
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 8, AUGUST 2022 2657

High-Speed Adder Design Space Exploration
via Graph Neural Processes

Hao Geng , Student Member, IEEE, Yuzhe Ma , Member, IEEE, Qi Xu , Member, IEEE,
Jin Miao, Subhendu Roy , Member, IEEE, and Bei Yu , Member, IEEE

Abstract—Adders are the primary components in the data-
path logic of a microprocessor, and thus, adder design has been
always a critical issue in the very large-scale integration (VLSI)
industry. However, it is infeasible for designers to obtain optimal
adder architecture by exhaustively running EDA flow due to the
extremely large design space. Previous arts have proposed the
machine learning-based framework to explore the design space.
Nevertheless, they fall into suboptimality due to a two-stage flow
of the learning process and less efficient nor effective feature
representations of prefix adder structures. In this article, we
first integrate a variational graph autoencoder and a neural pro-
cess (NP) into an end-to-end, multibranch framework, which is
termed the graph neural process. The former performs automatic
feature learning of prefix adder structures, whilst the latter one
is designed as an alternative to the Gaussian process. Then, we
propose a sequential optimization framework with the graph NP
as the surrogate model to explore the Pareto-optimal prefix adder
structures with tradeoff among Quality-of-Result (QoR) metrics,
such as power, area, and delay. The experimental results show
that compared with state-of-the-art methodologies, our frame-
work can achieve a much better Pareto frontier in multiple QoR
metric spaces with fewer design-flow evaluations.

Index Terms—Design space exploration, graph autoencoder,
graph neural process, high speed adder, neural process, sequen-
tial model-based optimization.

I. INTRODUCTION

VERY large-scale integration (VLSI) design methodolo-
gies have developed for about 50 years, from manually-

crafted design to computer-aided design (CAD) with increas-
ingly higher levels of design specifications. Unfortunately,
with the aggressive and amazing scaling down of semi-
conductor technology nodes, design complexity increases
dramatically. As a result, efficient design space exploration
(DSE) [1]–[12] has emerged as a promising solution due to

Manuscript received 18 February 2021; revised 18 June 2021; accepted
30 August 2021. Date of publication 21 September 2021; date of cur-
rent version 19 July 2022. This work was supported in part by the
HiSilicon Technologies Company, ACCESS–AI Chip Center for Emerging
Smart Systems, Hong Kong SAR, and in part by The Research Grants
Council of Hong Kong SAR under Grant CUHK14209420. This article
was recommended by Associate Editor L. C. Wang. (Corresponding author:
Bei Yu.)

Hao Geng, Yuzhe Ma, and Bei Yu are with the Department of Computer
Science and Engineering, The Chinese University of Hong Kong, Hong Kong,
SAR (e-mail: byu@cse.cuhk.edu.hk).

Qi Xu is with the School of Microelectronics, University of Science and
Technology of China, Hefei 230052, China.

Jin Miao is with Google, Mountain View, CA 94043 USA.
Subhendu Roy is with the Design and Sign-Off Group-Machine Learning

Group, Cadence Design Systems, San Jose, CA 95134 USA.
Digital Object Identifier 10.1109/TCAD.2021.3114262

the exponentially increasing size of design space of micropro-
cessors and the consequent time-consuming synthesis runs.

Quintessential DSE optimizes a single objective when other
objectives are considered as constraints. But, for the VLSI
design, exploration in multiple Quality-of-Result (QoR) met-
rics space, such as performance, power, and area, is required,
which naturally involves a tradeoff. In this case, multiobjective
DSE seeks optimal solutions [3], [6], which tradeoff multiple
objectives rather than finding one single optimal point. In other
words, without any further information, none of these Pareto-
optimal points can be regarded as being better than the others
in all the objectives simultaneously. Nevertheless, obtaining a
set of Pareto-optimal points with an acceptable cost is a big
challenge. One main reason is that the objective functions are
often unknown, and can only be determined through a pointwise
evaluation, which is expensive and necessitates large computa-
tional and time resources. Existing EDA design flow, including
synthesis tool and physical design tool, can only return one
implementation per call and even worse, the implementation is
not guaranteed to be in a Pareto set. Therefore, it is not difficult
to imagine that searching for the Pareto-optimal set is time
consuming since massive evaluations are required. In summary,
the goal of multiobjective DSE is to find a set of Pareto-optimal
points in as few evaluations of the multiple objective functions
as possible so that the total expense is minimized.

In the VLSI domain, DSE is widely exploited but not lim-
ited to handling analog circuit synthesis [5], [9], FPGA CAD
flow [4], FPGA HLS directives design optimization [10], DNN
hardware deployment [11], processor architecture design [12],
and adder design [3], [6]. To search for Pareto-optimal solu-
tions as efficiently and effectively as possible, most of them
are based on machine learning techniques. Although the above
DSE technologies have achieved great success in different
scenarios, most of them utilize the Gaussian process (GP),
which has a high computational complexity as the regressor
for performance estimation.

In this article, we focus on DSE techniques for the adder
design. The adder design is one of the fundamental prob-
lems in VLSI, where designing carry-propagation units plays
the most critical role. Although the unit can be implemented
by enormous parallel prefix structures, real synthesis and
physical design running are still needed. Regular adder struc-
tures proposed in [13] and [14] and some recently developed
works [15], [16], which try to generate a single prefix adder
network under a set of structural constraints, cannot cover
a large design space yet. By incorporating two pruning

1937-4151 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 19,2022 at 00:24:30 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0943-7714
https://orcid.org/0000-0002-3612-4182
https://orcid.org/0000-0002-0375-9800
https://orcid.org/0000-0001-8554-563X
https://orcid.org/0000-0001-6406-4810

2658 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 8, AUGUST 2022

Fig. 1. High-speed adder DSE overview. The objective spaces include
area versus delay space, power versus delay space, and area versus power
versus delay space.

techniques in the prior, Ma et al. [6] proposed a state-
of-the-art algorithm to generate the prefix graph structures,
and exploited an active learning-based optimization model to
explore Pareto-optimal adder designs.

Nevertheless, there exist two main issues in [6]. One is
that [6] exploits the two-stage framework where the feature
extractor for prefix adders and subsequent machine learning
models is separated. Namely, the feature extraction process
lacks guided information from the learning models. The other
is feature representations are still manually crafted based on
domain knowledge, which would be likely to lose useful latent
information. More specifically, the manually crafted attributes,
such as sum-path-fan-out and maximum-fan-out, are calcu-
lated to characterize the prefix adder structures. However,
these attributes only partially represent the prefix adder struc-
ture. Therefore, even with a lot of hand-engineered efforts,
information loss is still inevitable. We argue that learning rep-
resentations of prefix adder networks plays a critical role in
our framework because they enable many downstream learn-
ing tasks, and a unified feature learning and model training
paradigm could boost the DSE process.

In this article, we propose an end-to-end deep learning
model, graph neural process (GNP), which outputs predictions
and uncertainties based on the feature representations auto-
matically learned from adder structures. With GNP as the
surrogate model, in this article, we harness a sequential
optimization algorithm [17], [18] to perform DSE in the physi-
cal solution space. The visualization of adder DSE is displayed
in Fig. 1. Our main contributions are summarized as follows.

1) A variational graph autoencoder (VGAE) is built to
extract features from prefix adder structures automati-
cally.

2) A neural process (NP) is exploited as an alternative to
the GP to reduce computational complexity.

3) A multibranch, end-to-end surrogate model (i.e., GNP),
which incorporates a VGAE and a NP, is proposed.

4) A GNP-based sequential optimization algorithm to
explore Pareto-optimal solutions is investigated.

5) The proposed optimization framework with the
developed surrogate model uses less labeled data and
achieves better Pareto frontiers.

The remainder of this article is organized as follows.
Section II introduces some prior knowledge about prefix
adder synthesis, multiobjective optimization, and then gives
the problem formulation. Section III proposes our graph neural
process, while Section IV discusses the sequential optimization

Fig. 2. 6-bit prefix computation process.

framework for design space exploration. Section V presents
the experimental results, followed by the conclusion in
Section VI.

II. PRELIMINARIES

In this section, the backgrounds of the prefix adder synthesis
and multiobjective optimization are offered, and then we give
the problem formulation.

A. Prefix Adder Network

An l bit binary adder eats two l bit inputs A = {al−1..a1, a0}
and B = {bl−1..b1, b0}, and outputs the sum S = {sl−1..s1, s0}
with a carry out Cout = cl−1, where si = ai ⊕ bi ⊕ ci−1
and ci = aibi + aici−1 + bici−1. According to the recent study
in [19], given the bitwise generation function and propagate
function, l-bit binary addition can be represented as a prefix
computation process. We visualize the computation process
in Fig. 2. It can be seen that the process consists of three main
steps. The first one is preprocessing where inputs for prefix
processing (i.e., g and p) are generated bitwisely. The second
is prefix processing, which is the main carry-propagation step,
and the last is postprocessing or carry-out generation.

The prefix processing or carry propagation network can be
mapped to a prefix graph problem by taking the outputs of the
preprocessing part as inputs and generates cout. Each gray node
in Fig. 2 is called a prefix node, which represents a certain
logic operation. The logic operation of each prefix node in
any prefix adder graph is the same except for the different
inputs. In the prefix processing part showed in Fig. 2, we first
extend g and p to multiple bits and define G[i:j], P[i:j] (i ≥ j) as

P[i:j] =
{

pi, if i = j
P[i:k] · P[k−1:j], otherwise

(1)

G[i:j] =
{

gi, if i = j
G[i:k] + P[i:k] · G[k−1:j], otherwise.

(2)

The associative logic operation ◦ (i.e., any gray node in Fig. 2)
is defined for (G, P) as

(G, P)[i:j] = (G, P)[i:k] ◦ (G, P)[k−1:j]

= (
G[i:k] + P[i:k] · G[k−1:j], P[i:k] · P[k−1:j]

)
. (3)

Especially, we use ci to indicate the logic operation whose
output involves in the si computation.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 19,2022 at 00:24:30 UTC from IEEE Xplore. Restrictions apply.

GENG et al.: HIGH-SPEED ADDER DSE VIA GNP 2659

Fig. 3. Example of hypervolume in a biobjective space.

B. Multiobjective Optimization

Assume a multiobjective optimization problem has a set
of feasible solutions X. There are n objective functions,
f1(·), f2(·), . . . , fn(·), which map an input x to corresponding
results f1(x), f2(x), . . . , fn(x) and form an n-d result vector
f (x). A result vector f (u) is said to dominate another result
vector f (v) if f (u) is at least as good as f (v) in all the objec-
tives, namely, fi(u) ≥ fi(v) ∀i ∈ [1, n] if the objectives are to
be maximized, and fi(u) ≤ fi(v) ∀i ∈ [1, n] if the objectives
are to be minimized. Hence, we say that a solution x is Pareto-
optimal if it is not dominated by other solutions in the feasible
solution set X. Some prior arts [17], [18] in the machine learn-
ing field are proposed to handle the practical multiobjective
problems where the evaluation of the multiobjective functions
is expensive.

In our context for high-speed adder design, a feasible
solution x is the feature representation of an adder design
implementation, which satisfies the predetermined constraints,
while a Pareto-optimal design is where none of the QoR met-
rics (or objectives), such as area, power, and delay, can be
minimized without worsening at least one of the others. The
Pareto set is the set consisting of all the Pareto-optimal solu-
tions, and the Pareto frontier contains objective space values
(i.e., the values of QoR metrics) associated with the Pareto
set.

C. Problem Formulation

Definition 1 (Hypervolume [20]): The metric hypervolume
is a Pareto-compliant evaluation, which refers to the volume
fenced by the Pareto frontier and a reference point in the objec-
tive space. It measures how well distributed the points are on
the Pareto frontier approximation.

In Fig. 3, the area filled with dash lines is an example of the
hypervolume of a predicted Pareto-optimal set in a biobjective
space. The hypervolume error for a predicted Pareto-optimal
set P̂ is defined

η =
V(P) − V

(
P̂
)

V(P)
(4)

where P is the golden Pareto-optimal set, and V(P) is the
ground truth of hypervolume. If a solution set P′ is better
than another set P′′, V(P′) is greater than V(P′′). It can be
observed that a prediction P̂, which contains the whole design
space, has an error of 0.

Definition 2 (Average Distance From Reference Set
(ADRS) [21]): Given a reference Pareto-optimal set

A = {a1, a2, . . . |a = (m1
a, m2

a, . . . , mn
a)} and

an approximated Pareto-optimal set P = {p1, p2, . . .

|p = (m1
p, m2

p, . . . , mn
p)} in n-objective DSE problem

ADRS(A,P) = 1

(|A|)
∑
a∈A

min
p∈P

δ(a, p) (5)

where

δ(a, p) = max

{∣∣∣∣∣
m1

p − m1
a

m1
a

∣∣∣∣∣, . . . ,
∣∣∣∣∣
mn

p − mn
a

mn
a

∣∣∣∣∣
}

.

ADRS is used to quantify how close a set of nondominated
points is from the Pareto frontier in the objective space. The
smaller ADRS value is, the closer the approximate set P is to
the reference set A.

With the aforementioned knowledge, our problem can be
formulated.

Problem 1 (Adder Design Space Exploration): Given a col-
lection of prefix adder networks, the aim of adder DSE is
to search for the Pareto-optimal adder designs with tradeoff
among multiple objectives, such as power, area, and delay over
a wide design space.

III. ADDER FEATURE EXTRACTION AND REGRESSION

In traditional machine learning techniques, most of the
features are manually crafted and based on domain knowl-
edge [22], [23]. Followed up on the idea, previous machine
learning-based adder DSE works, such as [3] and [6], exploit
hand-engineered features, and the feature extractor and the
consequent learning model are separated into two independent
components. Isolating the two parts makes the whole frame-
work be susceptible to converge to suboptimal performance.

Fortunately, deep Learning algorithms attempt to use a
general-purpose learning procedure to automatically learn
high-level features from data, which eliminates the need for
domain expertise and formidable feature extraction [22], [23].
Many of deep learning models (e.g., AlexNet [24],
GoogleNet [25], and ResNet [26]) perform feature extrac-
tion and classification in an end-to-end fashion or in a unified
network structure. Recently, the end-to-end learning structure
has also achieved notable success in oceans of EDA appli-
cations [27]–[32]. Based on the observations and arguments,
we design an end-to-end, deep learning-based model, GNP,
which incorporates the customized automatic feature extractor
for prefix adder networks and the regressor.

In this section, the proposed GNP, which adopts a well-
designed multibranch flow, is introduced. The proposed multi-
branch flow, shown in Fig. 4, has a backbone (i.e., the encoder
part of a graph autoencoder) and simultaneously works on
two branches: one is the decoder part of graph autoencoder
and the other is the NP working as an alternative to the tra-
ditional Gaussian process. For the backbone and stream I, a
graph autoencoder (GAE) that aims at summarizing the graph
structure and attaining the latent representation of an input
prefix adder is adopted. For stream II, an NP built upon the
encoder–decoder structure outputs the regression values with
corresponding uncertainties.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 19,2022 at 00:24:30 UTC from IEEE Xplore. Restrictions apply.

2660 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 8, AUGUST 2022

Fig. 4. Diagram of the proposed graph neural process.

A. Graph Construction of a Prefix Adder Network

Because the prefix adder structure is graph-like, the adja-
cency matrix and node feature matrix can describe it without
any information loss. In the following descriptions, an undi-
rected graph G = (V,E) with n vertices and m edges refers to
a prefix adder network. A ∈ R

n×n is the adjusted adjacency
matrix of G, whilst X ∈ R

n×s indicates the attribute matrix of
nodes. Note that it is customary to set diagonal elements in an
adjacency matrix be zeros; however, it is added by an identity
matrix I in the operation of a graph convolutional network
(GCN). Accordingly, we term A as the adjusted adjacency
matrix.

As aforementioned in Section II, the prefix adder network
can be mapped to a prefix graph structure. For a better
understanding, we list an example of the mapping in Fig. 4.
According to our design, we regard inputs, outputs, and prefix
nodes in a prefix graph as vanilla vertices in graph G, while the
logic relationship between two nodes is equivalent to an edge.
Until now, the basic structure of G is constructed, and then
the adjusted adjacency matrix A is built. Each row in X repre-
sents corresponding node attributes, which is composed of the

logic level, in-degree, out-degree, and EDA tool settings. For
each vertex, the in-degree means the number of vertices tak-
ing part in one logic operation, while the out-degree counts
the number of vertices in higher logic levels connecting to
the current vertex. Apart from the prefix graph structural
features, tool settings from logical synthesis stage and physi-
cal design stage as other features are also considered as part
of node features. We synthesize the adder structures by an
industry-standard EDA synthesis tool [33], where we can con-
figure the synthesis parameters for the adder. Different values
of the synthesis parameters can result in different QoR met-
ric (e.g., power/timing/area) values. More specifically, target
delay and utilization are crucial parameters in synthesis flows,
which define timing and area constraints. The tool adopts dif-
ferent strategies internally to satisfy that target delay, which
we can hardly consider during prefix graph synthesis. On the
other hand, changing utilization values can lead to signifi-
cantly distinct layouts. So we consider these two synthesis
parameters as attributes of a node. In fact, besides the tar-
get delay and utilization, we also attempt other tool settings.
The optimization level setting in logical synthesis potentially
impacts on the performance of adders, which can be config-
ured by compile and compile_ultra commands with
different options. However, after synthesizing, it is observed
that the solutions generated with compile_ultra can sig-
nificantly dominate the solutions generated by compile.
Hence, this setting is fixed to compile_ultra level as we
are aiming at superior designs.

For a better understanding, we have drawn the 4-bit prefix
adder graph with its adjusted adjacency matrix and node fea-
ture matrix as an explicit example of mapping in the top part
of Fig. 4. It can be seen that the 4-bit prefix adder graph has
eight nodes, and the shape of the adjusted adjacency matrix is
8 × 8. “1” in the adjusted adjacency matrix refers to the exis-
tence of a logical relationship between two nodes, and “0”
vice versa. The first row in X in Fig. 4 means that the n0
node is in the logic level 1, and it is an input node connecting
one node in the next logic level, while the EDA tool settings
(target delay and utilization) are 0.1 and 0.4, respectively.

B. Backbone: The Encoder of Graph Autoencoder

It is widely known that in the graph theory, a tree is an
undirected graph in which any two vertices are connected
by exactly one path, or equivalently a connected acyclic
undirected graph. Hence, the structure of a prefix adder
network can be recognized as a tree-like graph. Recently, the
GAEs [34] and VGAEs [34] are proposed as powerful node
embedding methods to describe graphs. In view of this, we
adopt a GAE structure to comprehensively capture the latent
information of prefix adder. The encoder–decoder architec-
ture is made up of two components. For the encoder part,
it encodes adder graphs into the latent feature representations
in a low dimensional vector space, while the decoder com-
ponent tries to reconstruct the original graph structure based
on the information passing through the encoding network.

Our design for Stream I is based on a two-layer GCN [35]
encoder. The intuitive idea of the design is mapping each node

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 19,2022 at 00:24:30 UTC from IEEE Xplore. Restrictions apply.

GENG et al.: HIGH-SPEED ADDER DSE VIA GNP 2661

i ∈ V to a latent vector zi ∈ R
d (d
 n). More precisely, the

n × d matrix Z with all zi vectors as rows is generated by the
two-layer GCN processing A.

We build a probabilistic model inferring latent variable zi ∈
R

d (d
 n) that is the latent representation in an embedding
space for each node i. The encoder parameterized by φ is
defined in (6), which is also called the inference model of the
VGAE

qφ(Z|X, A) =
n∏

i=1

qφ(zi|X, A) =
n∏

i=1

N
(

zi|μi, diag
(
σ i

2
))

.

(6)

The parameters of approximated Gaussian distribution, μ and
σ , are learned by a two-layer GCN. It takes the adjusted
adjacency matrix A and the feature matrix X as inputs and
generates the distribution parameters for the latent variable Z.
The first layer of the GCN outputs a lower dimensional feature
matrix X̄ shown in

X̄ = ReLU
(

ÃXW0

)
(7)

where Ã = D−1/2(A)D−1/2 with the degree matrix D is the
symmetrically normalized adjacency matrix, and ReLU =
max(0, ·). The second layer of the GCN generates μ and logσ ,
respectively

μ = GCNμ
(

Ã, X̄
)

= ÃX̄W1 (8)

logσ = GCNσ
(

Ã, X̄
)

= ÃX̄W′
1. (9)

Note that GCNσ (Ã, X̄) and GCNμ(Ã, X̄) only share the first
layer parameter W0. Two-layer GCN generates the parameters
for a distribution where the latent variable Z can be sampled.
Since sampling is unexpected to be involved in the backprop-
agation while μ and σ need to be kept in the computational
graph to update the GCN layers, the reparameterization trick is
exploited. So Z is not directly sampled from a normal distribu-
tion that is approximated by the encoder, instead, an auxiliary
variable εi is sampled from the standard normal distribution.
By making use of the reparameterization trick, each row in
the latent variable Z can be obtained according to (10). By
taking the mean of rows of Z, the latent representation for an
adder is acquired

zi = μi + εi � σ i (10)

where zi, μi, and εi are the rows of matrix z, μ, and ε,
respectively, and εi ∼ N(0, I) with � as the Hadamard
product. Here is the proof in 1-D case for the reparame-
terization trick applied in (10), which can be readily extended
to multidimensional case∫

1√
2πσ 2

exp

(
− (z − μ)2

2σ 2

)
dz

=
∫

1√
2π

exp

[
−1

2

(
z − μ

σ

)2
]

d

(
z − μ

σ

)

=
∫

1√
2π

exp

[
−1

2
(ε)2

]
d(ε). (11)

Therefore, z = μ + εσ .

C. Stream I: The Decoder of Graph Autoencoder

To reconstruct the graph, a simple inner product decoder
parameterized by θ is stacked to the aforementioned GCN
layers. This module leverages the inner product between
latent variable pairs zi and zj, shown in (12), to output the
reconstructed adjusted adjacency matrix Â. The reason for per-
forming the inner product is that it could calculate the cosine
similarity between rows in the latent variable Z with being
invariant to the magnitude of the vectors. By applying the
inner product on the latent variables Z and Z�, the similar-
ities among nodes in latent vector space can be learned to
predict A

pθ (A|Z) =
n∏

i=1

n∏
j=1

pθ
(
Aij|zi, zj

)
(12)

in which pθ (Aij = 1|zi, zj) = σ(z�
i zj), σ(·) is the sigmoid

activation function with σ(x) = 1/(1 + e−x). Obviously, the
larger the inner product z�

i zj is, the more likely nodes i and j
will be connected.

As minimizing a reconstruction loss in GAE, the weights of
neural networks in our model of Stream I are updated by maxi-
mizing a tractable variational evidence lower bound (ELBO) of
the model’s marginal likelihood log pθ (A) through gradients.
This kind of trick is employed in [36] and [37] as well. Hence,
the loss function Lautoencoder can be rewritten as minimizing
the opposite of the ELBO, which is shown as follows:

min
φ,Z,θ

KL
[
qφ(Z|X, A)‖p(Z)

] − Eqφ(Z|X,A)

[
log pθ (A|Z)

]
. (13)

The complete derivation of (13) is based on Jensen’s inequal-
ity. Bear in mind that for a convex function f with a random
variable x as input, E[f (x)] ≥ f (E[x]) holds. On the contrary,
if f is concave, E[f (x)] ≤ f (E[x]) holds

log pθ (A) = log
∫

p(Z)pθ (A|Z)dZ

= log
∫

qφ(Z|A, X)
p(Z)

qφ(Z|A, X)
pθ (A|Z)dZ

= log

(
Eqφ(Z|A,X)

[
p(Z)

qφ(Z|A, X)
pθ (A|Z)

])

≥ Eqφ(Z|A,X)

[
log

(
p(Z)

qφ(Z|A, X)
pθ (A|Z)

)]

= Eqφ(Z|A,X)

[
log

p(Z)

qφ(Z|A, X)

]

+ Eqφ(Z|A,X)

[
log pθ (A|Z)

]
= − KL

[
qφ(Z|X, A)‖p(Z)

]
+ Eqφ(Z|X,A)

[
log pθ (A|Z)

]
. (14)

In (13), the first part, KL(q(·)‖p(·)), is the Kullback–
Leibler divergence between q(·) and p(·). It measures the
“distance” between qφ(Z|X, A) and p(Z), where p(Z) =∏

i p(zi) = ∏
i N(zi|0, I). The computational rule for KL

divergence term is shown as follows. Since the loss can
be calculated by each dimension of the latent variable Z,
we exemplified the calculation in 1-D dimension. Note that
from (17) and (18), the integral of the probability density over

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 19,2022 at 00:24:30 UTC from IEEE Xplore. Restrictions apply.

2662 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 8, AUGUST 2022

Fig. 5. Detailed regime of the neural process.

the whole space equalling to one, the mathematical definitions
of the second moment and the variance are used. Since our
decoder is a Bernoulli-based model, the second term can be
readily transformed into the binary cross-entropy loss function.
Generally, by gradually minimizing the reconstruction loss
[i.e., (13)], we obtain increasing better latent representations
of adders

KL
(
N(μ, σ 2)||N(0, 1)

)

=
∫

1√
2πσ 2

e−(x−μ)2/2σ 2

(
log

e−(x−μ)2/2σ 2
/
√

2πσ 2

e−x2/2/
√

2π

)
dx

(15)

=
∫

1√
2πσ 2

e−(x−μ)2/2σ 2

× log

{
1√
σ 2

exp

{
1

2

[
x2 − (x − μ)2/σ 2

]}}
dx (16)

= 1

2

∫
1√

2πσ 2
e−(x−μ)2/2σ 2

×
[
− log σ 2 + x2 − (x − μ)2/σ 2

]
dx (17)

= −1

2

[
log σ 2 −

(
μ2 + σ 2

)
+ 1

]
. (18)

D. Stream II: Neural Processes

Function approximation plays a core role in numerous
machine learning problems. One representative approach is
the GP [38]. GPs do not require an expensive training stage
and can perform inference about the ground-truth function
conditioned on some observations, which makes them very
flexible at testing. Nevertheless, traditional GPs are computa-
tionally costly due to cubical scaling concerning the number
of data points. Thus, they are computationally expensive and
their applicabilities are limited. On the other hand, a neural
network (NN) can be regarded as a parameterized function.
Recent works reveal that combining desirable properties of
GPs and NNs, a collection of latent variables, which are mod-
eled as neural networks, can learn an approximation of a
stochastic process [39]–[41]. Like GPs, this kind of formu-
lation termed as NP can provide the predictions as well as
uncertainties on the QoR metric value of an adder design.
Inheriting from NNs, NPs are more computationally efficient
than GPs. Rudner et al. [42] mathematically demonstrated that
under certain conditions, NPs are mathematically equivalent

to GPs with deep kernels, while Garnelo et al. [40] exper-
imentally demonstrated that when the number of context
points is small, the NP outperforms the GP in terms of mean
squared error metric in the image completion task. The con-
clusion is essential to our task since the adder DSE process
works in a circumstance where the tool evaluation is expen-
sive. Therefore, we adopt the NP in lieu of the Gaussian
process.

1) Structure: In Stream II, we harness the NP as a good
replacement to the traditional Gaussian process, which takes
the latent representations of adders as input x and the asso-
ciated QoR metric values as input y during training. NP
is implemented in an encoder–decoder framework, which is
given in Fig. 4. More specifically, the architecture includes
two multilayer perceptrons (MLPs)-based encoders and an
MLP-based decoder. One encoder hγ (·) maps the adder rep-
resentations from the original space into the representation
space to produce a representation ri = hγ (xi, yi) ∀(xi, yi) ∈ O

for each of the pairs, where O represents a dataset consist-
ing of observations in pairs {xO, yO} and hγ (·) stands for
the encoder parametrized by γ . Then, by taking the mean of
these representations, ro is generated. Another encoder hψ (·)
is built for parameterizing the distribution of a latent variable
l. Conditioned on observations, NPs define conditional distri-
butions of the latent variable and thus, model a dataset T that
is made up of a collection of target pairs defined as {xT, yT}.
By virtue of the idea, the conditional decoder gω(·) treats the
sampled global latent variable l and the input representation
as well as target data xT (new queried data) as input and
outputs the corresponding predictions with their uncertainties.
The details of the NP are visualized in Fig. 5. To describe an
NP, a Gaussian likelihood is given in

p
(
yT|l, xT, xO, yO

) = p(l)
|T|∏
j=1

N
(

y|gω(l, rO), τ−1I
)

(19)

where the prior p(l) is assumed as a multivariate standard
normal distribution function. Following the same variational
idea in VGAEs [34], to perform approximate inference in the
NP, a variational posterior is defined in

q
(
l|xO, yO

) = N
(
l|μ(

hψ
(
xO, yO

))
, σ

(
hψ

(
xO, yO

)))
(20)

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 19,2022 at 00:24:30 UTC from IEEE Xplore. Restrictions apply.

GENG et al.: HIGH-SPEED ADDER DSE VIA GNP 2663

where μ(·) (i.e., mean or location) and σ (·) (i.e., the diagonal
of the covariance matrix) take aggregated and encoded input–
output pairs as inputs and parameterize a normal distribution
from which l is sampled [39]. The dense layer is often applied
to mimic μ(·) and σ (·). Intuitively, the latent variable l is
designed to capture all information about the data-generating
process needed to make predictions on the target inputs.
Besides, introducing such a latent variable gives the most
expressive model. Similarly, the reparameterization trick is
performed for latent variable l due to exploiting the variational
idea.

2) Loss Function: By using the variational distribution
in (20), an ELBO on the log marginal likelihood is given as
follows. Considering the observations and targets, (21) reflects
the desired model behavior of an NP

log p
(
yT|xT, xO, yO

) ≥ Eq(l|xT ,yT)

[
log p

(
yT|l, xT

)]
− KL

(
q
(
l|xT, yT

)‖p
(
l|xO, yO

))
.

(21)

In (21), the intractable conditional prior p(l|xO, yO) replaces
the prior p(l) = N(l; 0, I). By approximating the intractable
conditional prior, (21) can be reformulated as

log p
(
yT|xT, xO, yO

) ≥ Eq(l|xT ,yT)

[
log p

(
yT|l, xT

)]
− KL

(
q
(
l|xT, yT

)‖q
(
l|xO, yO

))
.

(22)

Meanwhile, we acquire the loss function Lnp [the opposite
of the RHS of (22)]

min
ψ,γ ,ω

KL
(
q
(
l|xT, yT

)‖q
(
l|xO, yO

))
− Eq(l|xT ,yT)

[
log p

(
yT|l, xT

)]
. (23)

According to (23), the NP learns to reconstruct targets, reg-
ularized by a KL term that encourages the summary of the
observations to be not too far from the summary of the targets.

E. Graph Neural Process

The loss function for the whole framework is the simple
addition of losses of two branches [i.e., Lautoencoder in (13) and
Lnp in (23)]. During training, via backpropagation, the guide
information (i.e., gradients) from the graph decoder and the NP
updates each part, respectively, and then calibrates the encoder
in GAE collectively. The two branches are jointly performed
and mutually benefited. When conducting inference, the prefix
adder first goes through the graph encoder to convert into the
latent feature embedding, and then the embedding will be fed
into the NP to acquire the prediction and uncertainty of the
associated QoR metric value. Our GNP not only finds good
graph feature embeddings of prefix adders but also builds a
pretty good regressor for adder performance value. By the
merit of the end-to-end nature, GNP is fast and flexible for
both training and inference phases.

IV. PROPOSED DSE FRAMEWORK

In the adder DSE problem, exhaustively determining golden
QoR metric (e.g., area/power/delay) values of each adder

Fig. 6. Workflow of sequential optimization-based DSE framework.

design by running EDA flow is time intensive. The sequential
optimization-based algorithm approximates the tool evalua-
tions with a surrogate, which is cheaper to evaluate. Therefore,
it is the cure to combat our problem. On the other hand,
considering that the sequential-optimization model [17], [18]
iteratively and incrementally samples the data to calibrate the
surrogate model, the number of data points to train a machine
learning-based surrogate model can be much less than the
one in conventional DSE flow. By virtue of the incremen-
tal sampling stage, a method for simultaneous prediction and
uncertainty estimation is in demand. Prior art [6] utilizes a GP
as the surrogate model to offer predictions with uncertainties,
which has high computational complexity.

As aforementioned in Section III, we incorporate the fea-
ture extractor into the sequential optimization framework so
that the update of the learning model in the framework also
benefits the feature extraction process. To reduce the high
computation cost brought by a GP model, we exploit an NP,
which is based on the NN structure. It can provide predictions
as well as uncertainty estimations within a lower computa-
tional complexity [39], [40]. More importantly, the feature
extractor is combined with the NP to form an end-to-end,
multibranch model. Based on the above, we propose a sequen-
tial optimization-based DSE framework with the GNP as the
surrogate model, which is shown in Fig. 6.

During the initialization, the proposed sequential
optimization-based DSE framework interacts with EDA
tools to obtain the golden QoR metric (area/power/delay)
values of a small number of prefix adders, which are randomly
sampled from the entire adder design space E. Afterward, the
DSE framework starts working iteratively. Our GNP is first
calibrated with the initial data. The trained GNP outputs the
QoR metric values of the adder designs in design space E

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 19,2022 at 00:24:30 UTC from IEEE Xplore. Restrictions apply.

2664 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 8, AUGUST 2022

with prediction uncertainties. The proposed DSE framework
paradigm tries to classify the input adder designs based
on the GNP’s outputs into three classes: 1) Pareto-optimal;
2) nonPareto-optimal; and 3) unknown. During iterations, it
incrementally selects the most representative adder designs as
candidates for EDA flow (including synthesis, placement, and
routing tools) evaluation toward a goal of minimizing the size
of the unknown set. By harnessing the representative data
along with their ground-truth QoR metric values, the GNP is
updated. As more and more adder designs being selected, the
GNP gets more and more accurate. The whole DSE process
is terminated when the number of maximum iterations is
reached or the unknown set is empty.

For the proposed DSE framework, the classification rules
and selecting rules are based on the predictions and uncertain-
ties offered by the GNP. More specifically, in each iteration,
the GNP is invoked to infer the predictions as well as the
uncertainties on QoR metrics over all unsampled adder x in
the adder design space E. A vector m(x), which includes con-
catenated QoR metric predictions (e.g., area, power, and delay)
of x and a vector of corresponding standard deviations σ (x),
is acquired. Consequently, a hyperrectangle H(x) is built to
represent the prediction uncertainty in QoR metric space for
a prefix adder design x, which is defined as follows:

H(x) :=
{

y | m(x) − β
1
2 σ (x) � y � m(x) + β

1
2 σ (x)

}
(24)

where one element yi in y (i.e., a point in the QoR metric
space) refers to the coordinate of associated axes with i ∈
{1, 2, 3} indicating different QoR metrics (area/power/delay),
and β is a scaling parameter that controls the contribution
of each element of σ to the hyperrectangle. The uncertainty
information is exploited to guide the consequent sampling and
to make a probabilistic assumption on the Pareto-optimality
of every adder design x. With the continuously updating
GNP with new evaluated designs, the confidence of prediction
increases. In light of ever-shrinking uncertainty, the uncer-
tainty region of an adder design x in the tth iteration is
written as

Rt(x) := Rt−1(x) ∩ H(x). (25)

The initial R−1 is the entire objective space R
n with n as the

number of QoR metrics. The iterative intersection guarantees
the uncertainty regions are nonincreasing. In the uncertainty
region Rt(x), the QoR metric performance upper bound comes
from the optimistic prediction min(Rt(x)), while the lower
bound is associated with the pessimistic prediction max(Rt(x))

of one certain adder design x.
On account of the fact that the sequential optimization pro-

cess in the DSE framework is monotonic, the numbers of
designs in Pareto-optimal set Pt and nonPareto-optimal set Nt

are nondecreasing regarding the iteration number t. In other
words, at iteration t, the previous predicted design points in
Pt−1 and Nt−1 remain their classification. Only designs in
unknown set Ut need to be classified. With relaxing by a tol-
erance parameter ε on both sides, the classification of a prefix
adder design x abides by the following rules based on inequali-
ties. If the pessimistic QoR metric prediction of x, max(Rt(x)),

(a) (b)

(c)

Fig. 7. Example of mathematical principles of the sequential optimization-
based DSE framework. (a) Before starting. (b) Classification and sampling in
one iteration. (c) After the termination of the stop criteria.

is not dominated by optimistic results of any other design x′
in E [i.e., min(Rt(x′))], then x is classified as Pareto-optimal

max(Rt(x)) − ε � min
(
Rt

(
x′)) + ε. (26)

If the optimistic outcomes of x, min(Rt(x)), are dominated by
the pessimistic QoR metric prediction of any other design x′ in
E [i.e., max(Rt(x′))], then x is classified as nonPareto-optimal

max
(
Rt

(
x′)) − ε � min(Rt(x)) + ε. (27)

If the above rules do not exist regarding x, then x is still in
the unknown set.

When the classification finishes, a prefix adder design xs
t

with the longest diagonal of its uncertainty region Rt(x) is
sampled from Pareto-optimal and unknown categories for tool
evaluation. The sampling rule can be written in

xs
t := arg maxy,y′∈Rt(x)

∥∥y − y′∥∥
2. (28)

The GNP model calibration and prediction, the classification of
prefix adder designs, and adder design incremental sampling
perform alternatively in iterations until the stopping criteria
(exceeds the maximum iterations or the unknown set is empty)
meet. Eventually, the predicted Pareto-optimal adder designs
are evaluated by running EDA flow. For a better under-
standing, we visualize the mathematical principles of the DSE
framework in Fig. 7.

In a nutshell, the hyperparameters used in the DSE frame-
work embrace the scaling parameter β controlling the hyper-
volume of a hyperrectangle when calculating the uncertainty
region, the tolerance parameter ε in classification rules, and
the max iterations Tmax in the stop condition. For β, if we fol-
low the value setting rule such as βt = 2 log(n|E|π2t2/(6δ)),
a maximum hypervolume error can be achieved with a high
probability 1 − δ where δ ∈ (0, 1). This conclusion is proved
in [18]. With regarding ε, we adopt the cross-validation

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 19,2022 at 00:24:30 UTC from IEEE Xplore. Restrictions apply.

GENG et al.: HIGH-SPEED ADDER DSE VIA GNP 2665

(a) (b)

Fig. 8. (a) Pareto frontier: Area versus delay. (b) Pareto frontier: Power versus delay.

TABLE I
QUANTITATIVE COMPARISON OF THE PARETO FRONTIERS

method on our initial dataset to determine the value. When
it comes to Tmax, theoretically, it is the smallest number
satisfying √

T log
(
1 − σ−2

)
4K

√
log

(
n|E|π2T2/(6δ)

)
logd+1 T

≥ nan−1

η(n − 1)!
(29)

where η refers to the hypervolume error, a indicates the maxi-
mum embedding distance between two adder designs after one
iteration, d is the dimensionality of the latent feature vector
of a prefix adder design, and n denotes the dimension of QoR
metric space with σ as the standard deviation of the Gaussian
distribution characterizing one QoR metric. In the practical
experiment, we have found that the sequential optimization-
based DSE process finishes classification for the entire design
space E after ten iterations. We relax Tmax to 20 so that the
proposed whole framework can finish the optimization process
within an acceptable sampling budget.

V. EXPERIMENTAL RESULTS

A. Experimental Settings

The implementation of our framework is in Python with
the Pytorch library [43], and we test it on a platform with an
Xeon Silver 4114 CPU processor and an nVIDIA TITAN Xp
Graphic card. To verify the effectiveness and the efficiency of
our framework, we compare our framework with the best-of-
breed methods [3], [6] by exploring the 64-bit adder design
space. First, we visually compare the quality of the Pareto
frontiers found by the proposed framework and [3] and [6] in
Fig. 8, and then quantitatively evaluate associated performance
of these methods by the hypervolume error, the ADRS and
the number of design flow runs in Table I. The former two

(a) (b)

Fig. 9. Golden Pareto-optimal solution (“P1”) that is not found by previous
works. (a) Architecture overview: Bit width = 64, size = 234, Max.
Level = 6, and Max. fanout = 6. The associated QoR metric values are
1981.13 μm2 for the area, 6600 μw for the power, and 0.334 ns for the
delay. (b) Corresponding layout snapshot.

metrics measure the quality of Pareto frontiers and the rest
estimates time expense. Next, we exemplify one predicted
Pareto-optimal prefix adder design found by the proposed
algorithm in Fig. 9 to show the corresponding architecture and
the layout. The corresponding time analyses of the exploration
are provided by Figs. 10 and 11. Ultimately, the comparison
between explored adders against some classical adders and a
state-of-the-art adder synthesis algorithm [16] is depicted in
Table II.

It is impossible to exhaustively enumerate all adder designs
in the infinite design space for tool evaluation. A set of 22 000
adders, which is reasonable and comparatively large (almost
80 days are needed to run the flow), is generated and selected
to represent the entire design solution space. This dataset is
sampled in a quasirandom manner, which is based on a two-
level (max-fan-out constraint and size) binning scheme. The
approach evenly samples the prefix adders covering different

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 19,2022 at 00:24:30 UTC from IEEE Xplore. Restrictions apply.

2666 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 8, AUGUST 2022

Fig. 10. Contributions of subprocesses of DSE works to total flow runs.

(a) (b)

(c) (d)

Fig. 11. Runtime breakdown of previous arts and our framework.
(a) ISLPED’17. (b) TCAD’19. (c) Ours (with GPU). (d) Ours (only with
CPU).

architectural bins. The first level of binning is based on the
max-fan-out constraint. As many architectures may exist under
the same max-fan-out constraint, another level relies on the
size of the prefix adder. Note that we follow the prefix adder
generation method proposed in [6], but the obtained design
space is much larger than that in [6]. All the designs need to
go through the whole design flow including front-end stages,
such as logical synthesis and back-end steps, such as place-
ment and routing. The tools in the design flow include design
compiler [33] (version F-2011.09-SP3) for logical synthe-
sis and IC Compiler [44] (version J-2014.09-SP5-3) for the
placement and routing. “tt1p05v125c” corner and nonlin-
ear delay model (NLDM) in 32-nm SAED cell-library for
LVT class [45] (available by University Program) are used
for technology mapping. The primary input activity of 0.1 is
used along with 1-GHz operating frequency for power esti-
mation. Concerning the tool settings, 0.1, 0.2, 0.3, and 0.4 ns
are chosen as target delays. Utilization values are configured

TABLE II
COMPARISON WITH OTHER APPROACHES FOR 64-BIT ADDER

with 0.4, 0.5, 0.6, 0.7, and 0.8. Per the design flow, it costs
about 5.5 min. Although the involved generation overheads
seem high, we utilize the dataset to demonstrate the superi-
ority of the proposed methodology against SOTA DSE works
and manual design processes for some classical adders. The
proposed methodology can effectively aid and accelerate the
adder design process under the current technology node. On
the other hand, the dataset may lay the foundation of our future
work, such as transfer learning among different bit-width
adders or distinct technology nodes.

Our framework, as well as the previous works [3], [6],
explores Pareto frontiers in area versus delay space, power
versus delay space, and area versus power versus delay space.
Fig. 8(a) and (b) visualizes the corresponding Pareto frontiers
discovered by the prior arts [3], [6] and our framework in two
kinds of 2-D objective spaces, respectively. In Fig. 8, each dot
in the delay versus area or delay versus power space indicates
the selected representative adder design after going through the
design flow. Except the red dots indicate the associated posi-
tions of Pareto-optimal designs in QoR metric spaces with a
straight line connecting these dots standing for the frontier, the
other dash lines of different colors and with distinct markers
refer to the Pareto frontiers found by the listed DSE algo-
rithms. It is interesting to note that there is one point [“P1”
outlined at the extreme left in Fig. 8(a) and (b)], which has
5ps better delay than those of other points, causing this point
to be at some distance than the data cloud. Since we have
connected the Pareto points by straight lines, the shift of this
single point resulted in the “noticeable” shift from the cloud of
data points. According to the observations of Fig. 8(a) and (b),
both Pareto frontiers searched by our approach (orange lines)
are much closer to the corresponding golden frontiers (red
lines) than the frontiers explored by other methods. In other
words, Fig. 8 qualitatively demonstrates our method finds the
Pareto frontier of better quality.

B. Comparisons Against DSE-Based SOTA Works

The supplied Table I summarizes the qualities of Pareto
frontiers including the Pareto frontiers of 2-D QoR metrics
spaces presented in Fig. 8(a) and (b) and a 3-D case in quan-
tification. Note that we utilize the golden Pareto set as the

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 19,2022 at 00:24:30 UTC from IEEE Xplore. Restrictions apply.

GENG et al.: HIGH-SPEED ADDER DSE VIA GNP 2667

reference set. Since the learning model establishment and cal-
ibration require far less time than design flows, we omit the
model training and testing time. Our time metric mainly counts
the cardinality of the dataset to train (or initialize) the machine
learning-based surrogate model, and the final Pareto-optimal
predictions for tool evaluation. The column “multiobjective”
lists three QoR metric spaces: area versus delay, power ver-
sus delay, area versus power versus delay, whilst columns
“HV,” “ADRS,” and “Flows” are the evaluation metrics in
terms of hypervolume error, the ADRS, and the number of
design flow runs. Columns “ISLPED’17,” “TCAD’19,” and
“Ours” correspond to the results searched by [3] and [6]
and our proposed sequential optimization-based DSE method
with GNP as the surrogate. According to the results recorded
in Table I, our algorithm averagely surpasses [3] by 21.0%
less hypervolume error and 31.8% smaller ADRS value, and
reduces 19.9% less hypervolume error and 25.0% ADRS value
comparing to [6]. Moreover, the time expense is still less than
those of [3] and [6]. In brief, our method performs better than
the previous works [3], [6] with less hypervolume error, shorter
ADRS, and fewer design flow calls. Here, we just illustrate one
golden Pareto-optimal design (“P1”), which is not searched
by [3] and [6] but found by ours. The architecture and layout
are visualized in Fig. 9.

C. Time Analyses

The “Flows” metric in Table I indicates the number of
design flow runs, coarsely consists of two parts.

1) The number of evaluated adder designs for training.
2) The number of predicted Pareto-optimal adder designs

to go through the EDA flow for evaluation.
Different from the pure SVR regressor-based work [3],

which does not involve an incremental sampling process, the
training set in the active learning-based DSE flow [6] includes
an initial dataset and incrementally sampled dataset. To extract
the Pareto-frontier, EDA tools are invoked to acquire the
real QoR metric values of the predicted Pareto-optimal adder
designs of the three methods. We draw a stacked bar plot,
Fig. 10, to show the contribution of each part to total flow runs
in three QoR metric spaces. In Fig. 10, “Evaluation on Initial
Adders” refers to the number of adder designs for evalua-
tion during initialization, and “Evaluation on Sampled Adders”
indicates the number of incrementally sampled adder designs
during iterations in [6] and our work (both are four samples
per iteration), while “Evaluation on Outputs” stands for the
number of predicted Pareto-optimal designs by each methodol-
ogy. As Fig. 10 suggests, the SVR regressor-based framework
in [3] is trained with 500 adder designs when exploring Pareto
frontier in area versus delay or power versus delay QoR met-
ric space, and separately searches 98 and 115 Pareto-optimal
adder designs for EDA flow evaluation in two metric spaces.
The active learning-based work [6] initializes the GP with
400 adder designs in the area versus delay and power ver-
sus delay cases. After actively samples 20 (five iterations) and
28 (seven iterations) adder designs, it ultimately seeks 14 and
54 adder designs for evaluation in two metric spaces, respec-
tively. The given bar charts in Fig. 10 represent only 300

adder samples are utilized for initialization in our proposed
flow in 2-D QoR metric spaces, and both 48 (12 iterations)
adder designs are incrementally selected to fine-tune the GNP
model. Our flow predicts 65 and 74 Pareto-optimal samples
to be evaluated by tools in area versus delay and power ver-
sus delay cases, respectively. For a more complicated task (i.e.,
optimization for area versus power versus delay QoR metrics),
both the numbers of adders for training and EDA flow evalu-
ation required by three methods surge upward. Roy et al. [3]
calibrated the SVR regressor via 1800 samples and finds 195
samples, and Ma et al. [6] trained the surrogate model, GP
regressor, by 1300 initial adder designs and 40 (10 iterations)
additional selected samples and invokes EDA flow 296 times
to evaluate the predictions, while our framework only har-
nesses 1100 adders to initialize the GNP model and 56 (14
iterations) adders for follow-up tuning, and 314 adders are
regarded as Pareto-optimal solutions. It is conspicuous that
compared with the active learning-based DSE framework [6]
and ours, [3] needs more adders for initialization due to a lack
of sampling process to update the model. On the other hand,
despite the similar sampling process for updating surrogate
models, the proposed framework reduces approximately 4.8%,
12.4%, and 10.1% time cost in area versus delay, power ver-
sus delay, and area versus power versus delay cases compared
to [6]. Besides, the proposed framework requires the least
adder designs for initialization, which alleviates the pressure
for starting the high-quality design searching.

For a better demonstration, illustrations in Fig. 11 depict
the time (in minute) spent on statistical models in area ver-
sus power versus delay case. A glance at the pie charts reveals
that the time (denoted as “Model” in Fig. 11), including
model training time and prediction time, is far less than the
time spent on running EDA flows to generate golden QoR
metric values of adder designs during initialization and out-
puts evaluation. As aforementioned, each EDA synthesis run
takes about 5.5 min. The searching process totally costs [3]
10982.4 min, among which 3.8 and 6.1 min are used for build-
ing the machine learning model and performing predictions.
Reference [6] spends about 9000.2 min to search for Pareto-
optimal adder designs, and it takes only 1.7 and 0.5 min for
training and inference. In our work with GPU acceleration,
7538.8 min are completely needed for design space explo-
ration, where 1.26 and 2.53 min are consumed for training
and testing. If we train and test the network only on CPU, the
training and testing time climb to 8.5 and 9.4 min, respectively.
Yet they still occupy extremely little proportion of whole run-
time expenditure. It is worth mentioning that our framework
directly extracts the features from adder designs without too
much manual labor. On the contrary, both [3] and [6] feed
32-dimension, hand-crafted features to their machine learn-
ing model. The proposed GNP processes adjusted adjacency
matrixes of the size up to 448 × 448 (64 bit and seven logic
levels). Due to the different feature extraction processes and
structures of features, our work behaves not as well as [6]
when only considering model time. But the time cost on the
model is still acceptable regarding the whole DSE process.
Nevertheless, via the GPU acceleration, it outperforms [3] on
model time.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 19,2022 at 00:24:30 UTC from IEEE Xplore. Restrictions apply.

2668 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 8, AUGUST 2022

D. Comparisons Against Classical Adders

Table II records the comparison between adder designs
searched by aforementioned DSE methods against designware
adders (best delay), an adder design generated by a highly
sophisticated adder synthesis algorithm [16] as well as some
classical adders, such as Kogge-Stone and Sklansky. These
legacy adders are manually designed, which involve much
human assiduous and masses of trials. When it turns to [16],
a polynomial-time algorithm has been developed to gener-
ate prefix graph structures. The main idea behind [16] is to
generate a single prefix graph network for a set of structural
constraints, such as the logic level, fan-out, etc. Theoretically,
the legacy adders and the traditional adder synthesis algorithm
in [16] are not capable of handling the exploring task in a
huge adder design space. To fairly compare with classical
adders and conventional synthesis method [16], we select a
slice of Pareto-optimal designs predicted by previous adder
DSE methods[3], [6] and ours. For example, “ISLPED’17-
P1” means one predicted Pareto-optimal design by [3], and
“ISLPED’17-P2” stands for another solution in the explored
Pareto-optimal set. It can be observed the designs searched by
DSE methods behave better in all three targets (delay, area,
and energy) than designware adders, Kogge-Stone adders, and
the solution offered by [16]. Our solutions (“P1,” “P2,” and
“P3”) dominate the corresponding solutions explored by [3]
and [6]. Notice that “P1” just happens to be the same solution
point in the delay versus area and delay versus power Pareto-
optimal curves, while other points (“P2” and “P3”) are not
outlined in Fig. 8 since they are just found in three QoR metric
space case (area versus power versus delay). Table II implies
that DSE methods are more effective than conventional adder
solution providers, and more importantly, compared with the
existing adder DSE methodologies, the proposed methodology
can discover better adder designs.

In a nutshell, the proposed DSE method surrogated by
GNP behaves better than previous arts. Additionally, our DSE
framework has the potential to be generalized to different bit-
width adder designs in theory. We utilize the 32-bit adder
design as an exemplar for the following descriptions. There
is no limitation on the size of data input of our DSE model.
Besides, in terms of the graph structure and impact of tool
settings, 32-bit adder designs are analogous to 64-bit adder
designs to some extent. By harnessing certain transfer learn-
ing techniques [46]–[48] to achieve the domain adaptation of
different bit-width adder designs, we can fine-tune a pretrained
model (on 64-bit adder dataset) on a small amount of 32-bit
adder designs.

VI. CONCLUSION

In this article, for the first time, we have proposed a new
end-to-end learning model, graph neural process, where a
GAE for prefix adder structures and a NP are simultaneously
performed. The GNP provides a new solution to automati-
cally extracting features from prefix adder structures. Besides,
we have proposed a sequential optimization model-based
DSE methodology with the GNP as its surrogate model to
guide DSE for power-efficient, high-speed prefix adders. Our

methodology is almost automatic from feature extraction to
high-quality adder design space exploration. The experimen-
tal results have demonstrated the superiority of the proposed
framework over the prior arts. With the VLSI designs becom-
ing increasingly complicated, we expected to generalize our
idea to settle more VLSI DSE problems (e.g., multiplier DSE
problem, adder DSE issues among different bit width, and
technology nodes.).

REFERENCES

[1] Q. Guo, T. Chen, Y. Chen, Z.-H. Zhou, W. Hu, and Z. Xu, “Effective
and efficient microprocessor design space exploration using unlabeled
design configurations,” in Proc. Int. Joint Conf. Artif. Intell. (IJCAI),
2011, pp. 1671–1677.

[2] D. Li, S. Yao, Y.-H. Liu, S. Wang, and X.-H. Sun, “Efficient design
space exploration via statistical sampling and adaboost learning,” in
Proc. ACM/IEEE Design Autom. Conf. (DAC), 2016, pp. 1–6.

[3] S. Roy, Y. Ma, J. Miao, and B. Yu, “A learning bridge from architec-
tural synthesis to physical design for exploring power efficient high-
performance adders,” in Proc. IEEE Int. Symp. Low Power Electron.
Design (ISLPED), 2017, pp. 1–6.

[4] C. Lo and P. Chow, “Multi-fidelity optimization for high-level synthesis
directives,” in Proc. Int. Conf. Field Programmable Logic Appl. (FPL),
2018, pp. 272–279.

[5] W. Lyu, F. Yang, C. Yan, D. Zhou, and X. Zeng, “Batch Bayesian
optimization via multi-objective acquisition ensemble for automated ana-
log circuit design,” in Proc. Int. Conf. Machine Learning (ICML), 2018,
pp. 3312–3320.

[6] Y. Ma, S. Roy, J. Miao, J. Chen, and B. Yu, “Cross-layer optimization
for high speed adders: A pareto driven machine learning approach,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 38, no. 12,
p. 2298–2311, Dec. 2019.

[7] D. Park and Y. Kim, “Fast pareto front exploration for design of recon-
figurable energy storage,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 38, no. 3, pp. 526–537, Mar. 2019.

[8] S. Zhang et al., “An efficient multi-fidelity Bayesian optimization
approach for analog circuit synthesis,” in Proc. ACM/IEEE Design
Autom. Conf. (DAC), 2019, pp. 1–6.

[9] S. Zhang, F. Yang, D. Zhou, and X. Zeng, “An efficient asynchronous
batch Bayesian optimization approach for analog circuit synthesis,” in
Proc. ACM/IEEE Design Autom. Conf. (DAC), 2020, pp. 1–6.

[10] Q. Sun et al., “Correlated multi-objective multi-fidelity optimization for
HLS directives design,” in Proc. IEEE/ACM Design Autom. Test Eurpoe
(DATE), 2021, pp. 46–51.

[11] Q. Sun, C. Bai, H. Geng, and B. Yu, “Deep neural network hard-
ware deployment optimization via advanced active learning,” in Proc.
IEEE/ACM Design Autom. Test Eurpoe (DATE), 2021, pp. 1510–1515.

[12] C. Bai, Q. Sun, J. Zhai, Y. Ma, B. Yu, and M. D. Wong, “Boom-explorer:
RISC-V boom microarchitecture design space exploration framework,”
in Proc. IEEE/ACM Int. Conf. Comput. Aided Design (ICCAD), 2021,
pp. 1–9.

[13] J. Sklansky, “Conditional-sum addition logic,” IRE Trans. Electron.
Comput., vol. EC-9, no. 2, pp. 226–231, Jun. 1960.

[14] P. M. Kogge and H. S. Stone, “A parallel algorithm for the efficient solu-
tion of a general class of recurrence equations,” IEEE Trans. Comput.,
vol. C-22, no. 8, pp. 786–793, Aug. 1973.

[15] T. Matsunaga and Y. Matsunaga, “Area minimization algorithm for par-
allel prefix adders under bitwise delay constraints,” in Proc. ACM Great
Lakes Symp. VLSI (GLSVLSI), 2007, pp. 435–440.

[16] S. Roy, M. Choudhury, R. Puri, and D. Z. Pan, “Polynomial time algo-
rithm for area and power efficient adder synthesis in high-performance
designs,” in Proc. IEEE/ACM Asia South Pac. Design Autom. Conf.
(ASPDAC), 2015, pp. 249–254.

[17] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for
hyper-parameter optimization,” in Proc. Conf. Neural Inf. Process. Syst.
(NeurIPS), 2011, pp. 2546–2554.

[18] M. Zuluaga, G. Sergent, A. Krause, and M. P’́uschel, “Active learn-
ing for multi-objective optimization,” in Proc. Int. Conf. Mach. Learn.
(ICML), 2013, pp. 462–470.

[19] B. R. Zeydel, T. T. J. H. Kluter, and V. G. Oklobdzija, “Efficient mapping
of addition recurrence algorithms in CMOS,” Proc. IEEE Symp. Comput.
Arithmetic (ARITH), 2005, pp. 107–113.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 19,2022 at 00:24:30 UTC from IEEE Xplore. Restrictions apply.

GENG et al.: HIGH-SPEED ADDER DSE VIA GNP 2669

[20] E. Zitzler, D. Brockhoff, and L. Thiele, “The hypervolume indicator
revisited: On the design of Pareto-compliant indicators via weighted
integration,” in Proc. Int. Conf. Evol. Multi-Criterion Optim., 2007,
pp. 862–876.

[21] C. Audet, J. Bigeon, D. Cartier, S. Le Digabel, and L. Salomon,
“Performance indicators in multiobjective optimization,” Eur. J. Oper.
Res., vol. 292, no. 2, pp. 397–422, 2021.

[22] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[23] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[24] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” Proc. Conf. Neural Inf.
Process. Syst. (NeurIPS), vol. 25, 2012, pp. 1097–1105.

[25] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), 2015, pp. 1–9.

[26] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), 2016, pp. 770–778.

[27] R. Chen, W. Zhong, H. Yang, H. Geng, X. Zeng, and B. Yu, “Faster
region-based hotspot detection,” in Proc. ACM/IEEE Design Autom.
Conf. (DAC), 2019, p. 146.

[28] H. Geng et al., “Hotspot detection via attention-based deep layout met-
ric learning,” in Proc. IEEE/ACM Int. Conf. Comput. Aided Design
(ICCAD), 2020, pp. 1–8.

[29] T. Chen, Q. Sun, C. Zhan, C. Liu, H. Yu, and B. Yu, “Analog IC aging-
induced degradation estimation via heterogeneous graph convolutional
networks,” in Proc. IEEE/ACM Asia South Pac. Design Autom. Conf.
(ASPDAC), 2021, pp. 898–903.

[30] T. Chen, Q. Sun, C. Zhan, C. Liu, H. Yu, and B. Yu, “Deep H-GCN:
Fast analog IC aging-induced degradation estimation,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., early access, Aug. 24, 2021,
doi: 10.1109/TCAD.2021.3107250.

[31] H. Geng, F. Yang, X. Zeng, and B. Yu, “When wafer failure pattern clas-
sification meets few-shot learning and self-supervised learning,” in Proc.
IEEE/ACM Int. Conf. Comput. Aided Design (ICCAD), 2021, pp. 1–8.

[32] H. Geng et al., “Hotspot detection via attention-based deep layout metric
learning,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., early
access, Sep. 14, 2021, doi: 10.1109/TCAD.2021.3112637.

[33] Synopsys Design Compiler. Accessed: Apr. 23, 2016. [Online].
Available: http://www.synopsys.com

[34] T. N. Kipf and M. Welling, “Variational graph auto-encoders,” in Proc.
NeurIPS Workshop Bayesian Deep Learn., 2016, pp. 1–3.

[35] W. L. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proc. Conf. Neural Inf. Process. Syst.
(NeurIPS), 2017, pp. 1024–1034.

[36] T. Chen, B. Lin, H. Geng, and B. Yu, “Sensor drift calibration via spatial
correlation model in smart building,” in Proc. ACM/IEEE Design Autom.
Conf. (DAC), 2019, pp. 1–6.

[37] T. Chen, B. Lin, H. Geng, S. Hu, and B. Yu, “Leveraging spa-
tial correlation for sensor drift calibration in smart building,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 40, no. 7,
pp. 1273–1286, Jul. 2021.

[38] C. K. Williams and C. E. Rasmussen, Gaussian Processes for Machine
Learning, vol. 2. Cambridge, MA, USA: MIT Press, 2006.

[39] M. Garnelo et al., “Neural processes,” in Proc. ICML Workshop Theor.
Found. Appl. Deep Generative Models, 2018, pp. 1–11.

[40] M. Garnelo et al., “Conditional neural processes,” in Proc. Int. Conf.
Mach. Learn. (ICML), 2018, pp. 1690–1699.

[41] H. Kim et al., “Attentive neural processes,” in Proc. Int. Conf. Learn.
Represent. (ICLR), 2019, pp. 1–18.

[42] T. G. J. Rudner, V. Fortuin, Y. W. Teh, and Y. Gal, “On the connection
between neural processes and Gaussian processes with deep kernels,”
Proc. NeurIPS Workshop Bayesian Deep Learn., 2018, pp. 1–6.

[43] A. Paszke et al., “Pytorch: An imperative style, high-performance deep
learning library,” in Proc. Conf. Neural Inf. Process. Syst. (NeurIPS),
2019, pp. 8026–8037.

[44] Synopsys IC Compiler. Accessed: Apr. 23, 2016. [Online]. Available:
http://www.synopsys.com

[45] Synopsys SAED Library. Accessed: Apr. 23, 2016. [Online]. Available:
http://www.synopsys.com/Community/UniversityProgram/Pages/32–
28nm-generic-library.aspx

[46] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans.
Knowl. Data Eng., vol. 22, no. 10, pp. 1345–1359, Oct. 2010.

[47] M. Kandemir, “Asymmetric transfer learning with deep Gaussian
processes,” in Proc. Int. Conf. Mach. Learn. (ICML), 2015, pp. 730–738.

[48] M. Volpp et al., “Meta-learning acquisition functions for transfer learn-
ing in Bayesian optimization,” Proc. Int. Conf. Learn. Represent. (ICLR),
2020, pp. 1–22.

Hao Geng (Student Member, IEEE) received the
M.E. degree from the Department of Electronic
Engineering and Information Sciences, University of
Science and Technology of China, Hefei, China, in
2015, and the M.Sc. degree in machine learning from
the Department of Computing, the Imperial College
London, London, U.K., in 2016. He is currently
pursuing the Ph.D. degree with the Department of
Computer Science and Engineering, The Chinese
University of Hong Kong, Hong Kong.

His research interests include design space explo-
ration, machine learning, deep learning, and optimization methods with
applications in VLSI CAD.

Dr. Geng received the Best Paper Award nomination from ASPDAC in
2019.

Yuzhe Ma (Member, IEEE) received the B.E. degree
from the Department of Microelectronics, Sun Yat-
sen University, Guangzhou, China, in 2016, and the
Ph.D. degree from the Department of Computer
Science and Engineering, Chinese University of
Hong Kong, Hong Kong, in 2020.

He has interned with Cadence Design Systems,
San Jose, CA, USA, NVIDIA Research, Austin, TX,
USA, and Tencent Youtu X-Lab, Shenzhen, China.
His research interests include VLSI design for man-
ufacturing, physical design, and machine learning on
chips.

Dr. Ma received the Best Paper Award from ASPDAC in 2021, the Best
Student Paper Award from ICTAI in 2019, the Best Paper Award Nomination
from ASPDAC in 2019, and the Best Poster Research Award from Student
Research Forum of ASPDAC in 2020.

Qi Xu (Member, IEEE) received the Ph.D. degree
in electronic science and technology from University
of Science and Technology of China (USTC), Hefei,
China, in 2018.

He is currently an Associate Professor with the
School of Microelectronics, USTC. His research
interests include physical design automation and
design for reliability for 3-D integrated circuits.

Jin Miao received the bachelor’s degree in electrical
engineering from Zhejiang University, Hangzhou,
China, in 2010, and the Ph.D. degree in electrical
and computer engineering from The University of
Texas at Austin, Austin, TX, USA, in 2014.

After graduation, he has worked as a Research
and Development Software Engineer with Cadence
and Synopsys, San Jose, CA, USA. He is cur-
rently a Software Engineer with Google, Mountain
View, CA, USA. He has broad interests in com-
puter science and engineering, as well as emerging
technologies.

Dr. Miao has been serving as a reviewer or TPC member for a number of
journals and conferences, including IEEE TRANSACTIONS ON COMPUTERS,
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED

CIRCUITS AND SYSTEMS, IEEE TRANSACTIONS ON VERY LARGE SCALE

INTEGRATION SYSTEMS, DAC, ASPDAC, and NEWCAS.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 19,2022 at 00:24:30 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TCAD.2021.3107250
http://dx.doi.org/10.1109/TCAD.2021.3112637

2670 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 8, AUGUST 2022

Subhendu Roy (Member, IEEE) received the
B.E. degree in electronics and telecommunica-
tion engineering from Jadavpur University, Kolkata,
India, in 2006, the M.Tech. degree in electronic
systems from the Indian Institute of Technology
Bombay, Mumbai, India, in 2009, and the
Ph.D. degree in electrical and computer engineer-
ing from the University of Texas at Austin, Austin,
TX, USA, in 2015.

He is currently a Senior Principal Software
Engineer with Cadence Design Systems, San Jose,

CA, USA. Earlier he worked full-time in Intel, San Jose, and Atrenta, Noida,
India (currently acquired by Synopsys), and as a summer intern with IBM T. J.
Watson Research Center, Yorktown Heights, NY, USA, and Mentor Graphics,
Fremont, CA, USA. He has worked on various areas, such as clock tree synthe-
sis, adder synthesis, power optimization, gate-sizing, reliability, and machine
learning-guided design space exploration.

Dr. Roy was a recipient of the Best Paper Award at ISPD’14.
He has served as a reviewer in many journals/conferences, including
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION SYSTEMS,
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I AND II, IEEE
TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS

AND SYSTEMS, TRANSACTION ON DESIGN AUTOMATION OF ELECTRONIC

SYSTEMS, GLSVLSI, ISLPED, and ISCAS.

Bei Yu (Member, IEEE) received the Ph.D. degree
from The University of Texas at Austin, Austin, TX,
USA, in 2014.

He is currently an Associate Professor with the
Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Hong Kong.

Dr. Yu received the seven Best Paper Awards
from ASPDAC in 2021, ICTAI in 2019, Integration,
the VLSI Journal in 2018, ISPD in 2017, SPIE
Advanced Lithography Conference in 2016, ICCAD
in 2013, ASPDAC in 2012, and six ICCAD/ISPD

contest awards. He has served as the TPC Chair of ACM/IEEE Workshop
on Machine Learning for CAD, and in many journal editorial boards and
conference committees. He is an Editor of IEEE TCCPS Newsletter.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 19,2022 at 00:24:30 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

