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Abstract—While the VLSI community cares about designs
with high yields under process variations, expensive computa-
tional costs make conventional yield optimization methods for
analog circuits inefficient for industrial applications. In this arti-
cle, an efficient yield optimization method via the freeze–thaw
Bayesian optimization technique is proposed for analog circuits.
The yield analysis is integrated into the exploration process of
the Bayesian optimization. With a specified Gaussian process
regression method, the flexible freeze–thaw Bayesian optimization
technique is utilized to automatically guide the search in the
design space and control the accuracy of yield analysis in the
process space. A performance optimization problem is formu-
lated and solved to mine prior knowledge, and a further speed
up is achieved. Experimental results show that the proposed
method can gain a 2.47×–5.73× speedup compared with the
state-of-the-art methods, without loss of accuracy.

Index Terms—Design for space exploration, freeze–thaw
Bayesian optimization, transistor sizing, yield modeling, yield
optimization.

I. INTRODUCTION

AS SEMICONDUCTOR fabrication technology scales
to the nanometer level, process variations have strong

impacts on the performances, yields of analog circuits. In
order to deal with the increasing challenges in reliable cir-
cuit designs, the IC community pays more and more attention
to yield optimization recently [1], [2].

In general, yield optimization flow features an iterative loop
as designers first adjusting design parameters, like sizes of
transistors, then executing the time-consuming yield analy-
sis. Since yield analysis (PVT or Monte Carlo simulations)
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needs thousands of simulations to guarantee the accuracy, the
time cost of the entire yield optimization is extremely high.
Considering the narrowing time-to-market, reducing the over-
all simulation time of yield optimization for analog circuits is
the most urgent requirement.

To resolve this issue, a large number of methodologies and
algorithms have been proposed, mainly including the follow-
ing three categories. Corner-based methods [3]–[7] optimize
the “worst case” performance of given circuits at several
process corners. Although this treatment avoids costly yield
estimations, it is coarse, inaccurate, and often leads to overde-
sign. In addition, it is difficult to search the worst case in a
high-dimensional process space.

Monte-Carlo (MC)-based methods are the most straightfor-
ward and widely used methods due to their high accuracy
and generality. Liu et al. [8] and Guerra-Gomez et al. [9]
applied the optimal computation budget allocation (OCBA)
techniques for MC speedup, and evolutionary algorithms for
optimization. Wang et al. [10] employed the kernel den-
sity estimation method for yield modeling and proposed a
multistart-point expectation–maximization-like algorithm to
solve the problem. Wang et al. [11] proposed an adaptive
yield analysis method and implemented Bayesian optimization
with the weighted expected improvement (wEI) criterion to
obtain the optimal design. Zhang et al. [12] employed the
Gaussian process (GP) regression with the neural network
and max-value entropy search (ES) methods for optimization
based on [11]. Although Bayesian optimization has shown
certain advantages in previous research, the computational
costs are still a major deterrent to mainstream adoption for
yield optimization. For example, the state-of-the-art meth-
ods [11], [12] need 6000–20 000 simulations, which is time
prohibitive for analog circuits.

Response-surface-based methods [13]–[16] try to build a
surrogate model of circuit performance to replace the expen-
sive simulator, thus reducing the cost of yield optimization.
However, these methods are limited for requiring lots of
samples to maintain modeling accuracy and being nearly
impossible to build the surrogate model in a high-dimensional
space.

As we only care about the optimal design, the simulation
resources allocated to selected designs should be dynamically
adjusted. In fact, the idea of applying coarse yield estimations
for low-yield designs has been successfully introduced in [11]
for saving simulations, as shown in the low-yield region in
Fig. 1(a), where the x-axis is the number of samples, the y-
axis is the yield, and different lines are different designs. Those
designs whose yields are much lower than design 1 are dis-
carded with cheap estimations, e.g., design 4 and design 5.
However, for designs with yields close to design 1, e.g.,
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(a) (b)

Fig. 1. Comparison of (a) traditional adaptive analysis and (b) freeze–thaw
technique for yield optimization.

design 2 and design 3, [11] cannot distinguish them effectively,
and has to calculate their high-accuracy yields immediately,
leading to huge simulation cost. Intuitively, if we collect
designs with potentially high yields and gradually improve
their analysis accuracy rather than execute high-accuracy yield
analysis at once, simulation cost may be reduced because
yield analysis at most designs can be early stopped when a
higher-yield region is found, even if they were ever consid-
ered candidates for optimal design in the early stage of the
optimization procedure.

Recently, curve learning-related modeling methods have
aroused widespread interest in the machine learning com-
munity [17], [18]. Inspired by [17], a freeze–thaw Bayesian
optimization technique is introduced in this article for yield
optimization. The basic idea of freeze–thaw is to inte-
grate yield analysis into the exploration process of Bayesian
optimization, automatically guide the search in the design
space and allocate computational resources of yield estima-
tions. By modeling the process of yield analysis, we can
temporarily freeze the analysis at one design, if its predicted
final yield does not seem to be optimal. We can also thaw the
analysis if it becomes the optimal candidate again. Even we
can start analysis at a new design.

Concretely, improving the yield accuracy of a design
is considered as an iterative process throughout the entire
optimization, i.e., samples are gradually added to improve
the analysis accuracy. The freeze–thaw Bayesian optimization
puts and freezes the high-yield designs in a candidate bas-
ket for their yields are currently blurry, predicts the next
design with optimal yield and selects the design from bas-
ket, which maximally reduces the uncertainty of the optimal
(i.e., information gain), to execute yield analysis. This tech-
nique gradually improves the accuracy of yield analysis in the
high-yield region, and most designs will be allocated only a
small number of simulations as shown in Fig. 1(b).

Empirically, a good design should have a high yield and
good circuit performances, i.e., satisfying performance spec-
ifications, which hints us to intuitively find the design with
optimal yield near those designs with good performances.
Compared with the expensive yield optimization, the
performance optimization at the typical–typical (TT) cor-
ner is much cheaper. Therefore, we innovatively embed
the relatively cheap performance optimization into the yield
optimization flow. The performance optimization at the begin-
ning of yield optimization is able to provide a good start
for yield optimization, resulting in an efficient warm start,
which shows considerable advantage on efficiently exploring
the large optimization space.

In this article, a general and efficient yield optimization
method for analog circuits is proposed. Some key contributions
are concluded as follows.

1) A freeze–thaw Bayesian optimization technique is first
applied for the yield optimization of analog circuits,
which automatically guides the search in the design
space and gradually improves the analysis accuracy in
the process space. With the high sampling efficiency of
Bayesian optimization and flexibility of the freeze–thaw
technique, the overall costs of yield optimization are
significantly reduced.

2) A nominal performance optimization problem is formu-
lated and solved in the yield optimization framework.
This treatment helps to mine prior knowledge for yield
optimization, and a further speedup is achieved.

3) Experimental results show that the proposed method
achieves a 2.47×–5.73× speedup over the state-of-the-
art methods, without loss of accuracy.

The remainder of this article is organized as follows. In
Section II, we present the problem formulation and traditional
methods for yield estimation, modeling, and optimization. The
complete yield optimization approach via a freeze–thaw tech-
nique is introduced in Section III. The implementation details
are discussed in Section IV. Experimental results are given to
validate the proposed method in Section V. Finally, Section VI
concludes this article.

II. BACKGROUND

A. Problem Formulation

In design space D ⊆ Rdx , a design point x =
[x1, x2, . . . , xdx ]� ∈ D means a dx-dimensional vector. Design
parameters xi, i = 1, . . . , dx are restricted in reasonable ranges
[li, ui], respectively, representing values of bias voltages and
currents, widths and lengths of transistors, etc.

In process space V ⊆ Rds , a process point s =
[s1, s2, . . . , sds ]

� ∈ V denotes a ds-dimensional vector. Process
parameters si, i = 1, . . . , ds are random variables modeling
the variations of manufacturing process, such as threshold
voltages, etc., following normal distributions provided by
foundries [19].

Generally, in most process design kits (PDKs), process
parameters are independent of the design parameters and
mutually independent [10]. The probability density func-
tion (PDF) of s is

p(s) =
ds∏

i=1

[
1√
2π

exp

(
− s2

i

2

)]
. (1)

Circuit performances y = [y1, y2, . . . , yk]� can be regarded
as a function of design and process parameters: yi =
f i
sim(x, s), x ∈ D, s ∈ V , where f i

sim means that the ith
performance yi can be obtained from a transistor-level simula-
tion fsim. Usually, circuits are supposed to meet corresponding
specifications c = [c1, c2, . . . , ck]� set by designers. A circuit
is success if all specifications are satisfied, i.e., yi ≥ ci, i =
1, . . . , k without loss of generality. Otherwise, it is a fail.

Given design parameters x, the yield Y(x) can be
expressed as

Y(x) =
∫

V
I(x, s)p(s)ds (2)
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where indicator function I(x, s) = AND(yi ≥ ci), i = 1, . . . , k,
and AND(·) is logical function AND.

The goal of the yield optimization problem is to find a
design point x∗ with maximal yield Y as

x∗ = arg max
x∈D

Y(x). (3)

B. Monte Carlo Analysis

MC methods are the most widely used numerical methods
for probability density analysis. For a given design x, with
N random samples si, i = 1, . . . , N drawn from p(s), MC
estimates the yield Y(x) as

ŶMC(x) = 1

N

N∑

i=1

I(x, si). (4)

The variance of the estimator ŶMC(x) is determined by the
sampling size N as [20]

σ 2
Ŷ ≈

ŶMC
(
1− ŶMC

)

N
· k2

γ (5)

where the confidence level kγ is a constant. For example, kγ =
1.645 corresponds to a 90% confidence level.

By effectively utilizing the relationship between confidence
interval σ 2

Ŷ
and sample size N, the number of MC samples

required for one yield estimation can be adjusted by given
target yield and specific accuracy.

C. Gaussian Process Regression Method

The GP regression model [21] is a powerful and effective
nonparametric probabilistic method, which has been widely
studied in many engineering fields, due to its ability to
provide both posterior mean and corresponding uncertainty.
Given a finite collection of n points, X = {x1, x2, . . . , xn},
xi ∈ D, i = 1, . . . , n, and the unknown true yield Y =
{Y(xi), i = 1, . . . , n}, GP is defined as a probability distri-
bution over Y such that Y = {Y(xi), i = 1, . . . , n} jointly
have a multivariate Gaussian distribution

Y ∼ N(μ, K) (6)

where μ is an n×1 mean vector, and K is an n×n covariance
matrix.

GP is fully specified by its prior mean function m(x) and its
covariance function k(xi, xj). In (6), the mean vector μ is deter-
mined by m(x), i.e., μi = m(xi), i = 1, . . . , n, and k(xi, xj)

determines the covariance matrix K, i.e., Kij = k(xi, xj), i, j =
1, . . . , n. Usually, m(x) is set to a constant for convenience. As
for the covariance function, there are usually multiple options,
e.g., the squared exponential kernel and Matérn kernels. In this
article, Matérn-5/2 kernel is selected as

k
(
xi, xj

) = σ 2
f

(
1+√5r + 5

3
r2
)

exp
(
−√5r

)
, i, j = 1 · · · n

(7)

where r2 = (xi−xj)
��−1(xi−xj). σf denotes the output vari-

ance, and � = diag(l12, . . . , ln2), li, i = 1, . . . , n represents
the ith characteristic length scale.

Considering the noise εx ∼ N(0, σ 2
x ) of statistical yield

analysis, noise-corrupted estimated yield Ŷ = {Ŷ(xi), i =
1, . . . , n} has the form

Ŷ ∼ N
(

Y, σ 2
x I
)

(8)

where I is the identity matrix. Then, the covariance function
for the elements of matrix K′ becomes

k′
(
xi, xj

) = k
(
xi, xj

)+ σ 2
x δij (9)

where δij = 1 if i = j, otherwise δij = 0.
The hyperparameters σf , li, i = 1, . . . , n and σx in the GP

model can be determined by the maximum likelihood esti-
mation (MLE). Given a new design xa, its corresponding
yield Ŷ(xa) and observed yields Y follow the joint Gaussian
distribution:
[

Y
Ŷ(xa)

]
∼ N

([
μ

m(xa)

]
,

[
K′ k′(xa, X)�

k′(xa, X) k′(xa, xa)

])
(10)

where k′(xa, X) = [k′(xa, x1), k′(xa, x2), . . . , k′(xa, xn)].
Then, the predictive distribution of Ŷ(xa) conditioned on

observations {X, Y} can be derived with the following poste-
rior mean and variance:

μ
(
Ŷ(xa)

) = k′(xa, X)�K′−1Y (11)

σ 2(Ŷ(xa)
) = k′(xa, xa)− k′(xa, X)�K′−1k′(xa, X). (12)

D. Bayesian Optimization

Since yield analysis tools are extremely costly and the
estimation results are always noise corrupted, Bayesian
optimization [22]–[24] has attracted widespread attention
recently in the yield optimization problem [11], [12], [25].
In general, the Bayesian optimization framework has two key
components. The first component is a probabilistic model,
which reflects our beliefs about the unknown objective func-
tion, e.g., the GP model in Section II-C. The second com-
ponent is an acquisition function that utilizes the posterior
distribution to guide the search. By maximizing the acqui-
sition function, Bayesian optimization aims to balance the
tradeoff between exploitation and exploration, i.e., the next
query point is located where the model prediction is high
(exploitation) and/or the model uncertainty is large (explo-
ration). Specifically, there are several kinds of acquisition
functions, e.g., traditional Thompson sampling (TS) [26],
lower confidence bound (LCB) [27], knowledge gradient [28],
and the newly proposed acquisition function, named proba-
bility of further improvement (PFI) which aims to deal with
stringent specifications for analog IC sizing problems [29].

A typical acquisition function is the expected improvement
(EI) [30], which has a closed form. Given the current maxi-
mum yield τ , the improvement of Y(x) predicted by GP model
can be calculated with I(Y(x)) = max(0, Y(x)−τ). Since Y(x)

follows a Gaussian distribution, EI is expressed as:

EI(x) = E[I(Y(x))] = σ(x)(λ	(λ)+ φ(λ)) (13)

where λ = (τ − μ(x))/σ (x), μ(x) and σ(x) are the posterior
mean and standard deviation of Y(x) in (11) and (12). 	(·)
and φ(·) represent the CDF and PDF of the standard normal
distribution, respectively.

For the yield optimization problem, nominal performances
can be set as constraints [11], [25], i.e., all specifications
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should be satisfied at the TT corner. This treatment can help to
reduce unfeasible design space for speedup. The constrained
yield optimization problem is written as

x∗ = arg max
x∈D

Y(x)

s.t. yi(x, TT) ≥ ci, i = 1, . . . , k (14)

where yi(x, TT) is the ith nominal performance of design x,
and x∗ is the global optimal design.

It should be noted that other design costs (e.g., area and
power, etc.), besides the performances, can be further inte-
grated into this formulation. We can either add them in the
objective function with weight coefficients to optimize them
simultaneously [31], or set them as additional constraints to
meet specific requirements [32].

To deal with the constraints, the wEI [33] is proposed to
multiply the EI function with the probability of feasibility
(PF), i.e., the probability of all constraints being satisfied,
written as

wEI(x) = PF(x) · EI(x) (15)

where PF(x) =∏k
i=1 P(yi(x, TT) ≥ ci).

Different from wEI, which focuses on the change of yield
value, another acquisition function adopted in this article, i.e.,
ES [34], considers more about the location of the optimal
design. Formally, it can be expressed as

ES(x) =
∫ (

H(Px∗)− H
(
PY

x∗
))

P(Y|Do)dY (16)

where the observed data Do = {X, Y}. x∗ represents the
unknown design with the optimal yield. H(·) denotes the dif-
ferential entropy, and D′o is the updated data set of Do with
one more data point (xn+1, Ŷ(xn+1)) observed. Px∗ and PY

x∗
are the estimated distributions over x∗ given observed data Do
and D′o, respectively, [17].

Fig. 4(a) illustrates the ordinary Bayesian optimization flow.
At each iteration, the probabilistic model is built with current
training data. Then, the acquisition function can be computed
with the predictive posterior distribution, and it is optimized
to generate the next query design, e.g., x∗wEI. After estimating
yield at x∗wEI, the data set is updated with this new sample.
These steps are taken iteratively until the termination condition
is reached.

III. PROPOSED APPROACH

This section will present the proposed yield optimization
method for analog circuits. First, a freeze–thaw GP regres-
sion method for iterative yield analysis is discussed. Then, the
framework of freeze–thaw Bayesian optimization technique is
described. Next, a nominal performance optimization problem
is formulated and solved to mine prior knowledge. Finally, a
complete flow summarizes the proposed method.

A. Freeze–Thaw Gaussian Process Regression Model for
Iterative Yield Analysis

In general, the yield analysis needs to be invoked repet-
itively during the yield optimization process, thus reducing
analysis costs is an important way to improve the algorithm
efficiency. In previous yield optimization methods [8], [9],
[11], [12], one design will only be selected once, the obtained
yield value will not change after estimation. However, the

proposed approach allows the same design to be repeatedly
selected for estimation during the optimization. Specifically,
when a design is selected for the first time, we will execute
a rough analysis at it. If it is picked again later, we will add
more samples to improve its analysis accuracy. Intuitively, the
design with the highest yield will be repeatedly selected until
the termination condition is reached.

In other words, the yield analysis is integrated into the
exploration process of Bayesian optimization. Yield analy-
sis at any given design is treated as an iterative process
rather than executed at once. From this perspective, the over-
all optimization process is regarded as a double loop, where
the outer loop explores the design space and selects candidate
designs, the inner loop adds samples for yield estimations.
Since this analysis method is MC-based, the estimated yield
will gradually converge to its true value with samples added.

To model this iterative analysis process, a freeze–thaw GP
regression method is designed. With the ability to predict the
final yield with partially completed analysis, the computational
costs of yield estimations can be significantly reduced.

Formally, given designs {xi}ni=1, let gj
i, j = 1, . . . , Ti denote

estimated yield value with j batches of simulations sampled at
xi. Ti ∈ N

+ indicates the total number of batches sampled at xi.
gi = [g1

i , g2
i , . . . , gTi

i ] is a Ti-dimensional vector representing
the analysis curve, and ti = [1, 2, . . . , Ti] is the corresponding
time steps of gi. In order to build a surrogate model for every
analysis curve, a specified kernel [17] is utilized. For tai , tbi ∈ ti,
the kernel function k(tai , tbi ) is given by

k
(

tai , tbi
)
= βα

(
tai + tbi + β

)α (17)

where α and β are two hyperparameters. A feature of this
kernel function is that its value will tend to be constant when
tai or tbi is large, so it is suitable for modeling a curve which
gradually converges.

In this article, the specified kernel is used as the covari-
ance function over time steps for an iterative yield analysis
curve. Concretely, each curve is drawn from a separate GP,
modeled by

N
(
gi;Yi1i, Ktiti

)
(18)

where Yi is the asymptotic value that the ith curve converges
to, i.e., final yield at xi, and 1 is a column vector of 1’s. The
specified curve kernel is selected for the elements of Ktiti ,

i = 1, . . . , n.
Considering the correlation of yields in the design space, the

final yield Yi is regarded as a latent function that specifies the
asymptotic value of each analysis curve, jointly modeled by

N(Y;m, Kxx) (19)

where Y = {Y1, Y2, . . . , Yn}. The prior mean m =
[m1, m2, . . . , mn] remains constant, and mi is the mean of
gi, i = 1, . . . , n. Matérn-5/2 kernel is selected for the elements
of Kxx.

Subsequently, the distribution over all analysis curves
{gi}ni=1 can be written as

P
({gi}ni=1|{xi}ni=1

) =
∫ [ n∏

i=1

N
(
gi;Yi1i, Ktiti

)
]

·N(Y;m, Kxx)dY. (20)
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Fig. 2. Illustration of the GP model for iterative yield analysis.

Fig. 2 illustrates the basic idea of this GP model where x-
axis is the number of iterations, y-axis is the yield. Each line
represents an yield analysis curve gi at a given design xi. It can
be seen that the analysis procedure is executed as an iterative
process throughout the entire optimization rather than at once.
Each curve is modeled by N(Yi1i, Ktiti), i = 1, . . . , n and the
final yields Yi, i = 1, . . . , n are jointly modeled by N(m, Kxx).
In other words, the final yields Yi, i = 1, . . . , n are first drawn
over design space according to a GP prior. Conditioned on Yi,
each analysis curve is modeled independently using another
GP prior.

As yield estimations are always noise corrupted, the sta-
tistical noise εt ∼ N(0, σ 2

t ) is counted. Then, the covariance
function for the elements of matrix K′titi becomes

k′
(

tai , tbi
)
= k

(
tai , tbi

)
+ σ 2

t δab (21)

where δab = 1 if a = b; otherwise, δab = 0. To obtain the
hyperparameters, the log likelihood is derived from (20) as

log P
(
ĝ|{xi}ni=1

) = −1

2
(̂g−Om)�K′−1

tt (̂g−Om)

+ 1

2
γ�
(

K′−1
xx +Q

)−1
γ

− 1

2

(
log
(
|K′−1

xx +Q|
)

+ log
(|K′xx|

)+ log
(|K′tt|

)+ const (22)

where ĝ = [̂g1, ĝ2, . . . , ĝn]�, represents the vector
composed of all yield analysis curves together. O =
blockdiag(11, 12, . . . , 1n) is a block-diagonal matrix. Its block
1i is a vector of ones with length Ti, i = 1, . . . , n. K′tt =
blockdiag(K′t1t1 , K′t2t2 , . . . , K′tntn) is a block-diagonal matrix
with blocks K′titi . γ is an n-dimensional vector with ele-
ments γi = 1�K′−1

titi
(̂gi − mi), and Q = diag(q1, . . . , qn) with

elements qi = 1�K′−1
titi

1, i = 1, . . . , n.
All hyperparameters, including α, β, σt, etc., can be learned

by MLE.
Using the Bayesian inference, we can derive the required

quantities for optimization from (22). Formally, given all
observed designs {xi}ni=1 and noise-corrupted analysis curves
{̂gi}ni=1, the posterior distribution of final yields Ŷ at old
designs {xi}ni=1 is expressed as

p
(
Ŷ|{̂gi}ni=1, {xi}ni=1

) = N
(
Ŷ;μ, C

)

μ = m+ Cγ

C = K′xx −K′xx

(
K′xx +Q−1

)−1
K′xx.

(23)

Fig. 3. Yield regression comparison between the proposed method and
existing methods in the design space.

Then, for a new design xa, the posterior mean μ(Ŷ(xa)) and
uncertainty measurement σ 2(Ŷ(xa)) of its final yield Ŷ(xa) are
written as

μ
(
Ŷ(xa)

) = k′�xxa
K′−1

xx μ (24)

σ 2(Ŷ(xa)
) = k′xaxa

− k′�xxa

(
K′xx +Q−1

)−1
k′xxa . (25)

Fig. 3 shows the yield regression comparison in design
space between the proposed method and existing meth-
ods [11], [12] under the same training data. The x-axis is the
width of transistor M19 in a comparator circuit (Fig. 9) and
the y-axis is the yield. As the yield data are often roughly esti-
mated, yellow dots (estimated yield) may not accurately fall on
the black-dotted line (true yield). Existing methods show poor
fitting results since they take the noisy current yields as golden
solutions, i.e., they try to fit the yellow dots, e.g., point A.
However, the proposed method first predicts the final yields
of current designs, e.g., point A’, and then utilizes them for fur-
ther yield prediction of new designs. Equations (11) and (24)
show this difference intuitively, where (24) uses the final yields
μ for better prediction, rather than the current yields Y in (11).
It can be clearly seen that the predicted final yield (point A’)
is closer to the true yield (black-dotted line) than current yield
(point A) at the same design. Thus, the proposed method can
provide better regression accuracy.

B. Framework of Freeze–Thaw Bayesian Optimization
Technique

To reduce the simulation cost of the yield optimization
problem, a freeze–thaw Bayesian optimization method is
proposed as follows. Fig. 4(b) shows the optimization flow.
First, a basket B is constructed to collect candidates with
potentially high yields during the optimization. Specifically,
the criterion for selecting candidates is to choose the top NB
designs with the current highest lower bound of the estimated
yield, formally written as

B = {arg max1:NB

(
ŶMC(x)− σŶ(x)

)
, x ∈ X

}
(26)

where ŶMC(x) and σŶ(x) are calculated with (4) and (5). Since
the yield analysis may be rough at the early and mid term,
maintaining a certain number of candidates that have already
been estimated to some degree can avoid missing the optimal
design. The basket size NB is chosen to be 10 in this article.
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(a) (b)

Fig. 4. Comparison between (a) ordinary Bayesian optimization and
(b) freeze–thaw Bayesian optimization.

Then the freeze–thaw GP model described in Section III-A
is built. Different from previous methods, which use only
one acquisition function to determine the next query point,
either [11] with wEI or [12] with ES, as shown in Fig. 4(a),
the proposed method effectively leverages two acquisition
functions to guide the search in design space, shown in
Fig. 4(b). It has been reported in [35] that different acquisi-
tion functions may lead to conflicting results. Therefore, this
treatment could make the results of design selection more
comprehensive.

Concretely, after model training, the wEI maximization
problem in (27) is solved by a multiple starting point (MSP)
strategy to obtain a new design x∗wEI in each iteration as

x∗wEI = arg max
x∈D

wEI(x). (27)

It has been shown in [36]–[38] that MSP strategy is very effec-
tive for global optimization. The BFGS method [39] is chosen
for local search under the MSP framework.

Next, we compare the ES values of x∗wEI and candi-
date designs in the basket. ES is usually approximated
with MC methods [17], [40]. The implementation details
for ES in freeze–thaw method will be further discussed in
Section IV-A. The design with the highest ES value is selected
as the next query point, denoted as x∗ES. This step can be
formulated as

x∗ES = arg max
x∈B∪x∗wEI

ES(x). (28)

Fig. 5. Analysis curves in one yield optimization execution of a comparator
circuit.

Subsequently, one batch of simulations will be sampled at
x∗ES to estimate its yield. Specifically, if x∗ES = x∗wEI, i.e., the
new design x∗wEI is the most promising point, the current esti-
mation process in the basket will be paused (freeze), and yield
analysis at a brand-new design will be executed with one batch
of simulations. Otherwise, a previous partially completed esti-
mation at an old design in the basket will continue (thaw)
with one more batch of samples. By this two-round selection,
the sampling efficiency in terms of yield estimations can be
further improved.

After that, the training data set is updated with the newly
sampled observation, and the basket is rebuilt with the top
NB designs with the current highest lower bound of the esti-
mated yield of all training data, using (26). More competitive
designs will be added into the basket, while some old can-
didate designs may be removed, even including the optimal
designs ever found in the early and mid term. The optimization
procedure continues until a user-defined maximal number of
iterations is reached.

Essentially, the basket is a tradeoff between two acquisition
functions, i.e., wEI and ES to determine the next query design.
Concretely, if the basket size, i.e., the number of candidates
maintained, is very small, e.g., zero, the algorithm tends to
select x∗wEI for yield analysis. This means it will always exe-
cute analysis on new designs. On the other hand, if the basket
size becomes infinite, obtaining x∗ES is equivalent to searching
for optimal ES value in the whole design space. x∗wEI is almost
impossible to be selected as x∗ES, then this method will always
execute analysis on old designs. Thus, maintaining a moderate
number of candidates is important for the freeze–thaw tech-
nique, so that the algorithm could switch analysis between new
designs and old designs according to the acquisition functions,
wEI and ES.

Fig. 5 shows the analysis curves with yields higher than
90% in one optimization execution of a comparator circuit
(see Fig. 9) where the x-axis is the number of simulations and
the y-axis is the yield. Clearly, different designs are allocated
different amounts of simulations.

Actually, the adaptive yield analysis has been introduced
in [11] and [12]. However, they allocate simulation resources
based on the comparison with current maximum yield τ . If the
yield of the estimated design is close to τ , a large number of
simulations will be sampled. However, τ gradually increases
during the entire optimization process; thus, this treatment
may lead to a waste of simulation resources, in the case that
the algorithm has not yet explored the optimal-yield region.
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Fig. 6. Yield and nominal performance of a comparator circuit.

Specifically, suppose there is a design with true yield Ys and
an optimal design with true yield τ . In order to confirm which
one is better in [11] and [12], according to (5), the number of
samples required for MC analysis can be calculated with

N ≈ Ys(1− Ys)

(τ − Ys)
2
· k2

γ . (29)

Take Ys = 94% for example, it will be allocated over 1000
simulations when τ is 95%. However, when τ increases to
98%, less than 100 points are sufficient. The proposed method
uses a basket to collect candidates with potentially high yields,
instead of comparing their yields immediately, allowing the
designs found in the early stage to compete with those found
in the later stage for resources, automatically cutting down the
simulation costs.

For the case in Section V-A, many designs can reach a
yield value of 97%, but only four designs with yields greater
than 97% are allocated more than 400 simulations as shown
in Fig. 5.

C. Knowledge Transfer From Nominal Design

In the freeze–thaw Bayesian optimization, the basket is built
with random initialization. In order to further reduce the sim-
ulation cost, we need to pick some prior solutions for the
basket. Actually, the cost of circuit performance optimization
is much lower than that of yield optimization. For example,
only a few hundred simulations are needed in a performance
optimization execution [32], [41], [42]. However, even a single
yield analysis may cost thousands of simulations. Naturally,
we consider using the results of performance optimization to
guide the yield optimization.

Fig. 6 shows the yield and nominal performance of a
comparator circuit, i.e., the first case in the experimental sec-
tion, where the D1-axis represents the width of transistor
M17. The performance metric is the offset voltage Voff with
200-MHz sampling frequency at 30 ◦C, and the specification
is Voff ≤ 30mV. We can see that a design with the best
performance does not usually have the optimal yield. On the
contrary, those designs which roughly meet and are close to
the specifications, i.e., near the failure boundary, may have
better yields.

Based on this observation, we formulate a nominal
performance optimization problem as

min
x∈D

f (x) =
k∑

i=1

ωi · |(yi(x, TT)− ε · ci)/ci|

s.t. yi(x, TT) ≥ ci, i = 1, . . . , k (30)

Fig. 7. Prior knowledge transferred to yield optimization.

where ωi is the weight, representing the importance of the ith
performance metric. ε is a constant coefficient, determining
the desired distance between the nominal performance value
yi(x, TT) and specification ci. We set ωi = 1, i = 1, . . . , k and
ε = (3/2) empirically in experiments.

In this article, the nominal performance optimization
problem is solved by the approach proposed in [32], i.e.,
WEIBO, with a maximum iteration number of Npre, which is
a state-of-the-art performance optimization method for analog
circuits. To make the obtained prior solutions more widely
distributed, this solver is invoked three times randomly and
independently, resulting in 3×Npre simulation costs. Then, all
the obtained designs meeting the constraints will be divided
into N clusters by the k-means method. Every design with the
smallest f (x) in corresponding cluster is selected as the prior
solution. A total number of N designs are added to the data
set and basket for yield optimization.

Fig. 7 shows the proposed strategy to leverage the knowl-
edge from nominal performance optimization to reduce the
cost of yield optimization. In the left part, D1-axis and D2-axis
are the widths of transistor M17 and M19, respectively, in a
comparator circuit (see Fig. 9). The z-axis is the optimization
target f (x) in (30), and its origin corresponds to the position
where nominal performances yi(x, TT) are equal to ε · ci, i =
1, . . . , n. The points sampled in the three optimizations on
TT-corner are marked with diamonds, triangles, and squares,
and the selected prior solutions are marked with red circles. In
the right part, the x-axis is the number of simulations and the
y-axis is the yield. Several prior solutions get high yields, lead-
ing to an efficient warm start. By picking prior solutions for
the basket at the initial stage, prior knowledge is transferred
to yield optimization. Concretely, the prior knowledge helps
to reduce the number of simulations by approximately 20%
on average. Moreover, this strategy is particularly useful in
the problems exploring large optimization space. For exam-
ple, in Section V-E, existing methods [11], [12] may fail to
obtain the optimal design, but the proposed method succeeds
by leveraging the prior knowledge.

D. Summary

The proposed yield optimization flow for analog circuits
is depicted in Fig. 8. It consists of two parts. One is the
nominal performance optimization part used to mine prior
knowledge, as described in Section III-C. It is worth men-
tioning that our proposed approach is orthogonal to the solver
for nominal performance optimization. The other is the yield
optimization part via the freeze–thaw technique. Throughout
the optimization process, yield analysis at one design is
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Fig. 8. Proposed yield optimization flow for analog circuits.

executed iteratively. The analysis accuracy can be gradu-
ally improved by the freeze–thaw strategy, as described in
Section III-B.

IV. IMPLEMENTATION DETAILS

A. Entropy Search for Freeze–Thaw Technique

ES considers the uncertainty reduction over the location
of the optimal design when new observations, (xfant, Yfant)

are added, and iteratively evaluates designs which will most
improve the information gain. Since (xfant, Yfant) is not really
evaluated, ES is often calculated with fantasized yields pre-
dicted by the GP model [40]. Concretely, by adding the fanta-
sized observations (xfant, Yfant) to the training set, ES selects
the design that causes the maximum uncertainty reduction.

Due to the iterative yield analysis, yield values are gradually
updated during the optimization. Whether a brand-new design
is estimated for the first time, i.e., (xn+1, ĝ1

n+1), or an old

design is taken one step further, i.e., (xi, ĝTi+1
i ), i ∈ {1, . . . , n},

new information about the optimal location will be provided.
To compute the information gain, we have to calculate the
fantasized yields of new designs, i.e., x∗wEI and old designs,
i.e., x ∈ B with one more batch of simulations added.

Formally, based on (20), the yield value of an old design in
the basket if one more batch of simulations are added can be
derived, e.g., the (T+1)th point on the ith curve, t′i = [T+1].
The posterior mean and variance of ĝT+1

i are given by

⎧
⎨

⎩
μ
(

ĝT+1
i

)
= k′�tit′i K

′−1
titi

ĝi +�μi

σ 2
(

ĝT+1
i

)
= k′t′it′i − k′�tit′i K

′−1
titi

k′tit′i + Cii�
2

(31)

Algorithm 1 Calculation of Differential Entropy
Require: A trained freeze-thaw GP model.

1: Select Nd representer points with the highest wEI values using a
Markov chain Monte Carlo sampler;

2: Draw Nf samples from the freeze-thaw GP model;
3: Calculate the probability of each representer design becoming

optimal, obtain Px∗ ;
4: Calculate the differential entropy value H(Px∗).

where � = 1 − k′�tit′iK
′−1
titi

1, μi is the ith element of μ, and
Cii is the ith diagonal element of C. Specifically, k′tit′i =
[k′(1, T + 1), k′(2, T + 1), . . . , k′(T, T + 1)]�, i = 1, . . . , n.

As for x∗wEI, its yield with one batch of simulations sampled
can also be derived. For the first point on the (n+1)th curve at
x∗wEI, tn+1 = [1], the posterior distribution of ĝ1

n+1 is written as

P
(

ĝ1
n+1|{̂gi}ni=1, {xi}ni=1, xn+1

)

= N
(

ĝ1
n+1;μ

(
Ŷ(xn+1)

)
, σ 2(Ŷ(xn+1)

)+ k′tn+1tn+1

)
(32)

where μ(Ŷ(xn+1)) and σ 2(Ŷ(xn+1)) are calculated
with (24) and (25), respectively.

With these information provided by the freeze–thaw GP
model, we can calculate the probability of the optimal design,
Px∗ and its differential entropy value H(Px∗) [17], [40].
Algorithm 1 describes the procedure of calculating them using
MC estimation in detail.

First, we select some points named representer points in
the design space which should be sensitive to the probability
change of the unknown optimal design x∗. Instead of random
sampling, we use a Markov chain Monte Carlo sampler to find
representers with the target measure set as the wEI function
for it tending to have high value in high-yield regions where
Px∗ is also large. The set of representers R can be written as

R = {arg max1:Nd
(wEI), x ∈ X

}
. (33)

Then, we draw Nf samples from the posterior distribution
provided by the freeze–thaw GP model. Each sample cor-
responds to a set of predicted yields of representer points.
Next, we calculate the probability of each representer becom-
ing optimal, resulting in an Nd-dimensional vector Px∗ . Thus,
the differential entropy value can be obtained by

H(Px∗) = −Px∗ · log(Px∗). (34)

In this article, Nd and Nf are set to 50 and 500, respectively.
Finally, ES for the freeze-thaw technique is described in

Algorithm 2. In each iteration, after obtaining x∗wEI, H(Px∗)
is first computed with currently observed data set Do. Then,
we calculate the fantasized yields of xi ∈ B, i = 1, . . . , NB
and x∗wEI with (31) and (32). These fantasized observations
are added to the training set, respectively. Denote Do

′ as the
updated data set with fantasized observations added. The pos-
terior distribution of the freeze–thaw GP model will change
accordingly, leading to different H(PY

x∗) and ES value. The
design which maximizes the expected information gain over
the optimal design is selected as x∗ES.

B. Computational Complexity

The computational cost for the training of conventional GP
models is O(N3) due to the inversion of the covariance matrix,
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Algorithm 2 ES for Freeze–Thaw Technique
Require: Candidate designs, including old designs in the basket B =
{x1, x2, · · · , xNB } and a new design x∗wEI .

1: Initialize ES = [0, 0, . . . , 0] to represent information gain;
2: Compute H(Px∗) with current data using Monte Carlo estimation;
3: for i = 1, 2, . . . , NB + 1 do
4: if xi ∈ B then
5: Calculate a fantasized yield value ĝT+1

i with (31);
6: else
7: Calculate a fantasized yield value ĝ1

i with (32);
8: end if
9: Add the fantasized observation to the data set, compute

H(PY
x∗) using Monte Carlo estimation;

10: ES(i)← H(Px∗)− H(PY
x∗);

11: end for
12: Select x∗ES that maximizes ES as the next query point.

where N is the total number of training data, i.e., designs
explored in [11] and the same as the model used in [21]. As
for the freeze–thaw GP model applied in this article, since
each design corresponds to an analysis curve, there are actu-
ally N ·T batches of samples, leading to a training data size of
N ·T , where N is the number of designs, and T represents the
average number of batches per design. Outwardly, the compu-
tational complexity of the freeze–thaw model is prohibitively
expensive as O(N3T

3
). However, a careful derivation shows

that its complexity is affordable indeed.
To train the GP model by MLE, we need to calculate the

likelihood function. According to (22), there are four items
that need the inversion of the covariance matrix, including
K′−1

tt , K′−1
xx , γ , and Q. As K′tt is a block-diagonal matrix, we

just need to compute the inversion of its blocks, leading to a
complexity of O(NT

3
). Then, we save the Cholesky decompo-

sition results of K′tt to calculate γ and Q, corresponding to a
complexity of O(NT

2
). In total, the computational complexity

of this model is O(N3 + NT
3 + NT

2
), where O(N3) comes

from the computation of K′−1
xx .

Intuitively, the reason for this complexity is the conditional
independence assumption described in Section III-A, i.e., each
analysis curve is drawn from an independent GP prior condi-
tioned on the final yields drawn from a global GP. Analysis
curves are modeled independently by N(Yi1i, Ktiti), i =
1, . . . , n and their asymptotic values are jointly modeled by
N(m, K′xx).

In the experiments, simulations are conducted in batch
fashion and each batch contains 30 runs for the iterative
yield analysis procedure. The maximum number of simula-
tions allocated to one design is 1200, so the maximum length
Tmax = 40. Due to the freeze–thaw technique, most analysis
curves have only short lengths. The average length is T = 4
in our experiments, which is much smaller than N, as the
average value of N equals 141. If T � N is given, the com-
putational complexity becomes O(N3), which is comparable
with the conventional GP models.

V. EXPERIMENTAL RESULTS

In this section, the efficiency and efficacy of the proposed
yield optimization approach will be demonstrated with four
analog circuits: 1) comparator; 2) low noise amplifier; 3) three-
stage amplifier; and 4) charge pump. We compare our method

Fig. 9. Schematic of the comparator circuit.

with two state-of-the-art methods [11], [12]. To average out
the random fluctuations, all cases are executed ten times. Then,
the yield of the obtained design x∗ is estimated with 50 000
simulations in the process space to ensure the accuracy of yield
analysis. Method FTBO represents the proposed method via
freeze–thaw Bayesian optimization without prior knowledge.
FTBO+ is the FTBO with prior knowledge transferred from
nominal design. The total simulation budget of precomputa-
tion, i.e., nominal performance optimization, for FTBO+ is
set to 300 (Npre = 100) in Sections V-A–V-D. Considering
the large design space, the budget in Section V-E is increased
to 1800 (Npre = 600). This precomputation cost has already
been counted to the sampling number of FTBO+. All exper-
iments are conducted on a Linux workstation with two Intel
Xeon X5650 CPUs and 128-GB memory.

A. Comparator

The comparator is implemented in a 180-nm CMOS process
with 1.8-V power supply, shown in Fig. 9. There are 12 design
variables for this circuit, representing transistor widths. Both
intradie and interdie process variations are considered. Three
design specifications are listed as

⎧
⎨

⎩

Voff ≤ 30 mV
Vsen ≤ 2 mV
speed ≥ 1 GHz

(35)

where Voff denotes the offset voltage with 200-MHz sampling
frequency at 30 ◦C. Vsen indicates the ability of comparator
to distinguish input signals, and speed means the maximum
operating frequency.

The proposed approach is compared with [11] and [12]
under the same design space. Fig. 10 shows the obtained prior
solutions, where D1-axis, D2-axis, and D3-axis are the widths
of transistor M17, M19, and M5, respectively, (see Fig. 9). We
define the golden solutions as the designs with yields higher
than 99%. We can see that some prior solutions are close to
the golden solutions, resulting in an efficient warm start.

The quality and speed comparisons of the experimental
results are presented in Table I. We take method [11] as the
speed benchmark because it is faster than method [12]. All
methods can obtain the golden yield. FTBO can gain a 4.86×
speedup over [11], and FTBO+ further increases the speedup
to 5.73× with the help of prior knowledge. Such experimental
results verified the huge advantage of the proposed methods
over the existing methods.

More specifically, in terms of the difference in the use of
acquisition functions, the proposed method FTBO incorporat-
ing ES with wEI gained a 4.86× speedup over [11] which
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Fig. 10. Distribution of prior solutions for the comparator circuit.

TABLE I
OPTIMIZATION RESULTS AND SPEED COMPARISONS FOR COMPARATOR

TABLE II
TIME COST COMPARISON BETWEEN OPTIMIZATION AND SPICE

SIMULATION FOR COMPARATOR

uses wEI only, and 5.82× speedup over [12] which uses ES
only, demonstrating the effectiveness of the combination of
wEI and ES in our method.

In each optimization iteration, our method needs 249 s for
building the freeze–thaw GP model, 47 s for wEI optimization,
and extra 19 s for ES calculation. So our method intro-
duces 6.42% [19 s/(249 s + 47 s)] extra time overhead in
optimization as shown in Table II. Therefore, the impact of
extra ES calculation on the whole optimization is negligible.

In this case, the number of iterations of yield optimization
is 327, so the total optimization time is 103 005 s, i.e.,
(249 s + 47 s + 19 s) × 327. However, the number of
invoked SPICE simulations is 37408, and each SPICE sim-
ulation needs 15 s, so the total SPICE simulation time is
561 120 s (15 s × 37 408). Thus, the time of calculating wEI
and ES in yield optimization is 18.36% of the SPICE simu-
lation time, which accounts for a relatively small percentage,
though the optimization algorithm is currently implemented
with the slow Python language. Certainly, SPICE simulation

Fig. 11. Comparison of simulation resource allocation between [11] and the
two proposed methods in the comparator case.

Fig. 12. Schematic of the low noise amplifier circuit.

time is highly related to the circuit type, circuit scale and simu-
lation type, etc. Therefore, this ratio of optimization time over
SPICE simulation time varies in a wide range.

Fig. 11 further reveals the advantages of the proposed
method with the yield bins, where there are four yield bins on
the x-axis, and the y-axis is the number of simulations located
in the bins. Clearly, [11] can effectively control the analysis
accuracy of low-yield designs (yield ≤ 95%), i.e., applying
coarse yield estimations at these designs with a small number
of simulations. However, for high-yield designs, [11] wastes
too many simulation resources. FTBO and FTBO+ reduce the
simulation number in both low- and high-yield regions, espe-
cially in the high-yield region. Concretely, FTBO and FTBO+
reduce the simulation number in the low-yield region by 65%
and 68%, respectively. In the high-yield region, FTBO and
FTBO+ further cut down the simulation number by 83% and
87%. This result shows that FTBO and FTBO+ are more effi-
cient in simulation resource allocation. Since the simulations
allocated to high-yield designs account for more than 80% of
the total, the reasonable allocation by freeze–thaw technique
in the high-yield region contributes the most to the 4.86× and
5.73× speedup.

B. Low Noise Amplifier

The second case is a low noise amplifier implemented in
a 180-nm CMOS process with 3.3-V power supply. Fig. 12
shows the schematic of this radio frequency circuit. 13 design
variables are considered in this case, including sizes of transis-
tors, values of capacitors, resistors and inductors. Both intradie
and interdie process variations are taken into account. Three
specifications, including Gain, noise figure NF, and third-order
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Fig. 13. Comparison of simulation resource allocation between [12] and the
two proposed methods in the low noise amplifier case.

TABLE III
OPTIMIZATION RESULTS AND SPEED COMPARISONS

FOR LOW NOISE AMPLIFIER

intercept point IIP3 are listed as
⎧
⎨

⎩

Gain ≥ 20 dB
NF ≤ 2.3 dB
IIP3 ≥ −10 dBm.

(36)

Table III lists the experimental quality and speed com-
parisons of optimizations. Method [12] is regarded as the
benchmark this time for it is faster than method [11]. Again, all
four methods can obtain the golden yield. FTBO and FTBO+
can gain 1.79× and 2.47× speedup over [12], respectively. The
comparison of simulation resource allocation between [12] and
the two proposed methods is shown in Fig. 13. A similar result
can be found that both methods significantly cut down the sim-
ulation costs of all yield bins, particularly in the high-yield
bin.

C. Three-Stage Amplifier

The third case is a three-stage amplifier implemented in a
0.35-μm CMOS process [43], shown in Fig. 14. There exist 24
design variables corresponding to sizes of transistors, values
of capacitors, resistors and biasings. Both intradie and interdie
process variations are considered. Four specifications including
gain margin GM, gain-bandwidth GBW, phase margin PM and
quiescent current Iq at 27 ◦C are listed as

⎧
⎪⎨

⎪⎩

GM ≥ 20 dB
GBW ≥ 0.9 MHz
PM ≥ 50◦
Iq ≤ 70 μA.

(37)

Fig. 14. Schematic of the three-stage amplifier circuit.

TABLE IV
OPTIMIZATION RESULTS AND SPEED COMPARISONS FOR

THREE-STAGE AMPLIFIER (0.35 μM)

Fig. 15. Comparison of simulation resource allocation between [11] and the
two proposed methods in the three-stage amplifier (0.35 μm) case.

Table IV presents the experimental quality and speed com-
parisons of all four methods. Results of [11] and [12] are taken
from [11] and [12], respectively. Method [11] is regarded as
the benchmark for it is faster than method [12]. Again, FTBO
and FTBO+ can achieve 2.92× and 3.22× speedup over [11].
Fig. 15 shows the comparison of simulation resource allocation
between [11] and the two proposed methods.

In order to validate the effectiveness of the proposed method
on more advanced technology, this three-stage-amplifier is
ported to a 65-nm process with the same design space for
yield optimization. The specifications become

⎧
⎪⎨

⎪⎩

GM ≥ 20 dB
GBW ≥ 0.9 MHz
PM ≥ 40◦
Iq ≤ 80 μA.

(38)

Experimental quality and speed comparisons are shown in
Table V. Method [12] is regarded as the benchmark this time
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Fig. 16. Comparison of simulation resource allocation between [12] and the
two proposed methods in the three-stage amplifier (65 nm) case.

TABLE V
OPTIMIZATION RESULTS AND SPEED COMPARISONS FOR THREE-STAGE

AMPLIFIER (65 NM)

Fig. 17. Schematic of the charge pump circuit.

for it is faster than method [11]. Similarly, FTBO and FTBO+
achieve 2.24× and 3.45× speedup over [12]. The comparison
of simulation resource allocation between [12] and the two
proposed methods is shown in Fig. 16.

D. Charge Pump

As shown in Fig. 17, the fourth case is a charge pump
implemented in a 40-nm CMOS process. 36 design variables
are considered in this case. Both intradie and interdie process
variations are taken into account. Five specifications, including
diff 1, diff 2, diff 3, diff 4, and deviation are listed as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

diff1 ≤ 25 μA
diff2 ≤ 25 μA
diff3 ≤ 10 μA
diff4 ≤ 10 μA
deviation ≤ 6 μA

(39)

Fig. 18. Comparison of simulation resource allocation between [12] and the
two proposed methods in the charge pump case.

TABLE VI
OPTIMIZATION RESULTS AND SPEED COMPARISONS

FOR CHARGE PUMP

where
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

diff1 = IM1,max − IM1,avg
diff2 = IM1,avg − IM1,min
diff3 = IM2,max − IM2,avg
diff4 = IM2,avg − IM2,min
deviation = ∣∣IM1,avg − 40 μA

∣∣+ ∣∣IM2,avg − 40 μA
∣∣.

(40)

Table VI lists the experimental quality and speed com-
parisons of optimizations. Method [12] is regarded as the
benchmark for it is faster than method [11]. All four methods
can obtain the golden yield. Without loss of accuracy, FTBO
and FTBO+ can gain 2.64× and 3.02× speedup over [12],
respectively. As these results are similar to other experiments
in Section V, this significant improvement validates the effec-
tiveness of the proposed optimization approach on circuits in
advance technology. The comparison of simulation resource
allocation between [12] and the two proposed methods is
shown in Fig. 18. Again, both methods significantly reduce the
simulation costs of all yield bins, especially in the high-yield
bin.

E. Three-Stage Amplifier With Large Optimization Space

Usually, in practical design, designers do not know exactly
about the locations of the high-yield region. Hence, efficiently
exploring a very large design space will be meaningful for
designers. In the case of the three-stage amplifier in 0.35-μm
process, we roughly expand 10× the optimization ranges for
each of 24 design variables, and correspondingly the design
space volume is expanded by more than 1024 times. The max-
imum number of iterations for all four methods is set to 1000.
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TABLE VII
OPTIMIZATION RESULTS FOR THREE-STAGE AMPLIFIER

(0.35 μM) IN THE LARGE DESIGN SPACE

The results in Table VII show that both [12] and FTBO fail
to find the optimal design within the ten restarts. Method [11]
has one successful result out of ten restarts, and the number of
simulations is 17 004. The FTBO+ can find the golden-yield
designs at all ten restarts with an average of 4140 simula-
tions. Clearly, the extracted prior knowledge, i.e., exploring
the domains with good performance at the TT-corner, will
help a lot for yield optimization in large design space.

VI. CONCLUSION

In this article, a novel and efficient yield optimization
approach was proposed for analog circuits. The yield anal-
ysis was integrated into the exploration process of Bayesian
optimization. The freeze–thaw Bayesian optimization tech-
nique was utilized to automatically guide the search in
the design space and gradually improve the analysis accu-
racy in the process space. To further accelerate the yield
optimization convergence, a novel performance optimization
problem was formulated and solved to mine prior knowledge.
Compared with the state-of-the-art methods, the experimen-
tal results demonstrated that the proposed method can gain a
2.47×–5.73× speedup without loss of accuracy.
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