
reduction is that the SPICE simulation is performed 
on a model order reduction [73] circuit to obtain 
the stress conditions of these small parts, instead 
of each net. Compared with the original circuit, a 
model order reduction circuit has less number of 
nets to achieve speedup in SPICE simulation.

ML to guide IC designs
Once an ML-based model is well trained, it is 

desired to guide circuit design and physical design 
and facilitate design closure. We hope to use this 
model to navigate design so that a high-quality 
design is efficiently obtained. Many challenges are 
left, although many frameworks have been proposed 
to integrate ML-based models into the design stage. 
For example, for device sizing at the circuit design 
stage, the design objectives are modeled by black-
box GP regression [24], CNN, or GNN models. Other 
models are adopted as one of the objective func-
tions. However, this strategy cannot reduce search 
space and search time. As a result, computationally 
expensive simulation is performed many times to 
evaluate designs. These models should be treated 
as constraints in the mathematical formulation to 
reduce search space and time. This strategy can effi-
ciently select the sequence of inputs for evaluation 

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on January 25,2023 at 01:43:24 UTC from IEEE Xplore.  Restrictions apply. 



30 IEEE Design&Test

Survey

to explore high-quality solutions meanwhile satisfy-
ing design specifications.

One challenge is integrating an ML-based per-
formance model into the physical design stage to 
perform performance-aware physical design, for 
example, placement and routing. Many physical 
design problems are combinatorial optimization 
problems, effectively handled by heuristics [74], 
while gradient-based methods optimize ML-based 
performance models. Existing ML-based perfor-
mance-aware physical design schemes rely on 
specific feature representations (e.g., RUDY) [30] 
or interaction with an EDA tool [46]. However, it is 
difficult to model more general performances by 
the specific feature representations and it is very 
time-consuming to interact with an EDA tool. The 
ML-based performance models naturally have the 
input feature (e.g., layout) gradient, representing 
a sensitivity of physical design for the specific per-
formance. The critical step is to integrate gradients 
into existing heuristics. Moreover, it is desired to 
achieve a significant speedup by the deployment 
of ML-based performance-aware physical design 
on high-performance computation platforms, 
such as GPU.

this Article summArizes related state-of-the-art 
research from the taxonomy of ML methodologies, 
such as shallow models, CNNs, GNNs, generative 
model, and RL. Moreover, we also discuss many 
open challenges for scalability and design guidance. 
We hope this article can be complementary to exist-
ing survey articles and promote the development of 
MLML methodologies in advanced IC designs. 
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