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Abstract—Power efficiency has become a nonneglected issue of
modern CPUs. Therefore, accurate and robust power models are
highly demanded in academia and industry. However, it is hard
for existing power models to balance modeling speed, general-
ity, and accuracy well. This article introduces McPAT-Calib, a
microarchitecture power modeling framework, which combines
McPAT with machine learning (ML) calibration and active learn-
ing (AL) sampling. McPAT-Calib can quickly and accurately
estimate the power of different benchmarks executed on differ-
ent CPU configurations, and provide an effective evaluation tool
for the early design stage. First, McPAT-7nm is introduced to
support the preliminary analytical power modeling for the 7-nm
technology node. Then, a wide range of modeling features are
identified, and automatic feature selection and advanced nonlin-
ear regression are used to calibrate the McPAT-7nm modeling
results, greatly improving the accuracy. Moreover, a novel AL
approach termed power greedy sampling (PowerGS) embedded
with domain knowledge is leveraged to reduce the modeling cost
effectively. We use up to 15 configurations of the RISC-V Berkeley
out-of-order machine (BOOM) along with 80 benchmarks, tar-
geting 7-nm technology, to extensively evaluate McPAT-Calib.
Compared with state-of-the-art (SOTA) microarchitecture power
models, McPAT-Calib can reduce the mean absolute percentage
error (MAPE) under different cross-validation (CV) strategies
by 3.64%–6.14% (absolute reduction). Meanwhile, PowerGS is
superior to the existing AL approaches, which can significantly
reduce the demand for labeled samples to speed up model con-
struction. The effectiveness of the overall modeling and estimation
flow with AL sampling has also been verified.

Index Terms—Active learning (AL), machine learning (ML)
calibration, McPAT, microarchitecture power modeling, RISC-V
Berkeley out-of-order machine (BOOM).

I. INTRODUCTION

POWER modeling of integrated circuits (ICs) is a broad and
lasting research topic [1]. With the slowdown of Moore’s

law and the breakdown of Dennard scaling, power consumption
has become the main challenge in high power-efficiency CPU
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TABLE I
COMPARISON OF DIFFERENT POWER MODELS

design. In industry, it is necessary to conduct an accurate power-
performance tradeoff at the early design stage to ensure excellent
CPU designs. However, the components of modern CPUs,
e.g., instruction fetch, decoding units, and cache structures, are
too complex to be accurately modeled. At the same time, the
design space of modern CPUs is very large [2], and designers
need to conduct extensive design space exploration (DSE)
and optimization. When performing DSE, the entire design
space, i.e., different design configurations along with different
workloads, should be accurately modeled.

Increasingly stringent CPU power consumption design tar-
gets make power modeling a great challenge and put for-
ward higher requirements for modeling speed, generality, and
accuracy.

1) Speed: The running time of the power model itself and
the overall time required for the entire modeling flow.

2) Generality: The ability to model the power of different
CPU configurations under different workload programs.

3) Accuracy: Low error between the ground truths and
predicted power values.

Commercial gate-level power analysis tools
(e.g., PrimeTime PX) can accomplish the most accurate
per-cycle power estimation with the flow shown as the dotted
line in Fig. 1. In the later design stages, designers feed
gate-level netlist into simulation and power analysis tools,
usually taking hours or even days to complete. For the early
stage of CPU design, i.e., microarchitecture level, this will be
an unbearable high cost.

Academia has proposed a series of methods for different
design stages to accelerate power modeling. The comparison
is shown in Table I, illustrating the difficulty of simultane-
ously balancing the modeling speed, generality, and accuracy.
At the register-transfer level (RTL) or gate level, power models
(e.g., PRIMAL [4] and GRANNITE [3]) are constructed based
on simulation traces using feature engineering and machine
learning (ML) methods, enabling accurate fine-grained time-
based modeling. However, these models require netlist design
and simulation, which is highly time consuming, and most
models are design specific and hard to estimate unknown
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Fig. 1. Power modeling flow.

configurations well. At the microarchitecture level, analytical
power models (e.g., McPAT [6]) use design parameters and
machine activities for coarse-grained average power modeling,
which have the fastest modeling speed and higher generality.
Nonetheless, they cannot capture hardware details and lack
accuracy guarantees for emerging CPUs [7]. Runtime power
models (e.g., TCAD’17 [5]) based on performance monitoring
counters (PMCs) can accomplish fine-grained average power
modeling with equivalent microarchitecture events [8], but
they are design specific and cannot support DSE.

The construction cost of power models is also an issue
that we must consider. Analytical models require in-depth
hardware analysis and a great effort to build the internal repre-
sentation of the CPU, which is cumbersome and error prone.
ML-based models are data-driven and need many labeled sam-
ples to train models with better fitting and generalization
abilities. Consequently, the cost of labeling samples is very
high.

We focus on power modeling at the microarchitecture level,
and McPAT [6] serves as the cornerstone analytical power
modeling tool. McPAT models the average power consump-
tion following a hierarchical fashion, i.e., from a transistor
level to a system architecture level. Predicted power values
can be acquired from McPAT with microarchitecture design
parameters and events, ignoring RTL implementations and
simulations. Nevertheless, two limitations restrict the usage
of McPAT: 1) the modeling accuracy is very low due to
its incompleteness and architectural disparities in the model
and 2) McPAT lacks support for advanced technology nodes,
e.g., 7-nm FinFET technology.

In our preliminary work [9], we propose a framework called
McPAT-Calib, which combines McPAT internal improvements
and ML calibration to solve these problems. First, internal
improvements are made to obtain McPAT-7nm, which supports
the preliminary analytical modeling for modern CPUs under
7-nm FinFET technology. Second, advanced ML methods
are leveraged to calibrate the McPAT-7nm modeling results,
improving accuracy while ensuring generality. Moreover, a
preclustering sequential AL sampling approach is leveraged to
reduce the labeling cost. However, this preliminary AL sam-
pling approach fails to embed domain knowledge to achieve
better results further. In addition, academia lacks discussions
on an overall power modeling and estimation flow combined
with the sampling approach. In this work, we propose a novel
power greedy sampling (PowerGS) approach embedded with
domain knowledge and add it to the framework to reduce
modeling costs better. McPAT-Calib aims to quickly model

different benchmarks running on different CPU configurations
at a lower cost, thus performing average power estimation.

Our main contributions are summarized as follows.
1) We obtain McPAT-7nm by introducing 7-nm FinFET

technology and microarchitecture modification. It is the
first step to implement McPAT-Calib.

2) We use ML methods to calibrate dynamic and leakage
separately. A wide range of feature sources is selected
for the dynamic calibration model, and the comparison
of different feature sources proves the superiority.

3) We overcome multicollinearity through automatic fea-
ture selection and use a tree ensemble model to handle
nonlinearity, ensuring generality and accuracy.

4) We propose a novel AL sampling approach, PowerGS,
which embeds domain knowledge to enhance the diver-
sity and representativeness of samples in multiple
dimensions.

5) We propose an overall power modeling and estimation
flow combined with AL sampling, which can complete
model modeling at a lower cost.

6) We conduct an extensive evaluation of the proposed
framework to prove its superiority, using up to 80 bench-
marks along with 15 representative configurations of
Berkeley out-of-order machine (BOOM) Core under
7-nm FinFET technology.

The remainder of this article is organized as follows.
Section II introduces the important related work. Section III
is an overview of RISC-V BOOM and problem formulation.
Section IV provides detailed explanations about methodolo-
gies of the McPAT-Calib framework. Section V gives the
overall power modeling and estimation flow with AL sam-
pling. Section VI conducts an extensive evaluation. Finally,
Section VII concludes this article.

II. RELATED WORK

Academia has proposed various power modeling methods
to avoid the high cost of commercial gate-level power analy-
sis. According to whether RTL design is needed, they can be
divided into two types: 1) microarchitecture level and 2) RTL
(and gate) level.

A. Microarchitecture Power Models

At the microarchitecture level, power models only use
limited microarchitecture design parameters and events for
modeling average power at different granularities. Since there
is no RTL implementation and simulation, the modeling speed
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TABLE II
MICROARCHITECTURE DESIGN PARAMETERS AND POWER STATISTICS OF 15 BOOM CONFIGURATIONS

is very fast. Analytical models, e.g., CACTI [10], Wattch [11],
and McPAT [6], are mainly used. They try to establish the
internal hardware representation and use event statistics from
performance simulators [12], [13] to get the final estimate of
power. McPAT integrates power, area, and timing modeling for
multiprocessors. Due to the misalignment between the internal
microarchitecture descriptions and real designs, the modeling
error is as high as 20%–40% [7], [14], and there is a lack
of support for advanced technology nodes. McPAT-PVT [15]
and McPAT-Monolithic [16] update technology node, but the
problem of insufficient accuracy is not solved. PowerTrain [14]
uses linear regression (LR) with L1 regularization to reweight
the power of each component from McPAT, but it lacks
scalability for different designs.

In addition to analytical models, many ML-based models
can also be used for microarchitecture power modeling. Earlier
works [17], [18] use design parameters to perform regres-
sion modeling to achieve DSE, but it lacks event statistics
and cannot accurately model different benchmarks. The event-
based [19] and PMC-based [5], [20] models are more widely
used. Jacobson et al. [19] used a relatively small number of
program events to perform power modeling. Walker et al. [5]
built a runtime power model that allows static and dynamic
power separation by automatically selecting optimal PMC
events. Sagi et al. [20] used nonlinear transformation to cap-
ture relations between PMC events and power values and use
least-angle regression (LARS) to complete the multivariate
polynomial power regression. Reddy et al. [8] transformed
the PMC-based empirical model [5] into a microarchitecture
power model. However, these machine activities are closely
related to CPU configurations. As a result, these models are
design specific and hard to make good predictions for new
CPU designs.

B. RTL and Gate-Level Power Models

RTL and gate-level power models require netlist design and
simulation, and are built based on signal proxies. PrEsto [21]
uses linear models to characterize different modules through
FPGA-acceleration. Yang et al. [22] used a feature selec-
tion technique based on singular value decomposition (SVD)
to construct a linear power model. PRIMAL [4] uses a
convolutional neural network (CNN) to process register
switching activities to model the power of reusable circuit

building blocks. Simmani [23] uses VCD dumps to con-
struct a toggle-pattern matrix, and selects key signals through
clustering to build the power model. GRANNITE [3] rep-
resents the gate netlist as a graph, and takes register states
and unit inputs from RTL simulation as features to con-
struct the graph neural network (GNN) model to predict
gate toggle rates and average power. APOLLO [24] uses the
minimax concave penalty (MCP)-based feature selection to
select a small number of RTL signals to complete the per-
cycle power modeling, which serves as the basis for both
a design-time power estimator and a runtime on-chip power
meter.

These RTL and gate-level power models can provide more
hardware details and simulation traces and often achieve cycle-
by-cycle accurate modeling. Nevertheless, these models have
two critical shortcomings: 1) netlist design and simulation are
needed, which is costly and slow, and is difficult to use at the
early design stage and 2) most of them are design specific and
challenging to adapt to different CPU configurations.

III. PRELIMINARIES

A. RISC-V BOOM

RISC-V is an open-source instruction set architecture
(ISA) that has received strong attention and support from
academia and industry. Because it can avoid expensive com-
mercial licenses and can be customized according to var-
ious application scenarios, RISC-V has received plentiful
progress [25]–[28].

BOOM [27], [29] utilizes Chisel [30] to construct a gen-
erator for the core, and is a family of out-of-order RISC-V
designs rather than a single instance of a core. Due to the
page limit, more details about BOOM can be found in [31].
Thanks to the parametric microarchitecture design, designers
can obtain different BOOMs by configuring the core with
different microarchitecture parameters, i.e., FetchWidth,
DecodeWidth, etc., as shown in Table II. The divergent
tradeoffs of BOOM between power and performance are
needed to meet various design requirements. However, how
to quickly and accurately model the power of different con-
figurations is still a difficult problem. In addition, power is
also closely related to the workload (i.e., benchmark) being
executed.
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B. Problem Formulation

Traditionally, the total power P of IC is modeled at the
transistor level, which can be expressed as

P = Pdyn + Pleak = αCV2
DDf + VDDIleakage (1)

where Pdyn is the dynamic power and depends on: the activity
factor α, the switching capacitance C, the supply voltage VDD,
and the frequency f . The leakage power Pleak depends on VDD
and the leakage current Ileakage.

However, modeling a CPU at the transistor level is very
time consuming. More importantly, we cannot capture so
many hardware details at the early design stage. To accelerate
power modeling, we try to model power at a higher level of
abstraction, i.e., at the microarchitecture level, which can be
expressed as

P = Pdyn + Pleak = f (e, d) + g(d)

=
N∑

n=1

βnfn(en, d) + g(d) (2)

where Pdyn is a function of the microarchitecture events e and
the microarchitecture design parameters d, en represents an
event, βn is the weighting factor, and N is the total number of
events. Pleak is only determined by d.

We give the definitions of “configuration” and “benchmark.”
Definition 1 (Configuration): The configuration is to be

defined as the CPU microarchitecture design characterized
by a set of design parameters shown in Table II, such as
FetchWidth, DecodeWidth, etc.

Definition 2 (Benchmark): The benchmark is to be defined
as the workload program executed on the target CPU. Different
benchmarks will result in different machine activities and
power consumption.

The problem can be formulated with these definitions.
Problem 1 (Microarchitecture Power Modeling): Given dif-

ferent benchmarks B and different CPU configurations C, the
objective of microarchitecture power modeling is to estimate
the average power Pij of each benchmark Bj ∈ B running on
each configuration Ci ∈ C.

IV. MCPAT-CALIB METHODOLOGY

A. Overview of McPAT-Calib

The original McPAT cannot accurately model complex mod-
ern CPUs under advanced technology nodes. There are two
ways to improve modeling accuracy. The first way is internal
improvements. The hierarchical analytical modeling method
allows researchers to make internal modifications to provide
more accurate power estimates, but it is cumbersome and error-
prone. The second way is calibration, but the calibration model
obtained by the existing method [14] has poor generality and
hardly provides good estimates for unknown CPU configu-
rations. McPAT-Calib combines these two ways and aims to
construct the power model with high generality and accuracy
at a lower cost.

The McPAT-Calib framework consists of three important
parts: 1) McPAT-7nm; 2) ML calibration; and 3) AL sam-
pling. First, McPAT-7nm is used to complete the fast pre-
liminary power modeling. McPAT-7nm is obtained through
internal improvements to McPAT, including the introduction
of 7-nm FinFET technology and microarchitecture modifi-
cations. Second, advanced ML calibration methods are used

to calibrate the McPAT-7nm results to obtain more accurate
power estimates. We identify a wide range of feature sources
and propose an automatic feature selection algorithm to over-
come the multicollinearity to ensure the generality, and use
an advanced tree ensemble model to capture the nonlinear-
ity in dynamic modeling. Moreover, PowerGS leverages prior
knowledge of microarchitecture power modeling, to reduce the
labeling cost in data acquisition, and is added to the over-
all modeling flow. Users can specify the number of labeled
training samples according to the budget.

We use gem5 [13] to complete the microarchitecture simu-
lation of RISC-V BOOM to obtain detailed event statistics.
Notice that we do not restrict the usage of the simulator,
i.e., we can also utilize Sniper [32] to acquire similar event
statistics. The commercial flow shown in Fig. 1 is used as a
golden flow to obtain the ground truth of power values. When
the target microarchitecture configuration is given, RTL design
and logic synthesis are required to obtain the gate-level netlist.
Then, gate-level simulation and power analysis with the target
benchmark are performed.

B. McPAT-7nm

To take advantage of the analytical power model’s ease
of use and readiness, we first introduce McPAT-7nm, which
completes the preliminary power modeling of CPUs target-
ing 7 nm through simple internal improvements to McPAT.
McPAT-7nm is the first part of the proposed framework and
can also be used separately. We introduce 7-nm technology
parameters and reduce modeling errors through microarchitec-
ture modification and empirical coefficient adjustment. These
improvements require small efforts to implement and prove
effective in experiments.

Unlike ML-based models, the analytical power model
depends on specific technology parameters. Due to the chal-
lenge of combining new processes, the original McPAT
only supports 180 nm-22 nm CMOS technology modeling.
McPAT-PVT [15] and McPAT-Monolithic [16] updated it
to 22- and 14-nm FinFET technology through device sim-
ulations, respectively, but it still struggles to support more
advanced technology nodes. Our target technology library is 7-
nm FinFET PDK ASAP7 [33], with key parameters shown in
Table III. We obtain some parameters through scaling and then
get the physical parameters, e.g., voltage, current intensity,
required for McPAT modeling, thus supporting 7-nm FinFET
technology. In addition to technology parameters, McPAT
uses some empirical undifferentiated core/FU coefficients. We
adjust these empirical coefficients to reduce modeling errors
in McPAT-7nm.

There is a misalignment between the RISC-V BOOM core
and the microarchitecture description in the original McPAT.
For example, the default pipeline in McPAT has at least
12 stages, which is different from BOOM, and may cause
modeling errors. In addition, the default minimum cache size
exceeds the minimum parameter that the BOOM core can
support. Therefore, we make microarchitecture modifications
to McPAT to support accurate modeling for the BOOM core.

C. Machine Learning Calibration

Due to the high abstraction level of McPAT, it is difficult
to capture all hardware details of the CPU, which inevitably

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 22,2022 at 09:47:28 UTC from IEEE Xplore.  Restrictions apply. 



ZHAI et al.: MCPAT-CALIB: RISC-V BOOM MICROARCHITECTURE POWER MODELING FRAMEWORK 247

TABLE III
KEY PARAMETERS OF ASAP7

Fig. 2. Power calibration model.

brings low modeling accuracy. One promising solution is cal-
ibrating McPAT with ML methodology against different CPU
configurations. ML calibration helps McPAT compensate for
the loss of modeling accuracy caused by missing or unsup-
ported components inside a CPU. Compared with internal
improvement, such methodology alleviates many workforce
input.

We propose novel advanced ML methods to calibrate
McPAT-7nm, which is the most important step of McPAT-
Calib. To provide more power details, we choose to calibrate
leakage power and dynamic power separately, and select
appropriate modeling feature sources, respectively. A feature
selection algorithm is proposed to automatically select the
optimal features that can reflect different configurations and
benchmarks. To handle the nonlinearity, an advanced tree
ensemble model, XGBoost [34], is used to build the dynamic
calibration model.

1) Calibration Method and Feature Source: As described
in Section III-B, the total power is divided into dynamic power
and leakage power, which can be calibrated separately, as
shown in Fig. 2.

Leakage Calibration: For a certain CPU configuration, its
leakage power is a fixed value (under a specific technology and
certain operating corners). Therefore, we model the leakage
of each configuration, i.e., the average leakage of all samples
under the same configuration. This will cause the number of
samples to be greatly reduced, so we only select two use-
ful features for leakage calibration, namely, Core.Leakage and
Core.Area obtained by McPAT-7nm. Obviously, the key lies
in modeling the leakage of unknown configurations.

Dynamic Calibration: Dynamic power is closely related
to the configuration and the executed benchmark. It is dif-
ficult to achieve high generality and accuracy by only using
McPAT modeling results as features. Therefore, we choose
to use McPAT-7nm modeling results, microarchitecture design
parameters, and event statistics as dynamic modeling feature
sources simultaneously. First, for McPAT-7nm results, we use
the preliminary estimates of dynamic power for all levels

Algorithm 1 Filter Sequential Feature Selection
Require: allFeatures, all modeling features; k, the number

of features to select; varThreshold, the variance threshold
used to filter features;

Ensure: selectedList, the selected k optimal features;
1: for tmpFeature in allFeatures do
2: if var(tmpFeature) ≤ varThreshold then;
3: Delete tmpFeature from allFeatures;
4: end if
5: end for
6: selectedList = φ;
7: while selectedList.length < k do
8: bestR2 = −inf ;
9: for tmpFeature in allFeatures do

10: Cross-Validation(selectedList + tmpFeature);
11: if newR2 > bestR2 then;
12: bestR2 = newR2;
13: bestFeature = tmpFeature;
14: end if
15: end for
16: Add bestFeature to selectedList;
17: Delete bestFeature from allFeatures;
18: end while

of components. Core.Area and Core.Leakage are also lever-
aged, as they can provide overall information from different
configurations. Then, all microarchitecture design parameters
shown in Table II are utilized as the feature source, pro-
viding information on different configurations. Finally, we
use microarchitecture events that reflect the working states
of components, which are closely related to power consump-
tion. Although gem5 can give thousands of events, we only
selected 90 features according to architect experience, reflect-
ing the critical activity of essential components that mainly
contribute to the power consumption. All events were divided
by numCycles for normalization.

Three feature sources are combined to formulate all features,
and the correlation between features and dynamic power val-
ues is shown in Fig. 3. Section VI-D compares different feature
sources. A small number of features will be further selected
by Algorithm 1 described in Section IV-C2 to handle multi-
collinearity. The features highlighted in blue in Fig. 3 are the
final selected features that contribute significantly to dynamic
power calibration.

2) Automatic Feature Selection: An important considera-
tion when performing regression is multicollinearity, i.e., the
high linear correlation between modeling features. Many fea-
tures with strong multicollinearity will lead to high model
complexity, incurring low prediction performance, given
unseen configurations or benchmarks. The reason is that the
model may lead to overfitting on a small training set. We
leverage the variance inflation factor (VIF) to quantify multi-
collinearity. To find the VIF of a feature, we can use other
features to construct an ordinary least squares (OLSs) LR
model to predict this feature. Then, we can get

VIF = 1

1 − R2
(3)

R2 = 1 −
∑n

i

(
ŷi − yi

)2

∑n
i (yi − y)2

(4)
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Fig. 3. Correlation and VIF of dynamic modeling features.

where yi is the ground truth, ŷi is the prediction, and y =
(1/n)

∑n
i yi is the average of ground truth.

Generally speaking, strong multicollinearity is indicated
when VIF > 10. As demonstrated in Fig. 3, we observe that
the VIF of most dynamic modeling features exceeds 10, illus-
trating the existence of severe multicollinearity. We propose
an automatic feature selection algorithm to solve this problem
accordingly. Algorithm 1 first removes features with low vari-
ance (i.e., filters out these features that have little impact on
modeling) to prune the search space. Then, Algorithm 1 per-
forms forward sequential selection, sequentially adding the
most valuable feature obtained by cross-validation (CV) [35].
To compare the modeling results when using the same number
of features from different feature sources, we set the stopping
criterion of Algorithm 1 to the number of selected features up
to the specified “k” value. It is also possible to stop selection
when the desired CV accuracy is reached or the accuracy can-
not be improved further. The performance of Algorithm 1 is
detailed in Section VI-E.

3) Regression Model: Previous work [20] shows that there
is a strong nonlinearity in dynamic modeling. When com-
plex benchmarks are executed on a CPU, the relationship
between modeling features x and the resulting dynamic Pdyn
is nonlinear.

LR models cannot capture this nonlinearity. To obtain the
best modeling result, we use an advanced nonlinear model,
XGBoost regressor (XGBR) [34], as the final dynamic calibra-
tion model. XGBoost is widely used to achieve state-of-the-art
(SOTA) results on many ML challenges. It is a tree ensemble
model that uses K additive functions fk(x) to predict the output

ŷi = φ(xi) =
K∑

k=1

fk(xi). (5)

To learn the set of tree functions, the following regulariza-
tion objective is minimized:

L(φ) =
∑

i

l
(
ŷi, yi

) +
∑

k

�(fk) (6)

where l is a differentiable convex loss function that measures
the difference between the prediction ŷi and the target yi. The

second term � penalizes the complexity of the model, i.e., the
regression tree functions, which helps to smooth the learned
weights to avoid overfitting.

To evaluate the effectiveness of the proposed methods,
we also compare XGBR with 14 other regression models,
including: 1) LR; 2) LR with L1 regularization (Lasso);
3) LR with L2 regularization (Ridge); 4) LR with L1 and
L2 regularization (ElasticNet); 5) Bayesian ridge regression
(BRR); 6) Gaussian process regression (GPR); 7) regression
based on K-nearest neighbors (KNNRs); 8) and 9) support
vector regression with polynomial (Poly_SVR) and Radial-
basis-function (RBF_SVR) kernel; 10) decision tree regressor
(DTR); 11) random forest regressor (RFR); 12) adaboost
regressor (ABR); 13) gradient boosting regressor (GBR); and
14) bagging regressor (BAGR).

D. AL Sampling With Domain Knowledge Embedded

For data-driven ML models, the more the training sam-
ples are, the better the modeling performance is. However,
labeling samples (i.e., to get the ground truth of power value)
require time-consuming gate-level simulation and power anal-
ysis. In our experiments, the golden flow for each sample takes
approximately 5–20 h, which is an unacceptable cost. Hence,
we use active learning (AL) [36] to alleviate this problem. AL
aims to label the most representative training samples to sus-
tain or increase the modeling performance at a lower labeling
cost. To the best of our knowledge, our work is the first to
apply AL to power modeling.

Contrary to obtaining the ground truth of power value, it is
easy to obtain the features of a sample, which only takes a few
seconds on average. Therefore, we propose a pool-based AL
sampling method to reduce the labeling cost of the training
set. Fig. 4 illustrates the pool-based AL cycle. After gem5
simulation and McPAT-7nm modeling, all samples with only
features form an unlabeled sample pool. A learner selects a
small number of initial samples and feeds them into the golden
flow to label, thereby training an ML model, i.e., the power
calibration model. Then, the learner selects the next sample to
label and updates the ML model with the new knowledge of
the newly labeled sample, and the cycle continues. At the end
of the cycle, the target labeled training set is obtained.

In this work, we propose a novel AL sampling approach
embedded with domain knowledge, termed PowerGS, to fur-
ther reduce the construction cost of the power model. As

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 22,2022 at 09:47:28 UTC from IEEE Xplore.  Restrictions apply. 



ZHAI et al.: MCPAT-CALIB: RISC-V BOOM MICROARCHITECTURE POWER MODELING FRAMEWORK 249

Fig. 4. Pool-based AL cycle.

Fig. 5. Illustrative example of initial samples selection. The unlabeled sam-
ples are represented as points in a 2-D feature space, and the k-means (k = 2)
clustering is performed. The sample closest to the center in each cluster is
selected, and two initial samples are obtained.

shown in Fig. 6, we can incorporate PowerGS into the data
acquisition stage of the overall power modeling flow, to build
a high-performance power model under a limited budget.

PowerGS greedily selects diverse and representative sam-
ples to label, as shown in Algorithm 2. Suppose we have
obtained all N samples as an unlabeled pool {xn}N

n=1. First,
Algorithm 2 selects representative initial samples {xn}d

n=1 to
query label {yn}d

n=1 through clustering, so that the sample
query strategy can build a basic ML model. Then, the greedy
sampling is performed iteratively. Each time the most useful
sample x is selected to get the label y according to (11), and
the newly labeled sample (x, y) is sequentially added to the
training set. Finally, labeled samples {(xn, yn)}M

n=1 are gained.
1) Initial Samples Selection: Some existing AL

approaches [37], [38] usually select initial samples ran-
domly, resulting in poor quality. We use a better initialization
approach, preclustering, to ensure the diversity and repre-
sentativeness of initial samples. We select d initial samples,
where d is the dimension of modeling features. As shown in
Fig. 5, the k-means (k = d) clustering on all N unlabeled
samples are performed, and then the sample closest to the
cluster center is selected from each cluster.

2) Sequential Greedy Sampling: After the initial selec-
tion, sequential greedy sampling is entered. In each iteration,
assuming that k samples {xm}k

m=1 have been labeled with out-
puts {ym}k

m=1, the sample query strategy selects the most useful
sample to label from the remaining N − k unlabeled samples
{xn}N

n=k+1. Our query strategy aims to enhance the diversity
and representativeness of the labeled samples.

Our preliminary work [9] uses an advanced query strategy,
iGS [39], to increase the diversity in both feature space and

Algorithm 2 PowerGS

Require: U, a set of unlabeled samples {xn}N
n=1, where xn ∈

R
d; M, the maximum number of samples to label;

Ensure: L, the training set of labeled samples {(xn, yn)}M
n=1;

f (x), the regression model;
1: L = φ;
2: Perform k-means clustering on U to obtain d clusters,

Ci, i = 1, ..., d;
3: for i = 1 : d do
4: Select the sample x closet to the center of Ci to label;
5: Add (x, y) to L, delete x from U;
6: end for
7: Construct the regression model f (x) using L ;
8: for i = d + 1 : M do
9: Compute the dcbxy

n of each unlabeled sample xn in U
according to Equation (11);

10: Select the sample x with the maximum dcbxy to label;
11: Add (x, y) to L, delete x from U;
12: Update the regression model f (x) using L ;
13: end for

label space. First, the feature distance dx
nm between each unla-

beled sample xn and each labeled sample xm is computed.
Then, a model f (x) is built using the labeled samples, and the
label distance dy

nm between the prediction f (xn) of each unla-
beled sample xn and the label ym of each labeled sample xm is
computed. Finally, iGS computes dxy

n = minm dx
nmdy

nm of each
unlabeled sample and selects the sample with the maximum
dxy

n to label. However, this strategy fails to utilize the prior
knowledge of microarchitecture power modeling. Therefore,
it struggles to achieve better results.

We now embed domain knowledge from microarchitecture
power modeling to improve the strategy. After an in-depth
analysis of power samples, we can find that in addition to the
two dimensions of feature space and label space, the sample
also has two other essential dimensions, i.e., the configuration
and benchmark it belongs to. These two dimensions are of
great significance for further enhancing the diversity of sam-
ples, which is also the point that distinguishes our approach
from other general AL methods. Therefore, we propose a novel
PowerGS approach, which simultaneously increases diversity
in these four dimensions of power samples.

Like GSx and GSy in [39], PowerGS first calculates the
feature distance dx

n and the label distance dy
n between the

unlabeled sample xn and all labeled samples

dx
n = min

m
||xn − xm||, m ∈ [1, k]; n ∈ [k + 1, N] (7)

dy
n = min

m
||f (xn) − ym||, m ∈ [1, k]; n ∈ [k + 1, N]. (8)

On this basis, we consider the two dimensions of configura-
tion and benchmark. To further enhance the diversity, we tend
to select the power sample under a configuration (or bench-
mark) with a smaller number of labels. PowerGS uses the
number of labeled samples to calculate the weight wc

n of the
configuration and the weight wb

n of the benchmark

wc
n = 1 − 1

1 + e−NCn
, n ∈ [k + 1, N] (9)

wb
n = 1 − 1

1 + e−NBn
, n ∈ [k + 1, N] (10)
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Fig. 6. Microarchitecture power modeling and estimation flow combined with AL sampling approach.

where NCn is the labeled quantity in the configuration to which
the sample xn belongs; NBn is the labeled quantity in the
benchmark to which the sample xn belongs.

Finally, PowerGS selects the sample with the maximum
dcbxy

n to label

dcbxy
n = wc

nwb
ndx

ndy
n, n ∈ [k + 1, N]. (11)

3) Stop Criteria: To build a high-performance power
model within a limited time budget, we can determine the
number M of samples to be labeled according to the real
budget. When the number of labeled samples reaches M, the
sampling stops and all selected labeled samples are used to
build the final power model f (x). Other criteria can also be
used, such as achieving the required CV accuracy.

V. OVERALL MODELING FLOW

The preliminary work did not add AL sampling to the power
modeling flow. To complete the microarchitecture power
modeling at a lower cost, we propose a novel modeling and
estimation flow combined with AL sampling, as illustrated in
Fig. 6.

At the data acquisition stage, for all training config-
urations along with training benchmarks, first, gem5 is
used for microarchitecture simulation, and McPAT-7nm is
used for preliminary power modeling. Then, the leakage
and dynamic modeling features from McPAT-7nm modeling
results, event statistics, and microarchitecture design parame-
ters are extracted and preprocessed, respectively, to form an
unlabeled sample pool. Finally, the proposed AL sampling
approach, PowerGS, sequentially selects samples and sends
them to the commercial golden flow to label. The number
of labeled samples is specified by the user according to the
budget.

Model construction is performed after the labeled training
samples are obtained. First, Algorithm 1 is used to complete
automatic feature selection based on the training samples.
Then, the construction of the leakage calibration model and the
dynamic calibration model is achieved, respectively. Finally,
the total power calibration model is formulated.

At the power estimation stage, gem5 simulation and prelimi-
nary McPAT-7nm modeling w.r.t. the given target configuration
and benchmark are performed. Then, the selected modeling
features are extracted. Finally, the built power calibration
models are used to complete power estimation.

In addition, the use of McPAT-7nm is no different from
the original McPAT, and can be directly replaced for integra-
tion into existing simulation toolchains like HotSniper [40].
However, the power calibration model is not suitable for appli-
cation scenarios that require component-level power estimation
and cannot be integrated into HotSniper.

VI. EVALUATION

The McPAT-Calib framework is implemented in Python
and executed on Intel(R) Core(TM) i9-9900k CPU@3.60
GHZ with 64-GB main memory. To verify the effectiveness
and efficiency of our methods, we conduct a comprehen-
sive evaluation. We first introduce the experimental settings
in Section VI-A, and introduce the baseline methods to be
compared in Section VI-B. In Sections VI-C–VI-F, the abla-
tion studies of proposed modeling methods are performed.
In Sections VI-G–VI-H, the AL sampling approach PowerGS
and the McPAT-Calib framework are compared with baselines,
respectively. In Section VI-I, the overall power modeling and
estimation flow is evaluated.

A. Experiments Settings

We have expanded the official 5 RISC-V BOOM configura-
tions, and obtained a total of 15 representative configurations
for evaluation. Their microarchitecture design parameters are
evenly distributed in the entire design space, and they are quite
different from each other, enough to evaluate the generality of
power models. The design parameters and power statistics of
different configurations are shown in Table II.

To comprehensively evaluate the power consumption of
CPUs under different workloads, we select up to 80 bench-
marks as shown in Fig. 9. The sources are as follows: eight
benchmarks from riscv-tests [41]; 19 representative isa from
riscv-tests [41] by executing 200 loops to increase the ratio of
effective instructions to prevent incorrect estimates; most of
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(a) (b) (c) (d)

Fig. 7. Total power modeling results versus ground truth. (a) McPAT-7nm: preliminary modeling results. (b) McPAT-Calib: perform 15-fold Shuffle-Split
CV. (c) McPAT-Calib: perform 15-fold Config-Split CV. (d) McPAT-Calib: perform 20-fold Bench-Split CV.

Fig. 8. Dynamic modeling results using different modeling features. (a) Shuffle-Split CV. (b) Config-Split CV. (c) Bench-Split CV.

Fig. 9. Power modeling results of different benchmarks.

the rest 53 benchmarks are derived from previous open source
projects [42], [43]. We make simple modifications to some
benchmarks to enable them to complete RISC-V simulations.

We use commercial gate-level power analysis flow (Cadence
Genus 18.12-e012_1 for logic synthesis, Synopsys VCS
M-2017.03 for simulation @ 500 MHz, and PrimeTime PX
R-2020.09-SP1 for power analysis) based on 7-nm FinFET
PDK ASAP7 [33] to obtain the ground truth of power value.
All 1200 power samples are obtained for offline evaluation,
using 15 BOOM configurations along with 80 benchmarks.

Power modeling is essentially a regression problem. We
use mean absolute percentage error (MAPE) and coefficient
of determination (R2) as two metrics to evaluate the accuracy
of modeling results. MAPE is defined as

MAPE = 1

n

n∑

i

∣∣∣∣
ŷi − yi

yi

∣∣∣∣ × 100% (12)

where yi is the ground truth of power value, and ŷi is the power
prediction. MAPE is a measure of the prediction accuracy of

Fig. 10. Power modeling results of different configurations.

a modeling method. Low MAPE means low modeling error.
R2 has the same definition as (4), which is a measure that rep-
resents the proportion of the variance for a dependent variable
that is explained by an independent variable or variables in a
regression model. High R2 means a high level of correlation.
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B. Baseline Methods

1) Microarchitecture Power Modeling: First, several rep-
resentative microarchitecture power modeling baselines are
compared with McPAT-Calib. The design parameter-based
method [18] (HPCA’07) uses microarchitecture parameters
to perform regression modeling. The event statistics-based
method [5] (TCAD’17) builds a runtime power model that
allows the separation of static and dynamic power by auto-
matically selecting optimum PMC events. The event statistics-
based method [20] (TCAD’20) uses nonlinear transformation
to capture relations between PMC and power, and uses
LARS to complete the multivariate polynomial regression.
PowerTrain [14] uses LR with L1-norm penalty to reweight
the results of each component from McPAT.

TCAD’17 and TCAD’20 are PMC-based runtime power
models that average counter values that accumulate specific
microarchitecture events. The events obtained by PMC are
similar to those obtained by microarchitecture simulation, so
PMC-based and simulation-based power models also have a
lot in common, and there are many works [8], [14] show-
ing the transformation between the two types of models.
Therefore, we use TCAD17 and TCAD20 as microarchitecture
design-time models to compare with McPAT-Calib.

2) Active Learning for Regression: Several classic AL
approaches are compared with PowerGS. Query-by-committee
(QBC) [37] first bootstraps the labeled samples to P copies
with duplicates, and then builds P regression models (i.e., com-
mittee), and selects the sample with the maximum variance
of the committee prediction to label. The Gaussian process
(GP) uncertainty-based method [44] uses labeled samples to
build a GP model, and selects the sample with the maximum
prediction variance to label. GSx [45] considers the diversity in
feature space, by computing the minimum distance dx

n between
an unlabeled sample x and all labeled samples, using all fea-
tures, and selects the sample with the maximum dx

n to label.
GSy [39] considers the diversity in label space, by comput-
ing the minimum distance dy

n between the estimated label and
existing labels, and selects the sample with the maximum dy

n to
label. iGS [39] combines GSx and GSy to ensure that feature
selection/weighting is considered, by computing the minimum
product dxy

n of feature distance and label distance, and selects
the sample with the maximum dxy

n to label.

C. McPAT-7nm Modeling Results

As an analytical power model, McPAT-7nm can be used
directly without training. Therefore, it can directly estimate the
power of all 1200 samples. The scatter diagram of McPAT-7nm
modeling results and ground truth is shown in Fig. 7(a), where
MAPE = 13.02% and R2 = 0.817. After our improvement,
McPAT-7nm realized the preliminary power modeling of 7-nm
BOOM. In fact, McPAT-7nm can also be used separately from
the framework.

D. Comparison of Dynamic Modeling Features

Different feature sources are compared to verify the superi-
ority of the wide-ranging dynamic modeling features we have
selected. Specifically, McPAT results (McPAT), event statistics
(Event), design parameters (Params), and their total features
(Total) are used for dynamic calibration, and Algorithm 1 is

used to sequentially increase the number of features. The lin-
ear model (Ridge) and nonlinear model (XGBoost) are used
to evaluate different feature sources.

Unlike analytical power models, data-driven ML methods
need to use labeled samples to train the model and then make
predictions. Therefore, we use CV [35] to perform the evalua-
tion. More critically, three different CV strategies are proposed
to evaluate the generality and accuracy of power models.

1) Shuffle-Split Cross-Validation (Shuffle-Split CV): First,
regardless of the configuration or benchmark, the sample
belongs to, all samples are treated equally. A 15-fold Shuffle-
Split CV is performed to evaluate the power model’s modeling
ability for known configurations or benchmarks.

2) Modeling Unknown Configuration (Config-Split CV):
To determine whether a power model can help the design of
CPUs, the most important thing is to evaluate whether it can
accurately model unknown CPU configurations. Therefore, a
15-fold Config-Split CV is performed to evaluate the modeling
ability for unknown configurations. One previously invisible
configuration is used as the testing set, and the samples under
the remaining 14 known configurations are used as the training
set, repeated 15 times, and averaged.

3) Modeling Unknown Benchmark (Bench-Split CV):
Similar to modeling unknown configurations, the power
model’s ability to model unknown benchmarks is also a man-
ifestation of its generality. Therefore, a 20-fold Bench-Split
CV is performed. Four previously invisible benchmarks are
used as the testing set, and the remaining 76 benchmarks are
used as the training set, repeated 20 times, and averaged.

As shown in Fig. 8, we can see that when the number
of features and the regression model are the same, using
total modeling feature sources can achieve better results than
using any single feature source. This is one of the important
contributions of this work, because previous microarchitec-
ture power models only use a single feature source. Fig. 8(b)
and (c) also shows the negative effects of multicollinearity.
When the number of features is too large, the modeling error
for unknown configurations or benchmarks increases instead,
especially for the linear model Ridge. This also proves the
urgency of feature selection.

E. ML Calibration of Leakage and Dynamic

1) Leakage Calibration: Leakage power is only bound to
the CPU configuration. Therefore, we mainly evaluate the
modeling ability for unknown configurations. Specifically, the
average leakage under each configuration is taken as the
modeling target. We use 14 samples representing 14 configura-
tions to train the leakage calibration model and predict another
unknown configuration. The modeling results of each regres-
sion model are shown in column “Leakage” in Table IV, where
the Ploy_SVR can achieve the best results with MAPE =
4.47%.

2) Dynamic Calibration: To evaluate the generality of the
dynamic calibration model, we perform a 15-fold Config-Split
CV. More importantly, we compared the modeling results
using total dynamic features and using the selected features
after automatic feature selection. Table IV shows that all mod-
els can get better results after feature selection, which can
effectively improve the generality of the power model.

Total Features: Column “Dynamic-Total F.” lists the
dynamic modeling results using total features. The advanced
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TABLE IV
LEAKAGE AND DYNAMIC MODELING RESULTS

nonlinear model XGBR achieves the best modeling accuracy
with MAPE = 7.40%, and MAPE of most linear models are
up to 15%–20%. It can be seen that when total features are
used for dynamic modeling, the results are not ideal. This is
caused by the multicollinearity, which leads to the model over-
fitting on the training samples in known configurations and
hard to model the samples in unknown configurations well.

Selected Features: As shown in column “Dynamic-Selected
F.,” after feature selection, fewer features are used to get
better modeling results. The modeling accuracy of all regres-
sion models has been improved, especially for linear models.
This verifies the effectiveness of the proposed feature selec-
tion algorithm, which automatically selects features that can
reflect different configurations and benchmarks, and effectively
overcomes the adverse effects of multicollinearity. The best
modeling result is still achieved by XGBR, where MAPE =
6.23% using 17 selected features (with blue fonts in Fig. 3).

Of the 17 selected features, there are five features from
McPAT-7nm results, indicating important CPU components;
12 features from event statistics, representing the most impor-
tant machine activities for dynamic power calibration; and do
not include features from design parameters because they can-
not reflect the information of different benchmarks. We have
observed that some components have a considerable impact
on dynamic calibration in BOOM, e.g., reorder buffer (ROB),
memory management unit (MMU), etc. Here, we give some
insights using ROB as an example. ROB reserves entries for
each in-light instruction executed in the pipeline. It interacts
with different modules, e.g., issuing units, execution units,
load and store units, etc., when the instruction’s running sta-
tus is changed (hang on or execution). Therefore, the events
relative to ROB can represent the current running workloads
of the processor, and its dynamic power is implicitly indica-
tive of the overall dynamic power consumption. Accordingly,
ROB.Dynamic obtained by McPAT-7nm was incorporated into
our dynamic calibration model.

F. ML Calibration of Total Power

According to the results in Section VI-E, we use Ploy_SVR
to construct the leakage calibration model and use XGBR to
construct the dynamic calibration model with 17 selected fea-
tures. The sum of leakage and dynamic is the estimate of total

Fig. 11. Test MAPE curve of different AL approaches.

power. Three CV strategies are performed on all 1200 sam-
ples. The modeling results of 15-fold Shuffle-Split CV are
shown in Fig. 7(b), where MAPE = 3.38%, R2 = 0.989.
The modeling results of 15-fold Config-Split CV are shown in
Fig. 7(c), where MAPE = 5.22%, R2 = 0.978. The modeling
results of 20-fold Bench-Split CV are shown in Fig. 7(d),
where MAPE = 5.96%, R2 = 0.958. Figs. 9 and 10 show the
modeling results on different CPU configurations and bench-
marks. As shown in these figures, under different evaluation
strategies, the modeling accuracy of McPAT-Calib is much
higher than McPAT-7nm, which proves the effectiveness of
the proposed ML calibration methods.

The test sets for the three CV strategies described in
Section VI-D are small due to the small dataset available.
To further verify the generality of McPAT-Calib, we conduct
supplementary experiments with more test sets. First, we per-
form a 5-fold Config-Split CV, where three subarchitectures
belong to the same main architecture as the test set. Then,
We perform 5-fold and 10-fold Bench-Split CV, i.e., 16 or 8
benchmarks as the test set. Finally, we perform 5-fold, 10-
fold, and 20-fold Shuffle-Split CV. The results are shown in
Table VII with MAPE remaining at comparable levels.

G. Comparison With Previous AL Approaches

The effectiveness of AL sampling is verified, and PowerGS
is compared with the five previous AL approaches described
in Section VI-B2. A 15-fold Config-Split CV is performed for
the total power modeling of all 1200 samples, where the 17
selected features are used for dynamic calibration. In each val-
idation process, the AL approach selects different percentages
of useful labeled samples from 1120 training samples, thereby
constructing the power model and predicting 80 test samples.

Fig. 11 shows the variation of the test MAPE with the
number of labeled samples. The test MAPE presents a fluc-
tuating decrease trend as the number of labeled samples
increases. When the sampling percentage reaches 70%, i.e.,
784 labeled training samples are selected, the test MAPE
curve tends to converge. To better compare the convergence
speed of different AL approaches, Table V lists the modeling
results under different sampling percentages before 70%.
PowerGS achieves the smallest test MAPE under most sam-
pling percentages, with an average MAPE of 6.13% and an
average ranking of 1.38, which is better than previous AL
approaches.

The results show that AL sampling can effectively reduce
the demand for labeled training samples, and high modeling
accuracy can be achieved when only a limited number of
labeled samples are used. In the meantime, our new sampling
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TABLE V
COMPARISON BETWEEN POWERGS AND PREVIOUS AL APPROACHES

TABLE VI
COMPARISON WITH PREVIOUS POWER MODELS

TABLE VII
RESULTS OF DIFFERENT CV STRATEGIES

approach for the field of microarchitecture power modeling,
PowerGS, can achieve better modeling results than previous
AL approaches, including iGS used in the preliminary work.

H. Comparison With Previous Power Models

The modeling methods of our framework are compared
with previous microarchitecture power models described in
Section VI-B1. The total power calibration model is imple-
mented in the way described in Section VI-F. The three CV
strategies are performed on all 1200 samples, and the results
are shown in Table VI. Column “Norm. Cost” denotes the
normalized modeling cost, which is measured by the num-
ber of labeled samples used to construct the power model.
McPAT-7nm is an analytical power model without training.
McPAT-Calib with AL sampling (i.e., McPAT-CalibAL) uses
PowerGS to select part of labeled samples, and other models
use all labeled samples.

Compared with the SOTA results, the preliminary McPAT-
Calib [9] can reduce the MAPE of shuffle-split CV by 5.95%.
More importantly, it reduces the MAPE of Config-Split CV
(estimating unknown CPU configuration) by 6.14%, and the
MAPE of Bench-Split CV (estimating unknown benchmark)
by 3.64%. The R2 of the three strategies has also been
improved. Meanwhile, McPAT-CalibAL can achieve compa-
rable or even better modeling results when reducing the
modeling cost by 30%. This shows that AL sampling can

effectively reduce the modeling cost and even improve the
modeling accuracy, because fewer training samples help to
avoid overfitting. Since TCAD’17 and TCAD’20 are orig-
inally low-overhead runtime power models, there may be
some accuracy loss when used for microarchitecture power
modeling.

I. Evaluation of Overall Modeling Flow

Finally, we evaluate the overall power modeling and esti-
mation flow combined with AL sampling and compare it with
the preliminary McPAT-Calib [9].

All 1200 samples with total features are divided into training
and test sets using three CV strategies. The data acquisi-
tion and model construction are performed on the training
set. First, the AL sampling approach is used to select a cer-
tain percentage of labeled samples from the training set using
total features. Then, automatic feature selection is performed.
Finally, the labeled samples are used to construct calibration
models using the selected features. The power estimation is
performed on the testing set, and the calibration models are
used to estimate the power of the testing samples. Since the
number of total features exceeds 10% of the training set, the
sampling percentages are set from 20% to 90%.

As shown in Table VIII, under different CV strategies,
the average MAPE of McPAT-CalibAL using PowerGS is
only 94.1%, 95.0%, and 95.6% of the preliminary McPAT-
Calib [9], while the running time (column “RT”) increases by
only 5.0%, 2.0%, and 3.6%. Meanwhile, three R2 have also
been improved. The evaluation is performed offline and “RT”
does not include the execution time of the golden flow. We can
see that the modeling accuracy (MAPE) under the three CV
strategies is comparable. However, the R2 of Config-Split CV
is low, which means that the fitting ability to the variance of
different samples under unknown configurations is relatively
low. The effectiveness of the new power modeling flow using
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TABLE VIII
COMPARISON WITH PRELIMINARY WORK

PowerGS is proved, and better modeling results are achieved
with little additional running time overhead.

Finally, we give the absolute execution times of McPAT-
Calib and the golden flow. For 1200 samples, the average
execution time for label acquisition using the golden flow was
7.2 h, while the average inference time for McPAT-Calib was
3.46 s.

VII. CONCLUSION AND FUTURE WORK

We propose a microarchitecture power modeling framework
named McPAT-Calib that combines McPAT-7nm, ML calibra-
tion, and AL sampling. First, we made internal improvements
to obtain McPAT-7nm to support preliminary analytical power
modeling of 7-nm CPUs. Then, ML calibration methods,
such as automatic feature selection and advanced nonlinear
regression, are used to improve the accuracy of McPAT-7nm.
Finally, a novel AL sampling algorithm PowerGS embedded
with domain knowledge is proposed to effectively reduce the
construction cost of the ML calibration model. McPAT imple-
ments an overall power modeling and estimation flow and
aims to construct the power model with high generality and
accuracy at a lower cost. Extensive evaluations based on the
RISC-V BOOM show the superiority of McPAT-Calib, which
will effectively promote the modeling and design of modern
CPUs.

McPAT-Calib provides a power modeling flow and method-
ology, rather than a ready-to-use power calibration model.
It trains ML calibration models using several typical con-
figurations of the core to provide power estimates for other
configurations to support DSE. Therefore, ML models trained
on BOOM cores may not be accurate enough for other cores
because the microarchitectures are very different and retraining
is necessary.

Our future research is focused on three directions. First, we
will develop a more fine-grained time-based power model for
design-time or runtime power estimation. Second, we want
McPAT-Calib to provide component-level power estimation
and integrate it into existing toolchains like HotSniper. Third,
we will investigate the transferability of the ML calibration
models.
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