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PTPT: Physical Design Tool Parameter Tuning
via Multi-Objective Bayesian Optimization
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Abstract—Physical design flow through associated electronic
design automation (EDA) tools plays an imperative role in the
advanced integrated circuit design. Mostly, the parameters fed
into physical design tools are mainly manually picked based on
the domain knowledge of the experts. Nevertheless, owing to
the ever-shrinking scaling down of technology nodes and the
complexity of the design space spanned by combinations of the
parameters, even coupled with the time-consuming simulation
process, such manual explorations for parameter configurations
of physical design tools have become extremely laborious. There
exist a few works in the field of design flow parameter tuning.
However, very limited prior arts explore the complex correla-
tions among multiple quality-of-result (QoR) metrics of interest
(e.g., delay, power, and area) and explicitly optimize these goals
simultaneously. To overcome these weaknesses and seek effec-
tive parameter settings of physical design tools, in this article,
we propose a multi-objective Bayesian optimization (BO) frame-
work with a multi-task Gaussian model as the surrogate model.
An information gain-based acquisition function is adopted to
sequentially choose candidates for tool simulation to efficiently
approximate the Pareto-optimal parameter configurations. The
experimental results on three industrial benchmarks under the 7-
nm technology node demonstrate the superiority of the proposed
framework compared to the cutting-edge works.

Index Terms—Multi-objective Bayesian optimization (BO),
multi-task Gaussian process, physical design, tool parameter
tuning.

I. INTRODUCTION

OVER the past decades, both academia and industry have
made great efforts on studying the physical design flow,

the core of modern VLSI design. As a result, several physical
design tools with dozens of sophisticated algorithms incorpo-
rated are developed to improve chip productivity and design
quality and reduce time-to-market. Manual configuring the
input parameters of physical design tools relies on expertise
and domain knowledge, which may be time intensive and
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unrobust. Therefore, automatic parameter tuning for physical
design tools is highly desirable.

Recently, a few works [1]–[6] have focused on physical design
flow parameter tuning. For example, [1] is the first self-evolving
and autonomous system for tuning the input parameters of logic
and physical synthesis tools, while [2] further enhances the tun-
ing framework proposed in [1] by integrating an adaptive online
learning method. Ustun et al. [3] accelerated FPGA design clo-
sure by utilizing XGBoost [7] regressor-based machine learning
tuning framework with design-specific features extracted from
early stages of the design flow as guidance. Kwon et al. [4]
used a tensor decomposition-based recommender system to
tune parameters for macros. Agnesina et al. [5] optimized the
placement parameters via a deep reinforcement learning frame-
work fed with a mixture of handcrafted features covering the
graph topology theory along and graph embeddings generated
using graph neural networks. In [6], the active learning-
based approach leveraging the feature importance sampling
and XGBoost regressor is proposed for automatic parameter
tuning. Although these pioneered parameter tuning frameworks
have started the research explorations in this field and achieved
notable progress, they have their limitations. Ustun et al. [3]
only considered the single quality-of-result (QoR) metric, while
the deep reinforcement learning framework utilized in [5] is
hard to train and requires a large amount of training data.
Neither Kwon et al. [4] nor Xie et al. [6] explicitly explored
the correlations among QoR metrics to be optimized, which
may lead to performance degradation.

It is worth mentioning that the parameter tuning issue
often involves optimizing multiple QoR metrics simultane-
ously. However, these QoR metrics (e.g., delay, power, and
area) are usually in conflict or coupled. The tradeoffs natu-
rally need to be considered. What is more, “white-box” and
“black-box” optimization problems emerge. For “white-box”
optimization problems, the objective functions have explicit
formulations, which can be directly addressed by numerous
methods, such as evolutionary strategies [8] and gradient-
based optimization methods [9]. Nevertheless, there are no
explicit functions for optimized objectives in black-box prob-
lems. Parameter tuning of physical design tools is required
to combat the black-box optimization. To a certain extent,
the physical design tool parameter tuning issue, which can
be casted as parameter space exploration, is analogous to
the design space exploration (DSE) problem [10]. Some arts
like [11] exploit the state-of-the-art single-objective Bayesian
optimization (BO) framework with a scalarization trick (i.e.,
the trick of a weighted-sum cost function which is also
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(a)

(b)

Fig. 1. Visualizations of the working flow of (a) physical design tool and
(b) QoR metric space (area versus minus total negative slack) generated by
invoking physical design tool 1440 times in a manual parameter tuning man-
ner. In the QoR metric space, each light green dot represents an output QoR
metric value tuple of a physical design tool, which is associated with a spe-
cific parameter configuration. The units for area and delay are ns and um2,
respectively.

exploited in [1], [2], and [6]) to handle multiple objectives.
In these works, scalar weights of multi-objective functions
are either sampled from a uniform distribution or decided
based on the user’s preference to construct a single-objective-
like function. However, they are not really designed to seek
near Pareto-optimal solutions to real QoR metrics (e.g., area
versus delay, power versus delay, and area versus delay ver-
sus power). Pareto-driven works, such as [12], try to classify
the input points based on the learned models into three classes:
1) Pareto optimal; 2) non-Pareto optimal; and 3) unclassified.
In each iteration, they select the candidate input for evaluation
toward the goal of minimizing the size of the uncertain set.
Although the flow provides theoretical guarantees, it is only
applicable to input space with a finite dataset of discrete points.
Finally, by virtue of a different search process for optimum
solutions, the multi-objective BO framework [13] is intuitively
compatible with the black-box, multi-objective problem setting
of physical design tool parameter tuning.

Given a design (e.g., a multiply accumulate (MAC) design
under the advanced 7-nm technology node in our scenario)
and PDK files [seen in Fig. 1(a)], how to automatically and
efficiently acquire high-quality (near Pareto optimal) parame-
ter configurations of the physical design tool is a critical issue.
We try to visualize the challenges existing in parameter tuning
in Fig. 1(b). The first challenge is that the final performance
after physical synthesis could vary significantly under deli-
cate changes of sensitive parameters. We can see in Fig. 1(b),
the design quality variance in QoR metric space with chang-
ing seven physical synthesis tool parameters based on human
intervention. Especially, manually tuning the parameter noted
as “maxDensity” leads to the two clusters in QoR metric space.
Even worse, QoR metrics are realistically correlated, which
affects the tuning process. In Fig. 1(b), most of the dots in
QoR metrics show either unsatisfied area quality with low

delay or a small area value with a high delay. Additionally,
the parameter design space is huge [thousands of dots in
the QoR metric space in Fig. 1(b)] and will expand expo-
nentially with more constraints or parameters are taken into
account, which makes an efficient flow with as few evaluations
as possible in high demand. To address the aforementioned
issues, we develop a multi-task Gaussian process (MGP)-
based multi-objective BO flow for efficient physical design
tool parameter tuning. MGP regressor is leveraged as the sur-
rogate model in the proposed BO framework, which captures
the correlations among the tool parameters and QoR metrics.
Compatible with the multi-objective optimization problem, the
information gain-based acquisition function is developed to
guide the exploration process to find the superior parameter
settings. Our main contributions are summarized as follows.

1) An MGP is built to learn interobjective dependencies.
2) A multi-objective BO framework with an MGP as

its surrogate model is investigated to attempt to tune
physical design tool parameters.

3) The proposed optimization framework finds better
Pareto frontiers on three benchmarks under the advanced
7-nm technology node with less expense on physical
design tool runs.

The remainder of this article is organized as follows.
Section II introduces some prior knowledge about multi-
objective optimization and then gives the problem formula-
tion. Section III describes the proposed multi-objective BO
framework, while Section IV discusses the developed param-
eter tuning flow. Section V shows the experimental results.
Section VI presents an analysis of the differences between
SOTA works and ours, followed by a conclusion and future
work discussion in Section VII.

II. PRELIMINARIES

In this section, the background of the multi-objective
optimization is depicted, and then with descriptions of two
evaluation metrics, we give the problem formulation.

A. Multi-Objective Optimization

Assume a multi-objective optimization problem has a set of
feasible solutions X ∈ R

P. There are N objective functions,
f1(·), . . . , fN(·), which map an input x to corresponding results
f1(x), . . . , fN(x) forming an N-dimensional result vector f (x).
A result vector f (u) is said to dominate another result vector
f (v) if f (u) is at least as good as f (v) in all the objectives,
namely, fi(u) ≤ fi(v) ∀i ∈ [1, N] if all the objectives are to be
minimized. Hence, we say that a solution x is Pareto optimal
if it is not dominated by other solutions in the feasible solution
set X. A sketch of multi-objective optimization is exemplified
in Fig. 2.

In our context of physical design tool parameter tuning,
a feasible solution vector x is the feature representation of
encoded, normalized, and concatenated physical tool param-
eters, which satisfies the predetermined constraints, while a
Pareto-optimal design is where none of the QoR metrics,
such as the area, power, and delay, can be optimized without
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Fig. 2. Example of a bi-objective (two correlated QoR metrics) optimization
problem with a tridimensional parameter configuration space. The left subfig-
ure is the tridimensional parameter space, while the right subfigure displays
the associated bi-objective space. The middle curve connecting the two parts
refers to a parameter-to-QoR mapping f (·). Suppose that the parameter con-
figuration features are the physical design parameters, such as frequency, max
fanout, and max density, while QoR metrics are area and delay. Each data
point in the parameter space is a simply encoded, normalized and concate-
nated feature vector of the three design parameters. The Pareto frontier, golden
stars with dash carnation line in the right sketch, features optimized delay and
area.

worsening at least one of the rest. The Pareto set contains all
the Pareto-optimal solutions.

B. Problem Formulation

Definition 1 (Hypervolume): This metric reflects the vol-
ume fenced by the Pareto frontier and a reference point in the
objective space. It measures how well distributed the points
are on the Pareto frontier approximation.

In the right subfigure of Fig. 2, the area filled with grids is
an example of the hypervolume of a predicted Pareto-optimal
set in a bi-objective space. The hypervolume error for a Pareto
set approximation P̂ is defined

e =
H(P)− H

(
P̂
)

H(P)
(1)

where P is the golden Pareto-optimal set, and H(P) is the
ground truth of hypervolume. If a solution set P′ is better than
another set P′′, H(P′) is greater than H(P′′) in our scenario.

Definition 2 [Average Distance From Reference
Set (ADRS)]: Given a reference Pareto-optimal set
A = {a1, a2, . . . |a = (m1

a, m2
a, . . . , mN

a)} and an
approximated Pareto-optimal set P = {p1, p2, . . . ,

|p = (m1
p, m2

p, . . . , mN
p)} in the N-objective optimization

problem

ADRS(A,P) = 1

(|A|)
∑
a∈A

min
p∈P

δ(a, p) (2)

where δ(a, p) = max{|(m1
p − m1

a)/m1
a|, . . . , |(mN

p −
mN

a)/mN
a|}. Assume in a QoR metric space (e.g., area

versus delay), there are several points in the reference Pareto-
optimal set and we assign index numbers to them. Hence, we
can write down the mathematical definition of the reference
set as A = {a1, a2, . . .}. Then, for instance, the meaning of
ma

1 is the first coordinate (i.e., the area value) of the a1 in the
reference Pareto-optimal set.

ADRS is used to quantify how close a set of nondominated
points is from the Pareto frontier in the objective space. The
smaller ADRS value, the closer the approximate set P is to
the reference set A.

With the above knowledge, our problem can be formulated
as follows.

Problem 1 (Automatic Parameter Tuning for Physical
Design Tool): Given the boundary of parameters of a physical
design tool, the objective of physical design tool parameter
tuning is to automatically search the Pareto-optimal parameter
configurations, which bring about the high design quality con-
cerning multiple QoR metrics, such as delay versus power/area
and delay versus power versus area.

III. MULTI-OBJECTIVE BAYESIAN OPTIMIZATION

METHOD

As aforementioned, the ultimate goal of physical design
parameter tuning is to simultaneously achieve timing closure
and smallest reachable area and lowest acceptable power. Quite
often the QoR metrics are coupled or conflicted, which is
not ideal for traditional tuning flows. For example, reduc-
ing the supply voltage can effectively cut down the dynamic
power consumption. However, it leads to an increase in gate
delays. To tackle such negatively correlated issue, we pro-
pose a tuning flow which is based on an MGP surrogated
multi-objective BO method. The optimization method explores
the correlations among QoR metrics and attempts to explore
the best tradeoffs among them. The two main components of
the proposed optimization method, i.e., the MGP surrogate
model and information gain-based acquisition function, are
well-customized for our case. In the following, we will first
introduce the two vital keys and then the whole optimization
method.

A. Surrogate Model: Multi-Task Gaussian Process

MGP models are prevalently harnessed to couple related
objectives or functions for a joint regression [14], [15]. This
coupling is achieved by designing a structured covariance
function, yielding a prior on objectives to be regressed. More
importantly, MGP tries to learn a kernel involving inter-
task dependencies based solely on the task identities and the
observed data for each task. This kind of property is naturally
compatible with our optimization methodology. We can uti-
lize MGP as the surrogate model to jointly predict the multiple
QoR metric [e.g., power–performance–area (PPA)] values with
respect to tool parameters as inputs. Note that the “task” means
regression on one QoR metric value in our case.

In the same way as single-task GPs, multi-task GPs are
mainly specified by their kernels which are usually assumed
to be zero-mean functions. For developing valid covariance
functions, we adopt a linear model of coregionalization (LMC)
where the outputs are expressed as linear combinations of
independent random processes. As aforementioned, MGP
attempts to build a multi-output function f (x) : R

p → R
N

with a feature vector x ∈ R
p as input and N the number of

QoR metrics. Note that in our work, with simple encoding and
normalization tricks, the physical design tool parameters are
simply encoded and concatenated as x. In the LMC assump-
tion, the dth element of output vector (in our case, the output
vector contains estimated QoR metric values, such as area,
delay, and power given the input tool parameter configuration
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Fig. 3. Visualization for a tritask Gaussian process model with a scalar input
and Q = 1. The dashed lines indicate the correlations. We can imagine this
model is built for an area versus power versus delay joint regression problem
with a parameter, max_transition, as input x.

x), i.e., fd(x), can be represented as

fd(x) =
Q∑

q=1

ad,qgq(x) (3)

where each latent function gq(x) is considered to follow an
independent Gaussian prior with zero mean and covariance
cov [gq(x), gq′(x′)] = kq(x, x′) if q = q′, and ad,q is a scalar
number. Specifically, when we set Q equal to 1 and

∑
ad,q =

1, (3) is degraded to fd(x) = gd(x) with a little abuse of
notations. For a better understanding, a visualization for MGP
is exemplified in Fig. 3.

Obviously, the processes {gq(x)}Qq=1 are independent if
q �= q′. We can derive the cross covariance between any two
functions fd(x) and fd′(x) like

cov
[
fd(x), fd′

(
x′

)] =
Q∑

q=1

ad,qad′,qkq
(
x, x′

)

=
Q∑

q=1

bq
d,d′kq

(
x, x′

)
. (4)

(K(x, x′))d,d′ is exploited to denote cov [fd(x), fd′(x′)], which
indicates the similarity or covariance across d- and d′th tasks
at x and x′, respectively. According to the expression in (4),
the kernel for MGP is shown as follows:

K
(
x, x′

) =
Q∑

q=1

Bq
(
d, d′

)
kq

(
x, x′

)
(5)

where Bq ∈ R
N×N is a so-called coregionalization matrix,

and the coefficient bq
d,d′ is the element of Bq. Bq is positive

semidefinite matrix which specifies the intertask similarities.
The proof is supplemented as follows. Assuming ad,qad′,q =
bq

d,d′ and column vector Aq = (a1,q, . . . , ad,q, . . . , aN,q) ∈
R

N×1, we can write down Bq = AqA	q . According to the
definition of the positive semidefinite matrix, Bq is positive
semidefinite if every nonzero real column vector z satisfies
z	Bqz ≥ 0. Because z	Bqz = z	AqA	q z = (A	q z)	(A	q z),
which is the square of (A	q z), it cannot be less than 0. By
definition, the coregionalization matrix Bq ∈ R

N×N fulfills the
requirement of the positive semidefiniteness. The above linear
expression of outputs represents the covariance function as the

sum of the products of two covariance functions. More specifi-
cally, Bq models the dependence between the outputs, which is
independent to the input parameter vector x. kq(x, x′) discov-
ers the parameter dependence, independently of the ultimate
output QoR metrics f (x).

For further reduction, a reasonable assumption that bq
d,d′ =

kg
d,d′bq for a suitable scalar coefficient kg

d,d′ can be made. With
substituting this assumption for bq

d,d′ , (4) can be rewritten as

cov
[
fd(x), fd′

(
x′

)] = kg
d,d′k

x(x, x′
)

(6)

where kx(x, x′) = ∑Q
q=1 bqkq(x, x′). Finally, on the back of

independent GP priors over the latent functions gq(x), our
kernel matrix corresponding to a dataset X (stacking the tool
parameter configurations as rows) takes the form in

K(X, X) = Kg ⊗ Kx(X, X)

fd ∼ N

⎛
⎝

Q∑
q=1

ad,qgq(x), σ 2
d

⎞
⎠ (7)

where ⊗ refers to Kronecker product. Equation (7) decou-
ples the correlation between task (estimating the QoR metric
values) similarities and input (tool parameter configurations)
similarities.

In the same spirit of standard GP for the mean and variance
predictions, inference in the MGP model can be calculated.
Given M training points (tool parameter configurations) with
concatenated golden QoR metric values y ∈ R

MN and a new
parameter configuration x∗, The closed-form expressions of
mean and uncertainty for task d at x∗ shown as (9) and (10)
are acquired by using the first-order optimality condition on
the marginal likelihood function L [in (8)] of the MGP

L = −M

2
log

∣∣Kg
∣∣− N

2
log

∣∣Kx
∣∣

− 1

2
tr
[(

Kg)−1F	
(
Kx)−1F

]
− M

2

N∑
l−1

log σ 2
l

− 1

2
tr
[
(Y − F)D−1(Y − F)	

]
− MN

2
log 2π

(8)

f̄ d(x∗) =
(
kg

d ⊗ kx∗
)	

�−1y (9)

¯var
[
f̄ d(x∗)

] = kg
d,dkx(x∗, x∗)−

(
kg

d ⊗ kx∗
)	

�−1(kg
d ⊗ kx∗

)

(10)

where � ∈ R
MN×MN := (Kg ⊗ Kx +D⊗ I) with D an N × N

diagonal matrix in which the element in (d, d) is σ 2
d . Kx indi-

cates the matrix of covariances between all pairs of training
points. Kg which is treated as a kind of hyperparameter of the
MGP describes the task similarities, and it can be obtained
by maximizing likelihood estimation. Furthermore, kg

d denotes
the dth column of Kg, and kx∗ refers to the vector of covari-
ances between the test point x∗ and the other training points.
Until now, we have built the surrogate model and obtained the
predictions on QoR metrics, such as area, delay, and power
for further calculations of the acquisition function.
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B. Information Gain-Based Acquisition Function

Given the parameter configuration space X (i.e., the bound-
aries of parameters) of a physical design tool and current
training dataset D, we attempt to maximize the information
gain about the predicted Pareto frontier Y∗, namely, expected
reduction in entropy over Y∗. Consequently, we can write
down an information gain-based acquisition function I(x) as
showed in

I(x) = I
({x, y},Y∗ | D)

= H
(
Y∗ | D)− Ey

[
H

(
Y∗ | D ∪ {x, y})] (11)

where x is the parameter configuration to be selected and y
is the corresponding predicted the QoR values. By using the
symmetric property of mutual information, we can rewrite (11)
as follows:

I(x) = H(y | D, x)− EY∗
[
H

(
y | D, x,Y∗

)]
. (12)

Equation (12) tries to minimize the uncertainty estimation
of Pareto frontier approximation Y∗ after searching the next
candidate x for design tool evaluation. The first term of (12)
is straightforward to compute. In fact, it is simply the entropy
of the predictive distribution p(y | D, x), which is an N-
dimensional Gaussian distribution N(y | μ,�). Applying the
substitution trick in a normalization fashion, we can obtain a
simplified expression of the first term as

H(y | D, x) = N

2
(ln 2π + 1)+ 1

2
ln |�|. (13)

The main part of second term in (12) is the entropy of
the predictive distribution conditioned on the Pareto fron-
tier Y∗. This expectation term can be approximated fast and
effectively by

EY∗
[
H

(
y | D, x,Y∗

)] � H
(
y | D, x,Y∗

)
. (14)

In (14), we can observe that the computation involves the
predicted Pareto frontier Y∗, which means the Pareto frontier
needs to be estimated. To calculate the Pareto frontier sam-
ples, a multi-objective optimization formulation should be first
established. Analogous to the previous arts [13], [16], sample
functions from the posterior MGP model via some kernel func-
tions and then solve a multi-objective optimization over the
N sampled functions. This multi-objective optimization also
allows us to capture the interactions between different objec-
tives. In the process, the N kernel-based linear functions are
exploited in a ridge regression taste. The principle behind this
execution is that the Gaussian Process is a Bayesian gener-
alization of the ridge regression and can be explained in a
weight space view [17]. The sample function is constructed
as a finitely parameterized approximation which is shown in

f̃i(x) = κ(x)	μ (15)

where κ(·) is some kind of kernel function such as Matern,
radial basis function, and μ is a random variable sampled
from its corresponding posterior distribution conditioned on
the dataset D containing all parameter configurations through
tool evaluations. The reparameterization trick is exploited to
compute μ.

Algorithm 1 Computation Process for Information Gain-
Based Acquisition Function in the tth Iteration
Input: the number of tasks N, the predictions from the multi-
task GP model.

1: for i← 1 to N do
2: Sample approximation function f̃i(·) from each task

output from the multi-task GP model; � Equation (15)
3: end for
4: Multi-objective optimizer (NSGA-II) optimizing over

f̃1(·), f̃2(·), . . . , f̃N(·); � Equation (16)
5: Compute and maximize I(x); � Equation (17)

After formulating the multi-objective optimization over the
N sampled functions f̃1(·), f̃2(·), . . . , f̃N(·), a genetic algorithm-
based solver, e.g., NSGA-II [8], is adopted to optimize the
optimization problem

X∗ = arg minx∈X
(

f̃1(x), f̃2(x), . . . , f̃N(x)
)

(16)

where X∗ is the associated Pareto-optimal set.
Until now, the Pareto-optimal set X∗t with corresponding

objective values Y∗ is approximated. Next, an additional con-
straint is introduced. It can be proved that the value of each
element of y in (14) is upper bounded by the maximum value
of the corresponding element in sampled point on Pareto fron-
tier Y∗. Combining the boundedness property and the fact that
each sampled objective function is modeled as a GP prior,
we can model each component of y as a truncated Gaussian
distribution. Ultimately, directly harnessing the closed-form
solutions to moments of a truncated Gaussian distribution [18]
and (13), we can get the approximation of acquisition function
as shown in

I(x) =
N∑

i=1

[
νi(x)φ(νi(x))

2F(νi(x))
− ln F(νi(x))

]
(17)

where φ and F stand for the probability density function
and the cumulative density function of a standard Gaussian
distribution, respectively. νi(x) equals([y∗i − μi(x)]/[σi(x)])
with y∗i the maximum value among the sampled points
on predicted Pareto frontier for the ith QoR metric. Then,
we can maximize (17) via some Quasi-Newton optimizers
like limited-memory BFGS. The computation process for
information gain-based acquisition function is briefly con-
cluded in Algorithm 1.

C. Multi-Objective Bayesian Optimization Method

After details of two main components, we summarize
the proposed multi-objective BO method in Algorithm 2. In
the initialization stage of Algorithm 2, the surrogate model
captures the priors about the unknown objective functions
and offers predictions on posterior distributions (line 1). Per
iteration, the acquisition function first exploits the predicted
posterior distributions to search for the candidate points for
the tool query (lines 3 and 4). After evaluation, the candi-
date points with golden values will in turn help calibrate the
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Algorithm 2 Multi-Objective BO Method
Input: the parameter configuration space X (i.e. the bound-
aries of parameters) of a certain physical design tool, initial
dataset D0 and the number of maximum iterations T .
Output: the set of predicted Pareto-optimal parameter config-
urations P̃ over D.

1: Initialization: Initial the multi-task GP model with initial
data set D0;

2: while not convergence or t < T do
3: xt ← arg minx∈XI(x); � Algorithm 1
4: Enquiry the physical design tool to acquire the golden

values yt (area/power/delay values) of xt;
5: Update the training dataset Dt−1 with

(
xt, yt

)
: Dt =

Dt−1 ∪
(
xt, yt

)
;

6: Fine tune the multi-task GP model with Dt;
7: t← t + 1;
8: end while

(a) (b) (c)

Fig. 4. Visualization for the proposed BO method optimizing multiple QoR
metrics of interest (i.e., area versus delay). The golden stars with dash car-
nation lines refer to the golden Pareto frontier among area and delay. The
black squares with blue-dashed lines denote the current predicted Pareto
frontier based on observed tool parameter configurations and corresponding
performance values. The cyan heat map reflects the probability of points in
the bi-objective space dominated by others. With a darker color, the probabil-
ity gets higher. (a) New parameter configuration for tool evaluation has not
been selected yet. (b) Method chooses a new parameter configuration with
associated area versus delay values near one predicted Pareto frontier point.
The nested circles reflect the distribution of the output function at new data
point. (c) Predicted Pareto frontier is updated with the new data point and the
dark-colored area in the heat map expands, which means that the uncertainty
about the Pareto frontier approximation decreases.

MGP model (lines 5 and 6). The optimization process per-
forms in this manner iteratively until converges. Finally, the
Pareto-optimal parameter configurations are obtained.

For better comprehension, we sketch some visualizations in
Fig. 4 to illustrate the working principles for the proposed BO
method.

IV. DEVELOPED PHYSICAL DESIGN TOOL

PARAMETER TUNING FLOW

We visualize the global view of the proposed tuning flow
in Fig. 5, where the arrows mark the dataflow. Our proposed
BO framework delivers the selected parameter configurations
for tool evaluation. The tool estimates the corresponding QoR
metric values given selected parameter configurations with cer-
tain design netlist, technology files, and associate libraries.
Then, the training dataset stores the new data point and
promptly calibrates the multi-task GP model. With more accu-
rate predictions from the multi-task GP model, the acquisition

Fig. 5. Workflow of the proposed tuning flow.

function continues seeking the next parameter configuration
candidate.

Practically, our approach also supports batch trials. For the
part of the physical design tool, we have several software
licenses so that the parallels trials are supported when invoking
the physical design tool (line 4 of Algorithm 2). The gener-
ation of benchmarks is based on parallel invoking. When it
turns to the computation of information gain-based acquisition
function, the optimization process has already been accelerated
by parallel computing. If multiple optimal solutions to (17)
are found, with several licenses, the enquiring for golden
QoR metric values of these parameter configurations can be
simultaneously run.

V. EXPERIMENTAL RESULTS

A. Experimental Setup and Benchmarks

The implementation of our framework is in Python with
the GPflow [15] library and the certain physical design tool
we used in this article is Cadence Innovus Implementation
System (version 16.2) [19]. We test it on a platform with a
Xeon Silver 4114 CPU processor. To evaluate the performance
state of our framework, we compare it with the state-of-the-art
methods [4], [6], [11], [12], [20] by exploring the param-
eter space of the physical design tool on three industrial
benchmarks.

For a better understanding, the statistics of parameters are
summarized in Table I. The data type can be either float-
ing or integer, which depends on the specific parameters.
Note that all the benchmarks consist of hundreds of differ-
ent input parameter configurations of the physical design tool
with associated QoR metrics values. These golden values of
QoR metrics are obtained by invoking the physical design tool
fed with different-sized industrial MAC designs. Under the
7-nm technology node, Benchmark1 and Benchmark2 are gen-
erated by a MAC design having 20k of cells, while data points
in Benchmark3 are attained by feeding the synthesis tool
with a much larger industrial MAC design (about 67k cells).
In Benchmark1 and Benchmark2, 5000 data points represent
parameter spaces that are built upon the distinct combinations
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TABLE I
STATISTICS OF PARAMETERS OF THE PHYSICAL DESIGN TOOL ON THREE BENCHMARKS. NOTE THAT “-” IN THE TABLE MEANS THE PARAMETER IS

NOT CONSIDERED IN THIS BENCHMARK. SOME DESCRIPTIONS OF PARAMETERS ARE INTRODUCED AS SUPPLEMENTARY. FOR EXAMPLE,
FLOWEFFORT CONFIGURES THE FLOW TO GIVE TRADEOFF BETWEEN THE BEST QUALITY RESULT AND BEST TURNAROUND TIME, AND

PLACE_GLOBAL_UNIFORM_DENSITY ENABLES EVEN CELL DISTRIBUTION FOR DESIGNS WITH LESS THAN 70% UTILIZATION, AND

PLACE_GLOBAL_CONG_EFFORT SPECIFIES THE EFFORT LEVEL OF RELIEVING CONGESTION, AND PLACE_GLOBAL_MAX_DENSITY
CONTROLS THE MAXIMUM DENSITY OF LOCAL BINS DURING GLOBAL PLACEMENT, WHILE MAX_LENGTH BELONGS TO DRV

RULE PARAMETERS INCLUDING MAX_CAPACITANCE/MAX_TRANSITION/MAX_FANOUT, AND MAX_DENSITY DEFINES

THE MAXIMUM VALUE FOR DENSITY (AREA UTILIZATION)

of 12 physical design tool parameters with different parame-
ter bounds and settings. Meanwhile, in Benchmark3, 727 data
points with nine tool parameters are selected to mimic the
parameter space.

To further elaborate on the generation of benchmarks, we
exemplify the benchmark generated by the small MAC design
with 20k cells. Based on the IC designer’s experience (or pref-
erence), we select 12 vital parameters of the physical design
tool to be tuned to optimize design quality after the com-
plete synthesis and physical design flow. To collect data points
(namely, configurations with their golden QoR metric values),
actual physical design runs with different synthesis parameter
configurations on the fed design are extensively conducted to
construct the benchmark. Additionally, these parameter con-
figurations are chosen by the latin hypercube searching (LHS)
to represent the whole parameter space. Notice that the LHS
resembles the uniform random in a sense that the uniform
random number is drawn within each equal-space interval. To
put it another way, the LHS covers the parameter space more
evenly in a fashion similar to the quasirandom. Hence, the
data points found by the searching method can represent the
parameter space to some extent. The reason for determining
the parameters and performing LHS is two-fold. One is to
prune the searching space and obtain the customized searching
space, and the other is to accelerate the optimization process.
Until now, we have obtained the offline benchmark, and after
sorting and comparing, the golden QoR metric values of the
Pareto frontier are achieved. Here, to avoid ambiguous and
divergent understandings, we define “the golden values” as
the bests can be found in the benchmark. In the same fashion,
we get the rest benchmarks and golden QoR metric values.

In the experiments, our work is compared with other five
cutting-edge works [4], [6], [11], [12], [20]. For the previous
works, such as [11], [12], and [20], we have obtained the

source code from the authors, while [4] and [6] are reim-
plemented by ourselves. To offer a clear clue, we write
down some important settings and several vital hyperpa-
rameter values of these methods in the area versus power
versus delay case of Benchmark3. For [20], 72 data points
are used for training, and 25 points are finally predicted
for acquiring the golden QoR metric values. The values of
α and β in the source code to combine the three QoR
metrics are configured ranging from 0.01 to 1000 (just
as 0.1, 0.2, . . . , 1, 2, . . . , 10, 20, . . . , 100, 1000 and so forth).
In [12], 70 data points are used for initialization, and two
points are selected for refinement before the unclassified set
is empty, and 16 configurations are finally chosen for tool eval-
uation. The maximum iteration number is set to be 20, while
the error tolerance with 0.007 for classifying Pareto points or
non-Pareto ones is applied. Regarding [4], we apply a back-
propagation-based manner to implement the CP decomposition
with an iteration number 100. The maximum iteration num-
ber for the used single-layer perceptron is 800. To achieve
good performance, 100 points in the benchmark are chosen
for training. With respect to the reimplementation of [6], the
budget is set to 70, and 50 data points are used for model-
less sampling, and the cluster refinement threshold is set to
ten iterations. Following the setting in [6], the tree depth
of the XGBoost regressor is set to 3 and 10 for the ini-
tial and final stages, respectively. Considering [11], 50 data
points are used for initialization, and 20 points (one per
iteration) are selected during iterations. The Gaussian pro-
cess upper confidence bound is harnessed as the acquisition
function. It should be noticed that in [6] and [11], weight
coefficients of QoR metrics are set equally during the com-
parison. When it turns to our work, the sizes for initialization
and iterations are the same as in [11] (i.e., 50 and 20,
respectively).
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TABLE II
QUANTITATIVE COMPARISON OF THE PARETO FRONTIERS ON BENCHMARK1

TABLE III
QUANTITATIVE COMPARISON OF THE PARETO FRONTIERS ON BENCHMARK2

TABLE IV
QUANTITATIVE COMPARISON OF THE PARETO FRONTIERS ON BENCHMARK3

B. Comparisons Against SOTA Works

For a comprehensive comparison, the experiments are per-
formed qualitatively and quantitatively. First, we estimate the
performance of these methods in terms of the hypervolume
error, the ADRS, and the number of tool runs, and then visu-
ally compare the quality of the Pareto frontiers found by those
methodologies.

Tables II–IV depict the qualities of Pareto frontiers in quan-
tification. Note that for the smaller MAC design, it costs
about 3 h per tool run. For the larger MAC design utilized
in Benchmark3 generation, each data point needs almost two
days to go through the physical design flow. In contrast, the
initialization and follow-up updating of all methods require
far less time (e.g., usually a few minutes) than tool runs. On
the back of that, we use the number of tool runs to calculate
the optimization (or runtime) cost in lieu of the conventional
running time for modeling (training and testing). For a better
understanding, we also provide an example for exact runtime
comparisons between modeling and tool runs by the end of
this section.

Column “Multi-objective” lists three objective spaces to
be explored: 1) area versus delay; 2) power versus delay;
and 3) area versus power versus delay, whilst columns
“HV,” “ADRS,” and “Runs” are the evaluation metrics
referring to hypervolume error, the ADRS and the num-
ber of tool runs. Columns “ISLPED’17,” “TCAD’19,”
“MLCAD’19,” “DAC’19,” “ASPDAC’20” and “Ours” rep-
resent the results acquired by a simple regression method
(i.e., support vector machine) [20], a Pareto-driven active
learning-based optimization framework [12], a single-objective
BO framework [11] with the weighted-sum trick extending

to multi-objective cases, a tensor decomposition and rec-
ommender system-based tuning framework [4], an active
learning-based tuning approach leveraging the feature impor-
tance sampling and XGBoost regressor [6], and our proposed
MGP-based multi-objective BO frameworks, respectively. For
Benchmark1, it can be seen that, with less optimization
expense, our algorithm evenly outperforms [20] with a 46.2%
decrease on hypervolume error and a 51.0% drop on ADRS
value, and contracts 45.0% hypervolume error and 63.6%
ADRS value compared with [12]. On the other hand, our
method is superior to [11] on this benchmark with a drop of
33.1% hypervolume error and almost half ADRS value, and
reduces beyond 40.0% on both evaluation metrics compared
with [4] and [6]. Considering Benchmark2, with fewer phys-
ical design tool runs, our algorithm averagely surpasses [20]
with the average hypervolume error and the ADRS value of
0.083 and 0.062, while it has less 55.9% hypervolume error
and fewer 49.2% ADRS value compared with [12]. Besides,
our method behaves better than [11] by decreasing 48.1%
hypervolume error and shrinking half ADRS value. With about
50.0% average reductions on hypervolume error and ADRS,
our method shows a better performance against [4], [6]. When
it turns to the performance of these methods on Benchmark3,
our algorithm exceeds [20] by averagely decreasing 48.3%
hypervolume error and 55.4% ADRS, and also excels [12]
on both performance indicators, i.e., 27.8% less hypervolume
error and 28.3% fewer ADRS value. Compared to [11], 35.0%
hypervolume error and 27.5% ADRS are declined. Despite
the three works, by at least 36.1% less hypervolume error
and 27.5% fewer ADRS, the proposed methodology is better
than [4], [6] The table data suggest that our method has the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6. Visualizations of Pareto frontiers on three industrial Benchmarks (best viewed in color and zoomed in): (a) Pareto frontiers: area versus delay
on Benchmark1; (b) Pareto frontiers: area versus delay on Benchmark2; (c) Pareto frontiers: area versus delay on Benchmark3; (d) Pareto frontiers: power
versus delay on Benchmark1; (e) Pareto frontiers: power versus delay on Benchmark2; (f) Pareto frontiers: power versus delay on Benchmark3; (g) Pareto
frontiers: area versus power versus delay on Benchmark1; (h) Pareto frontiers: area versus power versus delay on Benchmark2; and (i) Pareto frontiers: area
versus power versus delay on Benchmark3. The units for area, power, and delay are ns, mW, and um2, respectively.

least optimization expense (or runtime overhead) as well. In a
nutshell, the quantitative results in Tables II–IV illustrate the
superiority of our method.

In addition, the visualizations of the Pareto frontiers in area
versus delay space, power versus delay space, and area ver-
sus power versus delay space predicted by the methods on
three benchmarks are displayed in Fig. 6. In Fig. 6, golden star
dots represent the points on golden Pareto frontiers, and thin
diamond dots in cyan refer to the predictions by our method,
while other different markers with distinct colors stand for
the compared frameworks. A glance at the graphs reveals that
Pareto frontiers searched by our approach are much closer to
the golden frontiers than the frontiers explored by other meth-
ods. Even some predictions by ours exactly match the golden
results [e.g., see in Fig. 6(b) and (e)].

It is worth noticing that the performance of algorithms
directly influences the searched Pareto frontiers, which results
in the associated moving of Pareto frontier lines. As introduced
in Section II, the applied two solution quality indicators (i.e.,

hypervolume error and ADRS value) capture the closeness of
the solutions to the optimal set and the spread of the solutions
across the QoR metric space. With smaller values of them,
the searched Pareto frontier should be spread wider and also
closer to the golden Pareto frontier. As is presented in previous
result tables, our method behaves better than the other meth-
ods in terms of the two quality indicators. Accordingly, the
corresponding Pareto frontiers are closer to the golden ones
and spread widely across the QoR metric space. Briefly, Fig. 6
and Tables II–IV in combination demonstrate that our method
predicts the better Pareto frontiers.

For a clear demonstration of time overhead, we exploit the
area versus power versus delay case of Benchmark3 as an
example. Note that the total runtime is composed of modeling
time and the time cost on the physical design tool. It takes
our method only 89.97 s to do modeling, while invoking of
physical design tool costs approximately 14 days with 10
licenses. We sketch the pie chart in Fig. 7 for illustration.
Compared to the huge time expenditure on the physical design
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Fig. 7. Runtime overhead.

tool and the better performance on hypervolume error and
ADRS, modeling time seems to be acceptable.

VI. RELATED WORK

In this section, we will conduct a comprehensive analysis on
differences between SOTA works and ours which affects the
performance (e.g., moving of Pareto lines). The main differ-
ence between ISLPED’17 [20] and our work is the searching
paradigm. Our work uses a multi-objective BO framework
that can search the Pareto solutions within a small number
of runs of CAD tool, while [20] exploits the regression model
integrated Pareto frontier exploration. In our work, the BO
framework builds a surrogate model for the objective and
quantifies the uncertainty in that surrogate using a Bayesian
machine learning technique, Gaussian process regression, and
then uses an acquisition function defined from this surrogate
to decide where to sample iteratively. After several iterations,
it makes final recommendations. In [20], the regression model
will be calibrated to predict different best solutions which form
the Pareto frontier. In the parameter tuning application, the BO
framework is more suitable. Because this kind of method is
very data efficient and particularly useful in situations where
evaluations are costly [21].

Despite the differences in the searching flow, the correla-
tion assumptions among multiple objectives also differ. For the
ISLPED’17 [20] work, to explore the Pareto frontier in objec-
tive space, the authors exploit a linear summation idea that
combines the multiple objectives with tradeoff coefficients.
More specifically, they propose a joint output function as the
regression model’s output rather than using any single output.
For example, when considering the delay versus area space,
the objective function for the regression model (e.g., support
vector regressor) used in [20] is AD = α · Area + Delay.
However, the linear weighted-sum technique transforms the
optimization problem into a single objective, which is not fully
equivalent to the original multi-objective problem since the
extra weighting coefficients depends on user’s experience or
preference [22]. The final solutions rely on these coefficients
which cannot be easily and optimally chosen. Besides, oceans
of methods (e.g., linear or quadratic way) can be applied to
construct the weighted sum function, however, there is no
explicit guideline to choose which form is the best for a
given problem. Such a linear assumption is straightforward
and describes the correlations superficially. What is worse, it
works only for convex problem formulations, but synthesis-
derived Pareto sets can be nonconvex [10]. This technique
is also used in [6] and [11], which may contribute to their

performance degradations. Regarding our work, we discover
the correlations among multiple objectives without assum-
ing linearity. Instead, we couple related objectives for a joint
regression (i.e., via designing a structured covariance function
in the multi-output Gaussian regressor) to model the correla-
tions. The multi-output Gaussian regressor is not limited to
sketching the linear correlations.

When it turns to the MLCAD’19 work [11], the state-of-the-
art BO technique with the weighted and summed cost function
is exploited to handle the multiple objective problems in the
CAD tool (the Synopsis IC Compiler tool) parameter tuning.
Multiple QoR metrics are scaled and then summed as a single
metric utilized in the acquisition function (e.g., Gaussian pro-
cess upper confidence bound). Although the single-objective
BO framework is modified by the weighted and summed
cost function, the defect that the weight-sum trick is not
fully appropriate for handling the multi-objective problem still
exists. Consequently, with the same size of the initial dataset
and iteration number (the combination of these two is the
total runs of the physical synthesis tool), our multi-objective
Bayesian framework behaves much better than [11]. It would
be a good proof of the superiority of the multi-objective
approach.

The prior art, ASPDAC’20 [6], exploits feature impotence
to guide the sampling and utilize ensemble boosting tree-
based regressor as a learning model. Consequently, a good
tradeoff between exploitation and exploration is achieved.
Nevertheless, the weight-sum trick is also employed in this
method. This kind of method is classical and commonly
used, and yet the limitations emerge either. As mentioned, not
like our method trying to model complex correlations among
multiple QoR metrics, it works only on the simple and explicit
relationships.

DAC’19 [4] work is inspired by the solution to the matrix
completion issue in recommender systems and spans the
problem to the high-dimension space via using tensor decom-
position. A neural network is constructed to mimic the correla-
tions among features and QoR metrics. This is a double-edged
sword. Due to the overparameterized regime, neural networks
are famous for their high accuracy but rely on more data
than the Gaussian process. Besides, there is no iterative refine-
ment but a one-time effort training procedure. On the contrary,
our work harnesses the MGP and an iterative refinement
framework.

Considering TCAD’19 [12], a simple Pareto-driven frame-
work is utilized. The iterative refinement framework with
Pareto-optimal classification rules is designed to combat the
DSE issue. Unfortunately, the theoretical guarantees about
optimality are related to the size of the design space.

VII. CONCLUSION AND FUTURE WORK

In this article, for the first time, we have proposed an
effective parameter tuning flow for a certain physical design
tool, which is built upon an information gain-based multi-
objective BO framework surrogated with an MGP model. The
optimization framework discovers the dependencies among
multiple QoR metrics and explores the high-quality parameter
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configurations. The experimental results on three industrial
benchmarks under advanced 7-nm technology node have
demonstrated the efficacy and effectiveness of the proposed
framework.

Finally, we would like to extend our discussion to future
directions. One possible prospect is incorporating the cus-
tomer’s preference on QoR metrics. In practice, not all metrics
have equal importance due to the different customers’ spec-
ifications. Currently, there is no explicit weight mechanism
incorporated in our proposed method but a pretty naive idea.
Since the Pareto set acquired by the current multi-objective
approach usually consists of several Pareto-optimal configura-
tions, based on the associated QoR metric values, the customer
can select the design to suit their appetite for objectives to
some extent.

Some very recent works like [23] and [24] may enlighten
our future studies. The main idea behind [23] and [24] is
formulating an acquisition function to ensure that the subset
of the Pareto front satisfies the preference-order constraints.
However, some accurate prior knowledge about objective
space and the preferred region (generally, a hyperbox) for
Pareto-front solutions may be needed. Reducing the prior
information and formulating the preference-order constraints
into the acquisition function appear to be a promising way.
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