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Abstract— In recent years, memristive crossbar-based neuro-
morphic computing systems (NCS) have provided a promising
solution to the acceleration of neural networks. However, stuck-
at faults (SAFs) in the memristor devices significantly degrade
the computing accuracy of NCS. Besides, the memristor suffers
from the process variations, causing deviation of the actual
programming resistance from its target resistance. In this paper,
we propose a reliability-driven design framework for a mem-
ristive crossbar-based NCS in combination with general and
chip-specific design optimizations. First, we design a general
reliability-aware training scheme to enhance the robustness of
NCS to SAFs and device variations; a dropconnect-inspired
approach is developed to alleviate the impact of SAFs; a new
weighted error function, including cross-entropy error (CEE),
the l2-norm of weights, and the sum of squares of first-order
derivatives of CEE with respect to weights, is proposed to
obtain a smooth error curve, where the effects of variations are
suppressed. Second, given the neural network model generated
by the reliability-aware training scheme, we exploit chip-specific
mapping and re-training to further improve computation accu-
racy loss incurred by SAFs. Experimental results show that the
proposed method can boost the computation accuracy of NCS
and improve the NCS robustness.

Note to Practitioners—This work is motivated by the man-
ufacturing reliability problem in a memristive crossbar-based
NCS. To enhance the robustness of an NCS to SAFs and device
variations, this paper presents a reliability-driven design frame-
work with taking account of both general and chip-specific design
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optimizations. The experimental results have demonstrated that
the proposed framework is superior to the prior arts, and
can be easily integrated with existing industrial hardware-based
fault tolerance solutions for higher accuracy at lower overhead.
Memristive crossbar-based computing system gives hope for the
anticipated efficient implementation of artificial neuromorphic
networks. With the help of the reliability-driven designs, the
computation accuracy is restored, and hence we can expect
the wide use of memristive crossbar-based computing system in
neuromorphic computing applications.

Index Terms— Neuromorphic computing system, memristive
crossbar, fault tolerance, robustness.

I. INTRODUCTION

NEUROMORPHIC computing systems (NCS) based on
hardware designs intend to mimic neuro-biological archi-

tectures [1]. Different from conventional von Neumann archi-
tectures, NCS has been often constructed with highly parallel,
extensively connected, and collocated computing and storage
units. Thus the gap between CPU computing capacity and
memory bandwidth is eliminated [2]. However, the imple-
mentation of NCS on CMOS technology suffers from a
mismatch between NCS building blocks (neuron and synapse)
and CMOS primitives (Boolean logic). Recently, the emerging
memristive technology is adopted to implement the synapse
circuit thanks to the similarity between memristive and synap-
tic behaviors [3]. For example, the memristor is suitable
to store the weight of synapse because the resistance of a
memristor can be programmed by applying current or voltage.
Besides, compared with the state-of-the-art CMOS design,
memristive crossbar has been proven as one of the most
efficient nanostructures that carry out matrix-vector multi-
plications while hardware cost and computation energy are
significantly reduced [1].

Despite of these tremendous advantages, NCS implemen-
tations on memristive crossbars encounter some reliability
challenges. First, memristors suffer from stuck-at faults (SAFs)
which make the memristor stuck at high or low resistance
state, leading to a significant yield loss in NCS. Second,
in a memristor-based NCS, programming the resistance of
the memristors induces stochastic device variations [4]. As a
result, the actual programming resistance is deviated from its
target resistance and finally results in significant errors to the
output of the neural network.

To tolerate SAFs, a number of solutions have been proposed.
Xia et al. [5] presented a numerical iteration algorithm to map
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the weight matrix to the crossbar. Huangfu et al. [6] proposed
a mapping algorithm with inner fault-tolerance. In order to
provide the robustness, two (or multiple) parallel rows in each
memristive crossbar were adopted to represent each row in
the weight matrix. Nevertheless, the use of additional rows
results in high hardware overheads. Xu et al. [7] introduced
an integer linear programming (ILP)-based algorithm to derive
a weight-memristor mapping for fault tolerance. Currently,
machine learning techniques have been successfully utilized to
address SAFs problem. Liu et al. [8] presented a re-training
based method to tolerate SAFs. By using the sparsity of
neural networks, Xia et al. [9] proposed a fault tolerant on-line
training with re-mapping techniques. But only the neuron
permutation in fully connected layers are considered in the
re-mapping method. A set-based processing element architec-
ture was proposed by Chaudhuri et al. [10] to tolerate both
SAFs and undefined state faults in binary memristor cells.
The architecture can improve the fault tolerance of the mem-
ristive crossbar-based NCS on applications of binary pattern-
matching and handwritten digit recognition. But the design
could require high hardware overheads for multi-bit weight
mapping. Zhang et al. [11] developed a matrix transformation
framework to handle the SAFs. However, the solution only
focuses on SAFs, overlooking the programming variations.

In addition, to address stochastic device variations,
Liu et al. [12] developed a variation tolerant training by
adjusting the training goal according to the impact of the vari-
ations. Thus a set of pre-trained neural networks are generated.
By testing the network models, the best one is applied to the
memristive crossbar. However, for a crossbar with stochastic
variations, the optimal network model can hardly be derived.
Chen et al. [13] investigated a fault and variation tolerant
framework for memristive crossbar-based NCS. It first finds
an optimal mapping between weights and memristors for SAF
and variation tolerance. Then the re-training process based on
conventional gradient descent technique is further adopted to
tune weights. But the resistance variation values of memristors
are known in advance, thus the method is essentially no
different from the SAFs-aware approaches. Moreover, when
the variation model changes, inference accuracy of the network
is degraded, which means the above variation tolerant methods
lack robustness to variations. Recently, He et al. [14] presented
a digital SAF error correction method and a noise injection
adaption methodology to overcome SAF effects and current
drifts. In addition, Liu et al. [15] proposed a collaborative
logistic classifier with error correction output code (ECOC)
to enhance the network stability. Given any DNN model, the
original softmax classifier in the output layer will be replaced
by a certain number of collaborative logistic classifiers. Then
the SAFs and variations are injected in the output layer, and
the weights of collaborative logistic classifiers will be fine-
tuned based on the codeword list. But extra hardware circuits
are required to collect the output before the output layer.

Although recent works have investigated the SAFs and
variations tolerance, their techniques only focus on the
chip-specific design of the memristive crossbar-based NCS.
Namely, the SAFs tolerant solutions can be derived only if
the exact locations of SAFs in crossbar are known in advance.

Due to the high testing overhead, a general reliability design of
the memristive crossbar-based NCS without the prior testing is
required. Besides, despite a general SAFs and variation toler-
ant design of NCS is presented in the conference version [16],
the method cannot be applied to the chip-specific reliability
design. Fundamentally different from these approaches, we
propose a reliability-driven design framework for a memristive
crossbar-based NCS in combination with general and chip-
specific design optimization. Key technical contributions of
this work are listed as follows.
• We propose a general reliability-aware training scheme

to enhance the robustness of NCS to SAFs and device
variations. A dropconnect-inspired approach is devel-
oped to alleviate the impact of SAFs. A new weighted
error function, including cross-entropy error (CEE), the
l2-norm of weights, and the sum of squares of first-order
derivatives of CEE with respect to weights, is designed to
obtain a smooth error curve, where the effects of device
variations are suppressed.

• Given the neural network model generated by the
reliability-aware training scheme, we further propose a
chip-specific design to restore the accuracy loss incurred
by SAFs. We analyze the sensitivity of weights to SAFs
in the specified neural network. Based on the sensitivity
measurement and the SAF locations in the crossbar,
a weight-memristor mapping based on neuron permuta-
tion is adopted to prevent the highly sensitive synapses
from being mapped to the fault memristors.

• A Monte Carlo simulation is exploited to evaluate the
performance of the proposed framework on different
datasets. Experimental results show that our method not
only improves the robustness of NCS to SAFs and device
variations, but also boosts the computation accuracy of
NCS.

TABLE I summarizes the differences between the previ-
ous works and the proposed framework. The remainder of
this paper is organized as follows. Section II presents the
preliminary and introduces the problem to be addressed in
the paper. Section III introduces our overall design flow.
Section IV and Section V describe the proposed reliability-
driven design framework for neuromorphic computing sys-
tems. Section VII presents experimental results, followed by
conclusion in Section VIII.

II. PRELIMINARIES

A. Fault and Variation Models in Memristors

Due to the immature fabrication technology, reliability is
still a major concern in a memristive crossbar-based NCS.
Process variations and manufacturing defects in memristor
cells have been investigated and classified based on the
criticality of their impact on the cell write time [17]. Such
non-ideality may lead to stuck-at-one (SA1) fault and stuck-at-
zero (SA0) fault, where a cell’s resistance cannot be changed
with any electrical stimulus. By injecting faults into a fault-
free memristor model, SAFs can be simulated. For example,
if a memristor cell is unable to switch to its resistance state
with an appropriate write pulse, we conclude that an SAF
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TABLE I

SUMMARY OF TECHNIQUES USED TO HANDLE SAFS AND DEVICE VARIATIONS IN RELATED WORKS

Fig. 1. The memristive crossbar with SAFs and device variations.

has occurred. Besides, manufacturing defects in metal elec-
trodes include breaks, voids, and oxide-pinholes [18]. Through
closed-form expressions that estimate the impact of defects on
the memristor’s contact resistance, a quantitative analysis of
the manufacturing defects can be achieved [17].

The SAF locations in crossbar can be identified by March-C
or squeeze-search based testing methods [19], [20], However,
the testing overhead may be too high for the NCS imple-
mented by many memristive crossbars. To improve the testing
efficiency, Kannan et al. [21] exploited sneak-paths inherent
in crossbar to test multiple memristors at once. Recently,
Chaudhuri et al. [22] presented an efficient framework to ana-
lyze the functional criticality of SAFs in systolic array. A scal-
able method based on machine-learning (ML) and generative
adversarial network (GAN) was developed to classify SAFs
in terms of their functional criticality. The results demon-
strated that the proposed scheme can significantly reduce test
escapes during the evaluation of fault criticality. In this work,
we mainly focus on the SAF tolerance design, thus the above
methods can be directly used to classify SAFs in specific
memristive crossbars.

In addition, multiple write/read operations strongly drive
vacancies in one direction inside the dielectric. Thus, when
an external potential difference of opposite polarity is applied,
the vacancy will need more time to return. This phenomenon
will cause a degradation in memristor operation and hence is
viewed as parametric variation [21]. Meanwhile, the driving
circuit design can trigger a cycle-to-cycle switching varia-
tion [23]. As a result, any small fluctuations in the magnitude

Fig. 2. General representation of deep neural network.

and pulse-width of the programming current or voltage can
produce resistance variations. Throughout this paper, we use
matrix C to represent the resistance states of the crossbar. The
work in [24] have reported that the programming resistance
states of the memristors follow a lognormal distribution as
Equation (1):

c̃i j = ci j · exp (θi j), θi j ∼ N (0, σ 2), (1)

where c̃i j and ci j are actual resistance and target resistance of
a memristor in i -th row and j -th column of C , θi j denotes
the zero-mean Gaussian variation with a variance of σ . Thus,
the memristor resistance variation is a multiplicative devia-
tion [25]. An example of a memristive crossbar with SAFs
and variations is shown in Fig. 1.

B. Deep Neural Network

A deep neural network (DNN) is a directed acyclic graph
comprising of multiple computation layers [26]. A higher level
abstraction of the input data or the feature map is extracted
from the input layer to the output layer. The intermediate
layers between the input and the output layer are called hidden
layers. An example of DNN is shown in Fig. 2.

DNNs have two operating processes: training and inference.
During training, the neurons in each layer take the intermediate
outputs of the previous layer as inputs, as shown in Fig. 2.
The neuron output is derived by firstly applying a dot product
between its inputs and parameters, i.e., the weights and the
bias, and then applying a non-linear activation function to
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generate the final computation result. Formally, the output of
j -th neuron in layer l, ol

j , is calculated as:
ol

j = f (
∑

i

wl
i j · ol−1

i + bl), (2)

where ol−1
i is the output of i -th neuron in the previous layer

l − 1, wl
i j denotes the weights from the i -th neuron in layer

l − 1 to the j -th neuron in layer l, and bl is the bias in
layer l. Meanwhile, f (·) represents the non-linear activation
function. In multi-class classification task, a softmax function
is usually adopted as the activation function. Formally, the
softmax function estimates the probability of a given input
pattern belonging to class i as follows:

softmax(i) = exp (zi )∑
j exp (z j )

, (3)

where zi is the output of i -th neuron in the output layer.
Since the softmax activation function can derive the probability
distribution over classes, the class with largest probability
value is chosen as the final predicted class.

In addition, in the inference phase, the previously trained
DNN model is adopted to predict labels for new input data.
Thus the accuracy of trained models can be obtained by
performing inference on the testing set. For a more thorough
discussion of DNN, please refer to [27].

C. Problem Formulation

In this work, we employ the computation robustness and
accuracy to quantify the performance of NCS.

Definition 1 (Computation Robustness): A robust NCS
means that the small disturbance of network weights will not
change the output of the neural network.

Definition 2 (Computation Accuracy): The computation
accuracy of NCS is given by the probability that the trained
NCS can successfully classify the test samples.

Based on the above metrics, we define the problem of the
fault and variation tolerance in NCS (FVTN) as follows.

Problem 1 (FVTN): Given the datasets and the device vari-
ation model, we implement a neural network on the memristive
crossbar with compensation for the impact of faults and
device variations, so that the computation robustness and the
computation accuracy of NCS are improved.

III. OVERALL FLOW

Fig. 3 illustrates the proposed reliability-driven design
framework for NCS, which is developed for two different
cases, namely, with and without knowing SAF locations in
memristive crossbars. We first propose a general reliability-
aware training scheme for NCS, as depicted in Fig. 3(a).
Through a dropconnect-inspired technique and a new weighted
error function, the robustness of NCS to SAFs and device
variations is enhanced. As a result, we can directly map
the trained model to memristive crossbar without knowing
SAF locations. In addition, a chip-specific design is further
proposed to restore the computation accuracy loss incurred
by SAFs, as displayed in Fig. 3(b). Based on the neural
network model generated by the reliability-aware training,

Fig. 3. The proposed reliability-driven design framework for NCS.

we analyze the sensitivity of each weight with respect to SAFs.
After the locations of SAFs in the crossbar are pinpointed
by the testing method, a weight-memristor mapping is then
performed to prevent the highly sensitive synapses from being
mapped to the SAFs. Next, a network re-training algorithm
is performed to compensate for the computation accuracy
loss, while maintaining the robustness to variations. Finally,
a reliability design of NCS deployed on a memristive crossbar
with SAF locations known is achieved.

IV. RELIABILITY-DRIVEN NETWORK TRAINING

In this section, we first introduce our general reliability-
aware training algorithm. Then we discuss several other
regularizer-based training approaches. By the end, we analyze
the loss behaviors of the neural network.

A. General Reliability-Aware Network Training

In the general reliability-aware training scheme,
a dropconnect-inspired technique and a new weighted
error function are developed to learn more robust features
about SAFs and variations. Note that the reliability-aware
training is an off-device method, which means the network
is trained in software. Since we do not focus on specific
memristive crossbars during training, the quantization process
is not performed. Thus, the network weights are represented
as 32-bit floating-point precision in the general training
stage. After the network training, the weights are quantized
to 8-bit value, and then mapped to the specific memristive
crossbars with SAFs and device variations. According to the
results in [28], the accuracy loss of 8-bit quantization is less
than 1%.
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To prevent complicated dependencies between weights and
make the network robust against SAFs, a dropconnect-inspired
technique is proposed. We train the network with mini-batch
gradient descent (MGD) [29] approach which can provide
more efficient computation than stochastic gradient descent
(SGD). A group of instances are randomly picked from train-
ing set in each training iteration. For each batch, we sample a
network with random SAFs distribution. The weights injected
with SA0 or SA1 faults are temporarily set to the maximum
or minimum values of the current layer where the weight is
located. Note that the weights with SAFs will not participate in
the back-propagation. Hence, the operation of injecting SAFs
into weights is similar to the dropconnect strategy in deep
learning [30], where the weights are temporarily removed from
the network. As a result, a weight in the network does not rely
on other specific weights, and the complex co-adaptation of
weights is prevented.

In addition, a new weighted error function is designed to
obtain a smooth error curve, where the effects of variations
are suppressed. Generally, regularization is adopted to control
the complexity of the network model and avoid over-fitting.
The regularization term can be expressed by adding a penalty
to the error function of the learning algorithm as Equation (4):

Ẽ(W) = E(W)+ λ�, (4)

where W is the weight matrix with the size of m × n, and
the parameter λ > 0 controls the relative importance of the
data-dependent error E(W) (typically cross-entropy error) and
regularization penalty �.

Two popular regularizers are l1-norm regularizer and
l2-norm regularizer, as defined in Equations (5) and (6):

�l1(W) = ‖W‖1, (5)

�l2(W) = ‖W‖2
2. (6)

In order to avoid confusion, all norms ‖·‖ are calculated
with respect to flattened vectors. L1-norm regularizer has the
property that if λ is sufficiently large, some weights will be
driven to zero, leading to a sparse network model. Compared
with l1-norm regularizer, l2-norm regularizer gives more bias
to the large weights and shrinks the weight distribution to
a small value range [31]. To compensate for the impact of
faults and device variations, a smooth error curve is needed.
According to the work [32], l2-norm can reduce the network
sensitivity and thus enhance the training robustness. Besides,
if the first-order derivatives of the error function with respect
to weights are adopted as a regularizer, it disfavors error
functions that change rapidly. Thus, the first-order derivative
regularizer helps to avoid sharp changes in error (and hence in
output) with minor changes in weights. Furthermore, since the
memristor resistance variation is a multiplicative deviation, the
weight perturbations are proportional to weight magnitudes.
Considering a large weight case, although the first-order
derivative term itself can reflect the information on how the
error changes as the weight is perturbed slightly, multiplying
the weight with it will impose a large coefficient on the first-
order derivative term. Hence the disturbance of large weights
can be avoided to a certain extent. In accordance with the

Algorithm 1 General Reliability-Aware Network Training
Input: Training set, W t and ηt .
Output: W t+1 and ηt+1.
1: for i ← 1 to T do
2: Sample a mini-batch Bi from training set;
3: Inject randomly distributed SAFs into network;
4: Calculate error Ẽ(W t); � Equation (7)
5: Obtain the accumulated gradient of error ∂ Ẽ(W t )

∂W t
;

6: Update W t ; � Equation (8)
7: Restore the weights with SAFs to the original value;
8: end for

argument, we derive our objective function by combining
Equations (4) and (6) and the first-order derivative term as:

min
W

E(W)+ λ1‖W‖2
2 + λ2

∥∥∥∥W � ∂ E(W)

∂W

∥∥∥∥
2

2

s.t. E(W) = −
N∑

r=1

n∑
i=1

{ỹri ln yri

+(1− ỹri ) ln (1− yri )}, (7)

where ỹr = {ỹri }ni=1 denotes a target vector, yri refers to
the i -th element of activation function output y(xr, W), and
xr ∈ R

m is an input vector. Meanwhile, N is the total
number of training data in each batch, and � represents the
Hadamard product. According to Equation (7), for the large
weight value, its corresponding first-order derivative term has
a large coefficient. Therefore, it is suitable to improve the
network robustness under multiplicative deviation.

During the training, neural weights with SAFs are fixed,
while other weights can still be updated in the backward
process as follows:

W t+1 = g(W t , ηt ,
∂ Ẽ(W t )

∂W t
), (8)

where W t and ηt are the current weight and the current learn-
ing rate, and W t+1 denotes the updated weight. Meanwhile,
g(·) refers to the optimizer for updating weights and learning
rate.

The details of the proposed general reliability-aware training
scheme are illustrated in Algorithm 1. We use the adaptive
moment estimation (Adam) optimizer [33] to train the network
model. In each training iteration, we sample a mini-batch from
the training set (line 2). Then the randomly distributed SAFs
are injected into the current network (line 3). A feed-forward
calculation is performed on each instance in the mini-batch.
We calculate the error on each instance (line 4) and obtain
the accumulated gradient of errors with respect to the weights
(line 5). Next, Wt is updated based on Equation (8) (line 6).
Finally, the weights with SAFs will be restored to the original
value (line 7). The above process is terminated until satisfying
the training iteration number T .

Fig. 4 illustrates the weight distributions of neural network
trained by three different regularizers. A two-layer multi-layer
perception (MLP) on MNIST dataset is shown as example.
As demonstrated in Fig. 4, compared with the training strategy
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Fig. 4. Weight distributions under different regularizers.

without any regularizers, the proposed regularizer in Equa-
tion (7) can constrain the network weight distribution to a
small range. Besides, in contrast to the l2-norm regularizer, the
proposed counterpart shrinks the values of the large weights.
For the multiplicative resistance variation, the deviations in
weights are proportional to weight magnitudes. Therefore, the
proposed regularizer can improve the network robustness.

B. Differences With Existing Works

A robust neural network should satisfy the following condi-
tions [37]: (i) be as simple as possible; (ii) have a smooth error
curve. In order to meet the above conditions, we propose a
new regularizer to train the network as shown in Equation (7).
First, the l2-norm term shrinks the network weight distrib-
ution to a small value range. As a result, the generalization
performance of the network is improved. Meanwhile, the first-
order derivatives term can avoid sharp changes in error with
minor changes in weights, which in turn forms smoothness
of the learned function. Therefore, the proposed regularizer-
based training can enhance the network robustness in a subtly
different way. In the following section, we briefly discuss
several other regularizer-based training approaches.

As mentioned in Section IV-A, the l1-norm regularizer
helps to realize a sparse network. Note that, if a network
model is sparse, the simplicity of the network can somewhat
be achieved [37]. Therefore, Liu et al. [38] adopts the l1

regularization to enhance the inherent fault tolerance capability
of the network. However, it is obvious to see that the l1-norm
regularizer is not differentiable. This may lead to difficulties
on both theoretical analysis and numerical simulations, when
the weights are very close to zero.

Since the lower the value of the weight, the higher the fault
tolerance of the network. To restrict the weight magnitude,
Chiu et al. [32] and Zhang et al. [34] applied the l2-norm
regularizer to the empirical error. Note that the l2-norm reg-
ularizer is also known as weight decay [31]. By injecting
SAFs into network during training, the methods can effectively
tolerate SAFs. However, the l2-norm regularizer-based training
approaches cannot address the multiplicative device variation.

To measure the curvature of a solution surface, an output-
sensitivity metric (OS) is defined in [35].

OS =
N∑

r=1

n∑
i=1

∥∥∥∥
∂yri

∂W

∥∥∥∥
2

2

, (9)

where N is the total number of training data in each batch,
yri refers to the i -th element of the output vector y(xr, W),
and xr ∈ R

m denotes an input pattern. Specifically, the
lower the output-sensitivity, the higher the network stability
against the variation. Based on the measurement, Edwards and
Murray [35] and He et al. [36] appended the output-sensitivity
term to the error function. Consequently, the network output
is not sensitive to the weight variations. As defined in Equa-
tion (9), the output-sensitivity considers the derivatives of the
output with respect to the weights, whereas the derivatives of
the error with respect to the weights are employed in the pro-
posed regularizer as in Equation (7). Note that (∂ E/∂wi j)

2 =
e2

j · (∂o j/∂wi j)
2, where wi j is a weight, and e j and o j are the

error and the output of the j -th neuron in the output layer.
Considering the general case when neither e j nor (∂o j/∂wi j)
is too small, if (∂ E/∂wi j) is small, both of e j and (∂o j/∂wi j)
should be small. Thus, minimization of (∂ E/∂wi j) will result
in minimization of both e j and (∂o j/∂wi j). However, only
minimization of (∂o j/∂wi j) in Equation (9) does not promote
the reduction of e j . As a result, the performance of network
may even be degraded due to the influence of the regularizer.
In addition, the output-sensitivity regularizer in [35] and [36] is
not proportional to weight magnitudes, the regularizer cannot
deal with the multiplicative variation.

As stated in [39], the second-order Tikhonov regularizer
provides the lowest order of smoothness. Following the argu-
ment, the second-order derivatives of the error function with
respect to weight can help to find a solution with a smoother
error surface. Besides, for the multiplicative resistance vari-
ation, the deviations in weights are proportional to weight
magnitudes. That is a large weight value would cause a large
weight deviation for the multiplicative variation. In considera-
tion of the two factors, Bernier et al. [40] developed an error
function as Equation (10).

min
W

E(W)+ λ

m∑
i=1

w�i H iwi (10a)

s.t. H i = diag{∂
2 E(W)

∂w2
i1

, . . . ,
∂2 E(W)

∂w2
in

}, (10b)

Here E(W) is the mean-square error, while wi is the
i -th row vector of weight matrix W . H i denotes an n × n
diagonal matrix, whose elements are the second derivatives
of the error function with respect to wi . By multiplying the
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Fig. 5. 2D visualization of the loss surface of a two-layer MLP trained with different regularizers on MNIST dataset: (a) only the cross-entropy error;
(b) the l2-norm regularizer [32], [34]; (c) the output sensitivity-based regularizer [35], [36]; (d) the proposed regularizer.

TABLE II

NOTATIONS USED IN CHIP-SPECIFIC MAPPING

square of weights and the second derivatives of the error
function with respect to the weights, a better fault tolerance
against weight perturbation is achieved. However, as illustrated
in Equation (10), the regularizer is a sum of the second-
order derivatives which may have positive or negative sign.
Consequently, it may happen that although some second-order
derivatives are large, the regularizer term in Equation (10) is
small. Hence, a robust neural network cannot be trained in
the case. But for the proposed regularizer in Equation (7), this
issue does not occur because we use the sum of squares of
the derivatives.

To analyze the network’s loss behaviors, we adopt the
concept of the loss visualization in this work. Based on the
loss visualization method [41], we project the loss function
of a neural network into 2D hyper-planes, as illustrated in
Fig. 5. Note that the center of each plot corresponds to
the minimizer, and the two axes parameterize two random
directions with normalization. We can see from the figures
that the proposed training method results in a flat minimal
and wide contour, which indicates the loss is not sensitive to
faults and variations. Therefore, compared with other training
approaches, the proposed method can enhance the network
robustness.

V. CHIP-SPECIFIC MAPPING AND RE-TRAINING

After the network training, the weights are first quantized
to 8-bit value. Then with the generally trained network model
and SAFs locations in crossbar as input, we further propose
a chip-specific mapping and re-training to improve accuracy
loss incurred by SAFs. In this work, each memristive cell

Fig. 6. Row and column permutations using routers in [7] and [44].

maintains 256 quantization levels (8-bit) [42]. As a result,
an 8-bit weight can be mapped to one memristor cell. Due
to the huge ADC overhead, mapping an 8-bit weight to one
memristor cell is impractical [43]. In fact, the proposed chip-
specific mapping method can also handle the case where
a multi-bit weight is mapped to multiple memristor cells,
as described in Section VI. For convenience, some notations
used in this section are listed in TABLE II.

Actually, since a neural network comprises of multiple
cascaded layers as shown in Fig. 2, the outputs of a previous
memristive crossbar should be connected to the inputs of the
next crossbar through neurons. In [7] and [44], a matching-
based fault tolerance algorithm is given to derive a weight-
memristor mapping. In order to ensure the correctness of
the matrix-vector multiplication on memristive crossbar with
SAFs, the permutations of rows and columns in weight matrix
are performed. However, for each layer’s weight matrix with nl

neurons, if we independently re-order the rows or columns, an
nl × nl routing module is needed to connect crossbars, which
introduces a high area overhead. Fig. 6 illustrates the process
of rows or columns permutation using routers. To avoid the
use of routers, the neuron permutation is presented in [9] to
enable the re-ordering of rows and columns in weight matrix.

Due to the low hardware cost, we adopt the neuron permu-
tation [9] in fully connected layers and feature map permuta-
tion [11] in convolutional layers. For a fully connected layer,
each column in W l refers to the weights of the synapses con-
nected to a neuron in layer l. Meanwhile, for a convolutional
layer, each column in W l represents the weights of a kernel in
layer l. Therefore, permuting the order of two neurons in fully
connected layer l is equivalent to exchange two columns in W l

and the corresponding two rows in W l+1, as shown in Fig. 7(a).
Note that the rows in W l and the columns in W l+1 are fixed
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Fig. 7. (a) Neuron permutation in fully connected layer l; (b) feature map
permutation in convolutional layer l.

when permuting the neurons in layer l. Similarly, permuting
the order of two feature maps in convolutional layer l relates
to the re-ordering of two kernels in layer l. Accordingly, the
corresponding channels of each kernel in layer l + 1 are also
exchanged, as illustrated in Fig. 7(b). As a result, two columns
in W l and a set of rows in W l+1 are re-ordered. The sizes of
the set equal to the kernel size. For instance, for a 3×3 kernel,
the size of the set is 3× 3.9.

During the network training, we can notice that each weight
demonstrates different sensitivity to faults. Therefore, when
different weights are mapped to SAFs in crossbar, the influence
on computation accuracy of an NCS is dissimilar. To iden-
tify the weights that have large impacts on the computation
accuracy, we derive a weight sensitivity measurement as
Equation (11):

sl
i j_0 =

∣∣∣xl
i · (wl

i j −wl
max )

∣∣∣
∑

k

∑
j

∣∣∣xl
k · wl

k j

∣∣∣
(SA0),

sl
i j_1 =

∣∣∣xl
i · (wl

i j −wl
min)

∣∣∣
∑

k

∑
j

∣∣∣xl
k · wl

k j

∣∣∣
(SA1). (11)

Given the generally trained neural network generated by
algorithm in Section IV-A, we perform the forward process to
calculate the sensitivities of each weight to SA1 or SA0 as
shown in Equation (11). According to the proposed sensitivity
measurement, the weight with a small input or close to SAFs
value has a low sensitivity. Thus adding SAFs into those
weights will dramatically affect the network performance.

We formulate the neurons or feature maps permutation
problem as a minimum cost bipartite matching problem.
As shown in Fig. 7, the neuron permutations in fully connected
layer are essentially the same as the feature map permutations
in convolutional layer. Thus, we only take the neuron per-
mutations into account in following analysis. To prevent the
highly sensitive synapses in W l from being mapped to the
SAFs in C l , we assign each neuron to the appropriate one
of nl positions. We first construct a complete bipartite graph
G(V , E) as shown in Fig. 8. Here vertex set V = V1 ∪ V2,
where V1 is the set of neurons and V2 is the set of positions.
Besides, the edge set E = {(k, j)|k ∈ V1 is mapped to

Fig. 8. Complete bipartite graph between neurons and positions.

Algorithm 2 Matching-Based Heuristic
Input: A trained neural network, a set of crossbars with SAFs,
and sensitivity information.
Output: Mapping relation between weight matrices and
crossbars.
1: Initialization: Generate the order of neurons layer by

layer;
2: for i ← 1 to K do
3: Randomly select a layer l;
4: Re-solve the order of neurons in layer l;

� Kuhn_Munkres
5: if Solution cost is reduced then � Equation (13)
6: Update the order of neurons in layer l;
7: end if
8: end for

j ∈ V2}. Since exchanging the order of two neurons in layer
l is equivalent to exchanging the two columns in W l and the
corresponding two rows in W l+1, a metric named “summed
fault sensitivity (SFS)” is derived to calculate the cost by
mapping the k-th neuron to j -th position as follows:

SFSl
k j =

ml∑
p=1

∣∣sl
pk

∣∣+
nl+1∑
q=1

∣∣∣sl+1
kq

∣∣∣, (12)

where

sl
pk =

⎧⎪⎨
⎪⎩

sl
pk_0, if cl

pj is an SA0,

sl
pk_1, if cl

pj is an SA1,

0, otherwise.

sl+1
kq =

⎧⎪⎨
⎪⎩

sl+1
kq_0, if cl+1

jq is an SA0,

sl+1
kq_1, if cl+1

jq is an SA1,

0, otherwise.

The first term
∑ml

p=1

∣∣∣sl
pk

∣∣∣ is the cost of mapping k-th column

of W l to j -th column of C l . The second term
∑nl+1

q=1

∣∣∣sl+1
kq

∣∣∣
indicates the cost of assigning k-th row of W l+1 to j -th row
of C l+1. In [9], a binary cost metric is presented to capture
whether each weight is realized correctly or not. According
to our preliminary observations, compared with the simple
metric, the proposed SFS metric can improve classification
accuracy.

Since a set of memristive crossbars are required to imple-
ment the multiple-layer network, we propose a heuristic
algorithm to iteratively optimize the order of neurons over
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Fig. 9. An example of mapping weights in a convolution layer of DNN to
memristive crossbars.

all layers. The objective function of the weight-memristor
mapping is defined as Equation (13):

min
L−1∑
l=1

∑
(k, j)∈Ml

SFSl
k j . (13)

The details of the proposed heuristic algorithm are summa-
rized in Algorithm 2. First, we generate the order of neurons
layer by layer, which serves as an initial solution (line 1).
Then we randomly select a layer l, and re-solve the order
of neurons in the layer by Kuhn_Munkres algorithm [45]
(lines 3-4). When permuting the order of the neurons in layer l,
the rows in W l and the columns in W l+1 are fixed. If the
matching cost in Equation (13) is improved, we update the
order of neurons in layer l (line 6). The above process is
terminated until satisfying K . As a result, the highly sensitive
synaptic weights are prevented from being mapped to SAFs.
Since the Kuhn_Munkres algorithm can be solved with time
O(n3

l ) [46], the time complexity of the proposed heuristic
is O(K n3

l ). The Kuhn_Munkres algorithm is detailed in
Appendix .

In addition, after the mapping relation between weight
matrix and crossbar is determined, a similar re-training algo-
rithm is further performed to restore the accuracy loss incurred
by SAFs [8], [13]. Because the weights mapped to SAFs will
remain unchanged in re-training iterations, the computation
accuracy loss can only be compensated by re-tuning other
trainable weights.

VI. MULTIPLE MEMRISTORS MAPPING

In this section, we discuss how multi-bit weights are mapped
to multiple memristor cells. Instead of representing an 8-bit
weight in a single memristor cell as shown in Section V, we
can also map one 8-bit weight to 8/ω ω-bit memristor cells
located in the same row [43]. Fig. 9 illustrates an example
of the process of mapping kernels to a memristive crossbar.
As shown in the figure, if the memristor cell has a 4-bit
resolution, we use two different memristor cells for complete
representation of an 8-bit weight [47]. When an input vector is
generated, the memristor cells in a column perform the vector
dot-product operation. The results of adjacent two columns

must then be merged with the appropriate set of shift and add
operations. Similarly, with a 2-bit resolution of each memristor
cell, four separate memristor cells are needed to represent
the same 8-bit weight [43]. Note that, other layers, e.g., fully
connected layers, also involve similar mapping processes [48].
In the subsequent discussion in the section, the memristor cell
with 4-bit resolution is considered.

As discussed earlier, mapping network weights to mem-
ristive crossbars with SAFs can lead to DNN models with
poor accuracy. For instance in Fig. 9, if input vector V is
applied to the memristive crossbar under the ideal condition
without SAFs, we would get partial outputs O1 and O2

corresponding to conductance G1 and G2. The partial output
can be calculated as Oi = V × Gi . Through the shift and
add operations, the final output can be produced according to
Equation (14).

O = O1 × 24 + O2 × 20. (14)

Actually, in the non-ideal case, SAFs occur in some cells
in memristive crossbar. As shown in Fig. 9, only the two
memristor cells to which the 8-bit weight is mapped are all
SA1 or SA0 faults, the weight will be represented as the
minimum or maximum value. But compared with the low-
order bits case, mapping the high-order bits of the weight
to SAFs has a higher impact on the accuracy. For example,
if G1 is an SA1 or SA0 fault, the encoding of G1 changes
from 0101 to 0000 or 1111. Depending on the absolute
value of the efficient O1, an error magnified or diminished
by a factor of 24 is introduced to the output. As a result,
a significant accuracy loss is incurred by SAFs.

To restore the accuracy loss, we also adopt the chip-specific
mapping method introduced in Section V to handle the case,
where a multi-bit weight is mapped to multiple memristor
cells. But the weight sensitivity measurement in Equation (11)
should be changed to the following equation:

sl
i jb_0 =

(24)b
∣∣∣xl

i · (wl
i jb −wl

max)
∣∣∣

∑
k

∑
j

∣∣∣xl
k · wl

k j

∣∣∣
(SA0),

sl
i jb_1 =

(24)b
∣∣∣xl

i · (wl
i jb −wl

min)
∣∣∣

∑
k

∑
j

∣∣∣xl
k · wl

k j

∣∣∣
(SA1), (15)

where wl
i jb is the b-th group of weight wl

i j (0 ≤ b ≤ 1).
The two groups store 4-bit weights for the 7··4 and 3··0
segments respectively. The values of wl

max and wl
min are

set to 1111 and 0000, which can be modeled as SA0
fault and SA1 fault. Thus Equation (15) measures the sen-
sitivity of mapping each group in a weight to SA0 fault
and SA1 fault. Therefore, in order to calculate the cost
by mapping the k-th neuron to j -th position, the summed
fault sensitivity metric in Equation (12) is adjusted to
Equation (16).

SFSl
k j =

ml∑
p=1

1∑
b=0

∣∣sl
pkb

∣∣+
nl+1∑
q=1

1∑
b=0

∣∣∣sl+1
kqb

∣∣∣ (16)
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Fig. 10. Effectiveness of the proposed general reliability-aware training.

where

sl
pkb =

⎧⎪⎨
⎪⎩

sl
pkb_0, if cl

pjb is an SA0,

sl
pkb_1, if cl

pjb is an SA1,

0, otherwise.

sl+1
kqb =

⎧⎪⎨
⎪⎩

sl+1
kqb_0, if cl+1

jqb is an SA0,

sl+1
kqb_1, if cl+1

jqb is an SA1,

0, otherwise.

The first term
∑ml

p=1

∑1
b=0

∣∣∣sl
pkb

∣∣∣ is the cost of mapping
the two groups in k-th column of W l to the two groups

in j -th column of C l . The second term
∑nl+1

q=1

∑1
b=0

∣∣∣sl+1
kqb

∣∣∣
indicates the cost of assigning k-th row of W l+1 to j -th row
of C l+1. Based on the heuristic algorithm 2, the highly
sensitive synaptic weights are prevented from being mapped
to SAFs.

VII. EXPERIMENTAL RESULTS

The framework is implemented based on Tensorflow
library [49] and validated on a Linux server with 8-core Intel
CPU and Nvidia Tesla K40M GPU. In the general training
stage, the network weights are represented as 32-bit floating-
point precision. After the network training, the weights are
quantized to 8-bit value, and then mapped to the spe-
cific memristive crossbars. In the experiment, each mem-
ristive cell maintains 256 quantization levels (8-bit) [42].
To verify the effectiveness of our algorithm, we experi-
ment on three datasets, including MNIST [50], CIFAR-10,
and CIFAR-100 [51]. First a two-layer multi-layer percep-
tion (MLP) with softmax activation function is trained for
MNIST. Then LeNet [50] which consists of two convolu-
tional (Conv) layers and three fully connected (FC) layers is
implemented and tested on CIFAR-10. In the convolutional
layers, 64 kernels of size 5× 5 are employed; three FC layers
are consistent, whose dimensions are 384, 192, and 10. Finally,
AlexNet [52] is trained for CIFAR-100. We use 5× 5 kernel
size to make it suitable for input images. The lognormal
distribution is adopted as our memristor variation model,
shown as in Equation (1). The SAFs and memristor variation
model are injected into the weights across all different layers
in the network. According to the published data [13], 83.8%
of SAFs are SA1 faults and 16.2% of SAFs are SA0 faults.
The performance of the proposed framework is evaluated by a

TABLE III

ORIGINAL ACCURACY WITHOUT CONSIDERING SAFS AND VARIATIONS

Monte Carlo simulation. TABLE III shows the original com-
putation accuracy of NCS without the impacts of SAFs and
variations, which serves as the upper bound of the reliability
design.

A. Effectiveness of General Reliability-Aware Training

In the first experiment, we demonstrate the robustness of
the proposed general reliability-aware training to the SAFs
and the device variations. We apply the proposed general
reliability-aware training to train the three neural networks. For
a comparison, we also employ a traditional learning strategy
to train the neural networks (Baseline), where the proposed
dropconnect-inspired approach and the first-order derivative
regularizer are not included.

Fig. 10 illustrates the accuracy of the three neural networks
derived by the two training methods, respectively. We vary σ
to change the influence of stochastic resistance variation. The
SAFs percentages are set to 1.0% [53]. It can be seen from
the figure that as σ increases, the traditional learning strategy
suffers from severer accuracy degradation. Meanwhile, our
general reliability-aware training can significantly improve
accuracy, demonstrating the robustness of the training method
to SAFs and variations. For example, our training method
boosts the accuracy of LeNet_CIFAR-10 from 18.74% to
59.49% even under the significant variation σ = 0.7, shown
as in Fig. 10(b). In addition, the curves of the two training
methods on MNIST dataset are depicted in Fig. 11, where
x-axis indicates training steps and y-axis is computation
accuracy on the testing set. We can see that our general
reliability-aware training is a more stable training procedure
and converges to a higher accuracy.

B. Effectiveness of Mapping and Re-Training

With the generally trained network model as input, a chip-
specific mapping and re-training is further performed to
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Fig. 11. Training curves of a two-layer MLP on MNIST dataset under 1.0%
SAFs and σ = 0.7.

improve accuracy loss incurred by SAFs. In the preliminary
conference version [16], a general reliability-driven train-
ing scheme is proposed, where the mapping and re-training
processes are not contained. In the second experiment,
we evaluate the efficiency of the proposed chip-specific map-
ping (MP) and re-training (RT) against SAFs. Given the
trained neural network model generated by the training scheme
in [16], we inject SAFs into weights across all different
layers. Then the proposed “MP+RT” is exploited to restore
the computation accuracy loss. Besides, “MP” denotes the
framework with only mapping, while “ISCAS’20” represents
the case without mapping and re-training, which serves as a
baseline.

Fig. 12 compares the computation accuracy of the neural
networks after applying the three flows respectively. The SAFs
percentages are chosen between 0.2% and 1.0% [53]. The
simulation results indicate that the proposed “MP+RT” can
effectively restore the accuracy. As Fig. 12(c) illustrates, for
AlexNet_CIFAR-100, the proposed “MP+RT” can raise the
accuracy from an unacceptable value (23.24%) to a level close
to the original accuracy (61.84%) under 1.0% SAF percentage.
A similar trend can also be observed for MLP_MNIST and
LeNet_CIFAR-10, as shown in Fig. 12(a) and Fig. 12(b).

To demonstrate the scalability of the proposed heuristic
algorithm, we further evaluate the performance in the case of
mapping multi-bit weights to multiple memristor cells. In the
experiment, the memristor cell has a 4-bit resolution. Thus we
use two different memristor cells for complete representation
of the 8-bit weight. The experiment is run on MLP_MNIST.
“Baseline” indicates that the 8-bit network model is directly
implemented on the memristive crossbars without the heuristic
mapping algorithm. “MP” denotes the case of mapping the
multi-bit model to the memristive crossbars by the heuristic
method. Fig. 13 shows the computation accuracy of the neural
network after applying the above two flows. According to
the observation of Fig. 13, the proposed heuristic mapping
algorithm can effectively improve the accuracy, which verifies
the mapping method can also handle the case where a multi-bit
weight is mapped to multiple memristor cells.

In addition, the iteration number K in Algorithm 2 is
set through experimental results. Since the time complexity
of the proposed heuristic is O(K n3

l ), the runtime of the
algorithm increases linearly with K value. The experiment
is run on LeNet_CIFAR-10. The SAFs percentage is set to

1.0%. We draw the relationship curve between the computation
accuracy and K value in Fig. 14. It can be noticed that the
accuracy increases along with the increase of K value and
finally converges to a stable value. Due to the relatively high
accuracy and low runtime, we set K to 20.

C. Comparison With Previous Works

We first compare the proposed general reliability-aware
training with three other network training approaches.
In Vortex [12], a general variation tolerant training is
developed by adjusting the training goal according to the
impact of the variations. To restrict the weight magnitude,
Chiu et al. [32] and Zhang et al. [34] applied the l2-norm
regularizer to the empirical error. As a result, all weights
have low sensitivity to faults and hence the robustness of
network is improved. Besides, Edwards and Murray [35] and
He et al. [36] adopted the output-sensitivity (OS) regularizer
to train the network. Consequently, the influence of weight
variations on network output is reduced. The comparison is
performed on MNIST dataset by using a two-layer MLP and
the results are depicted in Fig. 15. It can be seen that the pro-
posed general reliability-aware training significantly improves
the NCS robustness to faults and variations. For example, the
proposed reliability-aware training method outperforms Vortex
in terms of accuracy by 16.49% on average.

We further compare the proposed chip-specific map-
ping (MP) with two other mapping-based methods. To elimi-
nate the impact of SAFs, Zhang et al. [11] presented a matrix
transformation for fault tolerance. In addition, a numerical iter-
ation algorithm is developed in [5] to map the weight matrix
to the crossbar. In order to compare with [11], we replace the
mapping cost in Equation (12) with the cost metric in [11].
In the experiment, a three-layer MLP for MNIST dataset is
implemented, whose size is 784 × 256 × 10. Based on the
same trained network model and SAF locations in crossbar,
we execute the three mapping strategies respectively. For fair
comparisons, the redundancy factor is set to 1 in [11]. Fig. 16
shows the accuracy of the neural network after applying
the three methods respectively. The percentages of SAFs are
chosen between 2% and 10%. The simulation results indicate
that the proposed chip-specific mapping can effectively restore
the accuracy. For instance, the proposed chip-specific mapping
surpass [11] and [5] in accuracy of 1.64% and 16.79% on
average, respectively. Besides, a specific variation tolerant
method based on mapping is presented in [13]. However,
in reality, the stochastic variation value of memristors in
crossbar can hardly be tested in advance.

D. Hardware Overhead Analysis

In this section, we analyze the hardware cost of the pro-
posed chip-specific mapping. As shown in Section V, the
neuron and feature map permutations are adopted to establish
the mapping relation between weight matrix and the cross-
bar. Therefore, considering the internal fully connected layer
and convolutional layer, the proposed chip-specific mapping
introduces no hardware overhead. Meanwhile, for the output
layer with softmax activation function, we will allocate a
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Fig. 12. Effectiveness of the proposed mapping (MP) and re-training (RT).

Fig. 13. Effectiveness of the proposed heuristic algorithm on multiple
memristors mapping.

Fig. 14. Effect of the iteration number K on computation accuracy.

Fig. 15. Comparison of different network training approaches. Items “OS”
and “L2-norm” list the accuracy of the output sensitivity-based training meth-
ods [35], [36] and the l2-norm regularizer-based training approaches [32], [34],
while “Vortex” represents the accuracy result in [12].

10-to-1 multiplexer to each neuron to perform permutation.
Thus, the hardware overhead of the chip-specific mapping
can be neglected. On the other hand, the row and column

Fig. 16. Comparison of different mapping strategies, where “MP” and
“TCAD’19” illustrate the accuracy results of the proposed chip-specific
mapping and the matrix transformation framework in [11], while “JCST’16”
denotes the result of the numerical iteration mapping algorithm in [5].

permutations are performed in [7] and [44] to derive a weight-
memristor mapping. However, since the outputs of a crossbar
are connected to the inputs of another crossbar, if we inde-
pendently re-order the rows or columns, a routing module is
needed to connect different crossbars as shown in Fig. 6. As a
result, a large hardware cost is introduced.

VIII. CONCLUSION

In this paper, we have proposed a reliability-driven design
framework for memristive crossbar-based neuromorphic com-
puting systems, with taking account of both SAFs and vari-
ations challenges simultaneously. Experimental results show
that the proposed method can improve computation accuracy
of NCS and enhance the NCS robustness to SAFs and resis-
tance variations.

APPENDIX

We provide a summary of Kuhn_Munkres algorithm as
follows.

Step 1: Create a cost matrix with the size of nl × nl , where
each element represents the cost of mapping one of nl neurons
to one of nl positions. For each row of the matrix, subtract its
smallest element from every element in the row.

Step 2: For all zeros z in the resulting matrix, label z as a
starred zero if there is no starred zero in its row or column.

Step 3: Cover each column containing a starred zero. If nl

columns are covered, a complete set of unique mapping is
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generated according to the positions of starred zeros (exit).
Otherwise, go to step 4.

Step 4: Choose an arbitrary non-covered zero and prime it.
If there is no starred zero in the row containing this primed
zero, go to step 5. Otherwise, cover this row and uncover the
column containing the starred zero. Continue this process until
there are no uncovered zeros left. Save the smallest uncovered
element and go to step 6.

Step 5: Construct a series of alternating primed and starred
zeros. Let z0 represent the uncovered primed zero found in
step 4 and z1 denote the starred zero in the column of z0

(if any). Continue the procedure until the series terminates at
a primed zero that has no starred zero in its column. Unstar
each starred zero in the series and replace all primes with
stars. Erase all other primes and uncover every line in the cost
matrix. Go to step 3.

Step 6: Add the value found in step 4 to every element in
covered rows, and subtract it from every element in uncovered
columns. Go to step 4 without altering any stars, primes,
or covered lines.
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