
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022 7367

An Efficient Sharing Grouped Convolution via
Bayesian Learning

Tinghuan Chen , Graduate Student Member, IEEE, Bin Duan, Qi Sun , Graduate Student Member, IEEE,

Meng Zhang , Guoqing Li , Graduate Student Member, IEEE, Hao Geng ,

Qianru Zhang, and Bei Yu , Member, IEEE

Abstract— Compared with traditional convolutions, grouped
convolutional neural networks are promising for both model
performance and network parameters. However, existing models
with the grouped convolution still have parameter redundancy.
In this article, concerning the grouped convolution, we propose
a sharing grouped convolution structure to reduce parameters.
To efficiently eliminate parameter redundancy and improve
model performance, we propose a Bayesian sharing framework
to transfer the vanilla grouped convolution to be the sharing
structure. Intragroup correlation and intergroup importance
are introduced into the prior of the parameters. We handle
the Maximum Type II likelihood estimation problem of the
intragroup correlation and intergroup importance by a group
LASSO-type algorithm. The prior mean of the sharing kernels
is iteratively updated. Extensive experiments are conducted to
demonstrate that on different grouped convolutional neural
networks, the proposed sharing grouped convolution structure
with the Bayesian sharing framework can reduce parameters and
improve prediction accuracy. The proposed sharing framework
can reduce parameters up to 64.17%. For ResNeXt-50 with the
sharing grouped convolution on ImageNet dataset, network para-
meters can be reduced by 96.875% in all grouped convolutional
layers, and accuracies are improved to 78.86% and 94.54% for
top-1 and top-5, respectively.

Index Terms— Bayesian inference, convolutional neural net-
works (CNNs), grouped convolution, LASSO.

I. INTRODUCTION

CONVOLUTIONAL neural networks (CNNs) have
achieved impressive success in various applications of

computer vision, such as object recognition [1], [2], object
detection [3]–[5], and video analysis [6]. To handle compli-
cated applications, CNN models become deeper and wider,

Manuscript received 17 June 2020; revised 25 February 2021; accepted
19 May 2021. Date of publication 10 June 2021; date of current
version 1 December 2022. This work was supported in part by the
National Key Research and Development Program of China under Project
2018YFB2202703, in part by the Research Grants Council of Hong Kong,
SAR, under Project CUHK14209420, and in part by the Natural Science
Foundation of Jiangsu Province under Project BK20201145. (Corresponding
authors: Bei Yu; Meng Zhang.)

Tinghuan Chen, Qi Sun, Hao Geng, and Bei Yu are with the Department of
Computer Science and Engineering, The Chinese University of Hong Kong,
Hong Kong, SAR (e-mail: byu@cse.cuhk.edu.hk).

Bin Duan is with the School of Microelectronics, Southeast University, Wuxi
214061, China.

Meng Zhang, Guoqing Li, and Qianru Zhang are with the School of
Electronics Science and Engineering, Southeast University, Nanjing 210096,
China (e-mail: zmeng@seu.edu.cn).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2021.3084900.

Digital Object Identifier 10.1109/TNNLS.2021.3084900

which causes massive network parameters. The massive net-
work parameters, however, bring huge challenges to model
storage, data transfer, computation overhead, and energy con-
sumption [7], [8]. Besides, the massive network parameters
may contain redundancy, which causes overfitting and perfor-
mance degradation.

The grouped convolution has been adopted to decrease
parameter redundancy and improve accuracy in popular
CNNs, such as AlexNet [9] and ResNeXt [10]. The vanilla
grouped convolution is shown in Fig. 1(a), where the inputs,
the weights, and the outputs are divided into several groups to
perform the convolution operation. In practice, the grouped
convolution is proved to be able to alleviate overfitting and
improve the model accuracy, outperforming its counterpart,
e.g., nongrouped ResNet versus grouped ResNeXt [10], [11].
Moreover, the grouped convolution is also proved to be more
efficient and effective than wider and deeper networks [10].

Although the grouped convolution has the aforementioned
advantages, the network parameters may still have redundancy.
Various arts are proposed to reduce parameter redundancy.
These methods can be classified into two types: model
compression methods and architecture design methods [12].
Although existing compression methods have good
compression performance in the traditional convolution
models, they may lead to performance degradations while
being applied to grouped convolutions since they ignore the
diversities of importances and correlations (i.e., intergroup
importance and intragroup correlation) among the different
parameter groups. Without specific optimization techniques,
directly training models with these group architectures may
also degrade the performance.

To eliminate parameter redundancy and improve the effi-
ciency of the grouped convolution, in this article, we propose
a sharing grouped convolution structure, a novel and simple
architecture, to reduce parameters, as shown in Fig. 1(b).
A Bayesian grouped convolution sharing framework is pro-
posed to transfer the vanilla grouped convolution to be the
sharing structure. Intragroup correlation and intergroup impor-
tance are introduced into the prior of network parameters. We
handle the Maximum Type II likelihood estimation problem
of the intragroup correlation and intergroup importance by
a group LASSO-type algorithm [13]. The prior mean is
iteratively updated with the posterior mean and the intergroup
importance learned in the previous iteration.

2162-237X © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2022 at 08:35:54 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-9195-6619
https://orcid.org/0000-0001-5153-6698
https://orcid.org/0000-0003-2188-8195
https://orcid.org/0000-0003-2075-8583
https://orcid.org/0000-0002-0943-7714
https://orcid.org/0000-0001-6406-4810

7368 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Fig. 1. Vanilla grouped convolution and our proposed sharing grouped
convolution (two groups, the blue boxes are the input features, the orange
boxes are the kernels, and the green boxes are the output features). H and W
are the height and weight of the input features. Ci and Co are the numbers
of the input and output channels. Ci � and Co� are the numbers of the input
and output channels in each group. k is kernel size. (a) Vanilla grouped
convolution. Each group has its own weights. (b) Our proposed sharing
grouped convolution. All of these groups share the same weights.

We conduct experiments on three benchmarks, CIFAR-10,
CIFAR-100 [14], and ImageNet [15], to validate our pro-
posed sharing grouped convolution structure with Bayesian
sharing framework. Three typical and popular grouped CNNs,
ResNeXt [10], ShuffleNet [16], and DenseNet [17], are trans-
ferred to be the sharing structure under different grouped
convolution configurations by using our proposed framework.
Experiments demonstrate that our framework can reduce para-
meters significantly and improve model accuracies. The pro-
posed sharing framework can reduce parameters up to 64.17%.
Especially, for the sharing ResNeXt-50 on ImageNet dataset,
the number of network parameters is reduced by 96.875% in
the grouped convolutional layers and accuracies are improved
to 78.86% and 94.54% for top-1 and top-5, respectively.

The rest of this article is organized as follows. In Section II,
we provide a survey about model compression algorithms and
efficient model architectures. In Section III, we propose a shar-
ing grouped convolution structure. In Section IV, we consider
intragroup correlation and intergroup importance and then
propose a Bayesian sharing framework. Section V presents
the experimental results with comparisons and discussions,
followed by a conclusion in Section VI.

II. RELATED WORKS

A. Model Compression

The wider and deeper CNN models bring great challenges to
model storage, computation, data communication, and system
power consumption [18]. Therefore, many model compression

methods were proposed to address these challenges. Con-
sequently, the model compression can reduce the inference
runtime. The inference runtime consists of memory access
and computation [7], [8], where memory access is usually the
runtime bottleneck [19].

Typical model compression methods can be categorized into
model pruning, bit quantization, low-rank approximation, and
knowledge distillation [20]. Model pruning methods can be
used to prune parameters in different manners, e.g., channel-
wise and depthwise prunings [21]–[27] or structural and non-
structural prunings [28], [29]. In particular, attention statistics
were adopted to evaluate the importance of channels so that
channels can be pruned by the evaluation [30]. The low-rank
approximation and the model parameters sparsification can
accelerate inference and reduce model storage [31]–[37]. Due
to the redundancy of the data precision, bit quantization
approaches learn low-bit representations of features and para-
meters [38], [39]. Therefore, bit quantization approaches are
very useful for model deployment tasks on domain-specific
hardware [8]. Different from other categories, knowledge dis-
tillation methods facilitate the training of lightweight models
by using knowledge learned from large networks [34], [37].

Although these compression methods have good compres-
sion performance in the traditional convolution, they may
lead to performance degradation for the grouped convolution
since they ignore the diversities of intergroup importance and
intragroup correlation among the parameter groups.

B. Efficient Model Architecture

Considering the aforementioned drawbacks in model com-
pression methods, some works adopt other ways to design
efficient architectures to improve network performance. Var-
ious parameter normalization layers were proposed to avoid
performance degradation, such as batch normalization, switch-
able normalization, and exemplar normalization [40]–[44].
However, these normalization schemes cannot remove para-
meter redundancy and even make the networks cumbersome.
Besides, some tricky neural architecture search methods are
proposed to determine network configurations [45]. Some
works replace large filters with smaller ones [1], [17]. In order
to further eliminate redundancies, some arts adopt separable
convolution [46], that is, replacing a 3-D convolution with
multiple 2-D convolutions. For example, a 3-D convolution
is factorized to be two 2-D ones in Inception V3 [47]. The
predefined sparse 2-D kernels are used to make a tradeoff
between accuracy and energy consumption [18]. The depth-
wise separable convolution is adopted in MobileNets [48] and
Xception [49].

In particular, the grouped convolution is an efficient archi-
tecture outperforming its counterpart, e.g., nongrouped ResNet
vs. grouped ResNeXt [10], [11]. The grouped convolution
was first proposed in AlexNet [9], which allocates models
on two GPUs to facilitate parallelism. The grouped convolu-
tion adopts the sparse convolution connections between input
and output channels, by dividing the input channels, output
channels, and their connections into several groups as shown
in Fig. 1(b). Compared with the traditional convolutions with

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2022 at 08:35:54 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: EFFICIENT SHARING GROUPED CONVOLUTION VIA BAYESIAN LEARNING 7369

“fully connected” features and weights, the parameters and
computation costs are reduced.

The success of grouped convolution has inspired its wide
applications, e.g., ShuffleNet [16] and CondenseNet [17].
Recently, to improve the model accuracy, interleaved grouped
convolutions were designed to further improve parameter
efficiency and classification accuracy [50]. Wu and He [51]
proposed a group normalization layer, where the mean and
variance are computed within each group. A dynamic grouped
convolution was designed with different numbers of channels
in the same layer [11], [52]. A fully learnable grouped con-
volution was proposed to freely choose the grouping strategy
in the training stage [12]. The optimal channel permutation
was developed to explore group configuration [53]. How-
ever, the correlation among parameters and groups do not
be considered so that these methods will cause performance
degradation.

To further remove the parameter redundancy in grouped
convolutional layers, we propose a sharing grouped convo-
lution structure. To improve model performance, we propose
a Bayesian sharing framework to transfer the vanilla grouped
convolution to be the sharing structure, which is general and
can be integrated into various current grouped convolution
configurations. Our proposed framework is complementary to
these model compression methods.

III. SHARING GROUPED CONVOLUTION

In this section, a sharing grouped convolution structure
is proposed to reduce parameter redundancy and improve
parameter efficiency. Then, the number of parameters in it is
analyzed to illustrate the compression performance.

To demonstrate the vanilla grouped convolution, the varia-
tion from ResNet to ResNeXt [10], [11] is taken as an exam-
ple. Fig. 2 shows their basic block, which is repeatedly stacked
with different configurations to the whole model. The basic
block contains a shortcut and three convolutional layers, whose
all kernels are represented by a box in each layer. In ResNet,
the basic block is shown in Fig. 2(a), where there are three
traditional convolutional layers. In order to transfer ResNet
to ResNeXt, in each block, the second convolutional layer is
transferred as the vanilla grouped convolution by dividing the
64 channels into 16 groups, and each group has four channels
for this example, as shown in Fig. 2(b). Compared with the
traditional convolution, the vanilla grouped convolution adopts
the sparse convolution connections between input and output
channels, by dividing the input channels, output channels, and
their connections into several groups. According to Fig. 2,
the parameter number for the second convolutional layer is
reduced from 64 × 3 × 3 × 64 = 36 864 of ResNet to
16 × 4 × 3 × 3 × 4 = 2304 of ResNeXt in the convolutional
layer.

In order to further reduce the parameter number and
improve parameter efficiency in the vanilla grouped convo-
lution, we propose a sharing grouped convolution structure.
Specifically, all groups share the same parameters so that the
same parameters can be used to extract features and pass
information among different groups. It has the same manner

TABLE I

NUMBERS OF PARAMETERS OF BASIC BLOCKS IN RESNET, RESNEXT,
AND THE SHARING RESNEXT WITH g = 16

Fig. 2. Basic block contains a shortcut and three convolutional layers (the
boxes indicate the convolutional kernels (#input channel, kernel size, and
#output channel) for each layer). (a) Three convolutional layers in ResNet.
(b) Two convolutional layers and one vanilla grouped convolutional layer with
16 groups in ResNeXt.

with [50] to improve parameter efficiency. Then, in each basic
block, the vanilla grouped convolution (the second layer) as
shown in Fig. 2(b) will be transferred as the sharing grouped
convolution, as shown in Fig. 3. The parameter number for
the second convolutional layer is reduced from 16 × 4 ×
3 × 3 × 4 = 2304 to 4 × 3 × 3 × 4 = 144. Note that
compared with the vanilla grouped convolution, our proposed
sharing grouped convolution does not reduce computational
complexity. However, as shown in Fig. 3, the parameters are
shared among different groups. Therefore, the efficiency of
parameters is improved and the parameter redundancy can
be reduced. Besides, the sharing grouped convolution can
facilitate the weights reusing strategy in the hardware-level
implementations so that the actual number of memory accesses
decreases significantly and the inference runtime reduces.

As a comparison, we show the numbers of parameters of
basic blocks in ResNet, ResNext, and the sharing ResNeXt
in Table I. Compared with ResNet, ResNeXt has fewer para-
meters, and the proposed sharing ResNeXt can further reduce
the number of parameters.

Although the proposed sharing grouped convolution struc-
ture can reduce parameters and improve the efficiency of
parameters, directly training models with the group convo-
lution structure may cause performance degradation since
the correlation among parameters and groups does not be
considered.

IV. BAYESIAN SHARING FRAMEWORK

To transfer the vanilla grouped convolution into the sharing
structure, a naïve method is directly constructing a network
with the proposed sharing grouped convolution structure and
then training it. However, this method may cause performance

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2022 at 08:35:54 UTC from IEEE Xplore. Restrictions apply.

7370 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Fig. 3. Basic block contains a shortcut, two convolutional layers, and one
sharing grouped convolutional layer with 16 groups in the sharing ResNeXt
(the boxes indicate the convolutional kernels (#input channel, kernel size, and
#output channel) for each layer).

TABLE II

LIST OF NOTATIONS

degradation. To avoid performance degradation, we adopt
a separate-merge methodology [23], that is, updating inde-
pendently parameters among all groups in the backpropaga-
tion stage and computing loss function value by the shared
parameters in the forward propagation stage. Based on the
separate-merge methodology, a typical method is indiscrimi-
nately averaging the parameters among different groups in the
forward propagation stage. Given a pretrained model, we can
directly average these parameters among different groups.
This is quite straightforward, but it ignores the diversities of
different groups.

In this section, to efficiently eliminate parameter redundancy
and improve model performance, we introduce the intragroup
correlation and intergroup importance of parameters. Then,
we propose a Bayesian sharing framework. Some notations
used in this article are listed in Table II and visualized in Fig. 1.

A. Intragroup Correlation and Intergroup Importance

To introduce intragroup correlation and intergroup impor-
tance, a prior distribution on model parameters P(w)
is first introduced in our framework. Following previous
arts [54]–[56], P(w) is defined to be a multivariate Gaussian
distribution. For the convenience of expressions, network
parameters are reshaped to be vectors. As shown in Fig. 4,
in each group, the kernels in each channel are flattened to be
a vector. Some notations are explained in Table II. Then, they
are concatenated sequentially to be a vector. Considering that
the features are extracted independently of different groups

Fig. 4. Reshape the parameter tensor of one group as a vector, with Ci �
input channels and Co� output channels. The kernel size is 2 × 2. The arrows
show the flattening order.

in the vanilla grouped convolution as shown in Fig. 1(a), we
assume that any two network parameters from different groups
are independent, i.e., P(w) = ∏g

i P(wi). Therefore, the prior
distribution of network parameters in the group i is defined as
follows:

P(wi; γi , Bi) ∼ N (
μwi

,�wi

)
, �wi � γi Bi (1)

where wi ∈ R
NCo�

and Bi ∈ R
NCo�×NCo�

with N � k2Ci �. Bi

is a positive definite matrix which captures the correlations of
the parameters in group i , termed intragroup correlation. γi is
a coefficient reflecting the relative importance of group i in
comparison with other groups, termed intergroup importance.
γi also indicates the importance of the group i while passing
messages or knowledges in the model during inference. μwi

is
the mean vector of the network parameters wi in the group i .
Also, �wi is the covariance matrix of the network parameters
wi in the group i . For the convolutional layer with g groups,
the prior distribution of network parameters is

P(w; B, γ) ∼ N (
μw,�w

)
(2)

where μw = [μ�
w1

,μ�
w2

, . . . ,μ�
wg

]� is the mean vector of the
network parameters w. �w = diag[�w1 ,�w2 , . . . ,�wg] is
the covariance matrix of w, which is a block-diagonal matrix
with principal diagonal blocks being �w1 ,�w2 , . . . ,�wg .
B � {B1, B2, . . . , Bg} and γ � [γ1, γ2, . . . , γg]�. The
intragroup correlation Bi and the intergroup importance γi are
determined by maximizing Type II likelihood [13] as shown
in the following equation:

max
B,γ

ln
∫

P(Y |X ,w)P(w; B, γ)dw (3)

where Y and X are the output and input features, respec-
tively, and P(w; B, γ) satisfies multivariate Gaussian distrib-
ution with hyperparameters B and γ defined in (2).

According to formulation (3), to obtain the intragroup
correlation Bi and the intergroup importance γi , we need to
give a concrete form of P(Y |X ,w). Moreover, the concrete
form of P(Y |X ,w) relies on the relationships among input

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2022 at 08:35:54 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: EFFICIENT SHARING GROUPED CONVOLUTION VIA BAYESIAN LEARNING 7371

features X , output features Y and model parameters w in
one grouped convolutional layer.

Nevertheless, in practice, because of nonlinear operations
in CNN models, it is hard to obtain the closed form of
the likelihood function P(Y |X ,w) and the integral of the
marginal likelihood in formulation (3) is intractable in neural
networks [57]. Like in [55], we consider the linear relationship
between the input and the output features of each layer before
a nonlinearity is applied.

B. Maximum Type II Likelihood Estimation

In this section, the Type II likelihood in (3) is transformed
for the ease of the computations of the intragroup correlation
Bi and intergroup importance γi .

As mentioned above, we consider the linear relationship
between the input and the output features of each layer before
a nonlinearity is applied. To represent the vanilla grouped
convolution in the form of matrix–vector multiplication, we
reshape the input features, as shown in Fig. 5.

1) In Step 1, we reshape the input features of one group
to be a block-diagonal matrix. As the parameter kernel
window slides on the input feature, the corresponding
features are flattened to be a vector with length k2.
Therefore, we flatten the feature in one channel to be
an H W × k2 matrix. Then, the feature matrices of all
Ci � channels are reshaped to be a block-diagonal matrix.

2) In Step 2, we duplicate the input feature block matrix
by Co� times to generate a larger block-diagonal
matrix.

3) In Step 3, we place the block-diagonal matrices of the
g groups at the diagonal of the final feature matrix.
The parameters are also reshaped in the same manner,
as mentioned in Fig. 4.

For each group, the matrix–vector multiplication with model
error vi can be represented as yi = X iwi + vi , where
yi ∈ R

MCo�
and X i ∈ R

MCo�×NCo�
represent the reshaped

outputs and inputs respectively, with M � H W . For a layer
with g groups, the vanilla grouped convolution is

y = Xw + v (4)

where y = [y�
1 , · · · , y�

g]�, X = diag[X1, X2, . . . , Xg],
and v = [v�

1 , · · · , v�
g]�. The model error v is assumed to

follow the independent identical Gaussian distribution, i.e.,
P(v) ∼ N (0, λI), where λ is a hyperparameter controling
the precision of model error and I is an identity matrix.
The concrete form of the likelihood function in formulation
(3) can be obtained as follows:

P(Y |X ,w) = P(y|X,w; λ) ∼ N (Xw, λI). (5)

According to Fig. 5, the size of matrix
X is MCo�g × NCo�g. However, on one hand, note that the
vanilla grouped convolution adopts the sparse convolution
connections between input and output channels, by dividing
the input channels, output channels, and their connections
into several groups. Thus, the matrix–vector multiplication
can be performed group by group, i.e., yi = X iwi + vi ,
where X i ’s size is MCo� × NCo�. Moreover, X i is also a

Fig. 5. Reshape input features. The vanilla grouped convolution operation
is transformed as matrix–vector multiplication.

block-diagonal matrix, whose each block size is M × N ,
which can facilitate the matrix–vector multiplication output
channel by output channel. Besides, in popular vanilla
grouped CNNs, for example, ResNeXt, small kernels (e.g.,
k = 3 or k = 1) are widely adopted. On the other hand,
our proposed sharing framework is performed layer by layer
in grouped convolutional layers, instead of all convolutional
layers, in popular CNN models. Thus, in practice, this
reshaping input features does not bring a horrible memory
footprint. In addition, this reshaping is only performed in the
training stage, while the memory footprint does not increase
in the inference stage.

According to the network parameters prior P(wi ; γi , Bi)
defined in (1) and the likelihood function P(y|X,w) defined

in (5), the posterior of network parameters also follows
the multivariate Gaussian distribution P(w| y, X; γ , B, λ) ∼
N (μ,�), where the mean μ and the covariance matrix � are
represented as follows [13]:

μ = �w X�(
λI + X�w X�)−1(

y − Xμw

)
� =

(
�−1

w + 1

λ
X�X

)−1

(6)

where μ � [μ�
1 , . . . ,μ�

g]� and � � diag[�1, . . . ,�g]. μi

and �i are the posterior mean and the covariance matrix of
network parameters in the group i , respectively.

Now, to determine the intragroup correlation Bi and the
intergroup importance γi , we can transform formulation (3)
as follows:

max
B,γ ,λ

lnP(y|X; B, γ , λ) (7)

where the marginal likelihood function P(y|X; B, γ , λ) is
defined as follows [58], [59]:

P(y|X; B, γ , λ) =
∫

P(y|X,w; λ)P(w; B, γ)dw. (8)

Then, formulation (7) can be transformed to the equivalent
formulation as follows:

min
B,γ ,λ

L(B, γ , λ) (9)

where

L(B, γ , λ) � −2 lnP(y|X; B, γ , λ)

= ln |λI + X�w X�|
+ (y − Xμw)�(λI + X�w X�)−1(y − Xμw).

(10)

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2022 at 08:35:54 UTC from IEEE Xplore. Restrictions apply.

7372 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Since it has the ability to adaptively learn and exploit
intragroup correlation for better performance and only takes
few iterations, in Section IV-C, we illustrate how to use a
group LASSO-type method to handle formulation (9) so that
the intragroup correlation Bi , the intergroup importance γi ,
and the hyperparameter λ can be well determined.

C. Optimization via Group LASSO-Type Algorithm

In this section, we follow the work [60] and use a group
LASSO-type algorithm to determine hyperparameters so that
it can achieve fast convergence. The main idea is shown as
follows. First, we find the upper bound of the cost function
L(B, γ , λ) defined in (10). Then, the upper bound can be
transformed to be a group LASSO problem. As a result, we can
solve it with a typical group LASSO solver more efficiently.

In order to find an appropriate upper bound of L(B, γ , λ),

we introduce a temporary function h(α) � [(1/λ)|| y− Xμw −
Xα||22 + α��−1

w α]. α is defined as a temporary variable,
which is different from the model parameters w. Note that the
function h(α) is convex. Therefore, there is a global minimum
α0, i.e., h(α0) ≤ h(α), with the first derivative h(α0)

� = 0,
where

α0 = (�−1
w + X�X)−1(y − Xμw)� X. (11)

Substituting (11) into the function h(α) and using the
Woodbury matrix identity [61] lead to

h(α0) = (y − Xμw)�(λI + X�w X�)−1(y − Xμw). (12)

Thus, for the right-hand side in (10), we have

(y − Xμw)�(λI + X�w X�)−1(y − Xμw)

≡ min
α

[
1

λ
|| y − Xμw − Xα||22 + α��−1

w α

]
. (13)

With this, (10) is upper bounded by

UL(α, γ , B, λ) = ln |λI + X�w X�|
+ 1

λ
|| y − Xμw − Xα||22 + α��−1

w α. (14)

Here, we temporarily fix B and λ. Then, instead of directly
optimizing formulation (9), we minimize the upper bound in
(14) with respect to α and γ as follows:

min
α,γ

UL(α, γ). (15)

Furthermore, considering that the term (1/λ)|| y − Xμw −
Xα||22 is independent of γ in (14), formulation (15) can
be handled in two steps alternatively and iteratively. In the
first step, we optimize formulation (15) with respect to γ as
follows:

f (α) � min
γ≥0

[
ln |λI + X�w X�| + α��−1

w α
]
. (16)

In the second step, we optimize formulation (15) with
respect to α as follows:

min
α

|| y − Xμw − Xα||22 + λ f (α). (17)

In the first step, since g(γ) � ln |λI + X�w X�| is
nondecreasing and concave, g(γ) can be expressed with its
concave conjugate g∗(z) as follows [62]:

g(γ) � ln |λI + X�w X�| = min
z≥0

z�γ − g∗(z) (18)

where the concave conjugate is given as follows:
g∗(z) = min

γ≥0
z�γ − ln |λI + X�w X�|. (19)

Therefore, (16) can be transformed as follows:
f (α) = min

γ ,z≥0
α��−1

w α + z�γ − g∗(z)

= min
γ ,z≥0

g∑
i=0

(
α�

i B−1
i αi

γi
+ ziγi

)
− g∗(z) (20)

where z = [z1, z2, . . . , zg]�. Minimizing (20) with respect to
γ , we have

γi = z
− 1

2
i

√
α�

i B−1
i αi , i = 1, 2, . . . , g. (21)

However, γi relies on zi . According to (18) and the duality
property [62], we can obtain

zi = Tr[Bi X�
i (λI + X i�wi X�

i)−1 X i]. (22)

According to (21) and (22), γ relies on z and z relies on
γ (�w). Therefore, in the first step, we optimize formulation
(16) by updating γ and z alternatively.

In the second step, after γ and z are determined, formulation
(17) is transformed as follows:

min
α

|| y − Xμw − Xα||22 + λ

g∑
i=1

2z
1
2
i

√
α�

i B−1
i αi . (23)

Formulation (23) is an implicit group LASSO formulation.
To make it more clear, we transform it to be formulation (24)
as follows:

min
d

||t − Hd||22 + λ

g∑
i=1

||d i ||2 (24)

where di = 2z1/2
i B−1/2

i αi , d = [d�
1 , d�

2 , . . . , d�
g]�, t =

y − Xμw , and H = X · diag[B1/2
1 /(2z1/2

1), B1/2
2 /(2z1/2

2),

. . . , B1/2
g /(2z1/2

g)]. Formulation (24) is a standard group
LASSO formulation, which can handled by calling classical
group LASSO solver (e.g., [63]) to determine α.

Note that during the above process, we fix the intragroup
correlation B and the hyperparameter λ. In fact, the hyper-
parameter λ can be automatically determined by a group
LASSO solver [63]. Besides, according to [60], since α has
the approximate covariance with w, B can be approximately
estimated by α from the previous iteration, that is

Bi = 1

γi
�wi ≈ 1

γi
E
[
(αi − E(αi))(αi − E(αi))

�]
. (25)

In particular, according to [64], the first-order
auto-regressive process corresponding to the Toeplitz
matrix is more sufficient to capture intragroup correlation.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2022 at 08:35:54 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: EFFICIENT SHARING GROUPED CONVOLUTION VIA BAYESIAN LEARNING 7373

Therefore, the intragroup correlation matrix Bi is replaced
by B̂i as follows:

B̂i = Toeplitz
([

1, r, . . . , rNCo�−1
])

(26)

where r = m̄1/m̄0 and m̄0 and m̄1 are the averages of elements
along the main diagonal and the main subdiagonal of Bi ,
respectively.

In summary, the developed group LASSO-type algorithm
flow is shown in Algorithm 1. We do not directly optimize
formulation (9). Instead, we find the upper bound of the
function L(B, γ , λ) as shown in (14). Then, the upper bound
function UL(α, γ , B, λ) is minimized by two steps. In the
first step, we alternatively optimize formulation (16) to obtain
the hyperparameter γ in (21) and z in (22). In the second
step, we transform formulation (17) as an equivalent group
LASSO formulation as shown in formulation (24). After
calling the group LASSO solver, we can determine d (α)
and λ simultaneously. In addition, we use (25) and (26) to
update the hyperparameters B and B̂i . The above process is
iteratively performed until convergence. Then, the intragroup
correlation B, the intergroup importance γ , and the hyperpa-
rameter λ are determined.

In practice, it only takes few iterations in Algorithm 1
(2–5 iterations). In each iteration, any efficient group LASSO
algorithm can be used, which bring much faster and suitable
to the sharing parameters in the grouped convolution.

Algorithm 1 Group LASSO to Handle Formulation (9)
Require: X , y from one grouped convolutional layer, network

parameters w.
1: Initialize B, γ , z and λ.
2: repeat
3: Update γ by Equation (21);
4: Update z by Equation (22);
5: Solve Formulation (24) (Formulation (23)) to obtain d

(α) and λ;
6: Update Bi = B̂i by Equations (25) and (26);
7: until Convergence
8: return hyper-parameters B, γ and λ.

D. Overall Flow

In this section, we will give an overall flow about how
to share parameters among different groups so that the
vanilla grouped convolution can be transferred as the sharing
structure.

After B, γ , and λ are determined by Algorithm 1, in each
group, model parameters wi can be determined by the pos-
terior mean as shown in (6), that is, wi = μi . To share the
parameters among different groups in one grouped convolu-
tional layer, the mean of the sharing parameters μwb

is defined
as a prior mean as follows:

μwb
=

∑g
i γiwi∑g

i γi
. (27)

The mean is the weighted average of all network parameters
obtained in the last iteration, with the intergroup importance
γi . Then, in (10) and (14), the prior mean is μw = 1g ⊗

Fig. 6. Sharing process of grouped convolution parameters. Green, blue, and
red boxes represent parameters (kernels) in three groups. After few iterations,
all groups have the same kernels (gray boxes), which are shared.

μwb
= [μ�

wb
,μ�

wb
, . . . ,μ�

wb
]�, and 1g ∈ R

g is a vector
whose all elements are 1. ⊗ represents the Kronecker product.
The sharing process is shown in Algorithm 2. As shown
in Fig. 6, initially, all groups have different parameters. After
few iterations, parameters will gradually become the same
by our proposed Bayesian sharing framework. In particular,
the mean sharing method is a special case of our proposed
Bayesian sharing method, i.e., γ ≡ 1g .

Algorithm 2 Bayesian Sharing Framework
Require: X , y from one grouped convolutional layer, network

parameters w.
1: Initialize μwb

= ∑g
i wi/g, μw = 1g ⊗ μwb

;
2: repeat
3: Update B, γ and λ by Algorithm 1;
4: Update model parameters wi by the posterior mean in

Equation (6);
5: Update the sharing model parameters μwb

by Equa-
tion (27) and μw = 1g ⊗ μwb

;
6: until Convergence
7: return The sharing weights wb = μwb

.

For the whole CNN model, we adopt a separate-merge
methodology [23] to share weights in all grouped convolu-
tional layers, that is, separately updating parameters by loss
function in the backpropagation stage and computing loss
function value in the forward propagation stage. Given a
pretrained CNN model, we fix model parameters in non-
grouped convolutional layers and update model parameters in
all grouped convolutional layers by our proposed Bayesian
sharing method as shown in Algorithm 2 from front layers to
back layers sequentially in the forward propagation stage.

The loss value is calculated by all updated shared grouped
convolution parameters and other fixed model parameters.
Then, the loss value is used to update all model parameters.
By performing this sharing process for few epochs, the final
sharing model can be obtained.

Note that instead of all layers in CNN model, our proposed
Bayesian sharing framework is performed in grouped convo-
lutional layers to transfer to be the sharing structure.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2022 at 08:35:54 UTC from IEEE Xplore. Restrictions apply.

7374 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

It is worth mentioning that our proposed Bayesian sharing
framework is not only compressing models but also regular-
izing parameters. The regularization technique can encourage
learning a more simple model to avoid the risk of overfitting
so that the accuracy can be improved [13]. The most com-
mon regularization techniques are ride regression and LASSO
regression, which can force the model parameters to decay
toward zeros so that model complexity is reduced and the
model generalizes better [13]. Note that directly learning a
sharing grouped convolution structure has the same manner
with directly forcing the model parameters to zeros, which
brings performance degradation. In the proposed Bayesian
sharing framework, the model parameters are imposed to be
the same among different groups by adaptively learning the
intragroup correlation B and the intergroup importance γ .
Thus, the intuition behind this technique has the same manner
as the common regularizations, which adaptively force the
model parameters to decay toward zeros. As a result, we expect
that the proposed Bayesian sharing framework can improve the
accuracy of original models.

V. EXPERIMENTAL RESULTS

In this section, we apply our Bayesian sharing framework
on some popular grouped CNNs, including ResNeXt [10],
ShuffleNet [16], and G-DenseNet [17], [65]. We test them
on CIFAR-10, CIFAR-100 [14], and ImageNet [15]. As an
ablation study, to clarify the impact of the proposed Bayesian
sharing framework, the directly trained sharing grouped CNNs
and the mean sharing method are also implemented for
comparison. The direct training method constructs a network
with the proposed sharing structure and then trains it. The
mean sharing method trains the model from scratch and each
group has its own weights. At some certain training epochs,
e.g., 80 and 100 epochs, we average the weights and then
continue the training process. In the experimental results,
“−D” represents the results of directly trained sharing grouped
CNNs, “−M” represents the results of mean sharing, and
“−B” represents the Bayesian sharing.

A. Implementation Details and Experimental Settings

1) Training Settings: On CIFAR-10 and CIFAR-100,
we test all of these three methods. The initial learning rate
is set as 0.1. For ResNeXt and ShuffleNet, the batch size is
128 and the learning rate is gradually divided by 10 at 81 and
122 epochs, with 164 training epochs in total. For G-DenseNet,
the batch size is 64, and the learning rate is divided by 10 at
150 and 225 epochs, with a total of 300 training epochs.
CIFAR-10 and CIFAR-100 are shorted as C-10 and C-100 in
the result tables.

We test the sharing ResNeXt On ImageNet. The learning
rate is initially set to 0.1, divided by 10 at 50 and 70 epochs.
There are 90 training epochs, and the batch size is 256.

Our optimizer uses momentum optimizer, with momentum
0.9 and weight decay 2 × 10−4.

2) Evaluation Metrics: Parameter volume, model accuracy,
and grouped convolution compression ratio (GCR) are consid-
ered as the evaluation metrics. Parameter volume, abbreviated

as “#P”, counts all the parameters in the model, including
grouped convolutional layers and other linear or nonlinear
layers. GCR is only for grouped convolutional layers, i.e.,
volume of the sharing layer divided by the original volume
before sharing. The compression ratio of the baseline model
is also 100%. For a grouped convolutional layer with g
groups, after sharing, the compression ratio is 1/g. Therefore,
our compression ratio relies on the number of groups. For
ImageNet, we report Top-1 and Top-5 accuracies. The number
of floating-point operations (FLOPs) and runtime is also
attached.

B. Experiments on CIFAR Dataset

Our sharing method is applied to some baseline mod-
els, i.e., ResNeXt, ShuffleNet, and G-DenseNet to test
CIFAR-10 and CIFAR-100, with some necessary model
modifications in Tables III and IV. For ResNeXt-35 and
RexNeXt-50, to test the cardinality, some tests are conducted
on grouped convolutional layers with 4, 8, and 16 groups,
while the kernel size is 3 × 3. The pointwise convolutional
layers are not considered here since they are not in the grouped
convolutional layers of these two models. For ShuffleNet,
grouped convolutional layers with four and eight groups
are tested. Different from ResNeXt, the pointwise (1 × 1)
convolutions in ShuffleNet are grouped convolutional layers.
Some experiments are conducted on ShuffleNet with 1 × 1
convolutions to further demonstrate the effectiveness of our
sharing method. DenseNet contains both 3 × 3 and 1 × 1
convolutional layers, which are both tested to further validate
the compatibility of our method.

As ablation studies, to clarify the impacts of our proposed
Bayesian sharing framework, we compare the directly trained
model with sharing grouped convolution, the mean sharing,
and the proposed Bayesian sharing. The results are shown
in Tables III and IV. For all of these tests, compared with
the corresponding baseline models, the performance degrada-
tions occur in all directly trained models. The mean sharing
method can achieve slight accuracy improvements in the
most cases but G-DenseNet-86 since it is able to combine
parameters among different groups without discrimination, i.e.,
γ ≡ 1g in (27). Compared with the mean sharing method,
our Bayesian sharing framework can bring significant accu-
racy improvements, mostly more than 2%, since it considers
the intragroup correlation and the intergroup importance to
combine parameters among different groups with discrimina-
tions. In other words, it is able to discriminately combine
parameters to achieve message passing to different features
according to the importantly learned from maximum likeli-
hood estimation in (9). Some tests achieve higher improve-
ments, e.g., in Table III, ResNeXt-50-B with eight groups on
CIFAR-100 improves the accuracy by 76.11% − 73.16% =
2.95% with the less parameter volume. As a result, the pro-
posed Bayesian sharing framework can improve the parameter
efficiency, reduce the parameter redundancy, and alleviate the
overfitting issue.

Our Bayesian sharing method can result in impressive
compression and runtime performance. Since for grouped con-

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2022 at 08:35:54 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: EFFICIENT SHARING GROUPED CONVOLUTION VIA BAYESIAN LEARNING 7375

TABLE III

RESNEXT ON THE CIFAR DATASET

TABLE IV

SHUFFLENET AND G-DENSENET ON THE CIFAR DATASET

volutional layers with g groups, the GCR is 1/g, more groups
mean a better compression ratio. According to Tables III
and IV, as the group number increases, our method achieves
higher compression ratios. Convolutional layers with four
groups have the minimal GCR, i.e., compressed to 0.25 times.
Dividing to 16 groups can bring the maximal compression
ratio, i.e., 0.0625 times. Except for grouped convolutional
layers, a typical neural network contains many other linear
or nonlinear layers. The models with more grouped con-
volutional layers have better compression performance for
parameter volume by using our Bayesian sharing method.
In Table III, for ResNeXt models with the limited number
of 3 × 3 convolutional layers, we can achieve up to 21%
[(2.01−1.58)/2.01] overall volume reduction. In Table IV, for
the sharing G-DenseNet-86, the parameter volume is reduced
by 46.77% [(0.62 − 0.33)/0.62]. The sharing ShuffleNet-1x
reduces the parameter volume by 54.8% [(0.62−0.28)/0.62],
and the parameter volume in ShuffleNet-2x reduces more than
64.17% [(1.34 − 0.48)/1.34]. The proposed sharing method

can achieve the more significant parameter reductions for
CNN with the more grouped convolutional layers. Generally,
the deeper and larger models suffer from higher risks of
overfitting. With our Bayesian sharing framework, we can
alleviate this problem by reducing parameter volume.

In particular, compared with these baseline methods, our
proposed sharing grouped convolution does not reduce FLOPs
in the inference stage. However, as shown in Fig. 3, the para-
meters are shared among different groups. The sharing para-
meter strategy can reduce the actual number of memory
accesses so that the inference time can be reduced, as shown
in Tables III and IV. The runtime results are tested on one
Kaggle Nvida Tesla P100 (16-GB memory and 720-GB/s
bandwidth). It is believed that we can achieve better run
performances on field-programmable gate array (FPGA) with
dataflow optimizations [19].

We also compare our method with the state-of-the-art meth-
ods on ResNet, MobileNet, and DenseNet on CIFAR dataset,
as shown in Tables V and VI. These methods include efficient

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2022 at 08:35:54 UTC from IEEE Xplore. Restrictions apply.

7376 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

TABLE V

OUR PROPOSED SHARING RESNEXT-50 AND SHUFFLENET, IN COMPARI-
SON WITH THE STATE-OF-THE-ART MODELS ON CIFAR

model architecture methods [18], [32], [36], [45], [46] and
compression methods at various levels, such as filter pruning
[26] and channel pruning [12], [24], [25], [30], [35], [53]. It is
worth mentioning that the group pruning [12], [53] is a special
channel pruning since the input channels, output channels, and
their connections are divided into several groups.

According to Tables V and VI, our method outperforms all
of the current efficient model architecture methods [18], [32],
[36], [45], [46] since they do not consider correlations among
parameters in the training stage so that the model performance
is significantly degraded. In particular, it is hard to make a
better tradeoff between accuracy and parameter volume, even
though some advanced neural architecture search methods
are adopted to determine model configurations [45]. Unlike
these traditional compression methods [12], [24]–[26], [30],
[35], [53], our proposed Bayesian sharing framework does not
completely prune channels or filters (kernels). Instead, com-
pared with the grouped convolution, we reserve all filters (ker-
nels) and channels and discriminately combine parameters
to achieve message passing to features with different impor-
tances. The reused weights, structures of model parameters,
and the adaptive importance learning strategy can reduce the
parameter redundancy, improve efficiency, and alleviate the
overfitting issue. In particular, compared with the state-of-
the-art group pruning methods that prune several unimportant
groups [12], [53], our method reserves all groups, thus striking
a better balance between accuracy and parameter volume.

C. Experiments on ImageNet

To further evaluate the impact of our Bayesian sharing
framework for model performance on large datasets, we test
the sharing ResNeXt-50 on the ImageNet dataset. We follow
the configurations in [10]. The number of groups is 32.

TABLE VI

OUR SHARING G-DENSENET, IN COMPARISON
WITH DENSENET ON CIFAR

TABLE VII

OUR PROPOSED SHARING RESNEXT-50 IN COMPARISON WITH THE

STATE-OF-THE-ART MODELS ON THE IMAGENET DATASET

We compare our method with the state-of-the-art efficient
model architecture methods [11], [40]–[43], [51] to examine
model accuracy, parameter volume, and FLOPs in Table VII. It
is shown that our proposed Bayesian sharing framework beats
these state-of-the-art efficient model architecture methods in
terms of the model accuracy and the parameter volume. In
particular, some advanced normalization layers are developed
to enhance the generalization ability of the model, but they
make the model cumbersome while bringing more FLOPs
[40]–[43], [51]. Besides, compared with the dynamic grouping
convolution [11], the sharing grouped convolution can reduce
parameter volume since model parameters are shared among
different groups. For the sharing ResNeXt-50-B on ImageNet,
we can reduce the parameters in group convolutional layers by
96.875%, i.e., 100% − 3.125% = 96.875%. The reuse model
parameters structure with the adaptive importance learning
strategy can improve model accuracy to 78.86% and 94.54%
for top-1 and top-5, respectively.

D. Model Compatibility

The experimental results also verify that our method has
strong compatibility while tackling various grouped convolu-
tional models, from 3 × 3 convolutions to 1 × 1 pointwise
convolutions in ResNeXt, ShuffleNet and G-DenseNet, for
different numbers of groups (different cardinalities), on dif-
ferent datasets, as shown in Tables III and IV. Overall, our
experiments listed above have covered all of these diverse
grouped convolution structures.

E. Intergroup Importance

Intergroup importance is proposed in our framework.
γi reflects the intergroup importance of group i . In our model,
the stable values of all the γi values are mutually distinct.
Fig. 7 is taken as an example to illustrate this. For a layer
in ResNeXt-50 with eight groups, each γi is initialized as

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2022 at 08:35:54 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: EFFICIENT SHARING GROUPED CONVOLUTION VIA BAYESIAN LEARNING 7377

Fig. 7. Optimization iteration versus γ values of ResNeXt-50 (g = 8).

Fig. 8. Optimization iteration versus �γ and �w. Four models are listed
as follows: (a) ResNeXt-35 (g = 8 and g = 16) and (b) ResNeXt-50 (g = 8
and g = 16).

1 before training. In other words, in the beginning, these
groups are equally important. After about five optimization
iterations, these γ values reach different stable statuses. The
group with higher γi is more important. If we use mean
sharing, γi can always be regarded as 1, i.e., γ ≡ 1g

in (27). In comparison, our Bayesian sharing framework can
better characterize the differences of intergroup importance
reasonably and effectively.

F. Convergence

To verify the optimization and convergence of our method
more clearly, in ResNeXt-35 (g = 8 and g = 16) and
ResNeXt-50 (g = 8 and g = 16), one layer is sampled from
each model and its �γ and �w are shown in Fig. 8(a) and (b),
respectively. Each layer has several groups, and �γ is com-
puted according to the following equation:

�γ =
g∑

i=1

∣∣∣∣∣γ
(t+1)
i − γ

(t)
i

γ
(t+1)
i

∣∣∣∣∣. (28)

�w is for w and is the summation of all the element-
wise changes between two continuous training steps. Obvi-
ously, by using Algorithm 2, parameter w converges quickly,
and γ for each group also reaches a stable status quickly.
Another trend is that the models with more parameters (e.g.,
ResNeXt-50 with g = 16) can have a faster convergence rate.

VI. CONCLUSION

In this article, we propose a sharing grouped convolution
structure with the Bayesian sharing framework to efficiently
eliminate parameter redundancy and boost the model per-
formance. Intragroup correlation and intergroup importance

are introduced into the prior of the parameters. We han-
dle the Maximum Type II likelihood estimation problem
of the intragroup correlation and intergroup importance by
a group LASSO-type algorithm. Experiments demonstrate
that the proposed sharing grouped convolution structure with
the Bayesian sharing framework can reduce parameters and
improve prediction accuracy. The proposed sharing framework
can reduce parameters up to 64.17%. For ResNeXt-50 with
the sharing grouped convolution on the ImageNet dataset,
network parameters can be reduced by 96.875% in grouped
convolutional layers, and accuracies are improved to 78.86%
and 94.54% for top-1 and top-5, respectively.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[2] J. Liu, B. Ni, Y. Yan, P. Zhou, S. Cheng, and J. Hu, “Pose transferrable
person re-identification,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., Jun. 2018, pp. 4099–4108.

[3] R. Girshick, “Fast R-CNN,” in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Dec. 2015, pp. 1440–1448.

[4] W. Liu et al., “SSD: Single shot multibox detector,” in Proc. Eur. Conf.
Comput. Vis. (ECCV), 2016, pp. 21–37.

[5] H. Geng et al., “Hotspot detection via attention-based deep layout metric
learning,” in Proc. 39th Int. Conf. Comput.-Aided Design, Nov. 2020,
pp. 1–8.

[6] Y. Yan, B. Ni, and X. Yang, “Predicting human interaction via relative
attention model,” in Proc. 26th Int. Joint Conf. Artif. Intell., Aug. 2017,
pp. 3245–3251.

[7] Q. Sun, T. Chen, J. Miao, and B. Yu, “Energy-driven DNN dataflow
optimization on FPGA,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided
Design (ICCAD), Nov. 2019, pp. 1–7.

[8] Y. Yang et al., “Synetgy: Algorithm-hardware co-design for ConvNet
accelerators on embedded FPGAs,” in Proc. ACM/SIGDA Int. Symp.
Field-Program. Gate Arrays, Feb. 2019, pp. 23–32.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Conf. Neural Inf.
Process. Syst. (NIPS), 2012, pp. 1097–1105.

[10] S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 1492–1500.

[11] Z. Zhang et al., “Differentiable learning-to-group channels via groupable
convolutional neural networks,” in Proc. IEEE/CVF Int. Conf. Comput.
Vis. (ICCV), Oct. 2019, pp. 3542–3551.

[12] X. Wang, M. Kan, S. Shan, and X. Chen, “Fully learnable group
convolution for acceleration of deep neural networks,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 9049–9058.

[13] C. Robert, Machine Learning: A Probabilistic Perspective. London,
U.K.: Taylor & Francis, 2014.

[14] The CIFAR-10 and CIFAR-100 Datasets. Accessed: Sep. 2019. [Online].
Available: https://www.cs.toronto.edu/~kriz/cifar.html

[15] ImageNet Dataset. Accessed: Sep. 2019. [Online]. Available:
http://www.image-net.org.

[16] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet:
An extremely efficient convolutional neural network for mobile
devices,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 6848–6856.

[17] G. Huang, S. Liu, L. V. D. Maaten, and K. Q. Weinberger, “Con-
denseNet: An efficient DenseNet using learned group convolutions,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 2752–2761.

[18] S. Kundu, M. Nazemi, M. Pedram, K. M. Chugg, and P. A. Beerel, “Pre-
defined sparsity for low-complexity convolutional neural networks,”
IEEE Trans. Comput., vol. 69, no. 7, pp. 1045–1058, Jul. 2020.

[19] X. Wei, Y. Liang, and J. Cong, “Overcoming data transfer bottlenecks
in FPGA-based DNN accelerators via layer conscious memory manage-
ment,” in Proc. 56th Annu. Design Autom. Conf., Jun. 2019, pp. 1–6.

[20] Q. Zhang, M. Zhang, T. Chen, Z. Sun, Y. Ma, and B. Yu, “Recent
advances in convolutional neural network acceleration,” Neurocomput-
ing, vol. 323, pp. 37–51, Jan. 2019.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2022 at 08:35:54 UTC from IEEE Xplore. Restrictions apply.

7378 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

[21] T. Zhang et al., “A systematic DNN weight pruning framework using
alternating direction method of multipliers,” in Proc. Eur. Conf. Comput.
Vis. (ECCV), 2018, pp. 184–199.

[22] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” in Proc. Conf. Neural Inf. Process.
Syst. (NIPS), 2016, pp. 2074–2082.

[23] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very
deep neural networks,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Oct. 2017, pp. 1389–1397.

[24] Y. Hu, S. Sun, J. Li, X. Wang, and Q. Gu, “A novel channel pruning
method for deep neural network compression,” 2018, arXiv:1805.11394.
[Online]. Available: http://arxiv.org/abs/1805.11394

[25] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning
efficient convolutional networks through network slimming,” in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2736–2744.

[26] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning filters
for efficient convnets,” in Proc. Int. Conf. Learn. Represent. (ICLR),
2017, pp. 1–13.

[27] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and
connections for efficient neural network,” in Proc. Conf. Neural Inf.
Process. Syst. (NIPS), 2015, pp. 1135–1143.

[28] H. Wang, Q. Zhang, Y. Wang, L. Yu, and H. Hu, “Structured pruning
for efficient ConvNets via incremental regularization,” in Proc. Int. Joint
Conf. Neural Netw. (IJCNN), Jul. 2019, pp. 1–8.

[29] H. Wang, X. Hu, Q. Zhang, Y. Wang, L. Yu, and H. Hu, “Structured
pruning for efficient convolutional neural networks via incremental
regularization,” IEEE J. Sel. Topics Signal Process., vol. 14, no. 4,
pp. 775–788, May 2020.

[30] K. Yamamoto and K. Maeno, “PCAS: Pruning channels with attention
statistics for deep network compression,” in Proc. Brit. Mach. Vis. Conf.
(BMVC), 2019, pp. 1–13.

[31] Y. Ma et al., “A unified approximation framework for compressing and
accelerating deep neural networks,” in Proc. IEEE 31st Int. Conf. Tools
with Artif. Intell. (ICTAI), Nov. 2019, pp. 376–383.

[32] J. Ou and Y. Li, “Vector-kernel convolutional neural networks,” Neuro-
computing, vol. 330, pp. 253–258, Feb. 2019.

[33] P. Chen, S. Si, Y. Li, C. Chelba, and C.-J. Hsieh, “GroupReduce: Block-
wise low-rank approximation for neural language model shrinking,” in
Proc. Conf. Neural Inf. Process. Syst. (NIPS), 2018, pp. 10988–10998.

[34] G. Chen, W. Choi, X. Yu, T. Han, and M. Chandraker, “Learning efficient
object detection models with knowledge distillation,” in Proc. Conf.
Neural Inf. Process. Syst. (NIPS), 2017, pp. 742–751.

[35] B. Minnehan and A. Savakis, “Cascaded projection: End-to-end network
compression and acceleration,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2019, pp. 10715–10724.

[36] G. Li, X. Shen, J. Li, and J. Wang, “Diagonal-kernel convolutional neural
networks for image classification,” Digit. Signal Process., vol. 108,
Jan. 2021, Art. no. 102898.

[37] Y. Kim and A. M. Rush, “Sequence-level knowledge distillation,”
in Proc. Conf. Empirical Methods Natural Lang. Process., 2016,
pp. 1317–1327.

[38] S. Wiedemann et al., “DeepCABAC: Context-adaptive binary arithmetic
coding for deep neural network compression,” in Proc. ICML Workshop,
2019, pp. 1–4.

[39] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and Huffman
coding,” in Proc. Int. Conf. Learn. Represent. (ICLR), 2016, pp. 1–14.

[40] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proc. Int. Conf.
Mach. Learn. (ICML), PMLR, 2015, pp. 448–456.

[41] P. Luo, J. Ren, Z. Peng, R. Zhang, and J. Li, “Differentiable learning-
to-normalize via switchable normalization,” in Proc. Int. Conf. Learn.
Represent. (ICLR), 2019, pp. 1–19.

[42] W. Shao et al., “SSN: Learning sparse switchable normalization via
sparsestmax,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 443–451.

[43] R. Zhang, Z. Peng, L. Wu, Z. Li, and P. Luo, “Exemplar normalization
for learning deep representation,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 12726–12735.

[44] W. Shao, S. Tang, X. Pan, P. Tan, X. Wang, and P. Luo, “Channel
equilibrium networks for learning deep representation,” in Proc. Int.
Conf. Mach. Learn. (ICML), PMLR, 2020, pp. 8645–8654.

[45] M. Javaheripi, M. Samragh, T. Javidi, and F. Koushanfar, “AdaNS: Adap-
tive non-uniform sampling for automated design of compact DNNs,”
IEEE J. Sel. Topics Signal Process., vol. 14, no. 4, pp. 750–764,
May 2020.

[46] G. Li, M. Zhang, J. Li, F. Lv, and G. Tong, “Efficient densely connected
convolutional neural networks,” Pattern Recognit., vol. 109, Jan. 2021,
Art. no. 107610.

[47] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 2818–2826.

[48] A. G. Howard et al., “MobileNets: Efficient convolutional neural
networks for mobile vision applications,” 2017, arXiv:1704.04861.
[Online]. Available: http://arxiv.org/abs/1704.04861

[49] F. Chollet, “Xception: Deep learning with depthwise separable convo-
lutions,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jul. 2017, pp. 1251–1258.

[50] T. Zhang, G.-J. Qi, B. Xiao, and J. Wang, “Interleaved group convo-
lutions,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017,
pp. 4373–4382.

[51] Y. Wu and K. He, “Group normalization,” in Proc. Eur. Conf. Comput.
Vis. (ECCV), 2018, pp. 3–19.

[52] Z. Su, L. Fang, W. Kang, D. Hu, M. Pietikäinen, and L. Liu, “Dynamic
group convolution for accelerating convolutional neural networks,” in
Proc. Eur. Conf. Comput. Vis. (ECCV). Cham, Switzerland: Springer,
2020, pp. 138–155.

[53] R. Zhao and W. Luk, “Efficient structured pruning and architecture
searching for group convolution,” in Proc. IEEE/CVF Int. Conf. Comput.
Vis. Workshop (ICCVW), Oct. 2019, pp. 1961–1970.

[54] C. Louizos, K. Ullrich, and M. Welling, “Bayesian compression for
deep learning,” in Proc. Conf. Neural Inf. Process. Syst. (NIPS), 2017,
pp. 3288–3298.

[55] D. P. Kingma, T. Salimans, and M. Welling, “Variational dropout and
the local reparameterization trick,” in Proc. Conf. Neural Inf. Process.
Syst. (NIPS), 2015, pp. 2575–2583.

[56] J. Wang, H. Bai, J. Wu, and J. Cheng, “Bayesian automatic model
compression,” IEEE J. Sel. Topics Signal Process., vol. 14, no. 4,
pp. 727–736, May 2020.

[57] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” 2013,
arXiv:1312.6114. [Online]. Available: http://arxiv.org/abs/1312.6114

[58] T. Chen, B. Lin, H. Geng, S. Hu, and B. Yu, “Leveraging spatial
correlation for sensor drift calibration in smart building,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., early access, Aug. 12, 2020,
doi: 10.1109/TCAD.2020.3015438.

[59] T. Chen, B. Lin, H. Geng, and B. Yu, “Sensor drift calibration via spatial
correlation model in smart building,” in Proc. 56th Annu. Design Autom.
Conf., Jun. 2019, pp. 1–6.

[60] Z. Zhang and B. D. Rao, “Extension of SBL algorithms for the recovery
of block sparse signals with intra-block correlation,” IEEE Trans. Signal
Process., vol. 61, no. 8, pp. 2009–2015, Apr. 2013.

[61] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes: The Art of Scientific Computing, 3rd ed. Cambridge,
U.K.: Cambridge Univ. Press, 2007.

[62] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex Optimization.
Cambridge, U.K.: Cambridge Univ. Press, 2004.

[63] Group LASSO Solver. Accessed: Sep. 2019. [Online]. Available:
https://github.com/fabianp/group_lasso

[64] J. Huang, T. Zhang, and D. Metaxas, “Learning with structured sparsity,”
J. Mach. Learn. Res., vol. 12, pp. 3371–3412, Jan. 2011.

[65] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 4700–4708.

Tinghuan Chen (Graduate Student Member, IEEE)
received the B.Eng. and M.Eng. degrees in electron-
ics engineering from Southeast University, Nanjing,
China, in 2014 and 2017, respectively. He is cur-
rently pursuing the Ph.D. degree with the Depart-
ment of Computer Science and Engineering, The
Chinese University of Hong Kong, Hong Kong.

His research interests include machine learn-
ing in analog/mixed-signal very large-scale integra-
tion (VLSI) design-for-reliability and cyber-physical
systems.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2022 at 08:35:54 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TCAD.2020.3015438

CHEN et al.: EFFICIENT SHARING GROUPED CONVOLUTION VIA BAYESIAN LEARNING 7379

Bin Duan received the B.Eng. degree in elec-
tronics engineering from Changzhou University,
Changzhou, China, in 2018. He is currently pur-
suing the master’s degree with the School of Micro-
electronics, Southeast University, Wuxi, China.

His research interests include neural network
model compression and optimization.

Qi Sun (Graduate Student Member, IEEE) received
the B.Eng. degree in computer science from Xidian
University, Xi’an, China, in 2018. He is currently
pursuing the Ph.D. degree with the Department of
Computer Science and Engineering, The Chinese
University of Hong Kong, Hong Kong.

His current research interests include deep neural
network hardware acceleration, high-level synthesis,
and design space exploration.

Meng Zhang received the B.S. degree in electrical
engineering from the China University of Mining
and Technology, Xuzhou, China, in 1986, and the
M.S. degree in bioelectronics and the Ph.D. degree
in microelectronic engineering, as an on-the-job
postgraduate student, from Southeast University,
Nanjing, China, in 1993 and 2014, respectively.

He is currently a Professor and a Faculty Adviser
of Ph.D. graduates at the National ASIC System
Research Center, School of Electronic Science and
Engineering, Southeast University. He has published

more than 40 refereed journal articles and international conference papers.
He holds more than 90 patents, including some PCT and U.S. patents.
His research interests include deep learning, machine learning, digital signal
processing, digital communication systems, and digital integrated circuit
design.

Guoqing Li (Graduate Student Member, IEEE)
received the B.S. degree from Qingdao University,
Qingdao, China, in 2014, and the M.S. degree from
South China Normal University, Guangzhou, China,
in 2017. He is currently pursuing the Ph.D. degree
with the National ASIC Engineering Technology
Research Center, School of Electronics Science and
Engineering, Southeast University, Nanjing, China.

His current research interests include computer
vision, convolutional neural networks, and deep
learning hardware accelerator.

Hao Geng received the M.E. degree from the
Department of Electronic Engineering and Informa-
tion Sciences, University of Science and Technology
of China, Hefei, China, in 2015, and the M.Sc.
degree in machine learning from the Department
of Computing, Imperial College London, London,
U.K., in 2016. He is currently pursuing the Ph.D.
degree with the Department of Computer Sci-
ence and Engineering, The Chinese University of
Hong Kong, Hong Kong.

His research interests include machine learning,
deep learning, and optimization methods with applications in very large-scale
integration (VLSI) computer-aided design (CAD).

Qianru Zhang received the M.S. degree in electrical
and computer engineering from the University of
California at Irvine, Irvine, CA, USA, in 2016.
She is currently pursuing the Ph.D. degree with the
National ASIC Center, School of Electronic Science
and Engineering, Southeast University, Nanjing,
China.

Her research interests include digital signal
processing, big data analysis, and deep learning
techniques.

Bei Yu (Member, IEEE) received the Ph.D. degree
from The University of Texas at Austin, Austin, TX,
USA, in 2014.

He is currently an Assistant Professor with the
Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Hong Kong.

Dr. Yu has served as the TPC Chair for the
ACM/IEEE Workshop on Machine Learning for
Computer-Aided Design (CAD) and in many journal
editorial boards and conference committees. He is
also an Editor of the IEEE Technical Committee on

Cyber-Physical Systems Newsletter. He received seven Best Paper Awards
from the Asia and South Pacific Design Automation Conference (ASPDAC)
2021, the International Conference on Tools with Artificial Intelligence
(ICTAI) 2019, Integration, the IEEE TRANSACTIONS ON VERY LARGE-
SCALE INTEGRATION (VLSI) SYSTEMS journal in 2018, ISPD 2017,
the SPIE Advanced Lithography Conference 2016, ICCAD 2013, ASPDAC
2012, and six ICCAD/ISPD Contest Awards.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2022 at 08:35:54 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

