
3162 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 10, OCTOBER 2022

MLCAD: A Survey of Research in
Machine Learning for CAD

Keynote Paper
Martin Rapp , Graduate Student Member, IEEE, Hussam Amrouch , Member, IEEE,
Yibo Lin , Member, IEEE, Bei Yu , Member, IEEE, David Z. Pan , Fellow, IEEE,

Marilyn Wolf , Fellow, IEEE, and Jörg Henkel , Fellow, IEEE

Abstract—Due to the increasing size of integrated circuits (ICs),
their design and optimization phases (i.e., computer-aided design,
CAD) grow increasingly complex. At design time, a large design
space needs to be explored to find an implementation that fulfills
all specifications and then optimizes metrics like energy, area,
delay, reliability, etc. At run time, a large configuration space
needs to be searched to find the best set of parameters (e.g.,
voltage/frequency) to further optimize the system. Both spaces
are infeasible for exhaustive search typically leading to heuristic
optimization algorithms that find some tradeoff between design
quality and computational overhead. Machine learning (ML) can
build powerful models that have successfully been employed in
related domains. In this survey, we categorize how ML may be
used and is used for design-time and run-time optimization and
exploration strategies of ICs. A metastudy of published tech-
niques unveils areas in computer-aided design (CAD) that are
well explored and underexplored with ML, as well as trends in
the employed ML algorithms. We present a comprehensive cate-
gorization and summary of the state of the art on ML for CAD.
Finally, we summarize the remaining challenges and promising
open research directions.

Index Terms—Computer-aided design (CAD), deep learning,
electronic design automation, machine learning (ML).

Manuscript received 3 February 2021; revised 26 July 2021; accepted
14 October 2021. Date of publication 2 November 2021; date of current ver-
sion 20 September 2022. This work was supported in part by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) through TRR
89 Invasive Computing under Project 146371743. The work of Bei Yu
was supported by the Research Grants Council of Hong Kong SAR under
Grant CUHK14209420. The work of David Z. Pan was supported by the
U.S. National Science Foundation under Grant 1704758, Grant 1718570, and
Grant 2112665, and in part by the DARPA IDEA Program. The work of
Marilyn Wolf was supported by the U.S. National Science Foundation under
Grant 2002853. This article was recommended by Associate Editor F. Liu.
(Corresponding author: Martin Rapp.)

Martin Rapp and Jörg Henkel are with the Department of Computer
Science, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
(e-mail: martin.rapp@kit.edu; henkel@kit.edu).

Hussam Amrouch is with the Department of Computer Science, University
of Stuttgart, 70174 Stuttgart, Germany (e-mail: amrouch@iti.uni-stuttgart.de).

Yibo Lin is with the Department of Computer Science, Peking University,
Beijing 100871, China (e-mail: yibolin@pku.edu.cn).

Bei Yu is with the Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Hong Kong (e-mail:
byu@cse.cuhk.edu.hk).

David Z. Pan is with the Department of Electrical and Computer
Engineering, The University of Texas at Austin, Austin, Austin, TX 78705
USA (e-mail: dpan@ece.utexas.edu).

Marilyn Wolf is with the Department of Computer Science &
Engineering, University of Nebraska–Lincoln, Lincoln, NE 68588 USA
(e-mail: mwolf@unl.edu).

Digital Object Identifier 10.1109/TCAD.2021.3124762

I. INTRODUCTION

THE COMPLEXITY of integrated circuits (ICs) continues
to increase, mainly enabled by technology advances [1].

Therefore, the design and optimization of such systems for
metrics, such as energy, area, delay, reliability, etc., both at
design time and run time become more and more difficult.
Still following Moore’s law, the number of transistors per
design increases exponentially and doubles every two years.
Consequently, the corresponding design space, which needs
to be searched for an implementation that fulfills all spec-
ifications and then optimizes the above-mentioned metrics,
explodes. Analogously, the number of possible management
actions at run time increases. Applications execute on an
increasing number of processor cores that each needs to be
operated at a certain voltage/frequency (v/f)-level – leading to
more degrees of freedom that need to be exploited by run-time
management to optimize the IC [2]. Both the design-time and
run-time spaces are too large for exhaustive search. This has
led to the development of a plethora of heuristic algorithms.
However, such algorithms tend to suffer from low adaptabil-
ity, and tend to either oversimplify the problem, leading to
a low decision quality, or result in excessive computational
complexity. The existing algorithms are not able to keep up
with the high pace of technology advances, which manifests
itself as the design productivity gap.

Machine learning (ML) techniques have been employed
in many domains with great success because of their abil-
ity to build powerful models from data [3], [4]. Consequently,
ML has also been applied in computer engineering, such as
in computer-aided design (CAD) [5], where ML promises
to fill the gaps left by heuristic algorithms and open new
possibilities. Employing ML techniques allows designers
to raise the abstraction level by focusing on the objec-
tive itself and leave the technical details on how to reach
the objective to the ML model. For example, when opti-
mizing lithographic masks with subresolution assist fea-
tures (SRAFs) with ML, the designer specifies the goal
(desired geometric pattern) but does not need to specify
rules for where to place SRAFs. Another example is run-
time management with reinforcement learning (RL), where
the designer expresses the goals (e.g., high performance) with
the reward function but does not to specify rules for when

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-5989-2950
https://orcid.org/0000-0002-5649-3102
https://orcid.org/0000-0002-0977-2774
https://orcid.org/0000-0001-6406-4810
https://orcid.org/0000-0002-5705-2501
https://orcid.org/0000-0002-4742-0841
https://orcid.org/0000-0001-9602-2922

RAPP et al.: MLCAD: A SURVEY OF RESEARCH IN ML 3163

which management action is to be executed.1 This allows
designers to handle more complex designs—mitigating the
design productivity gap.

This survey provides a comprehensive summary of how
ML techniques may be used and are used for CAD at var-
ious abstraction levels. We discuss both offline, design-time
and online, run-time aspects of CAD and online (run-time)
techniques because both are necessary to achieve design goals
such as low-energy operation. We demonstrate the similarities
in problems that are solved at design time and run time, as
well as similarities in the employed ML models. Furthermore,
many open challenges apply to both domains.

It is important to note that we only focus on techniques that
use ML to design and optimize the IC itself. We explicitly do
not include techniques that optimize ML training or inference
for a user-application (e.g., accelerators), or ML techniques
that solve a user-task (e.g., stroke detection).

Structure of This Survey: We first present a meta-study that
analyzes all publications in five key conferences and journals in
the area of CAD. This metastudy shows how many works employ
ML for CAD and further breaks down these works to unveil
trends in ML for CAD. We then present general patterns in how
ML models can be employed in CAD. The identified patterns
apply to both design-time and run-time techniques and demon-
strate that similar ML models are applicable for both domains.
The main part of this study gives an overview of all areas of
design-time and run-time CAD to discuss the recent progress.
Finally, we discuss open challenges and promising directions.

II. TRENDS IN MACHINE LEARNING FOR CAD

This section presents a metastudy of how ML has been
employed in CAD in the recent years. We analyzed all
publications in the following venues: IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems
(TCAD), International Conference on CAD (ICCAD), Design
Automation Conference (DAC), Asia and South Pacific Design
Automation Conference (ASP-DAC), and the CAD confer-
ences included in the Embedded Systems Week (International
Conference on Compilers, Architecture, and Synthesis for
Embedded Systems, CASES, and International Conference
on Hardware/Software Codesign and System Synthesis,
CODES+ISSS). We consider the criteria explained in the
introduction, i.e., ML is used for CAD. This criterion excludes
a large number of works that use ML as an application (accel-
erators, approximate computing, etc.). Only regular papers
are considered while invited papers are excluded. We study
the years from 2016 to 2020. This metastudy answers the
following main questions.

1) Which are the areas in CAD that are well explored/not
yet explored with ML?

2) Which ML algorithms have been used?
3) Which are the observable trends?
We divide CAD for ICs into the following six major design

steps.
1) System-level design space exploration (DSE) and high-

level synthesis (HLS) transform a high-level specification

1These examples are described in more details in Sections IV and V.

Fig. 1. Fraction of publications that employ ML for CAD among all regular
papers published in IEEE TCAD, ICCAD, DAC, ASP-DAC, and ESWeek is
growing strongly, increasing by almost 2× from 2016 to 2020.

of the IC to register-transfer level (RTL) description.
Thereby, HLS focuses on functional properties and
system-level DSE optimizes nonfunctional properties.
These steps determine the system architecture like deci-
sion which functions to implement in hardware or
software, processor configurations, allocation of function
units, scheduling, and binding of operations.

2) Logic Synthesis transforms the RTL description of a
circuit to a gate-level representation in the target tech-
nology.

3) Physical Design includes placement of the logic gates
on the die, routing of the connecting nets, design of the
clock trees, and building a power/ground network. The
output of physical design is a geometrical representation
of the circuit.

4) Manufacturing the IC involves creating lithographic
masks and the fabrication steps. Only a certain frac-
tion of fabricated devices are functional due to process
variations. This fraction is denoted as the yield.

5) Verification and Test ensures that fabricated devices
adhere to the specifications. This involves testing of fab-
ricated devices, but also verification techniques at earlier
design steps to verify the correctness of the intermediate
representations w.r.t. the specifications.

6) Run-Time Management dynamically adjusts parameters
of the design like voltage or frequency according to the
operating conditions.

Fig. 1 shows the fraction of publications that employ ML
for CAD among all regular papers in the studied venues. It is
apparent that ML techniques are gaining attraction. The frac-
tion of publications increased by about 2× from 2016 to 2020
and reached 11% of all regular papers. Accordingly, the abso-
lute numbers of publications increased. Around two thirds of
these publications target the design-time steps 1–5, one-third
target run-time management. The following analyses further
break down these publications to answer our main questions.

Fig. 2 shows how many publications target individual
design-time steps. Some works target several steps. In these
cases, we assign them to the step by which the work is
most extensively evaluated. In 2020, about 65% of works tar-
geted physical design and manufacturing. In contrast, these
areas accounted for only about 40% in 2016. Physical design
and manufacturing work on geometrical representations of the
chip, which can be represented as images. ML algorithms that
work on images are most extensively explored and, hence,

3164 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 10, OCTOBER 2022

Fig. 2. Recent years show a trend towards physical design and lithography,
reaching 65% in 2020 among all works that employ ML for design-time CAD.

Fig. 3. Strong trend toward NN-based algorithms can be observed for design-
time techniques. Recently, generative (GAN) approaches and Graph-NN gain
more attention.

most advanced, which facilitates their usage. Early design
steps, such as DSE, HLS, and logic synthesis, are often com-
binatorial problems and are relatively underrepresented. We
conclude that physical design steps are well explored with
ML and future research should focus on earlier design steps.

We next explore the range of ML algorithms applied
to CAD. First, we study design-time steps. We divide the
plethora of used algorithms into the categories listed in Fig. 3.
Clustering algorithms are unsupervised algorithms that iden-
tify groups of examples based on a similarity metric. The
most prominent algorithm of this group is k-means cluster-
ing [6]. Gaussian process models learn continuous functions
based on prior knowledge (mean, variance, and covariance
between samples) and observations [7]. Notably, Gaussian pro-
cess models are capable to cope with noisy data and even
inherently model noise. Linear models fit parameters of a
linear kernel [6]. Decision-tree-based models represent knowl-
edge as a tree, where every node represents a decision based
on the features and threshold values that leads to a specific
branch [6]. This category also includes ensemble models of
decision trees, such as random forests or XGBoost. Neural
networks (NN) consist of neurons that perform a linear trans-
formation if their inputs followed by a nonlinear activation
function [6]. Usually, neurons are aligned in layers. We extract
two special types of NNs: 1) Graph-NNs [8] where the input
is represented as a graph consisting of vertices and edges
2) and generative adversarial networks (GANs). GANs com-
bine two NNs that are trained in a zero-sum game, where the
generator learns to create realistic data, and the discriminator
NN learns to distinguish generated from real data [9]. Some

Fig. 4. Run-time techniques also show a strong trend toward NN-based
algorithms. Table-based RL is the algorithm that has declined the strongest.

works implement several models. For instance, Fang et al. [10]
and Zhou et al. [11] implemented and compare both classical
and NN models for IR drop prediction and power prediction,
respectively. We assign works that implement several types of
models to a separate class.

Fig. 3 shows how the used algorithms in the design-time
steps changed in recent years. Several trends are clearly visi-
ble. First, there is a strong trend toward NNs, accompanied
by a decline in classical ML methods. The majority are
feedforward networks (such as fully connected and convo-
lutional neural networks) and recurrent networks (such as
long-short-term memory (LSTM)), denoted “Other NN” in the
figure. Generative approaches based on GANs also have been
explored since 2018. 2020 has shown a trend toward Graph-
NNs that exploit the graph-based representations of circuits
for instance in logic and physical design steps. Finally, while
in 2016, a significant fraction of works (about 20%) train
and compare different ML algorithms for their problem, fewer
works still do this in 2020. It appears that more works will use
NNs in the near future, with an increasing use of Graph-NNs.

Fig. 4 shows the algorithms used for run-time manage-
ment. These are mostly the same algorithms also used in
design-time techniques. One exception is table-based RL, i.e.,
Q-learning [12]. Q-learning simply stores learned values in a
lookup table. Many trends that we observed in design-time
techniques are also valid here. NN are increasing, classical
algorithms are declining. Unlike the design-time steps, GANs
and Graph-NNs have not been used for run-time management.
A large fraction of run-time works (45% in 2017) used table-
based RL. This algorithm is strongly declining and replaced
by deep RL (DRL), i.e., NN-based RL. The approach that
several ML algorithms are implemented and compared is also
decreasing in run-time techniques. It appears that NN-based
techniques will account for the majority of techniques in the
near future.

III. PATTERNS IN MACHINE LEARNING FOR CAD

Approaches that employ ML for CAD can be classified
according to three main criteria.

1) The problem type to be solved with ML: make
predictions, suggest actions, and generate data.

2) The design step.
3) The ML algorithm.

RAPP et al.: MLCAD: A SURVEY OF RESEARCH IN ML 3165

Fig. 5. Patterns how ML can be used for CAD: design-time (left) run-time
management (right).

The three main alternatives of the first criterion, the problem
type, are illustrated in Fig. 5. This section presents an overview
of the type of problems and corresponding ML algorithms to
lay the foundation for a detailed discussion of techniques in
the next section.

A. Prediction of System Properties

The first pattern to employ ML for CAD is predicting prop-
erties of various aspects of the system: the design itself; the
run-time platform; or the environment in which it operates.
At design time, these can be properties arising in the follow-
ing design steps (e.g., routing congestion) or properties of the
final design (e.g., power, performance, area). At run time, these
can be properties of the platform (e.g., power) or models of
the environment (e.g., workload). The ML models are also
sometimes called surrogate models. At both design time and
run time, the output of the model is used in an optimization
loop that explores the design space or action space.

Since the underlying mechanisms are very similar, the same
ML algorithms are employed in design-time and run-time
techniques. The employed algorithms belong to supervised
learning, where training data are present in the form of input-
output pairs of the model. The problem can be a regression
problem (the outputs are continuous values) or a classification
problem (the output is one out of a finite set of classes). There
exist a plethora of different algorithms [6] ranging from sim-
ple linear regression models and tree-based models, to deep
NNs [13]. Since these algorithms are most commonly known,
we omit a detailed explanation here.

The output of such models contains little information as to
how to optimize the design or run-time management. However,

these models provide input to a traditional optimization algo-
rithm that repeatedly calls the model. The repetitive use of
these models means that maintaining a low inference overhead
is key, limiting the complexity of employed models.

B. Decisions for Design-Time and Run-Time

The second pattern is to use ML models to directly
make decisions in the design flow or run-time management:
schedules, placements, v/f-level settings, etc. In contrast to
Section III-A, where the ML model would, for example,
answer the question “If this net would be routed here, what
would be the implications?” such a technique would answer
the question “Where should this net be routed?” The ML
models replace the traditional methods.

This form of modeling can be tackled with both supervised
and semisupervised algorithms. This can be for instance clas-
sifiers that classify between a discrete set of actions. Physical
design and lithography are image-based design steps, where
solutions can be expressed as images (e.g., routing path,
lithographic mask). Therefore, inputs and outputs to the ML
algorithm may be images. Convolutional autoencoders (AEs)
are NNs that transform one image into another and, therefore,
are well suited [6]. AE comprises two NNs: 1) an encoder
and 2) a decoder. The encoder learns an efficient encoding of
the input data to a lower dimensional latent space, whereas
the decoder learns either to reconstruct the original data from
the encoding or to transform the encoding to a target image.
Simple classifiers and AEs are still trained in a supervised
manner with a unique output for every input pattern. This is
not always the case in CAD problems. Different solutions may
have a very similar quality of result. In these cases, training
ML model in a supervised manner requires unnecessary effort
to learn the single solution represented in the training data
instead of any good solution.

As a solution, RL-based techniques [12], [14] can be
employed that let the ML agent take actions on the design,
such as transforming a logic circuit. After every action, the RL
agent is given a reward that reflects the current quality of solu-
tion. The goal of the agent is to maximize its long-term reward.
The agent learns by exploring the potential actions and observ-
ing the reward. RL can easily cope with several actions leading
to a similar quality of result. There are many different imple-
mentations of RL ranging from table-based Q-learning [12]
to NN-based DRL [14]. RL-based techniques have the addi-
tional advantage that they perform online learning, which is
especially useful for adaptive run-time management.

Finally, GANs have been proposed to circumvent the
problem of nonunique model outputs [9]. As explained ear-
lier, two NNs are used: 1) a generator and 2) a discriminator.
The generator creates data from random noise, whereas the
discriminator distinguishes generated from real data. Both
NNs are trained alternately in a zero-sum game. Training the
generator teaches it to create data that are indistinguishable
from real data for the current discriminator. Analogously, the
discriminator learns to detect generated data. By repeating
this training cycle, both get better until, at some point, the
generator is capable of creating deceptively real-looking data

3166 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 10, OCTOBER 2022

TABLE I
COMMONLY OBSERVED PROBLEMS IN DESIGN-TIME CAD AND SUITABLE ALGORITHMS

without ever having seen real data. Conditional GAN (CGAN)
is an extension of GAN where both generator and discrimina-
tor additionally are provided with partial information of data.
The generator learns to reconstruct the missing parts, whereas
the discriminator learns to distinguish reconstructed data from
real data. Finally, the trained generator is employed for the
CAD problem. An advantage of this approach over supervised
learning is the capability to cope with nonunique solutions.
This capability comes from not training the generator with
concrete labels that it tries to reproduce, but instead training
the generator with the help of the discriminator that can learn
to classify several solutions as valid (real).

C. Data Generation

Some processes require a lot of data to be able to perform
analyses. These data may be expensive to collect—either finan-
cially or timewise. There are two fundamental ways on how
to generate data that follow the same underlying distribution
as the training data. First, the underlying probability density
function can be explicitly estimated (learned) [6], and new data
can simply be drawn from it. However, such an approach works
if correlation between different features is easy to capture, but
fails if features show high and complex correlation, such as
individual pixels in images. Therefore, recent algorithms only
implicitly learn the data distribution. Examples are AEs, vari-
ational autoencoders (VAEs) [15], and GANs [9]. New data
can be created with AE by adding a small perturbation to
the encoding of a valid sample from the training data before
decoding. However, such an approach may be limited to only
creating data that are similar to individual training samples.
VAE are extensions of the AE topology that enforces that the
encodings use the full latent space in a continuous manner.
Therefore, new data can be generated by passing random noise
to the decoder. GANs also comprise two NNs. The generator
is trained explicitly to create new valid data from noise, while
the discriminator is trained to distinguish real from generated
samples. The two NNs are mutually trained in a zero-sum game.

Creating new data is only required for design-time processes
like early technology evaluation [16]. This approach is not
employed in run-time techniques.

IV. RECENT WORK ON MACHINE LEARNING FOR

DESIGN-TIME CAD

This section provides a summary of how ML can support
the design phase of IC. It covers the system-level design, logic
synthesis, physical design, device and circuit design (both ana-
log and digital), and testing. Table I presents an overview of
common problems in different steps of the design process.
The details for each step are presented in the corresponding
section.

A. System-Level DSE and HLS

System-level DSE and HLS are the first steps when design-
ing IC from abstract specifications. The two are complemen-
tary. System-level DSE determines the overall architectural
parameters, while HLS performs logic design.

System-level DSE determines the overall parameters of the
design, e.g., cache sizes, processor core configurations of a
multicore processor. Assessing individual configurations usu-
ally requires expensive simulations. Surrogate models can be
used to replace simulations with a faster, yet less accurate
approximation. An important property of such a model is to
be able not only to rate a single configuration, but to actively
steer the optimization toward the optimum. Mariani et al. [17]
used Bayesian optimization as a surrogate model to speed up
DSE of a multicore processor design. Every synthesized design
accounts for one training example. Bayesian Optimization
assumes a continuous objective function (e.g., power) with
respect to the design parameters. Under this model, the
objective function is accurately known close to an already
synthesized configuration, and uncertainty increases with dis-
tance from a known configuration. Joardar et al. [18] used
local search to find good parameters of a 3-D network-on-chip
from a given starting point. They use ML (demonstrated with
regression trees) to learn the objective function. The objective
function is in turn used to find promising starting candidates.
The main difference as compared to Mariani et al. [17] is the
local optimization. Deshwal et al. [19] improved the scalabil-
ity of DSE by learning simpler tree-based models to narrow
down the design space toward the optimal configuration of
a 3-D many-core processor. Powell et al. [20] predicted the

RAPP et al.: MLCAD: A SURVEY OF RESEARCH IN ML 3167

power and execution time of applications on FPGA soft pro-
cessors. The application is represented by coarse statistics
about instructions and memory accesses. This technique aims
at speeding up early DSE of FPGA soft processors, which are
defined by parameters such as cache organization, presence of
floating-point hardware, and clock speed.

HLS is a form of logic design one level above register-transfer
design. While register-transfer design requires the sequential
behavior of the logic to be fully specified, HLS schedules opera-
tions to create a sequential machine; it also allocates operations
to function units, a step that cannot be taken in a specifica-
tion that does not bind operations to particular sequential time
steps. Like in DSE, surrogate models can be used to obtain fast
estimates of area, performance, or power. Liu and Carloni [21]
employed a surrogate model to optimize HLS knobs, such
as loop manipulations or array implementations. They present
transductive experimental design to select a representative set
of knob settings, which are used for initial training of the
model. They then use the surrogate model to select the next
candidate knob setting to iteratively refine the current best
solution. Zhong et al. [22] also use a surrogate model to find a
near-optimal set of HLS parallelism options. They put a strong
focus on fast DSE, and parse and analyze a C/C++ software
implementation of the kernel with different settings such as loop
unrolling using LLVM without invoking HLS. These traces are
fed into the ML model for area and performance estimations
to find the best settings for an FPGA implementation. HLS
is only performed once for the chosen settings. By using an
abstract intermediate representation, this approach is capable of
generalizing across many different designs. Zennaro et al. [23]
learned the resource requirements of control register interfaces
of regular SoC components when implemented on an FPGA.
They describe the interface using high-level features such as
the number of readable registers. Dai et al. [24] trained and
compare several ML models to predict resource requirements
from HLS reports. They also explore multitaks learning to
exploit correlations between the target metrics.

Ustun et al. [25] predicted the circuit delay in HLS. They
identify that the mapping of operations to hardened structures
on an FPGA like DSPs significantly affects the delay. Such
mapping mostly depends on local structures in the data-flow
graph. They present a prediction technique based on Graph-
NNs, which captures the local neighborhood of nodes (local
structures) to predict the delay.

Another branch of work uses ML models to directly select
the optimizations to perform. Chen and Shen [26] target the
problem of scheduling in HLS for FPGAs. A model repeatedly
selects a shift operation of a node of the data flow graph to
earlier or later cycles based on the current schedule. They train
the model once but also propose to use RL to further train the
model during usage.

B. Logic Synthesis

Logic synthesis transforms the RTL description of a design
to an optimized gate-level representation in the target tech-
nology. In this process, a number of transformations are
applied to the design for logic optimization and minimization,

mapping to entities of the target technology, and post-mapping
optimization. These optimizations are performed on a rep-
resentation of the design as a netlist, which is commonly
represented as a graph of components and connections. Graph-
NNs have been proposed recently to directly operate on
graphs, allowing to directly make use of the underlying
structure of connections.

The majority of works targeting logic synthesis use
ML as surrogate models to estimate properties of the
design. These estimations can be used to guide optimization.
Zhang et al. [27] used a Graph-NN to propagate average tog-
gle rates through combinational logic for power estimation. By
operating on a per-gate granularity, they achieve generaliza-
tion between different workloads and circuits. All these works
only develop the estimation technique in isolation and do not
perform any optimization. Pasandi et al. [28] predicted the
error rate of an approximate circuit with the help of NN. They
also develop an iterative optimization algorithm for power/area
minimization based on the predicted error rates.

A smaller set of works uses ML to perform the optimization
itself. Hosny et al. [29] used RL to perform logic optimization
on And-Inverter graphs in order to minimize the area under
a timing constraint. They represent the state of the network
as a 7-D vector and select in each step one of seven possible
actions. The state design allows reusing a policy trained on
one design on another design. The RL agent is implemented
using an actor–critic NN.

Finally, some works employ the classical synthesis tools
and use ML at a higher level. Kwon et al. [30] used NN-
based recommender system to tune parameters of the design
flow (logic synthesis and physical design). They demonstrate
that their approach generalizes to different technology nodes.

C. Physical Design

Physical design transforms a design from a graph-based rep-
resentation (consisting of components and connections) after
logic synthesis to a geometrical representation consisting of
shapes of materials. Again, Graph-NNs are well suited to
parse graph-based representations. The geometrical represen-
tation can be depicted as images. Computer vision (image
classification and transformation) is a mature application for
ML [4], [31], [32], hence developed algorithms for computer
vision are prime candidates to be adapted to physical design,
as well. Prominent examples are convolutional NN and vari-
ants thereof, such as convolutional CGAN, or convolutional
AE. A typical physical design flow involves multiple stages,
including placement of components on the die, routing of con-
nections, clock network synthesis, and power/ground network
synthesis. We describe these steps in the following.

1) Placement: Providing the significance of placement on
chip, a mass of research achievements have been made in the
past several decades. However, researchers are still not satis-
fied with the efficiency of previous chip placement algorithms.
Due to the massive scale of modern designs, the placement
process is usually complicated, tedious, and time consuming.

Mirhoseini et al. [33] proposed macro block placement as
an RL problem and train an agent to place all macros of a

3168 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 10, OCTOBER 2022

Fig. 6. Physical design has many similarities to image classification, which
is the reason why CNNs are suitable models. RouteNet [36] proposes two
CNNs, a conventional CNN to predict the number of DRVs for routability
forecast, and a fully convolutional network (FCN) to predict the location of
DRV hotspots. Figure is based on [36].

given chip onto the placement canvas. The general motivation
for leveraging RL is to learn from past experience and improve
the ability to place macros. Specifically, such an agent should
be well trained over extensive chip blocks in order to gain as
much experience as possible and further improve generaliza-
tion ability. In fact, the deep RL approach does not require
the agent to place nodes directly. Instead, at each step, the
agent sequentially places the macros, and once all macros are
placed, a force-directed method is applied to generate a rough
placement of all standard cells. This RL-based approach out-
performs state-of-the-art baselines and the produced results
comparable to manual designs from experts. Liu et al. [34]
used GAN to create noise maps from limited samples. These
noise maps are fed into an optimization algorithm to find a
placement for noise sensors. Barboza et al. [35] predicted the
post-routing delay at the placement phase. They use hand-
crafted features in combination with classical ML algorithms
like lasso regression or random forest to predict the delay of
a single net without performing routing itself.

Placement has to be done considering the later routing
steps, as routability is mainly influenced by the placement.
To enable fast and accurate routability prediction, deep learn-
ing is introduced for its high performance in computer vision
and other related tasks. Xie et al. [36] predicted the number
and position of design rule violations (DRVs) after routing
given a placed design before actually performing the routing
(see Fig. 6). They exploit the similarity of the well-studied
image classification problem to the 2-D placement, which also
can be represented as an image. This allows them not only
to use a similar model (CNN), but even to perform transfer
learning from a different domain. CNN is pretrained on the
ImageNet [3] dataset, which contains many photos of real-
world objects, i.e., is unrelated to CAD, and then finetuned
for the task at hand. The resulting predictions are used during
placement to proactively avoid placements that are difficult to
route. Tabrizi et al. [37] also supported the placement phase
by predicting routing short violations given a placed design.
They train NN but put a strong focus on feature engineering
in contrast to [36], where raw images of the placed designs
are fed to the NN.

It is an open challenge to automatically generate datapath-
aware layout, since most conventional placers are designed to

handle general-purpose placement and pay very little attention
to such datapath layouts. However, some significant improve-
ments have been made in the past few years. Ward et al. [38]
proposed a new unified placement flow that simultaneously
handles random logic and datapath standard cells. Specifically,
graph-based and physical features are extracted from the netlist
and fed into some effective classifiers (e.g., NNs) to clas-
sify the required datapath related patterns. Based on that, a
datapath-aware placer, PADE, is proposed to handle datapath
patterns and perform datapath-aware detailed placement.

Recently, some milestone studies have been proposed to
maximize the use of GPU resources for accelerating global
placement. Lin et al. [39] implemented the DREAMPlace
placer to simulate the optimization of global placement as
the NN training problem, so that it is able to leverage
the widely adopted deep learning toolkit PyTorch with cus-
tomized kernels and operators, and further make use of GPUs
for extreme acceleration. DREAMPlace is designed based
on the electrostatic-based placement algorithm, proposed by
Lu et al. [40], which models the layout and netlist as an elec-
trostatic system and attempts to find the balancing state with
the lowest electrical energy via solving a Possion’s equation
by applying discrete cosine transformations. DREAMPlace
can achieve over 30× speedup without quality degradation
compared to state-of-the-art multithreaded placers.

Some works employ ML to select the tool parameters.
Agnesina et al. [41] targeted FPGA place&route and built sev-
eral models with the goal of accelerating compilation time.
These models classify netlists into easy and hard classes,
predict the best tool parameters, or predict compile time. This
work uses stacked models that combine the output of var-
ious models with different algorithms by linear regression.
Agnesina et al. [42] later targeted ASIC placement where
they tune tool parameters with actor–critic deep RL. The
state comprises the netlist and the current tool parameters.
The netlist is represented both with handcrafted features and
with learned encodings by using a Graph-NN, which both are
passed to a multihead actor/critic NN. The goal (reward) is to
reduce the wire length. Xie et al. [43] also automatically select
tool parameters. Their technique starts with clustering-based
sampling that exploits knowledge from prior designs to train
a tree-based surrogate model, which is then further refined
iteratively.

Lu et al. [44] targeted the problem of partitioning 3-D
integrated circuits. They first perform conventional 2-D place-
ment with relaxed constraints (smaller footprints) and then
use clustering to assign nodes to 3-D layers. Similar to
Agnesina et al. [42], they use a combination of handcrafted
and learned features, which are obtained with a Graph-NN.

2) Clock Network Synthesis: Clock skew is the fundamen-
tal metric for estimating clock performance. It has been shown
that modifying the latch placement locations is an effective
method to reduce overall local clock tree capacitance, which
affects the clock skew. At the same time, there were three
prior latch placement modification techniques: 1) latch shift-
ing; 2) latch clustering; and 3) latch banking. Since the packed
latch cluster placements are produced in the previous physical
design flows, Ward et al. [45] identified better solutions for

RAPP et al.: MLCAD: A SURVEY OF RESEARCH IN ML 3169

the technology library and provided the physical design flow
a choice of templates to choose from.

Lu et al. [46] proposed GAN-CTS, which employs GAN
and RL for clock tree prediction. They take flip flop dis-
tribution, clock net distribution, and trial routing results as
input images. They also leverage a pretrained ResNet-50 on
the ImageNet dataset and add fully connected layers for fea-
ture extraction. The framework utilizes CGAN to optimize
the clock tree synthesis, of which the generator is supervised
by the regression model. The policy gradient algorithm is
leveraged for the RL-based clock tree synthesis optimization.

3) Routing: The routing step establishes physical con-
nections between endpoints of the already placed devices
that belong to the same signals. Yu and Zhang and
Alawieh et al. applied a generative adversarial network (GAN)
to learn the correlation between FPGA placement and routing
congestion [47], [48]. Yu et al. [49] proposed a pin accessi-
bility prediction model to refine the placement results. They
propose to find the best spacing by brute-force search for
the patterns between every two pins. Hung et al. [50] and
Liang et al. [51] customized the network architectures for
the prediction of DRV maps after global routing stage and
placement stage, respectively.

The routing process is a very complicated and time-
consuming task that would be difficult, if not impossible, to
be solved by pure ML methodologies. Therefore, combining
ML models and traditional algorithms is promising, such as
that in [52], where a traditional algorithm is guided by the
soft decisions made by ML models. In this way, better guar-
antees could be obtained given the soundness of the traditional
algorithm. We also observe that, in the CAD flow, there usu-
ally exist different implementations of the same design that
achieve similar performance. Therefore, supervised learning
approaches are often infeasible, since there is hardly a one-to-
one mapping from inputs to outputs. This is the reason for the
wide usage of generative approaches (e.g., with GANs), which
account for such degrees of freedom in the implementation.

In addition to congestion prediction, Qu et al. [53] observed
that the order of nets to be routed in a sequential router [54]
can significantly impact the routing quality, especially the
number of DRC violations. They propose RL-based algorithm
to learn the ordering policy that minimizes the DRC viola-
tions from the net features. While in RL, each input design
is regarded as one distinct environment, they customize the
network architecture of the RL agent such that it is applicable
to different designs.

Not only the classical design flow can benefit from ML
but also security measures like split manufacturing can be
attacked. Li et al. [55] and Zeng et al. [56] aimed at recon-
structing higher metal layer connections from full information
about the lower layers. Both techniques predict the likelihood
that two pins are connected by the higher metal layers and
thereby help in reconstructing the whole chip.

4) Power/Ground Network: Power delivery network (PDN)
design is a complex iterative optimization task, which strongly
influences the performance, area, and cost of a chip. To
reduce the design time, recent studies have paid attention
to ML-based IR drop estimation, a time-consuming subtask.

Previous work usually adopts simulation-based IR analysis,
which is challenged by the increasing complexity of chip
design. IR drop can be divided into two categories: 1) static
and 2) dynamic. Static IR drop is mainly caused by metal
wire resistance in the power grid, while dynamic IR drop is
caused by signal switchings and local current fluctuations.
In IncPIRD [57], the authors employ XGBoost to conduct
incremental prediction of static IR drop, specifically, the IR
value changes caused by the modification of the floorplan.
For dynamic IR drop estimation, Xie et al. [58] proposed
PowerNet, which aims to predict the IR drop values of differ-
ent locations and models IR drop estimation as a regression
problem. This work introduces a “maximum CNN” algorithm
to solve the problem. Besides, PowerNet is designed to be
transferable to new designs, while most previous studies train
models for specific designs. A recent work [59] proposes an
electromigration-induced IR drop analysis framework based on
CGAN. The framework regards the time and selected electrical
features as input images and outputs the voltage map. Another
recent work [60] focuses on PDN synthesis in floorplan and
placement steps. This article designs a library of stitchable
templates to represent the power grid in different layers. In
the training phase, simulated annealing is adopted to choose
a template. In the inference phase, fully connected NN and
CNN are used to choose the template for floorplan and place-
ment steps, respectively. Cao et al. [61] trained several ML
models to predict the quality of the power delivery network
(bump inductance) in order to fill the gap between inaccurate,
but fast estimation tools and accurate, but slow signoff tools.

D. Analog Physical Design

Physical design of analog circuits is considerably more com-
plicated than design of digital circuits because there exists
more diverse set of constraints that need to be satisfied. In
addition, performance control at the analog physical design
level is extremely challenging. As a result, automated design
of analog circuits is not as mature as its digital counter-
part. Nevertheless, ML has been employed also for analog
design [62], [63].

Chen et al. [63] proposed an analog physical design
framework, whose main steps comprise parametric device
generation, layout constraint extraction, placement, and rout-
ing. The constraint extraction searches for symmetries in
the circuit at different abstraction layers. Wang et al. [64]
proposed a customized Graph-NN approach for analog place-
ment performance prediction, which helps analog IC placer to
obtain a solution similar to manual designs. Zhu et al. [52]
used a VAE to learn the probability that an analog net is
routed in certain areas. The resulting probability heatmap
guides a heuristic routing algorithm, which guarantees that
certain requirements like symmetry for specific nets are ful-
filled. Training is performed using human-routed designs, i.e.,
they learn from human designers. Xu et al. [65] used a CGAN
to create well regions in analog designs. The generator is
trained to augment placed designs with well regions, while
the discriminator is trained to distinguish machine-generated
and human-generated well regions. Therefore, similar to the

3170 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 10, OCTOBER 2022

Fig. 7. Typical mask synthesis and verification flow.

previous approach, this approach learns from human design-
ers. Li et al. [66] proposed a transferable automatic transistor
sizing method leveraging both Graph-NN and RL. Benefiting
from the transferability of RL, they transfer the knowledge
between different technology nodes and even different topolo-
gies. Meanwhile, Graph-NN is utilized to involve topology
information into the RL agent.

Shook et al. [67] predicted the parasitics (interconnect resis-
tance and capacitance) at the prelayout step. They extract
features such as the number of connections for each net and
use a random forest regression model to estimate its parasitics.
Ren et al. [68] target the problem of predicting layout para-
sitics and device parameters and train a Graph-NN that exploits
local structure in the netlist. They train several models in a
hierarchical way to cope with the large range of parasitics
values. Hakhamaneshi et al. [69] described an evolutionary
algorithm with deep learning to tune parameters of an ana-
log design. NN-based discriminator is used to prefilter new
specimen of the population without having to perform expen-
sive SPICE simulations. The NN compares two specimen and
outputs probabilities that the first design outperforms the sec-
ond one w.r.t. different metrics. The inherent symmetry of this
problem is reflected by the network design (i.e., by restricting
weights).

E. Lithography and Manufacturing

In modern VLSI manufacturing, lithography plays a critical
role, as it determines the printing resolution and robustness
of the manufacturing process. Fig. 7 shows a typical flow for
mask synthesis and verification, consisting of mask synthe-
sis and lithography simulation. Mask synthesis takes a layout
design as input and produces the mask design with better print-
ability. Lithography simulation then takes the mask design as
input and computes the printed pattern with lithography mod-
els. Since mask designs can be naturally represented as images,
ML techniques, such as CNN, are suitable to tackle lithogra-
phy problems like mask synthesis, lithography modeling, and
lithography hotspot detection. In addition, we also cover ML
applications in other manufacturing tasks like yield estimation.

1) Mask Synthesis: Mask synthesis typically contains
inverse lithography optimization steps, such as SRAFs gen-
eration and optical proximity corrections (OPCs). In SRAF
generation, small rectangular features are inserted into the
mask to assist the patterning of target features. These features
are too small to be actually printed, but they can improve the
patterning robustness of the target ones. In OPC, the edge seg-
ments of target features are adjusted for light compensation.
The quality of mask synthesis is usually measured with two

Fig. 8. Comparison of SRAF results between model-based, SVM-based, and
CGAN-based approaches [70].

metrics: 1) edge displacement errors (EPEs) and 2) process
variation bands (PVBands).

The early attempt of ML for SRAF generation formulates
the problem into a classification task [71]. By dividing the
mask into pixels, Xu et al. proposed to use logistic regression
and support-vector machine (SVM) to predict the probability
of SRAF being present at each pixel. They demonstrate com-
parable EPE and PVBand with 3×–10× speedup on a 10 µm×
10 µm mask clip compared with model-based approaches in
a commercial tool [72]. The drawbacks of such an approach
include manual feature engineering, high prediction complex-
ity, and lack of global view in prediction, as each pixel is
treated separately and we need to make predictions for each
pixel. To overcome such drawbacks, Alawieh et al. [70] for-
mulated the problem into an image-to-image translation task
that tries to obtain the entire solution with one prediction
and a legalization step. They propose a multichannel heatmap
encoding method to handle the SRAF size rules and lever-
age the CGAN model to predict the SRAF results. Eventually,
they can achieve 144× speedup and closer PVBand compared
with the model-based approach [72]. Fig. 8 compares the solu-
tion generated from the model-based approach (golden) [72],
SVM-based approach [71], and CGAN-based approach [70].
We can see that the CGAN-based approach matches the golden
result much better globally.

While OPC can also be formulated as an image-to-image
translation task, the problem becomes more complicated to
manipulate the edge segments of features. Yang et al. [73]
proposed a GAN-OPC framework to generate the initial OPC
solution. They develop the generator as an AE and the discrim-
inator judges the quality of the generated mask, as shown in
Fig. 9. To bootstrap the training, the discriminator is initially
replaced with lithography simulation. Unlike SRAF genera-
tion where we can obtain the final solution with a simple
legalization step, the initial solution can only serve as the
starting point for conventional OPC iterations. It eventually
can achieve similar solution quality with half of the conven-
tional iterations, i.e., around 2× speedup over a conventional
gradient-based OPC solver [74]. Recently, Jiang et al. [75]
proposed to replace the backbone of the conventional OPC
solver with NN and GPU-accelerated lithography simulation
kernels. In this way, they can achieve 70× speedup with even
better solution quality than the conventional solver [74].

Most the previous studies focus on mask clips and require to
sweep the layout for full-chip mask synthesis. Chen et al. [76]
proposed a full-chip mask optimization engine by multistage
clustering and clip generation. They demonstrate 5× speedup
and better solution quality even compared with the commercial
tool [72].

RAPP et al.: MLCAD: A SURVEY OF RESEARCH IN ML 3171

Fig. 9. Generative techniques allow to cope with ambiguity in the design
process. Many different masks may result in similar quality. GAN-OPC [73]
uses two NNs following the GAN principle. The generator creates masks,
whereas the discriminator rates the quality of these masks.

2) Lithography Modeling: Lithography modeling is a step
enabling lithography simulation of printed patterns given mask
clips. It is not simply a step next to mask synthesis, as
shown in Fig. 7. In practice, lithography simulation is a sub-
routine iteratively called during mask synthesis to verify the
printing quality of masks. Lithography modeling consists of
optical modeling and resist modeling. The former computes
the light intensity map (aerial image), and the latter simulates
the slicing thresholds for patterning and determines the printed
shapes.

Watanabe et al. [77] discovered that ML-based resist mod-
els have the potential to outperform conventional compact
models [72] in accuracy and achieve much higher efficiency
compared with rigorous simulation [78]. They formulate the
resist modeling problem into a regression task and develop
CNN models to predict the slicing thresholds on the aerial
image. The printed patterns can be computed with the slicing
thresholds and the aerial image. Since the printed patterns can
also be viewed as an image, Ye et al. [79] further formulated
the entire lithography modeling problem on contact layers into
an image-to-image translation task and develop CGAN+CNN
framework for end-to-end modeling. The CGAN learns the
shapes of patterns and the CNN learns the locations. In this
way, they can achieve less than 1 nm average edge displace-
ment error with more than 1800× speedup over rigorous
simulation [78]. Recently, they further investigate the 3-D
structure of masks by considering the mask topography effects,
and formulate a multidomain image translation task to predict
3-D aerial images [80].

To obtain accurate models, a large amount of labeled data
for training is required, which is often difficult to obtain. To
enable few-data learning, Lin et al. [81] proposed to lever-
age transfer learning and active data selection to reduce the
amount of training data. They utilize the data from old technol-
ogy nodes to build an initial CNN model and finetune with a

few labeled data from the target node. When selecting the data
from the target node, they perform K-Medoids clustering to
the features and choose the cluster centers to query their labels
and form the training dataset. In this way, 3×–10× reduc-
tion on the amount of data samples from the target node can
be achieved within an industrial-strength range of prediction
errors.

3) Lithography Hotspot Detection: Different from lithog-
raphy modeling that simulates the printed patterns with opti-
mized masks, lithography hotspot detection aims at early
detection of layout patterns that may cause printing failure
such as short or open. This problem is usually formulated into
a binary classification task taking a mask clip and determin-
ing whether it contains hotspot patterns. The key challenges
include high image resolution and data imbalance, as most
of the patterns are nonhotspots and hotspot patterns usually
only take a few percentage. Thus, it is a biased learning task
and we shoot for maximum prediction accuracy and minimum
false alarms.

Shin and Lee [82] proposed to use CNN to predict the
hotspot probabilities and augment the training data by flipping
the mask clips. Yang et al. [83], [84] developed a dedicated
discrete cosine transformation (DCT)-based feature representa-
tion to reduce the mask image by omitting the high-frequency
components with custom CNN structures. They also suggest
a biased learning procedure to finetune the models taking
advantage of the ReLU property.

Despite the following-up studies to further improve the
model accuracy [85]–[87], research has been conducted
to investigate data-efficient learning under various scenar-
ios [88]–[91]. That is, improve the accuracy with as few
training data as possible. For instance, Ye et al. [89] and
Yang et al. [90] introduced active learning to reduce the label
querying overhead by examining the prediction confidence
of models. They assume there are a pool of unlabeled data
samples whose labels can be queried at certain costs. Then,
they can gradually improve the model accuracy by selectively
adding samples into the training dataset with minmum costs.
Chen et al. [91] considered the scenario where a pool of
labeled samples for training and unlabeled samples for testing
are available, but there is no freedom to query for the labels
of new samples. They propose to leverage the distribution of
unlabeled samples to improve the generality of the model and
introduce a self-paced semisupervised learning technique for
few-data learning.

Recent study further reveals that clip-based hotspot detec-
tion may require numerous predictions when it comes to
a full-chip scale. Thus, Chen et al. [92] reformulated the
problem into an object detection task given arbitrarily sized
mask regions. They introduce a clip proposal network con-
sisting of a regression branch to predict the clip sizes and
locations, and a classification branch to detect whether the
clip contains a hotspot. They demonstrate 50× speedup over
clip-based hotspot detection [84] with even higher accuracy
and lower false alarms at full-chip scales.

4) Yield Estimation: ML can also help with yield estima-
tion and analysis. Ciccazzo et al. [93] built an SVM-based sur-
rogate model to estimate the yield for given design parameters.

3172 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 10, OCTOBER 2022

(a) (b) (c) (d)

(f) (g) (h) (i)

(e)

Fig. 10. Wafer samples of different defect types [97]. (a) Center. (b) Donut.
(c) Edge-Loc. (d) Edge-Ring. (e) Random. (f) Location. (g) Near-Full.
(h) Scratch. (i) None.

The surrogate model can then be used to speed up a heuristic
yield optimization technique.

There are also studies on systematic failure and defect pat-
terns for yield analysis [94]–[97]. Nakata et al. [94] helped
engineers finding the cause of failure (defective manufacturing
devices) from wafer failure map patterns and manufacturing
histories. They employ several ML algorithms. K-means clus-
tering is used to find groups of similar failures, a pattern
mining algorithm finds defective manufacturing devices, and
NN for recurrence monitoring, where the NN classifies known
failures. Alawieh et al. [97] studied the wafer defect catego-
rization problem. Given the locations of passing and failing
dies on a wafer, the problem is to classify the wafer defect
types like center or scratch, as shown in Fig. 10. They formu-
late the problem into an image classification task and propose
a selective learning scheme leveraging CNN and an integrated
reject option to maximize the prediction coverage and mini-
mize misclassification risk. The selective scheme employs a
pair of models (f , g), where f is the prediction model and g
is the selection model serving as the binary qualifier for f .
When g = 0, the selective model chooses to abstain from
prediction. In this way, a tradeoff between misclassification
risk and prediction coverage can be achieved. To tackle the
data imbalance issue, they also propose a data augmentation
technique with AE to create synthetic samples from underrep-
resented classes. Such a kind of wafer defect detectors can
guide process engineers for yield optimization.

F. Verification and Testing

Errors that prevent the design from adhering to its specifi-
cations may happen at every design step. The earlier such an
error is detected and fixed, the lower are the induced delays
and costs of the design process. Therefore, early detection is
indispensable to avoid design iterations and keep the design
process economical. As a result, verification and testing of
the design is performed after each step of the design and
manufacturing process.

Mostly, verification is performed using simulations [98].
The design is exercised with input stimuli and its outputs are
compared to golden outputs. Errors can only be detected if a

high coverage is reached, i.e., the fraction of functions exer-
cised in the test. High coverage can only be achieved by many
simulations with various stimuli. Two challenges arise from
this. First, the required simulation time is high, and second,
creating stimuli to achieve a high coverage is difficult.

ML has been employed to both these challenges. Toward
speeding up simulations, Li and Jacob [99] modeled the
DRAM access latency. They classify incoming requests based
on features about this and previous requests. These classes
coarsely correspond to DRAM states (e.g., row hit/miss). Each
of the classes is assigned with an average latency that is used
as an estimate for the request at hand. As the focus of this
technique is to speed up simulations, they use lightweight
algorithms like decision trees. Lee and Gerstlauer [100] esti-
mated power waveforms of hardware accelerators at different
levels of knowledge about internals about the implementation.
Cycle-level, block-level, or invocation-level models are built
accordingly. Finally, Chen et al. [101] tackled the problem of
increasing the test coverage. They use unsupervised learning
to detect additional test points that improve an incomplete test
plan. Ma et al. [102] targeted the problem of test point inser-
tion, where a minimal number of observation points is added
while maximizing fault coverage. They formulate the problem
as a graph operation, where nodes in the netlist should be
classified as suitable/nonsuitable for test point insertion. This
problem is tackled with a multistage Graph-NN, which can
cope with large imbalance in the classification problem.

After manufacturing, simulation is no longer required, as
the manufactured device can be tested directly. Works that
improve the coverage still apply. However, after manufactur-
ing not one but many instances of the device exist with ideally
identical behavior. This forms an opportunity to detect faulty
devices by looking for outliers using anomaly detection algo-
rithms. Kim et al. [103] used anomaly detection after every
manufacturing process step to detect faulty wafers. They com-
pare different dimensionality reduction methods and anomaly
detection methods. DeOrio et al. [104] also used anomaly
detection to detect the timestamp and signals involved in
intermittent failures during post-silicon validation. They build
clusters based on features from subsequent correct execu-
tions. Erroneous executions are then classified cycle-by-cycle
to detect the timestamp and signals. This technique does not
require generalization across different designs, but work by
comparing many instances of the same design.

Analog designs have the property that inputs and outputs
are continuous. This allows to search in a continuous space
for the worst case operating conditions w.r.t. certain specified
properties like common mode suppression. Hu et al. [105]
used Bayesian Optimization to identify the worst case impact
of manufacturing variability on the properties of an analog cir-
cuit. Bayesian Optimization iteratively builds up a new model
from scratch for every design that guides the testing process
toward the worst case operating point.

G. Device and Technology Development

Employing ML for technology development and to gen-
erate models of transistors and circuits have been initially

RAPP et al.: MLCAD: A SURVEY OF RESEARCH IN ML 3173

started in 1996, when Meijer investigated the possibilities of
NNs for circuit simulations [106]. One of their objectives
was to replace physics-based models, in which obtaining the
needed configuration parameters (geometry, dopant concen-
trations, etc.) is typically very challenging, time-intensive and
requires sensitive information from the semiconductor manu-
facturers. Additionally, their goal was to reduce the complexity
of the models, which, in turn, reduces the run-time of the cir-
cuit simulations. The key limitation of the work, was the ML
technology and computational power available at that time,
as stated by: “Some behavior is beyond the representational
bounds of our present feedforward NNs” [106]. To overcome
that challenge, domain knowledge was used to enhance NNs
(e.g., optimizing parameters and reducing complexity to single
equations). A combination of domain knowledge and general
ML techniques allows to build models that conform known
physical dependencies, while still being flexible.

A recent approach in modeling transistors with NNs is from
Zhang et al. [107] which aimed at assisting designing new
technologies. Their work is on the material level where transis-
tor details like geometry and dopant concentrations and other
properties of the transistor are considered as a part of the
input of their NN. With that framework, the work predicts the
characteristics of new transistors in emerging technologies or
different material properties.

An interesting approach was made by Lamamra and
Berrah [108] who used a genetic algorithm in addition to
the NN. This enhancement alters the training phase so that
not only the internal parameters of the NN (i.e., the weights)
are changed but additionally the structure of the NN (topol-
ogy, number of nodes, etc.). This structural change of the NN
enables the authors to obtain a model that minimizes the error
further than just regular training. Unfortunately, the authors
tested their framework only on one simple MOSFET transistor
and only inferred the drain source current.

Another approach comes from Zhang and Chan [109] where
methods are presented to develop a transistor model with NN
and to minimize the needed data set for the training. The
used NN is quite small (less than 15 nodes). In order to
get satisfying results with the small network, authors heav-
ily optimized the NN by employing domain knowledge to
develop the network. For example, each node was connected
manually to consider the physical dependencies between the
input parameters and the electrical behavior of a transistor.
This domain knowledge also resulted in the existence of spe-
cific nodes, carefully chosen to model the subthreshold current
and nodes solely modeling the current above the threshold
voltage. Additionally, the authors applied preprocessing to
scale the input parameters. To reduce the minimum needed
data, they used a sparse nonuniform data set. The approach
does not model the temperature dependencies, but use more
architecture-dependent parameters. A disadvantage of this
small optimized network is the adaptability to new parameters
and dependencies. Adding new parameters (such as ferroelec-
tric parameters in recent emerging technologies) results in a
need to adapt the layout of the NN with adding additional
nodes in the hidden layers. This is in contrast to larger, more
generic NNs, which can generalize such properties.

A similar approach to the work from Zhang et al. is the
approach from Li et al. [110] which also tries to build the NN
based on the device physics. The employed NN is tiny with
less than ten nodes. A difference to other approaches is the
use of different activation functions for different nodes. The
small number of nodes enables the authors to train the NN
with up to 5 000 000 epochs.

When it comes to emerging technologies, in which physics-
based models are not fully developed or even available, ML
can play a major role to replace traditional modeling and pro-
vide accurate estimations based on “learning from available
measurement data.” Recently, Klemme et al. [111] employed
ML to model the negative capacitance field-effective transis-
tor (NCFET), demonstrating the ability to predict with a high
accuracy (>90%) the behavior of steep-slope transistors. They
show that ML can be even employed to replace the standard
cell library characterization. This enabled for the first time
fast predictions of how changes in the underlying technology
can impact the figure of merits of circuits. Hence, DSE to
determine the best configuration for the ferroelectric material
has become, as a result, possible. Such a DSE can provide
guidelines to material scientists on how the different mate-
rial parameters in their emerging technology should be tuned
toward maximizing the efficiency of the circuit [112].

V. ML FOR RUN-TIME MANAGEMENT

This section gives an overview of ML-based techniques that
support run-time management of ICs. The criteria are that
inference is performed at run time and that the ML model
is used to optimize the physical characteristics of computing
platform operation, such as power, performance, or reliability.
As explained earlier, we explicitly do not consider techniques
that use ML to solve a user task (such as stroke detection),
or that improve the performance of the inference itself, e.g.,
ML accelerators). Training can either be performed at design
time, at run time, or a combination of the design-time training
and run-time refinement. We consider two categories of run-
time management: 1) those that directly learn platform policies
to manage platform characteristics and 2) those that estimate
characteristics of the computing platform and/or its environ-
ment for use by other management techniques. Table II gives
an overview of common problems and suitable algorithms.

A. Learn Platform Management Policies

The first category of techniques directly learns policies
that manage platform operation—for example, learning power
management policies. The two most important methods for
policy learning are RL and imitation learning (IL).

RL relies on defining the objective in the form of a sin-
gle scalar value, the reward signal. Table-based centralized
Q-learning is the simplest form of RL. Ebi et al. [113] reduced
thermal gradients across a multicore processor and increase the
performance through dynamic voltage and frequency scaling
(DVFS). Shen et al. [114] performed power management with
Q-learning. They accelerate training convergence by updating
several virtual state transitions for each real state transition
by exploiting system knowledge. Additionally, they build a

3174 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 10, OCTOBER 2022

TABLE II
COMMONLY OBSERVED PROBLEMS IN RUN-TIME MANAGEMENT AND SUITABLE ALGORITHMS

high-level controller to determine the desired tradeoff between
power and performance, which internally relies on the NN
model to predict the power consumption. Shafik et al. [115]
used Q-learning for DVFS. The learned policy is not intended
to generalize across different workloads. Instead, workload
changes are detected and the policy is updated through re-
exploration. They use a small table (coarse quantization)
to speed up the (repeated) exploration. Kim et al. [116]
improved the lifetime of a processor using DVFS and power
gating. Dinakarrao et al. [117] used Q-learning for temper-
ature and reliability management of a multicore processor.
Gupta et al. [118] used RL to decide the number of active
cores and their v/f-levels in a heterogeneous multicore proces-
sor in order to minimize the energy consumption. They use
NN-based deep Q-learning (DQL) to manage the large state
and action space.

Even with DQL, state and action spaces might become too
large if the number of cores gets too large, which reduces or
prohibits convergence of the policy. In such a case, it is benefi-
cial to split the centralized agent into many distributed agents.
However, global convergence and cooperativeness between
agents may be difficult to achieve. Chen and Marculescu [119]
maximized the performance under a global power budget.
The individual agents are coordinated using a global heuristic
power budget reallocation algorithm. Li et al. [120] man-
aged power states and control voltage regulators to minimize
the energy-delay product (EDP). In their case, each agent
is able to operate independently, since there is no global
joint constraint. The techniques described so far use value-
learning. Mao et al. [121] used policy-based RL to decide
when to schedule jobs with the goal of maximizing the
performance. They penalize the agent (negative reward) for
every job in the system, which indirectly rewards finishing
a job.

While it is intuitive to learn the direct actions to take (e.g.,
v/f-levels), this ignores that many heuristic algorithms perform
well in certain scenarios. Ul Islam and Lin [122] used RL
to switch between a set of preimplemented heuristic control
policies at run time based on the workload.

RL-based techniques may suffer from high storage or com-
putational overhead. This comes from the fact that learning
is performed continuously at run time and all information
required to continue learning must be retained. In contrast,
IL learns an optimal control policy at design time, based on
training data that captures a set of system states. IL reduces
run-time overhead at the cost of adaptability. Park et al. [123]
trained classical ML models to control the v/f-settings of CPU

and GPU for performance and energy optimization. Training
examples from the optimal control policy are created at design
time by brute-forcing all possible settings for different exe-
cution phases. Mandal et al. [124] decided the number of
active cores and their v/f-settings in order to minimize the
energy consumption (with/without performance constraint).
Kim et al. [125] controlled v/f-levels of v/f islands. They
compare their IL-based technique to RL-based technique and
demonstrate a significantly lower overhead.

All these IL-based techniques employ simple models
such as decision trees to keep the run-time overhead low.
Furthermore, all techniques use the DAgger algorithm [126] to
make the learned policy more robust toward recovering from
suboptimal decisions and unexpected system behavior.

The main advantage of learning actions directly is the pos-
sibility to abstract from detailed system behavior and focus
on the design objectives instead. While this seems straightfor-
ward, there are several pitfalls. With IL, an optimal policy has
to be generated. In easy cases, brute-force trying all possible
actions works, but more complicated cases require heuristics,
as well. With RL, defining the reward function is a challenge
on its own. If the reward is not defined carefully, the agent
might find a policy that results in high rewards but does not
reflect the goal that the designer intended [127]. This effect is
known as reward hacking [128].

B. Estimate Platform and Environment Properties

An alternative approach is to train ML model to estimate
physical properties of the computing platform and the envi-
ronment in which it operates. The models are used to predict
future system changes, or to predict the impact of management
actions before executing them. The results of this estimation
are presumably fed to other subsystems, either automatic or
manual, for use in system management.

Several studies develop methods to reconstruct the cur-
rent, partially observable system state. Analog sensors for
power or temperature are costly to implement and, there-
fore, usually are rare with only a few sensors per chip.
Bircher et al. [129] proposed a simple linear model to esti-
mate the current processor power from performance counter
readings. Sagi et al. [130] augmented a linear model for pro-
cessor power estimation with nonlinear transformations of the
features to achieve a higher accuracy while maintaining a
low overhead. Sadiqbatcha et al. [131] used a recurrent NN
to estimate the current temperature of thermal hotspots at
run time from processor performance counter measurements.

RAPP et al.: MLCAD: A SURVEY OF RESEARCH IN ML 3175

Fig. 11. Prediction-based resource management (here: task migration) selects
the next action by predicting the impact of many candidate actions [134].

Kim et al. [132] presented an automated technique to cre-
ate run-time power models for arbitrary integrated circuits
that first selects signals to be monitored by clustering and
then trains a regression model for run-time power inference
based on the monitored switching activity. Rapp et al. [133]
presented a processor boosting technique that internally builds
on top of the NN model to estimate the sensitivity of the
power and performance of running applications on v/f-level
changes. They exploit the relation of these two metrics by
building a multitask NN that simultaneously estimates them
from performance counters.

While reconstructing the current system state already gives
important information about the system to the control algo-
rithm, predictions about the impact of potential actions are
more meaningful. The majority of work has therefore focused
on such problems. Fig. 11 visualizes this approach using an
example of task migration [134]. The control loop traverses
three phases. First, many action candidates (here: task migra-
tions) are created. Then, the impact of each of these action
candidates is predicted (here: performance after the migra-
tion). Finally, the action with the best predicted outcome is
executed. The future state of system metrics such as power
or performance depends on both the selected actions and the
future characteristics of the workload and environment. To
avoid the challenge of predicting workload and environment,
many techniques predict how the system metrics would be
now if another action would have been selected. Selecting the
next action based on such predictions inherently assumes that
the workload and the environment will not change within the
next control step. While this is a strong assumption, it holds
as long as control steps are short enough.

Gupta et al. [135] learned a linear model at run time that
predicts the frequency sensitivity of workloads. They put a
strong emphasis on adaptive learning rate (adaptive forget-
ting factor) to be able to quickly adapt to workload changes.
Kim et al. [136] take traces from an application that is run-
ning on a certain core. They use NN to predict the power
and performance of this application if it would be executed
on another core with different microarchitecture. They use a

cascaded NN to learn individual problems separately: change
of performance counters, impact of the frequency, impact
of the microarchitecture. Rapp et al. [134] predicted the
performance of an application if it would be executed on
another core in a thermally constrained many-core processor
with heterogeneous last-level cache (LLC) access.

For some metrics, such as temperature, it is not reasonable
to assume that they do not change within the next control
step. Therefore, predictions about temperature always target
future time steps. Zhang et al. [137] predicted how the tem-
perature of a processor will behave if a certain application
is started. They use application characteristics, as well as
CPU-specific features. Abad and Soleimani [138] used NN
to predict the temperature in the next seconds in a multicore
processor based on information about the workload, as well
as information about the frequency and cooling fan speed.
Sagi et al. [139] predicted future power due to workload
changes with LSTM NN.

The techniques discussed so far model properties of the
platform and environment in a deterministic manner. However,
especially in stochastic environments, it is important to model
such stochastic behavior. Markov decision processs (MDPs)
can be used to adapt operational characteristics of comput-
ing systems. A great deal of work has concentrated on the
use of MDPs to model channel characteristics in communi-
cation systems. Li et al. [140] developed a framework for
the design of digital predistortion systems that optimize the
communication based on the MDP models created at design
time. The group also used hierarchical MDPs [141] to effi-
ciently model both the communication environment and the
computing system platform. Bhuiyan et al. [142] described a
probabilistic approach to energy-optimized scheduling of mul-
ticriticality systems. Their multicriticality model includes two
criticality levels: 1) HI and 2) LO. Each task is guaranteed
to execute to completion; processor mode switches are per-
formed as necessary to increase clock speed so as to allow all
tasks to complete their worst case execution. They characterize
the execution time of each task using an empirical cumulative
distribution function derived from a set of measurements or
simulations. They iteratively solve for a minimum speed sLO
that guarantees schedulability along with a minimum-energy
static schedule.

VI. OPEN CHALLENGES

This section discusses open challenges when employing ML
for CAD, as well as promising directions on how to solve
them. Some challenges arise from the ML algorithms, some
arise from the existing constraints in the CAD process.

A. Combinatorial Optimization Problems

ML can be incorporated into combinatorial problems either
by approximating some heavy computation via surrogate mod-
els, or by acquiring better heuristics to solve a problem [143].
Combinatorial problems are often theoretically hard to solve,
and ML approaches do not give any guarantee in terms of
optimality. That is, we can never easily know how far away
the output solution is from an optimal solution.

3176 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 10, OCTOBER 2022

Despite the optimality issue, even generating a feasible
solution itself is not trivial. Especially, when using neural
networks, which are trained with gradient methods, it is impor-
tant to carefully design operations that are differentiable to
keep the whole model end-to-end trainable. As examples,
pointer networks [144], attention layers [145], and sinkhorn
layers [146] are complicated mechanisms for a neural network
to output a permutation. In practical problems, there could be
more cumbersome rules and constraints to be satisfied, which
greatly brings about the difficulty in ML algorithm design.

Another issue is that many useful ML techniques are not
established for combinatorial problems. One of the reasons
might be due to the importance of introducing prior knowledge
to the ML approach. For instance, it is commonly believed
that CNNs can better extract useful features from image data
than other NN models. Therefore, designing dedicated mod-
els for combinatorial problems might be critical to boost the
performance.

Finally, scalability is a great challenge. Current methods
usually experience performance degradation when applied to
problems of larger size than what was used in training. It seems
that using larger models and training on larger instances are
the way to go, but it is at the cost of higher computational
efforts. More importantly, it is nearly impossible to know a
priori that how complex the model or how large the training
samples should be, because we do not know the exact problem
we are trying to solve [143] (i.e., the true data distribution).

B. Employ in Practice

There are some challenges involved with ML techniques
managing the leap from research to employing them practice.
The first challenge concerns the CAD flow. The existing CAD
flow and corresponding tools have been developed and estab-
lished in a process lasting several decades. It is mostly seen as
rigid and immutable. As a result, techniques that do not fit the
classical tool flow are less likely to be successful in the CAD
community. This makes sense from the point of view that lots
of optimization has been put into the existing flow and rein-
venting it may be a waste of effort. Instead, techniques are
mostly developed as drop-in solutions to replace or enhance
existing algorithms and tools. However, this also forms a lim-
itation that potentially unnecessarily restricts new techniques
and may capture the CAD flow itself in a local optimum.

A second challenge arises from intellectual property (IP)
rights and licenses. Most functionality of a modern chip comes
from licensed IP packages that need to be bought first. The
most common types are hard IP, i.e., at the layout level, and
soft IP, i.e., at the netlist level. ML models require training data
to create, which, consequently, also to a large fraction origi-
nates in IP. This may lead to two problems. First, IP vendors
may claim the (partial) ownership of any model created with
their IP, which may not be feasible in practice. Second, and
more severely, complex NN models, such as deep NNs, may
memorize certain input patterns and allow extraction of parts
of the training data. This has been demonstrated in image mod-
els that allowed extracting individual training examples [147]
(membership inference attack). As an example, we consider a

model that is trained to detect lithographic hotspots in layout
images. The layout of a memory array is highly regular and,
therefore, repeats often in the training data. Additionally, the
layout of the memory array may be protected as IP. When the
trained lithographic model is released, it may be possible to
extract common patterns in the training data, i.e., the protected
memory layout. While there are technical solutions to these
problems that make extracting training data more difficult, this
is mostly a regulatory problem.

The third challenge comes from the portability of models
and training. In an ideal world, the ML model trained with
data from one tool flow and one technology node would be
applicable to designs created in other tool flows and for other
technology nodes. In practice, this is less likely to be the case.
For instance, Chan et al. [148] studied the noise and chaos
inherent in commercial place&route tools, and importantly
also showed that different tools show different susceptibility
to small changes in the input. Research on models and train-
ing methods that increase retargetability, if successful, would
increase the utility and longevity of ML-based CAD tools.

C. Limited Availability of Training Data

A key challenge when employing ML for CAD is the cre-
ation of training data. Especially, deep NNs require lots of
data. However, not only the amount of data is important but
it is crucial that the training data reflect the data observed at
inference time. This can only be solved by obtaining training
data from a large variety of different designs. Data imbal-
ance, where most of the data belong to one or few classes,
exacerbates the problem. This is for instance the case in test-
ing where defects happen rarely. Therefore, available data are
often limited, which is circumvented by performing training
data augmentation, i.e., create variants of the available data.
This may create a false sense of accuracy. A recent case was
presented by Reddy et al. [149]. They revisited the ICCAD’12
benchmark that is widely used to train and test lithographic
hotspot detection [150]. They showed that the high accu-
racy that was achieved by many state-of-the-art techniques
reduces drastically if more examples from a larger variety of
designs are introduced. There are several directions to cope
with limited training data that are explained in the following.

1) Distributed Learning From Customer Data: Lots of data
are created when customers use the CAD tools on their
designs. These data may be used to refine the models dur-
ing usage of the CAD tool via online learning. However, this
is only beneficial if data from many customers can be used to
train a single model. As outlined earlier, most of these data
are subject to IP licenses or confidential, which means it can-
not be sent to the developer of the CAD tool for training.
Distributed learning (e.g., federated learning [151]) can be a
solution, where every customer performs retraining of the tool
with its data, and only updated models are exchanged with the
tool developer and other customers.

2) Semisupervised Learning and Transfer Learning:
Another way to cope with scarcity in training data is to make
use of other available data. This could be unlabeled data
(semisupervised learning), or data from another but related

RAPP et al.: MLCAD: A SURVEY OF RESEARCH IN ML 3177

problem (transfer learning). Semisupervised learning harnesses
unlabeled data to learn the underlying data distribution. First
works have successfully followed this approach [91]. Transfer
learning exploits the relatedness of problems, where a model
is first trained on a related problem (source domain) to serve
as a starting point for retraining in the actual problem (tar-
get domain). For instance, a model can be trained for one
technology and retrained for another [64].

3) Domain Knowledge: CAD looks back on decades of
heuristic algorithms that were designed based on domain
knowledge of designers. When switching to ML models, this
domain knowledge should be harnessed [152]. This is done in
parts by deciding which problems to address with ML, but also
the design of the models themselves should involve the exist-
ing domain knowledge to alleviate the limitedness of training
data. Different techniques may be employed to generating
the training data itself (e.g., data augmentation), to building
the model structure (e.g., restraining NN weights to guaran-
tee monotonicity), and to the postprocessing model outputs
(e.g., plausibility checks) [127]. Another option to make use of
domain knowledge, is to directly learn from designs that have
been implemented by human designers. Some techniques have
already been proposed that imitate human designers [52], [65].

D. Interpretability and Adversarial Attacks

ML models, especially NN models, are difficult to debug.
While there exist techniques to reverse-engineer NN, this is
only possible to some degree. This opens up some challenges.

First, wrong predictions are difficult to explain and
also difficult to prevent. This has been demonstrated by
Reddy et al. [149] as discussed earlier. Second, such mod-
els are susceptible to small perturbations in the input. Such
perturbations, if selected cleverly, can trick the model to a
completely wrong prediction. Liu et al. [153] demonstrated
adversarial attacks on lithographic hotspot detection. They
consider IP vendor that sells fully placed and routed IP. The
customer checks the IP on lithographic hotspots using ML
classifier. The vendor may for instance aim to trick the classi-
fier to detect no hotspots to make fast profit from low-quality
IP. Preventing such attacks can only be done if attacks are
already considered during the training to obtain a more robust
model. However, more research is still required to achieve (or
even guarantee) robustness in models.

Finally, another challenge rises if the model is provided by
an untrustworthy source. This is also the case when many
users of the CAD tool cooperatively train a model in a dis-
tributed setting. A malicious model might work fine at first
glance but might have a secret trigger embedded to make it
malfunction [154]. An adversary can exploit this to control the
output of the model. The IP vendor may train the model to
give a seeming advantage to its IP, or may even sabotage the
model to work badly on IP from competitors.

VII. CONCLUSION

This work has given a summary of ML in CAD of ICs.
ML promises to fill several gaps in the CAD domain that is
still dominated by heuristic algorithms. First, we performed a

metastudy of how ML has been used for CAD in the recent
five years. We identified several trends, the main ones being a
trend toward physical design and manufacturing steps, and a
trend toward NN-based models. We presented a categorization
of ML in CAD, which is based on how models are used,
and discussed state-of-the-art techniques for both design-time
and run-time aspects of CAD. Finally, we highlighted the key
challenges that need to be solved when employing ML in CAD
and outlined directions on how to solve them.

ACKNOWLEDGMENT

The authors thank Victor van Santen and Jannik Prinz for
their help in Section IV-G.

REFERENCES

[1] International Technology Roadmap for Semiconductors (ITRS) Reports.
Accessed: Jul. 26, 2021. [Online]. Available: http://www.itrs2.net/itrs-
reports.html

[2] S. Pagani, P. D. S. Manoj, A. Jantsch, and J. Henkel, “Machine learning
for power, energy, and thermal management on multi-core processors:
A survey,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 39, no. 1, pp. 101–116, Jan. 2020.

[3] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“ImageNet: A large-scale hierarchical image database,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), 2009, pp. 248–255.

[4] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proc. Conf. Comput. Vis. Pattern
Recognit. (CVPR), 2015, pp. 3431–3440.

[5] I. A. M. Elfadel, D. S. Boning, and X. Li, Machine Learning in VLSI
Computer-Aided Design. Heidelberg, Germany: Springer, 2019.

[6] I. Kononenko and M. Kukar, Machine Learning and Data Mining.
London, U.K.: Horwood, 2007.

[7] J. Kocijan, R. Murray-Smith, C. E. Rasmussen, and A. Girard,
“Gaussian process model based predictive control,” in Proc. IEEE
Amer. Control Conf., vol. 3, 2004, pp. 2214–2219.

[8] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Trans. Neural Netw., vol. 20,
no. 1, pp. 61–80, Jan. 2009.

[9] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta,
and A. A. Bharath, “Generative adversarial networks: An overview,”
IEEE Signal Process. Mag., vol. 35, no. 1, pp. 53–65, Jan. 2018.

[10] Y.-C. Fang, H.-Y. Lin, M.-Y. Sui, C.-M. Li, and E. J.-W. Fang,
“Machine-learning-based dynamic IR drop prediction for ECO,” in
Proc. IEEE Int. Conf. Comput.-Aided Design (ICCAD), 2018, pp. 1–7.

[11] Y. Zhou et al., “PRIMAL: Power inference using machine learning,”
in Proc. Design Autom. Conf. (DAC), 2019, p. 39.

[12] C. J. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8,
nos. 3–4, pp. 279–292, 1992.

[13] M. Z. Alom et al., “The history began from AlexNet: A comprehensive
survey on deep learning approaches,” 2018, arXiv:1803.01164.

[14] V. R. Konda and J. N. Tsitsiklis, “Actor–critic algorithms,” in Proc.
Adv. Neural Inf. Process. Syst. (NIPS), 2000, pp. 1008–1014.

[15] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” in
Proc. Int. Conf. Learn. Represent. (ICLR), 2013, pp. 1–6.

[16] H. Yang, P. Pathak, F. Gennari, Y.-C. Lai, and B. Yu, “DeePattern:
Layout pattern generation with transforming convolutional auto-
encoder,” in Proc. ACM Design Autom. Conf. (DAC), 2019, p. 148.

[17] G. Mariani, G. Palermo, V. Zaccaria, and C. Silvano, “OSCAR: An
optimization methodology exploiting spatial correlation in multicore
design spaces,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 31, no. 5, pp. 740–753, May 2012.

[18] B. K. Joardar, R. G. Kim, J. R. Doppa, P. P. Pande, D. Marculescu, and
R. Marculescu, “Learning-based application-agnostic 3D NoC design
for heterogeneous manycore systems,” IEEE Trans. Comput., vol. 68,
no. 6, pp. 852–866, Jun. 2019.

[19] A. Deshwal, N. K. Jayakodi, B. K. Joardar, J. R. Doppa, and P. P. Pande,
“MOOS: A multi-objective design space exploration and optimization
framework for noc enabled manycore systems,” ACM Trans. Embedded
Comput. Syst., vol. 18, no. 5s, pp. 1–23, 2019.

3178 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 10, OCTOBER 2022

[20] A. Powell, C. Savvas-Bouganis, and P. Y. Cheung, “High-level power
and performance estimation of fpga-based soft processors and its appli-
cation to design space exploration,” J. Syst. Archit., vol. 59, no. 10,
pp. 1144–1156, 2013.

[21] H.-Y. Liu and L. P. Carloni, “On learning-based methods for design-
space exploration with high-level synthesis,” in Proc. Design Autom.
Conf. (DAC), 2013, pp. 1–7.

[22] G. Zhong, A. Prakash, S. Wang, Y. Liang, T. Mitra, and S. Niar,
“Design space exploration of FPGA-based accelerators with multi-
level parallelism,” in Proc. Design Autom. Test Europe Conf. Exhibit.
(DATE), 2017, pp. 1141–1146.

[23] E. Zennaro, L. Servadei, K. Devarajegowda, and W. Ecker, “A machine
learning approach for area prediction of hardware designs from
abstract specifications,” in Proc. IEEE Digit. Syst. Design (DSD), 2018,
pp. 413–420.

[24] S. Dai, Y. Zhou, H. Zhang, E. Ustun, E. F. Young, and Z. Zhang, “Fast
and accurate estimation of quality of results in high-level synthesis
with machine learning,” in Proc. IEEE Int. Symp. Field Program. Cust.
Comput. Mach. (FCCM), 2018, pp. 129–132.

[25] E. Ustun, C. Deng, D. Pal, Z. Li, and Z. Zhang, “Accurate operation
delay prediction for FPGA HLS using graph neural networks,” in Proc.
Int. Conf. Comput.-Aided Design, 2020, pp. 1–9.

[26] H. Chen and M. Shen, “A deep-reinforcement-learning-based sched-
uler for FPGA HLS,” in Proc. IEEE Int. Conf. Comput.-Aided Design
(ICCAD), 2019, pp. 1–8.

[27] Y. Zhang, H. Ren, and B. Khailany, “GRANNITE: Graph neural
network inference for transferable power estimation,” in Proc. IEEE
Design Autom. Conf. (DAC), 2020, pp. 1–6.

[28] G. Pasandi, M. Peterson, M. Herrera, S. Nazarian, and M. Pedram,
“Deep-PowerX: A deep learning-based framework for low-power
approximate logic synthesis,” in Proc. Int. Symp. Low Power Electron.
Design (ISLPED), 2020, pp. 73–78.

[29] A. Hosny, S. Hashemi, M. Shalan, and S. Reda, “DRiLLS: Deep rein-
forcement learning for logic synthesis,” in Proc. IEEE Asia South Pac.
Design Autom. Conf. (ASP-DAC), 2020, pp. 581–586.

[30] J. Kwon, M. M. Ziegler, and L. P. Carloni, “A learning-based rec-
ommender system for autotuning design FIoWs of industrial high-
performance processors,” in Proc. IEEE Design Autom. Conf. (DAC),
2019, pp. 1–6.

[31] D. Ciregan, U. Meier, and J. Schmidhuber, “Multi-column deep neural
networks for image classification,” in Proc. Conf. Comput. Vis. Pattern
Recognit. (CVPR), 2012, pp. 3642–3649.

[32] J. Fu, H. Zheng, and T. Mei, “Look closer to see better: Recurrent
attention convolutional neural network for fine-grained image recog-
nition,” in Proc. Conf. Comput. Vis. Pattern Recognit. (CVPR), 2017,
pp. 4438–4446.

[33] A. Mirhoseini et al., “Chip placement with deep reinforcement
learning,” 2020, arXiv:2004.10746.

[34] J. Liu, Y. Ding, J. Yang, U. Schlichtmann, and Y. Shi, “Generative
adversarial network based scalable on-chip noise sensor placement,” in
Proc. IEEE Syst. Chip Conf. (SOCC), 2017, pp. 239–242.

[35] E. C. Barboza, N. Shukla, Y. Chen, and J. Hu, “Machine learning-based
pre-routing timing prediction with reduced pessimism,” in Proc. ACM
Design Autom. Conf. (DAC), 2019, pp. 1–6.

[36] Z. Xie et al., “RouteNet: Routability prediction for mixed-size
designs using convolutional neural network,” in Proc. IEEE Int. Conf.
Comput.-Aided Design (ICCAD), 2018, pp. 1–8.

[37] A. F. Tabrizi, N. K. Darav, L. Rakai, I. Bustany, A. Kennings,
and L. Behjat, “Eh?Predictor: A deep learning framework to iden-
tify detailed routing short violations from a placed netlist,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39, no. 6,
pp. 1177–1190, Jun. 2020.

[38] S. I. Ward et al., “Keep it straight: Teaching placement how to bet-
ter handle designs with datapaths,” in Proc. Int. Symp. Phys. Design
(ISPD), 2012, pp. 79–86.

[39] Y. Lin et al., “DREAMPlace: Deep learning toolkit-enabled GPU
acceleration for modern VLSI placement,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 40, no. 4, pp. 748–761, Apr. 2021.

[40] J. Lu et al., “ePlace: Electrostatics based placement using Nesterov’s
method,” in Proc. Design Autom. Conf. (DAC), 2014, pp. 1–6.

[41] A. Agnesina, E. Lepercq, J. Escobedo, and S. K. Lim, “Reducing com-
pilation effort in commercial FPGA emulation systems using machine
learning,” in Proc. IEEE Int. Conf. Comput.-Aided Design (ICCAD),
2019, pp. 1–8.

[42] A. Agnesina, K. Chang, and S. K. Lim, “VLSI placement parameter
optimization using deep reinforcement learning,” in Proc. Int. Conf.
Comput.-Aided Design (ICCAD), 2020, pp. 1–9.

[43] Z. Xie et al., “FIST: A feature-importance sampling and tree-based
method for automatic design flow parameter tuning,” in Proc. IEEE
Asia South Pac. Design Autom. Conf. (ASP-DAC), 2020, pp. 19–25.

[44] Y.-C. Lu, S. S. K. Pentapati, L. Zhu, K. Samadi, and S. K. Lim,
“TPGNN: A graph neural network framework for tier partitioning in
monolithic 3D ICs,” in Proc. IEEE Design Autom. Conf. (DAC), 2020,
pp. 1–9.

[45] S. I. Ward et al., “Clock power minimization using structured latch
templates and decision tree induction,” in Proc. IEEE Int. Conf.
Comput.-Aided Design (ICCAD), 2013, pp. 599–606.

[46] Y.-C. Lu, J. Lee, A. Agnesina, K. Samadi, and S. K. Lim, “GAN-
CTS: A generative adversarial framework for clock tree prediction
and optimization,” in Proc. IEEE Int. Conf. Comput.-Aided Design
(ICCAD), 2019, pp. 1–8.

[47] C. Yu and Z. Zhang, “Painting on placement: Forecasting routing con-
gestion using conditional generative adversarial nets,” in Proc. Design
Autom. Conf. (DAC), 2019, p. 219.

[48] M. B. Alawieh, W. Li, Y. Lin, L. Singhal, M. A. Iyer, and D. Z. Pan,
“High-definition routing congestion prediction for large-scale FPGAs,”
in Proc. IEEE Asia South Pac. Design Autom. Conf. (ASP-DAC), 2020,
pp. 26–31.

[49] T.-C. Yu et al., “Pin accessibility prediction and optimization with deep
learning-based pin pattern recognition,” in Proc. Design Autom. Conf.
(DAC), 2019, pp. 1–6.

[50] W.-T. Hung, J.-Y. Huang, Y.-C. Chou, C.-H. Tsai, and M. Chao,
“Transforming global routing report into DRC violation map with con-
volutional neural network,” in Proc. Int. Symp. Phys. Design (ISPD),
2020, pp. 57–64.

[51] R. Liang et al., “DRC hotspot prediction at sub-10nm process nodes
using customized convolutional network,” in Proc. Int. Symp. Phys.
Design (ISPD), 2020, pp. 135–142.

[52] K. Zhu et al., “GeniusRoute: A new analog routing paradigm
using generative neural network guidance,” in Proc. IEEE Int. Conf.
Comput.-Aided Design (ICCAD), 2019, pp. 1–8.

[53] T. Qu, Y. Lin, Z. Lu, Y. Su, and Y. Wei, “Asynchronous reinforcement
learning framework for net order exploration in detailed routing,” in
Proc. Design Autom. Test Eurpoe (DATE), Feb. 2021, pp. 1815–1820.

[54] H. Li, G. Chen, B. Jiang, J. Chen, and E. F. Young, “Dr.CU 2.0: A scal-
able detailed routing framework with correct-by-construction design
rule satisfaction,” in Proc. IEEE Int. Conf. Comput.-Aided Design
(ICCAD), 2019, pp. 1–7.

[55] H. Li et al., “Attacking split manufacturing from a deep learning
perspective,” in Proc. ACM Design Autom. Conf. (DAC), 2019, pp. 1–6.

[56] W. Zeng, B. Zhang, and A. Davoodi, “Analysis of security of split
manufacturing using machine learning,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 27, no. 12, pp. 2767–2780, Dec. 2019.

[57] C. Ho and A. B. Kahng, “IncPIRD: Fast learning-based prediction
of incremental IR drop,” in Proc. Int. Conf. Comput.-Aided Design
(ICCAD), 2019, pp. 1–8.

[58] Z. Xie et al., “PowerNet: Transferable dynamic IR drop estimation
via maximum convolutional neural network,” in Proc. Asia South Pac.
Design Autom. Conf. (ASP-DAC), 2020, pp. 13–18.

[59] H. Zhou, W. Jin, and S. X. Tan, “GridNet: Fast data-driven EMInduced
IR drop prediction and localized fixing for on-chip power grid
networks,” in Proc. Int. Conf. Comput.-Aided Design (ICCAD), 2020,
pp. 1–9.

[60] V. A. Chhabria, A. B. Kahng, M. Kim, U. Mallappa, S. S. Sapatnekar,
and B. Xu, “Template-based PDN synthesis in floorplan and placement
using classifier and CNN techniques,” in Proc. Asia South Pac. Design
Autom. Conf. (ASP-DAC), 2020, pp. 44–49.

[61] Y. Cao et al., “Learning-based prediction of package power delivery
network quality,” in Proc. ACM Asia South Pac. Design Autom. Conf.
(ASP-DAC), 2019, pp. 160–166.

[62] T. Dhar et al., “ALIGN: A system for automating analog layout,” IEEE
Des. Test, vol. 38, no. 2, pp. 8–18, Apr. 2021.

[63] H. Chen et al., “MAGICAL: An open-source fully automated analog
ic layout system from netlist to GDSII,” IEEE Des. Test, vol. 38, no. 2,
pp. 19–26, Apr. 2021.

[64] H. Wang et al., “GCN-RL circuit designer: Transferable transistor siz-
ing with graph neural networks and reinforcement learning,” in Proc.
Design Autom. Conf. (DAC), 2020, pp. 1–6.

[65] B. Xu et al., “WellGAN: Generative-adversarial-network-guided well
generation for analog/mixed-signal circuit layout,” in Proc. ACM
Design Autom. Conf. (DAC), 2019, pp. 1–6.

[66] Y. Li et al., “A customized graph neural network model for guiding
analog IC placement,” in Proc. IEEE Int. Conf. Comput.-Aided Design
(ICCAD), 2020, pp. 1–9.

RAPP et al.: MLCAD: A SURVEY OF RESEARCH IN ML 3179

[67] B. Shook, P. Bhansali, C. Kashyap, C. Amin, and S. Joshi, “MLParest:
Machine learning based parasitic estimation for custom circuit design,”
in Proc. IEEE Design Autom. Conf. (DAC), 2020, pp. 1–6.

[68] H. Ren, G. F. Kokai, W. J. Turner, and T.-S. Ku, “ParaGraph:
Layout parasitics and device parameter prediction using graph neural
networks,” in Proc. IEEE Design Autom. Conf. (DAC), 2020, pp. 1–6.

[69] K. Hakhamaneshi, N. Werblun, P. Abbeel, and V. Stojanović, “BagNet:
Berkeley analog generator with layout optimizer boosted with deep
neural networks,” in Proc. IEEE Int. Conf. Comput.-Aided Design
(ICCAD), 2019, pp. 1–8.

[70] M. B. Alawieh, Y. Lin, Z. Zhang, M. Li, Q. Huang, and D. Z. Pan,
“GAN-SRAF: Sub-resolution assist feature generation using genera-
tive adversarial networks,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 40, no. 2, pp. 373–385, Feb. 2021.

[71] X. Xu et al., “Subresolution assist feature generation with supervised
data learning,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 37, no. 6, pp. 1225–1236, Jun. 2018.

[72] Calibre Verification User’s Manual, Mentor Graph., Wilsonville, OR,
USA, 2008.

[73] H. Yang, S. Li, Z. Deng, Y. Ma, B. Yu, and E. F. Young, “GAN-
OPC: Mask optimization with lithography-guided generative adversar-
ial nets,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 39, no. 10, pp. 2822–2834, Oct. 2020.

[74] J.-R. Gao, X. Xu, B. Yu, and D. Z. Pan, “MOSAIC: Mask optimizing
solution with process window aware inverse correction,” in Proc. IEEE
Design Autom. Conf. (DAC), 2014, pp. 1–6.

[75] B. Jiang, L. Liu, Y. Ma, H. Zhang, E. F. Young, and B. Yu, “Neural-ILT:
Migrating ILT to nerual networks for mask printability and complexity
co-optimizaton,” in Proc. Int. Conf. Comput.-Aided Design (ICCAD),
Nov. 2020, pp. 1–9.

[76] G. Chen, W. Chen, Y. Ma, H. Yang, and B. Yu, “DAMO: Deep agile
mask optimization for full chip scale,” in Proc. Int. Conf. Comput.-
Aided Design (ICCAD), Nov. 2020, pp. 1–9.

[77] Y. Watanabe, T. Kimura, T. Matsunawa, and S. Nojima, “Accurate
lithography simulation model based on convolutional neural networks,”
in Proc. Soc. Photo-Opt. Instrum. Eng. (SPIE) Conf., 2017,
Art. no. 10454.

[78] Synopsys Sentaurus Lithography. [Online]. Available: https://
www.synopsys.com/silicon/mask-synthesis/sentauruslithography.html
(Accessed: Jul. 26, 2021).

[79] W. Ye, M. B. Alawieh, Y. Lin, and D. Z. Pan, “LithoGAN: End-to-end
lithography modeling with generative adversarial networks,” in Proc.
ACM Design Autom. Conf. (DAC), 2019, pp. 1–6.

[80] W. Ye, M. B. Alawieh, Y. Watanabe, S. Nojima, Y. Lin, and D. Z. Pan,
“TEMPO: Fast mask topography effect modeling with deep learning,”
in Proc. Int. Symp. Phys. Design (ISPD), Taipei, Taiwan, Sep. 2020,
pp. 127–134.

[81] Y. Lin et al., “Data efficient lithography modeling with transfer learning
and active data selection,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 38, no. 10, pp. 1900–1913, Oct. 2019.

[82] M. Shin and J.-H. Lee, “Accurate lithography hotspot detection
using deep convolutional neural networks,” J. Micro/Nanolithography,
vol. 15, no. 4, 2016, Art. no. 043507.

[83] H. Yang, L. Luo, J. Su, C. Lin, and B. Yu, “Imbalance
aware lithography hotspot detection: A deep learning approach,” J.
Micro/Nanolithography, vol. 16, no. 3, 2017, Art. no. 1014807.

[84] H. Yang, J. Su, Y. Zou, Y. Ma, B. Yu, and E. F. Y. Young, “Layout
hotspot detection with feature tensor generation and deep biased learn-
ing,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 38,
no. 6, pp. 1175–1187, Jun. 2019.

[85] H. Yang, Y. Lin, B. Yu, and E. F. Young, “Lithography hotspot detec-
tion: From shallow to deep learning,” in Proc. IEEE Syst. Chip Conf.
(SOCC), 2017, pp. 233–238.

[86] J. Chen et al., “Lithography hotspot detection using a double inception
module architecture,” J. Micro/Nanolithography, vol. 18, no. 1, 2019,
Art. no. 013507.

[87] Y. Jiang, F. Yang, B. Yu, D. Zhou, and X. Zeng, “Efficient layout
hotspot detection via binarized residual neural network ensemble,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 40, no. 7,
pp. 1476–1488, Jul. 2021.

[88] H. Zhang, B. Yu, and E. F. Young, “Enabling online learning
in lithography hotspot detection with information-theoretic feature
optimization,” in Proc. Int. Conf. Comput.-Aided Design (ICCAD),
2016, pp. 1–8.

[89] W. Ye, M. B. Alawieh, M. Li, Y. Lin, and D. Z. Pan, “Litho-GPA:
Gaussian process assurance for lithography hotspot detection,” in Proc.
Design Autom. Test Europe Conf. Exhibit. (DATE), Florence, Italy,
Mar. 2019, pp. 54–59.

[90] H. Yang, S. Li, C. Tabery, B. Lin, and B. Yu, “Bridging the gap between
layout pattern sampling and hotspot detection via batch active learning,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 40, no. 7,
pp. 1464–1475, Jul. 2021.

[91] Y. Chen, Y. Lin, T. Gai, Y. Su, Y. Wei, and D. Z. Pan, “Semi-
supervised hotspot detection with self-paced multi-task learning,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39, no. 7,
pp. 1511–1523, Jul. 2020.

[92] R. Chen et al., “Faster region-based hotspot detection,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., early access, Sep. 3, 2020,
doi: 10.1109/TCAD.2020.3021663.

[93] A. Ciccazzo, G. Di Pillo, and V. Latorre, “A SVM surro-
gate model-based method for parametric yield optimization,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 35, no. 7,
pp. 1224–1228, Jul. 2016.

[94] K. Nakata, R. Orihara, Y. Mizuoka, and K. Takagi, “A comprehensive
big-data-based monitoring system for yield enhancement in semicon-
ductor manufacturing,” IEEE Trans. Semicond. Manuf., vol. 30, no. 4,
pp. 339–344, Nov. 2017.

[95] M. B. Alawieh, F. Wang, and X. Li, “Identifying wafer-level systematic
failure patterns via unsupervised learning,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 37, no. 4, pp. 832–844, Apr. 2018.

[96] Z. Gao, J. Tao, Y. Su, D. Zhou, X. Zeng, and X. Li, “Efficient rare fail-
ure analysis over multiple corners via correlated Bayesian inference,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39,
no. 10, pp. 2029–2041, Oct. 2020.

[97] M. B. Alawieh, D. Boning, and D. Z. Pan, “Wafer map defect pat-
terns classification using deep selective learning,” in Proc. IEEE Design
Autom. Conf. (DAC), 2020, pp. 1–6.

[98] W. Chen, S. Ray, J. Bhadra, M. Abadir, and L.-C. Wang, “Challenges
and trends in modern SoC design verification,” IEEE Des. Test, vol. 34,
no. 5, pp. 7–22, Oct. 2017.

[99] S. Li and B. Jacob, “Statistical DRAM modeling,” in Proc. Int. Symp.
Memory Syst. (MEMSYS), 2019, pp. 521–530.

[100] D. Lee and A. Gerstlauer, “Learning-based, fine-grain power modeling
of system-level hardware IPs,” ACM Trans. Design Autom. Electron.
Syst., vol. 23, no. 3, pp. 1–25, 2018.

[101] W. Chen, K.-K. Hsieh, L.-C. Wang, and J. Bhadra, “Data-driven test
plan augmentation for platform verification,” IEEE Des. Test, vol. 34,
no. 5, pp. 23–29, Oct. 2017.

[102] Y. Ma et al., “High performance graph convolutional networks with
applications in testability analysis,” in Proc. Annu. Design Autom.
Conf., 2019, pp. 1–18.

[103] D. Kim, P. Kang, S. Cho, H.-J. Lee, and S. Doh, “Machine learning-
based novelty detection for faulty wafer detection in semiconductor
manufacturing,” Exp. Syst. Appl., vol. 39, no. 4, pp. 4075–4083, 2012.

[104] A. DeOrio, Q. Li, M. Burgess, and V. Bertacco, “Machine learn-
ingbased anomaly detection for post-silicon bug diagnosis,” in Proc.
Design Autom. Test Europe (DATE), 2013, pp. 491–496.

[105] H. Hu, P. Li, and J. Z. Huang, “Parallelizable Bayesian optimization for
analog and mixed-signal rare failure detection with high coverage,” in
Proc. IEEE Int. Conf. Comput.-Aided Design (ICCAD), 2018, pp. 1–8.

[106] P. B. L. Meijer, Neural Network Applications in Device and Subcircuit
Modelling for Circuit Simulation, Philips Electron., Amsterdam,
The Netherlands, 1996.

[107] Z. Zhang et al., “New-generation design-technology co-optimization
(DTCO): Machine-learning assisted modeling framework,” in 2019
Silicon Nanoelectronics Workshop (SNW 2019). Red Hook, NY, USA:
Curran Assoc., Inc., Jun. 2019, pp. 1–2.

[108] K. Lamamra and S. Berrah, “Modeling of MOSFET transistor by MLP
neural networks,” in Recent Advances in Electrical Engineering and
Control Applications, M. Chadli, S. Bououden, and I. Zelinka, Eds.
Cham, Switzerland: Springer Int., 2017, pp. 407–415.

[109] L. Zhang and M. Chan, “Artificial neural network design for compact
modeling of generic transistors,” J. Comput. Electron., vol. 16, no. 3,
pp. 825–832, Sep. 2017.

[110] M. Li, O. ßIrsoy, C. Cardie, and H. G. Xing, “Physics-inspired neu-
ral networks for efficient device compact modeling,” IEEE J. Explor.
Solid-State Computat. Devices Circuits, vol. 2, pp. 44–49, 2016.

[111] F. Klemme, J. Prinz, V. M. van Santen, J. Henkel, and H. Amrouch,
“Modeling emerging technologies using machine learning: Challenges
and opportunities,” in Proc. Int. Conf. Comput.-Aided Design (ICCAD),
2020, pp. 1–9.

[112] F. Klemme, Y. Chauhan, J. Henkel, and H. Amrouch, “Cell library
characterization using machine learning for design technology co-
optimization,” in Proc. IEEE Int. Conf. Comput.-Aided Design
(ICCAD), 2020, pp. 1–9.

http://dx.doi.org/10.1109/TCAD.2020.3021663

3180 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 10, OCTOBER 2022

[113] T. Ebi, D. Kramer, W. Karl, and J. Henkel, “Economic learning for
thermal-aware power budgeting in many-core architectures,” in Proc.
ACM Conf. Hardw. Softw. Codesign Syst. Synth. (CODES), 2011,
pp. 189–196.

[114] H. Shen, Y. Tan, J. Lu, Q. Wu, and Q. Qiu, “Achieving autonomous
power management using reinforcement learning,” ACM Trans. Design
Autom. Electron. Syst., vol. 18, no. 2, pp. 1–32, 2013.

[115] R. A. Shafik, S. Yang, A. Das, L. A. Maeda-Nunez, G. V. Merrett,
and B. M. Al-Hashimi, “Learning transfer-based adaptive energy
minimization in embedded systems,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 35, no. 6, pp. 877–890, Jun. 2016.

[116] T. Kim, Z. Sun, H.-B. Chen, H. Wang, and S. X.-D. Tan, “Energy
and lifetime optimizations for dark silicon manycore microprocessor
considering both hard and soft errors,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 25, no. 9, pp. 2561–2574, Sep. 2017.

[117] S. M. P. Dinakarrao, A. Joseph, A. Haridass, M. Shafique, J. Henkel,
and H. Homayoun, “Application and thermal-reliability-aware rein-
forcement learning based multi-core power management,” J. Emerg.
Technol. Comput. Syst., vol. 15, no. 4, pp. 1–19, 2019.

[118] U. Gupta, S. K. Mandal, M. Mao, C. Chakrabarti, and U. Y. Ogras, “A
deep Q-learning approach for dynamic management of heterogeneous
processors,” Comput. Architect. Lett., vol. 18, no. 1, pp. 14–17, 2019.

[119] Z. Chen and D. Marculescu, “Distributed reinforcement learning
for power limited many-core system performance optimization,” in
Proc. Design Autom. Test Europe Conf. Exhibit. (DATE), 2015,
pp. 1521–1526.

[120] H. Li, Z. Tian, R. K. Maeda, X. Chen, J. Feng, and J. Xu, “Co-manage
power delivery and consumption for manycore systems using rein-
forcement learning,” in Proc. ACM Int. Conf. Comput.-Aided Design
(ICCAD), 2018, pp. 1–8.

[121] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource man-
agement with deep reinforcement learning,” in Proc. ACM Workshop
Hot Topics Netw. (HotNets), 2016, pp. 50–56.

[122] F. M. M. ul Islam and M. Lin, “Hybrid DVFS scheduling for real-
time systems based on reinforcement learning,” Syst. J., vol. 11, no. 2,
pp. 931–940, 2015.

[123] J.-G. Park, N. Dutt, and S.-S. Lim, “ML-Gov: A machine learning
enhanced integrated CPU-GPU DVFS governor for mobile gaming,” in
Proc. ACM Symp. Embedded Syst. Real Time Multimedia (ESTImedia),
2017, pp. 12–21.

[124] S. K. Mandal, G. Bhat, C. A. Patil, J. R. Doppa, P. P. Pande, and
U. Y. Ogras, “Dynamic resource management of heterogeneous mobile
platforms via imitation learning,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 27, no. 12, pp. 2842–2854, Dec. 2019.

[125] R. G. Kim et al., “Imitation learning for dynamic VFI control in large-
scale manycore systems,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 25, no. 9, pp. 2458–2471, Sep. 2017.

[126] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in Proc. Int.
Conf. Artif. Intell. Stat. (AISTATS), 2011, pp. 627–635.

[127] M. Rapp, H. Amrouch, M. C. Wolf, and J. Henkel, “Machine learn-
ing techniques to support many-core resource management: Challenges
and opportunities,” in Proc. ACM/IEEE Workshop Mach. Learn. CAD
(MLCAD), 2019, pp. 1–9.

[128] D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and
D. Mané, “Concrete problems in AI safety,” 2016, arXiv:1606.06565.

[129] W. L. Bircher, M. Valluri, J. Law, and L. K. John, “Runtime identifi-
cation of microprocessor energy saving opportunities,” in Proc. IEEE
Int. Symp. Low Power Electron. Design (ISLPED), 2005, pp. 275–280.

[130] M. Sagi, N. A. V. Doan, M. Rapp, T. Wild, J. Henkel, and
A. Herkersdorf, “A lightweight nonlinear methodology to accurately
model multicore processor power,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 39, no. 11, pp. 3152–3164, Nov. 2020.

[131] S. Sadiqbatcha, H. Zhao, H. Amrouch, J. Henkel, and S. X.-D. Tan,
“Hot spot identification and system parameterized thermal modeling
for multi-core processors through infrared thermal imaging,” in Proc.
IEEE Design Autom. Test Europe (DATE), 2019, pp. 48–53.

[132] D. Kim, J. Zhao, J. Bachrach, and K. Asanović, “SIMMANI: Runtime
power modeling for arbitrary RTL with automatic signal selection,” in
Proc. Int. Symp. Microarchit. (MICRO), 2019, pp. 1050–1062.

[133] M. Rapp, M. B. Sikal, H. Khdr, and J. Henkel, “SmartBoost:
Lightweight ML-driven boosting for thermally-constrained many-core
processors,” in Proc. Design Autom. Conf. (DAC), 2021, pp. 1–9.

[134] M. Rapp, A. Pathania, T. Mitra, and J. Henkel, “Neural network-based
performance prediction for task migration on S-NUCA many-cores,”
IEEE Trans. Comput., vol. 70, no. 10, pp. 1691–1704, Oct. 2021.

[135] U. Gupta, M. Babu, R. Ayoub, M. Kishinevsky, F. Paterna, and
U. Y. Ogras, “STAFF: Online learning with stabilized adaptive for-
getting factor and feature selection algorithm,” in Proc. IEEE Design
Autom. Conf. (DAC), 2018, pp. 1–6.

[136] Y. Kim, P. Mercati, A. More, E. Shriver, and T. Rosing, “P4: Phase-
based power/performance prediction of heterogeneous systems via
neural networks,” in Proc. IEEE Int. Conf. Comput.-Aided Design
(ICCAD), 2017, pp. 683–690.

[137] K. Zhang et al., “Machine learning-based temperature prediction for
runtime thermal management across system components,” IEEE Trans.
Parallel Distrib. Syst., vol. 29, no. 2, pp. 405–419, Feb. 2018.

[138] J. M. N. Abad and A. Soleimani, “Novel feature selection algorithm
for thermal prediction model,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 26, no. 10, pp. 1831–1844, Oct. 2018.

[139] M. Sagi et al., “Long short-term memory neural network-based power
forecasting of multi-core processors,” in Proc. Design Autom. Test
Europe Conf. Exhibit. (DATE), 2021, pp. 1685–1690.

[140] L. Li et al., “MADS: A framework for design and implementation
of adaptive digital predistortion systems,” IEEE J. Emerg. Sel. Topics
Circuits Syst., vol. 9, no. 4, pp. 712–722, Dec. 2019.

[141] A. Jonsson and A. Barto, “Causal graph based decomposition of fac-
tored MDPs,” J. Mach. Learn. Res., vol. 7, pp. 2259–2301, Dec. 2006.

[142] A. Bhuiyan, F. Reghenzani, W. Fornaciari, and Z. Guo, “Optimizing
energy in non-preemptive mixed-criticality scheduling by exploiting
probabilistic information,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 39, no. 11, pp. 3906–3917, Nov. 2020.

[143] Y. Bengio, A. Lodi, and A. Prouvost, “Machine learning for combina-
torial optimization: A methodological tour D’Horizon,” Eur. J. Oper.
Res., vol. 290, no. 2, pp. 405–421, 2021.

[144] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” in Proc.
Neural Inf. Process. Syst. (NeurIPS), 2015, pp. 2692–2700.

[145] A. Vaswani et al., “Attention is all you need,” in Proc. Neural Inf.
Process. Syst. (NeurIPS), 2017, pp. 5998–6008.

[146] P. Emami and S. Ranka, “Learning permutations with Sinkhorn policy
gradient,” 2018, arXiv:1805.07010.

[147] J. Hayes, L. Melis, G. Danezis, and E. De Cristofaro, “LOGAN:
Membership inference attacks against generative models,” Proc.
Privacy Enhanc. Technol., vol. 2019, no. 1, pp. 133–152, 2019.

[148] T.-B. Chan, A. B. Kahng, and M. Woo, “Revisiting inherent noise floors
for interconnect prediction,” in Proc. Workshop Syst. Level Interconnect
Probl. Pathfinding Workshop (SLIP), 2020, pp. 1–7.

[149] G. R. Reddy, K. Madkour, and Y. Makris, “Machine learning-based
hotspot detection: Fallacies, pitfalls and marching orders,” in Proc.
IEEE Int. Conf. Comput.-Aided Design (ICCAD), 2019, pp. 1–8.

[150] J. A. Torres, “ICCAD-2012 CAD contest in fuzzy pattern matching for
physical verification and benchmark suite,” in Proc. IEEE Int. Conf.
Comput.-Aided Design (ICCAD), 2012, pp. 349–350.

[151] H. B. McMahan et al., “Communication-efficient learning of deep
networks from decentralized data,” in Proc. Int. Conf. Artif. Intell. Stat.
(AISTATS), 2017, pp. 1273–1282.

[152] J. R. Doppa, J. Rosca, and P. Bogdan, “Autonomous design space
exploration of computing systems for sustainability: Opportunities and
challenges,” IEEE Des. Test, vol. 36, no. 5, pp. 35–43, Oct. 2019.

[153] K. Liu et al., “Are adversarial perturbations a showstopper for
ML-based CAD? A case study on CNN-based lithographic hotspot
detection,” 2019, arXiv:1906.10773.

[154] T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg, “BadNets: Evaluating
backdooring attacks on deep neural networks,” IEEE Access, vol. 7,
pp. 47230–47244, 2019.

Martin Rapp (Graduate Student Member, IEEE)
received the B.Sc. and M.Sc. degrees (with
Distinction) in computer science from the Karlsruhe
Institute of Technology, Karlsruhe, Germany, in
2014 and 2016, respectively, where he is currently
pursuing the Ph.D. degree under the supervision of
Dr. J. Henkel.

His current research focuses on resource-
constrained machine learning: ML-based runtime
resource management for many-core architectures
and distributed resource-aware on-device training of
neural networks.

RAPP et al.: MLCAD: A SURVEY OF RESEARCH IN ML 3181

Hussam Amrouch (Member, IEEE) received the
Ph.D. degree (with Distinction, summa cum laude)
from the Karlsruhe Institute of Technology (KIT),
Karlsruhe, Germany, in 2015.

He is a Junior Professor heading the Chair
of Semiconductor Test and Reliability, Computer
Science, Electrical Engineering Faculty, University
of Stuttgart, Stuttgart, Germany, as well as a
Research Group Leader with KIT. He has over 140
publications (including 55 journals) in multidisci-
plinary research areas across the entire computing

stack, starting from semiconductor physics to circuit design all the way up to
computer-aided design and computer architecture. His main research interests
are design for reliability and testing from device physics to systems, machine
learning, security, approximate computing, and emerging technologies with a
special focus on ferroelectric devices.

Dr. Amrouch holds eight HiPEAC Paper Awards and four best paper nomi-
nations at top EDA conferences: DAC’16, DAC’17, DATE’17, and EDTM’21
for his work on reliability. He currently serves as an Associate Editor for
Integration, the VLSI Journal. He has served in the technical program commit-
tees of many major EDA conferences, such as DAC, ASP-DAC, and ICCAD,
and as a Reviewer in many top journals, such as IEEE TRANSACTIONS

ON ELECTRON DEVICES, IEEE TRANSACTIONS ON CIRCUITS AND

SYSTEMS—PART I: REGULAR PAPERS, IEEE TRANSACTIONS ON VERY

LARGE SCALE INTEGRATION (VLSI) SYSTEMS, IEEE TRANSACTIONS ON

COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, and
IEEE TRANSACTIONS ON COMPUTERS.

Yibo Lin (Member, IEEE) received the B.S. degree
in microelectronics from Shanghai Jiaotong
University, Shanghai, China, in 2013, and the
Ph.D. degree from the Electrical and Computer
Engineering Department, University of Texas at
Austin, Austin, TX, USA, in 2018.

He is currently an Assistant Professor with the
Computer Science Department associated with
the Center for Energy-Efficient Computing and
Applications, Peking University, Beijing, China. His
research interests include physical design, machine

learning applications, GPU acceleration, and hardware security.
Dr. Lin has received five Best Paper Awards at premier venues (TCAD

2021, ISPD 2020, DAC 2019, VLSI Integration 2018, and SPIE 2016).
He has also served in the Technical Program Committees of many major
conferences, including ICCAD, ICCD, ISPD, and DAC.

Bei Yu (Member, IEEE) received the Ph.D. degree
from The University of Texas at Austin, Austin, TX,
USA, in 2014.

He is currently an Associate Professor with the
Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Hong Kong.

Dr. Yu received seven Best Paper Awards from
ASPDAC 2021, ICTAI 2019, Integration, the VLSI
Journal in 2018, ISPD 2017, SPIE Advanced
Lithography Conference 2016, ICCAD 2013, and
ASPDAC 2012, and six ICCAD/ISPD Contest

Awards. He has served as the TPC Chair of ACM/IEEE Workshop on Machine
Learning for CAD, and in many journal editorial boards and conference
committees. He is an Editor of IEEE TCCPS Newsletter.

David Z. Pan (Fellow, IEEE) received the B.S.
degree from Peking University, Beijing, China,
in 1992, and the M.S. and Ph.D. degrees from
the University of California at Los Angeles,
Los Angeles, CA, USA, in 1994, 1998, and 2000,
respectively.

From 2000 to 2003, he was a Research Staff
Member with IBM T. J. Watson Research Center,
Yorktown Heights, NY, USA. He is currently the
Silicon Labs Endowed Chair Professor with the
Department of Electrical and Computer Engineering,

The University of Texas at Austin, Austin, TX, USA. He has published over
420 journal articles and refereed conference papers, and is the holder of eight
U.S. patents. His research interests include bidirectional AI and IC interac-
tions, electronic design automation, design for manufacturing, and CAD for
analog/mixed-signal ICs and emerging technologies.

Dr. Pan has received a number of awards, including the SRC Technical
Excellence Award in 2013, the DAC Top 10 Author in Fifth Decade, the
DAC Prolific Author Award, the ASP-DAC Frequently Cited Author Award,
20 Best Paper Awards (TCAD 2021, ISPD 2020, ASPDAC 2020, DAC 2019,
GLSVLSI 2018, VLSI Integration 2018, HOST 2017, SPIE 2016, ISPD 2014,
ICCAD 2013, ASPDAC 2012, ISPD 2011, IBM Research 2010 Pat Goldberg
Memorial Best Paper Award, ASPDAC 2010, DATE 2009, ICICDT 2009, and
SRC Techcon in 1998, 2007, 2012, and 2015) and 18 additional Best Paper
Award nominations, Communications of the ACM Research Highlights in
2014, the UT Austin RAISE Faculty Excellence Award in 2014, the Cadence
Academic Collaboration Award in 2019, and many international CAD con-
test awards, among others. He has served in many journal editorial boards
and conference committees, including various leadership roles, such as the
ICCAD 2019 General Chair, ASP-DAC 2017 TPC Chair, and ISPD 2008
General Chair. He is a Fellow of SPIE.

Marylin Wolf (Fellow, IEEE) received the B.S.,
M.S., and Ph.D. degrees in electrical engineering
from Stanford University, Stanford, CA, USA, in
1980, 1981, and 1984, respectively.

She is Elmer E. Koch Professor of Engineering
and Chair of the Department of Computer Science
and Engineering, University of Nebraska–Lincoln,
Lincoln, NE, USA. She was with AT&T Bell
Laboratories, Atlanta, GA, USA, from 1984 to 1989.
She was with the Faculty of Princeton University,
Princeton, NJ, USA, from 1989 to 2007 and was a

Farmer Distinguished Chair with Georgia Tech, Atlanta, from 2007 to 2019.
Her research interests include cyber–physical systems, embedded computing,
embedded video and computer vision, and VLSI systems.

Dr. Wolf has received the IEEE Computer Society Goode Memorial Award,
the ASEE Terman Award, and the IEEE Circuits and Systems Society
Education Award. She is a Fellow of ACM and an IEEE Computer Society
Golden Core Member.

Jörg Henkel (Fellow, IEEE) received the Diploma
and Ph.D. degrees (summa cum laude) from
the Technical University of Braunschweig,
Braunschweig, Germany.

He was a Research Staff Member with NEC
Laboratories, Princeton, NJ, USA. He is the Chair
Professor of Embedded Systems with the Karlsruhe
Institute of Technology, Karlsruhe, Germany.
His research work is focused on co-design for
embedded hardware/software systems with respect
to power, thermal, and reliability aspects.

Dr. Henkel has received six Best Paper Awards throughout his career from,
among others, ICCAD, ESWeek, and DATE. For two consecutive terms,
he served as the Editor-in-Chief for the ACM Transactions on Embedded
Computing Systems. He is currently the Editor-in-Chief of the IEEE
DESIGN&TEST. He is/has been an Associate Editor for major ACM and
IEEE journals. He has led several conferences as a General Chair, including
ICCAD and ESWeek, and serves as a Steering Committee Chair/Member for
leading conferences and journals for embedded and cyber–physical systems.
He coordinates the DFG Program SPP 1500 “Dependable Embedded
Systems” and is a Site Coordinator of the DFG TR89 collaborative research
center on “Invasive Computing.” He is the Chairman of the IEEE Computer
Society, Germany Chapter.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

