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Abstract—With the aggressive and amazing scaling of the
feature size of semiconductors, hotspot detection has become a
crucial and challenging problem in the generation of optimized
mask design for better printability. Machine learning techniques,
especially deep learning, have attained notable success on hotspot
detection tasks. However, most existing hotspot detectors suf-
fer from suboptimal performance due to two-stage flow and
less efficient representations of layout features. What is more,
most works can only solve simple benchmarks with apparent
hotspot patterns like ICCAD 2012 Contest benchmarks. In this
article, we first develop a new end-to-end hotspot detection
flow where layout feature embedding and hotspot detection are
jointly performed. An attention mechanism-based deep convo-
lutional neural network (CNN) is exploited as the backbone to
learn embeddings for layout features and classify the hotspots
simultaneously. The experimental results demonstrate that our
framework achieves accuracy improvement over prior arts with
fewer false alarms and faster inference speed on much more
challenging benchmarks.

Index Terms—Attention module, deep metric learning, layout
hotspot detection, via layer benchmark.

I. INTRODUCTION

AS THE technology node of integrated circuits scales down
to 7 nm and beyond, the techniques for lithographic

processes are supposed to manage the ever-shrinking feature
size. However, owing to the delayed progress of lithography
techniques, lithographic processes variations emerge during
the manufacturing, and thus lead to yield loss. To combat the
variations, different kinds of approaches are developed. One
is mask optimization through various resolution enhancement
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techniques (RETs) [1]–[8]. Another way to lighten variations,
especially for some sensitive layout patterns (a.k.a. lithography
hotspot), is so-called hotspot detection. Detecting these hotspots
at the early stage of mask synthesis is imperative. Many tech-
niques of early detection for hotspots have been proposed to
ensure manufacturability. The prevalently applied lithography
simulation technique could attain high accuracy, nevertheless,
it is also known to be pretty time consuming. Therefore, two
other types of quick detection methods are proposed as alter-
natives to lithography simulation. One is based on pattern
matching [9], [10], and the other is machine learning driven.
The pattern matching approaches take input predefined pattern
library of known hotspots, but they cannot detect unknown
hotspots. Fortunately, detection methods which are built upon
machine learning methodologies [11]–[16], and particularly
deep learning techniques [17]–[25], are able to offer fast and
accurate solutions to both known and unknown hotspot patterns.

For example, motivated by the recent advances of
deep learning in other domains like computer vision,
Yang et al. [17] first proposed the hotspot detector based on
a shallow convolutional neural network (CNN), where lay-
out clips were first converted into the frequency domain via
discrete cosine transform (DCT) before fed into networks. To
extract DCT features in different scales, the inception modules
are introduced in the work [18] to modify the structure of neu-
ral networks. In [19], to overcome the limitation imposed by
the number of labeled hotspots or nonhotspots, the concept
of semi-supervised learning was introduced so that unlabeled
data can be harnessed as well. By considering input layout
clips as binary images, Jiang et al. [20] employed a binarized
neural network to further speed up the detection process.

These prior arts have been proven very effective, neverthe-
less, most of them fall into a two-stage flow, where layout fea-
ture extraction and detection process are separable. Moreover,
existing techniques for layout feature extraction lack both good
understandings of similarity among different layout clips and
guidances from supervised information. Only a few hotspot
detectors [20] ensemble the feature extraction and detection
into a one-stage framework. Unfortunately, the features which
are automatically learned by convolutional kernels may be
ill-separated owing to the lack of discrimination-oriented sim-
ilarity metrics. Without an effective weighing procedure on
the features per their informative significance, those redun-
dant or even misleading features may very well degrade the
overall prediction accuracy and performance. In light of these
facts, those existing works can only solve simple benchmarks
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(a) (c)

(b)

Fig. 1. Snapshots of layout clips from ICCAD12 benchmarks [26] and
Barnes-Hut t-SNE [27] visualizations of feature embeddings on the same
benchmarks. (a) Examples of hotspots and nonhotspots. (b) DCT feature
embeddings of TCAD’19 [17]. (c) Feature embeddings of our proposed
framework. “HS” is used to represent hotspot clips, while “NHS” refers to
nonhotspot clips.

(a) (c)

(b)

Fig. 2. Snapshots of layout clips from the via layer benchmarks
and Barnes-Hut t-SNE visualizations of feature embeddings on the same
benchmarks. (a) Examples of hotspots and nonhotspots. (b) DCT feature
embeddings of TCAD’19. (c) Feature embeddings of our proposed frame-
work. The via layer benchmarks consist of via patterns that contain vias and
model-based SRAFs. Here, “via” refers to the via connecting multiple metal
layers.

with apparent hotspot patterns like ICCAD 2012 Contest
benchmarks, whilst in the case where nonhotspot patterns and
hotspot patterns become increasing similar brings a big chal-
lenge to them. To visualize our concern, we sample some
hotspots and nonhotspots from ICCAD12 [26] and new via
layer benchmarks as exemplars in Figs. 1(a) and 2(a). Besides,
the embeddings learned from TCAD’19 and ours on both
benchmark suites are projected into a two-dimension space
[shown in Figs. 1(a) and (c) and 2(b) and (c)]. It can be seen
that, in easy benchmarks like ICCAD12, the layout clips shar-
ing the same label are usually similar, while the layout clips
from different classes have prominent differences. Opposite
to ICCAD12 benchmarks, layout clips in the via benchmarks
from different classes may look very similar. What’s worse,
the lack of diversity of via layer patterns introduces an addi-
tional challenge to existing hotspot detectors. According to
the distributions of layout feature embeddings displayed in
Figs. 1(b) and 2(b), we can infer that although existing works
like TCAD’19 work well on ICCAD12 benchmarks, they may
have poor performance on more challenging benchmarks. As
demonstrated above, layout patterns in such easy benchmarks

like ICCAD12 contain too much discriminative information to
determine the true states of hotspot detectors.

In preliminary work, we argue that it is of great importance
to learn good embeddings of layout clips, which can be assem-
bled into a one-stage hotspot detection flow. In accordance
with this argument, we have proposed an end-to-end detection
framework in [23] where the multiple tasks, learning embed-
dings, and classification, are jointly performed and mutually
benefited. Furthermore, in order to focus on important fea-
tures and suppressing unnecessary ones, we have introduced
an attention module and incorporate it into [23]. To the best
of our knowledge, [23] is the first work for layout embedding
learning seamlessly combining with hotspot detection task, and
there is no prior work applying attention mechanism-based
deep metric learning into hotspot detection. However, there
still exist some defects in our preliminary design. For example,
the vanilla convolution operator is not able to fully capture the
influences caused by the propagation of diffracted light from a
mask pattern. A lager receptive field of convolution operator is
in demand. Additionally, the constant margin in triplet-based
metric learning loss would result in over- or under-sampling
problems, and consequently hinder the fitting of the model.
The relationships among the layout and its own augmented
versions like flipped and rotated ones are worth to be con-
sidered. To evaluate the true efficacy of existing works and
the proposed detector, we adopt a much more challenging
benchmark suite. Figs. 1(c) and 2(c) prove the performance
of the proposed framework on both easy and more challeng-
ing benchmarks to some extent. Our main contributions are
listed as follows.

1) Apply attention mechanism to learn better feature
embeddings.

2) Leverage deep layout metric learning model to learn the
good layout feature embeddings.

3) Incorporate feature embedding and hotspot detection
into a one-stage multibranch flow.

4) The deformable convolution operator is introduced to
further boost the preliminary hotspot detector.

5) Redesign the loss function with adding a self-adaptive
margin in the original triplet layout learning loss.

6) Consider a self-contrastive layout learning loss on dif-
ferent augmented views of the same layout clip image.

7) Analyze the generalized representation ability of triplet-
based deep metric learning algorithm.

8) A more challenging benchmark suite that fills the void
created by previous easy benchmarks is adopted to test
the performance of the detectors.

9) The proposed detector improves the performance on
accuracy, false alarm, and runtime of inference com-
pared to the state-of-the-art frameworks.

The remainder of this article is organized as follows.
Section II introduces some preliminaries on metrics and
problem formulation in the article. Section III first gives a
whole view of the proposed preliminary framework, then
illustrates its backbone network with the applied inception
and attention modules, as well as the multibranch design.
Section IV describes the loss functions and some training
strategies of the preliminary detection framework. Section V

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 19,2022 at 00:23:21 UTC from IEEE Xplore.  Restrictions apply. 



GENG et al.: HOTSPOT DETECTION VIA ATTENTION-BASED DEEP LAYOUT METRIC LEARNING 2687

shows the details of the enhanced hotspot detector. Section VI
depicts the new via benchmarks and then provides experimen-
tal results, followed by the conclusion in Section VII.

II. PROBLEM FORMULATION

Owing to the manufacturing process variation, designed
layout patterns stochastically cause defects on wafers during
the lithographic process. These sensitive patterns may cause
reduction of manufacturing yield or even potential circuit fail-
ures. Layout patterns that are sensitive to process variations
are defined as hotspots.

Accordingly, our task can be defined as an image classifi-
cation problem if layout clips are translated into images. The
label of a layout clip is given according to the information
that whether the core region [26] of the clip contains hotspots
or not.

We adopt the same metrics exploited in previous work to
evaluate the performance of our proposed hotspot detector. The
following show definitions of these metrics.

Definition 1 (Accuracy): The ratio between the number of
correctly categorized hotspot clips and the number of real
hotspot clips.

Definition 2 (False Alarm): The number of nonhotspot clips
that are classified as hotspots by the classifier.

With the evaluation metrics above, our problem is formu-
lated as follows.

Problem 1 (Hotspot Detection): Given a collection of clips
containing hotspot and nonhotspot layout patterns, the objec-
tive of deep layout metric learning-based hotspot detection
is training a model to learn optimal feature embeddings and
classify all the clips so that the detection accuracy is maxi-
mized whilst the false alarm is minimized with a less runtime
overhead.

III. ARCHITECTURE OF PRELIMINARY HOTSPOT

DETECTOR

A. Overall Framework

The prior arts are either in a two-stage framework or lacking
discriminative feature extractor. Especially, isolating the lay-
out feature extraction and follow-up prediction may make the
whole framework be susceptible to converge to suboptimal
performance. The recent success of applying the end-to-end
learning structure in numerous EDA applications [28]–[30]
has demonstrate the argument in another angel. Considering
the concern and discovery, our proposed preliminary algorithm
adopts a well-designed multibranch flow which works in an
end-to-end manner. During the training, the proposed multi-
branch flow simultaneously works on two branches: one is
feature embedding and the other is classification. When the
training process finishes, our hotspot detector identifies not
only layout feature embeddings, but also a pretty good bound-
ary to divide the hotspots and nonhotspots in embedding space.
By the merit of the end-to-end nature, our detector is fast and
flexible for both training and inference phases.

Fig. 3 shows the architecture of the proposed framework,
where “⊗” stands for the element-wise multiplication. The
proposed framework is composed of three main components:
1) backbone network which is based on inception structures

Fig. 3. Architecture of the proposed preliminary hotspot detector.

and attention modules. It is shared by two jointly learned
tasks and then is split into two branches. The whole backbone
includes five inception modules, five attention modules, and
one fully connected layer; 2) for deep layout metric learner
branch, it is guided by a triplet loss function to strive for good
embeddings of layout clips; and 3) for hotspot classification
branch, it behaves as an ordinary learning model-based hotspot
detector as in other works.

B. Backbone: Inception Block

Recent progress of deep learning techniques in computer
vision reveals that by virtue of the increasing model complex-
ity, a deeper neural network achieves a more robust feature
expression, and a higher accuracy comparing to a shallow one.
However, deeper networks are susceptible to be overfitted, and
gradient vanish emerges. What is worse, the turn-around-time
at the inference stage and training stage are greatly affected,
too.

In our context, more cases are needed to concern. For
instance, a layout pattern which usually contains several
rectangles is monotonous. Another example is in our via
pattern, the distances between vias and surrounding subreso-
lution assist features (SRAFs), the distances among vias have
pretty large variations. A single-sized kernel cannot capture
multiscale information. To tackle these issues, we employ
an Inception-based structure [31] which consists of several
convolutional kernels with multiple sizes. At the same level,
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Fig. 4. Channel-wise attention module.

these convolutional kernels perform convolution operations
with different kernel scales on layout patterns, and the out-
puts are concatenated in the channel dimension. After going
through pooling layers, the fused feature maps are scaled down
in height and width dimensions. As a result, the feature maps
are comprehensive and rich. The backbone network based on
inception structure is illustrated in Fig. 3.

C. Backbone: Attention Block

Recently presented attention mechanism which mimics
human perception has achieved much success in the computer
vision domain [32]–[34]. With attention techniques, neural
networks focus on the salient parts of input features and gener-
ate attention-aware feature maps. In order to capture structures
of feature maps better, we exploit this mechanism and embed
the corresponding modules into our backbone network.

As we know, the features include both cross-channel and
spatial information on the back of convolution computations.
Based on that fact, the embedded attention modules can
emphasize informative parts and suppress unimportant ones
along the channel and spatial axes. Channel-wise attention
focuses on the informative part itself, while spatial attention
concentrates on its spatial location. They are complementary
to each other. To fit the motivation, the structure of one atten-
tion module consists of two subparts: one is channel-wise, and
the other is spatial-wise. For a better understanding, we visu-
alize an attention module and zoom in on its intrastructure in
Fig. 3. The whole attention module sequentially infers a 1D
channel attention map, and then a 2D spatial attention map.
Through the broadcasting operation, each attention map will
perform element-wise multiplication with input feature maps.

The whole process of channel-wise attention is concluded
in (1) and (2) visualized in Fig. 4. First, given an input fea-
ture tensor T, spatial information of T is first aggregated by
average-pooling and max-pooling operations, and then two
different spatial context descriptors are produced. Next, two
descriptors go through a shared encoder-decoder network [i.e.,
a single hidden layer perceptron named ED() in (2)], and out-
put feature vectors are merged using element-wise summation.
After activation operation [i.e., defined by σ() in (2)], the
elements of the channel-wise attention masks Ac(T) are first
broadcasted along the spatial dimension, then multiplied with
corresponding elements in feature maps. Finally, the module
outputs the feature tensor T′. In a nutshell, the channel-wise
attention module infers the channel-wise attention masks, and

Fig. 5. Spatial-wise attention module.

each mask will be multiplied element-wisely with input feature
maps

T′ = Ac(T) ⊗ T (1)

Ac(T) = σ(ED(AvgPool(T)) + ED(MaxPool(T))). (2)

We mathematically summarize the computation process for
spatial-wise attention module in (3) and (4), and visualize it in
Fig. 5. First, through pooling operations, we aggregate chan-
nel information of the input feature tensor T′, which is also
the output of the channel-wise attention module. Then, con-
catenate [denoted by Cat() in (4)] two aggregated features
and perform convolution computation [i.e., Conv()] on the
concatenation. After activated by sigmoid function, the spa-
tial attention mask As(T′) is generated. Finally, the mask will
be multiplied with T′ element-wisely, which is shown in the
following:

T′′ = As
(
T′)⊗ T′ (3)

As
(
T′) = σ

(
Conv

(
Cat

(
AvgPool

(
T′), MaxPool

(
T′)))). (4)

D. Multibranch Design

Our end-to-end framework has two jointly performed tasks:
1) hotspot classification and 2) deep layout metric learning.
The two tasks share the backbone network for feature extrac-
tion, but are guided by different loss functions. For the deep
layout metric learner, the proposed triplet loss is directly cal-
culated on the high dimensional vector which is the output
of the fully connected layer in the backbone network. The
learner searches for a good feature embedding which nonlin-
early maps the image representations of layout patterns (i.e.,
gray images) into a new space. Therefore, pairs of hotspot
patterns and nonhotspot patterns can be effectively measured
and separated by the Euclidean distance metric. For hotspot
detection, the main task is to find an appropriate boundary
that well divides hotspots and nonhotspots. Via backpropaga-
tion, the guide information (i.e., gradients) from two branches
update the backbone collectively.

IV. LOSS FUNCTIONS AND TRAINING FOR PRELIMINARY

HOTSPOT DETECTOR

A. Metric Learning Loss in Branch I

Metric learning is typically referred to learning a distance
metric or pursuing an embedding function to map images onto
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a new manifold. Given a similarity metric function, similar
images are projected into a neighborhood, while dissimilar
images are mapped apart from each other. Note that the term
“similar images” means the images share the same label.
Over past decades, the machine learning community has wit-
nessed a remarkable growth of metric learning algorithms
used in a variety of tasks, such as classification [35], clus-
tering [36], image retrieval [37], etc. However, many metric
learning approaches explore only linear correlations, thus may
suffer from nonlinearities among samples. Although kernel
tricks have been developed, it is resource consuming to find
an appropriate one. With a notable success achieved by deep
learning, deep metric learning methods have been proposed to
find the nonlinear embeddings. By taking advantage of deep
neural networks to learn a nonlinear mapping from the origi-
nal data space to the embedding space, deep metric learning
methods measuring Euclidean distance in the embedding space
can reflect the actual semantic distance between data points.

Contrastive loss [38] and triplet loss [39] are two conven-
tional measures which are widely utilized in most existing
deep metric learning methods. The contrastive loss is designed
to separate samples of different classes with a fixed margin and
pull closer samples of the same category as near as possible.
The triplet loss is more effective and more complicated, which
contains the triplets of anchors, positive, and negative samples.
Since the triplet loss takes into consideration of higher-order
relationships in embedding space and thus can achieve bet-
ter performance than the contrastive loss. Therefore, in the
proposed deep layout metric learning, we adopt the triplet loss.

As aforementioned, the goal of deep metric learning aims
at finding a good embedding which is denoted by fw(x) ∈ R

d

with w as the parameter of f in our assumption. The embed-
ding function fw(·) projects the layout pattern x onto a
hypersphere located in a d-dimensional compact Euclidean
space, where distance directly corresponds to a measure of
layout similarity. In other words, the normalization constraint
||fw(x)||22 = 1 is attached to all embeddings. The mechanism
behind the triplet loss is based on the following rules.

1) During training, the layout clips constitute several triplet
instances, where fw(xi), fw(xi

+), and fw(xi
−) denote an

anchor layout clip, a layout clip sharing the same label
with the anchor, and a layout clip which has the opposite
label, respectively.

2) Each triplet instance indicates the triplet relationship
among three layout clips as

S
(
fw(xi), fw

(
xi

−))+ M < S
(
fw(xi), fw

(
xi

+))

∀(fw(xi), fw
(
xi

+), fw
(
xi

−)) ∈ T. (5)

In (5), S is the similarity measurement metric and can
produce the similarity values always satisfying the triplet
relationship. M refers to a margin between positive and
negative pairs, and T collects all valid triplets in the
training set with |T| = n.

3) The Euclidean distance is employed as the metric to
measure the similarity between the embedding pairs in
the new feature space.

Fig. 6. Visualization of the proposed deep layout metric learning. In the
worst case, the anchor is much similar to the negative than to the positive.
In other words, in original space, the distance between the anchor and the
negative is shorter than the one between the anchor and the positive. But
after deep layout metric learning, in a new manifold, the two hotspot layout
clips are kept apart from the nonhotspot clip.

To explore the relationship among triplet layout clips, the
objective function of deep layout metric learning can be for-
mulated as a loss function Lmetric((fw(xi), fw(xi

+), fw(xi
−))),

which is based on the hinge loss [displayed in (6a)]
with Constraint (6b). Lmetric((fw(xi), fw(xi

+), fw(xi
−))) is also

called empirical loss. Minimizing the empirical loss is equiv-
alent to minimizing the violations on the relationship defined
in (5)

min
w

1

n

n∑

i=1

max
(

0, M + ||fw(xi) − fw
(
xi

+)||22

− ∥∥fw(xi) − fw
(
xi

−)∥∥2
2

)
(6a)

s.t. ‖fw(xi)‖2
2 = 1 ∀(fw(xi), fw

(
xi

+), fw
(
xi

−)) ∈ T.

(6b)

The illustration for the proposed loss is shown in Fig. 6. It can
be seen that after training, the layout clips of the same category
will be kept apart from the one which is from the other class.
The proposed layout triplet loss attempts to enforce a margin
between each pair of layout clips from hotspot to nonhotspot.
To prove the property, we calculate the gradients of Lmetric
with respect to the embedding vectors by the following:

∂Lmetric
(
fw(xi), fw

(
xi

+), fw
(
xi

−))

∂fw
(
xi

+)

= 2

n

(
fw
(
xi

+)− fw(xi)
)

· 1
(
Lmetric

(
fw(xi), fw

(
xi

+), fw
(
xi

−)) > 0
)

(7a)

∂Lmetric
(
fw(xi), fw

(
xi

+), fw
(
xi

−))

∂fw
(
xi

−)

= 2

n

(
fw(xi) − fw

(
xi

−))

· 1
(
Lmetric

(
fw(xi), fw

(
xi

+), fw
(
xi

−)) > 0
)

(7b)

∂Lmetric
(
fw(xi), fw

(
xi

+), fw
(
xi

−))

∂fw(xi)

= 2

n

(
fw
(
xi

−)− fw
(
xi

+))

· 1
(
Lmetric

(
fw(xi), fw

(
xi

+), fw
(
xi

−)) > 0
)

(7c)
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where 1 is the indicator function which is defined as

1(x) =
{

1, if x is true
0, otherwise.

(8)

When the distance constraint is satisfied, i.e., there are no
violations on the triplet relationship, gradients become zeros.
As a result, triplet loss Lmetric allows the layouts from one
category to live on a manifold, while still keep the distance
and hence discriminative to another category.

We further analyze the effectiveness of triplet loss by offer-
ing its bias between the generalization error and the empirical
error. In other words, we evaluate the upper bound of the
network representation ability in a more mathematical way.
In the following descriptions, for a better explanation, we use
(xi, xj, xk) expressing a valid triplet. Before showing the bias,
we readily extend the pair-based definitions in [40] to the
triplet scenarios, as in Lemma 1.

Lemma 1: A triplet-based metric learning algorithm has
β-uniform stability (β ≥ 0), if

sup
xi,xj,xk∼D

∣∣
∣�
(
fwT

(·), xi, xj, xk
)− �

(
fwTi

(·), xi, xj, xk

)∣∣
∣

≤ β ∀T,Ti (9)

where � indicates a loss function, Ti is the training set T

with sample xi replaced by an independent and identically dis-
tributed exemplar x′

i, and D is some kind of distribution. fwT
(·)

and fwTi
(·) are mapping functions learned over the training set

T and Ti, respectively.
Theorem 1: Assume � be a loss function upper bounded

by B ≥ 0, and let T be a training set consisting of n valid
triplets drawn from distribution D, and fwT

(·) the mapping
function parameterized by w which is learned over the train-
ing set T by a β-uniformly stable deep metric learner. The
empirical loss over T is L(fwT

(·)), while the expected loss
of learned mapping function fwT

(·) over distribution D is
Exi,xj,xk∼D[�(fwT

(·), xi, xj, xk)]. Then, for 0 < δ < 1, with
confidence 1-δ approaching to 1, the following inequality
exists:

Exi,xj,xk∼D

[
�
(
fwT

(·), xi, xj, xk
)]− L

(
fwT

(·))

≤ 3β + (2nβ + 3B)

√
log 1

δ

2n
. (10)

The proof of Theorem 1 is detailed in the Appendix. It
can be observed that with the increasing of the number of
training triplets, the bias converges. Our analyses for general-
ized representation ability of triplet-based deep metric learning
demonstrate the performance of the proposed layout metric
learner.

B. Classification Loss in Branch II

Except for the same backbone network, there are
two fully connected layers in our classification branch.
Different from those hotspot detectors in previous deep
learning-based work, the proposed classifier predicts labels
based on the features learned by the backbone network
and deep layout metric learner. Like prior art [17], the

loss function for classification, defined by Lprediction, is
cross-entropy loss

− (
y log

(
y∗)+ (1 − y) log

(
1 − y∗)) (11)

where y∗ is the predicted probability of a layout clip, while y
is the relevant ground truth (binary indicator).

C. Training Strategies

Hotspot detection is haunted with a crucial issue that rela-
tive datasets (e.g., ICCAD12 benchmark suite [26]), no matter
in academia or industry, are quite unbalanced. That is, the
number of hotspots is much less than that of nonhotspots.
This property results in a biased classification toward the non-
hotspots. Additionally, limited by the bottleneck of hardware,
it is infeasible to compute the arg min or arg max across the
whole training set. Hence, sampling matters in our framework.

What we do is to generate triplets from a balanced mini-
batch in an online fashion. This can be done by constructing
a balanced mini-batch (i.e., the numbers of hotspots and non-
hotspots are equal) in one iteration and then selecting the hard
negative exemplars from within the batch. Here, we divide the
negative samples based on a simple rule that easy negatives
will lead the loss to become zero, whilst the hard negatives
make the loss valid. Since only picking the hardest negatives
leads to bad local minima early during training, we keep all
anchor-positive pairs in a mini-batch while selectivity sample
some hard negatives. Besides hardest negatives, we also con-
sider some negative exemplars which are further away from
the anchor than the positive samples but still hard. Those so-
called “semi-hard” negatives which lie inside the margin obey
the following inequality:

∥∥fw(xi) − fw
(
xi

+)∥∥
2

2 ≤ ∥∥fw(xi) − fw
(
xi

−)∥∥2
2

≤ M + ∥∥fw(xi) − fw
(
xi

+)∥∥2
2. (12)

Aiming at progressively selecting false-positive samples that
will benefit training, this kind of sampling strategy is widely
used in deep metric learning methodologies. Many visual
tasks [41]–[45] have proven its effectiveness. One reason is
that it reduces the number of layout tuples that can be formed
for training, and thus enhances the training efficiency.

V. ENHANCED HOTSPOT DETECTOR

Until now, we have designed an end-to-end, attention
mechanism-based hotspot detector trained with a composite
loss containing a triplet layout pattern loss and a classification
loss. Nevertheless, there still exists some room to improve the
performance. For instance, the predefined margin in the triplet
loss function may result in under- and over-fitting problem
and thus affects the discrimination of layout embeddings.
Therefore, based on the preliminary design, three new concepts
and techniques are introduced for further enhancement.

A. Deformable Convolution Operator in Backbone Network

As aforementioned, in hotspot detection, the hotspots may
exist in the center of a layout. Due to the light propagation,
diffraction, and interference of the lithography process, it also
impacts the metals (polygons, vias) all around. The vanilla
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convolution operator is not able to fully capture the influences
caused by the propagation of diffracted light from a mask pat-
tern. Besides, enlarging the receptive field to extract the latent
information like via-via distance, metal-metal distance is also
in demand. Hence, we introduce the deformable convolution
operation [46] into the inception block of our backbone, which
adds 2-D offsets to the regular grid sampling locations in the
standard convolution. It enables free-form deformation of the
sampling grid. By introducing additional convolutional lay-
ers, the offsets are learned from the preceding feature maps.
The deformable convolution operator is locally, densely, and
adaptively perceiving the possible hotspots with an affected,
nonregular region in input layout features. With the deformable
convolution operator, our detector have an effective receptive
field when perceiving input layout features.

This convolution in 2-D space consists of two steps. The
first is sampling using a regular grid map G over the input
feature map xinput, and the second is the summation of sam-
pled values weighted w. The grid G defines the receptive
field size and dilation. For example, given a convolutional
kernel of K = 9 sampling locations and |G| = K = 9,
G = {(−1,−1), (−1, 0), . . . , (1, 1)} defines a 3 × 3 convo-
lutional kernel of dilation 1. Let l0 denote a position on the
output feature map xoutput. The deformable convolution can
then be expressed as

xoutput(l0) =
∑

lk∈G
w(lk) · xinput(l0 + lk) (13)

where lk lists all feasible locations in G. In deformable
convolution, the regular grid G is augmented with offsets
{�lk | k = 1, . . . , K} in which K = |G|. Now, (13) can be
written as following:

xoutput(l0) =
K∑

k=1

w(lk) · xinput(l0 + lk + �lk). (14)

It can be observed that the sampling is on the irregular and off-
set locations lk+�lk. Since the offset �lk is usually fractional,
in practical implementation, bilinear interpolation is utilized to
attain (14)

xinput(l) =
∑

m

G(m, l) · xinput(l). (15)

In (15), l equalling to l0 + lk + �lk still refers to a fractional
location, and m indicates all possible integral locations in the
feature map xinput. G(·, ·) is a 2-D bilinear interpolation kernel
which can be separated into two 1-D kernels as: G(m, l) =
g(mx, lx) · g(my, ly) where g(u, v) = max(0, 1 − |u − v|).

The offsets �lk is obtained via a separate convolution layer
applied over the same input feature maps x. This convolu-
tional layer is of the same spatial resolution and dilation as
the current convolutional layer. The output offset fields have
the same spatial resolution as the input feature map. For exam-
ple, assuming a convolutional kernel of K sampling locations,
the output is of 2K channels corresponding to the learned
offsets {�lk}K

k=1. During training, the kernel weights in this
separate convolution layer are initialized to zero. Thus, the
initial values of {�lk}K

k=1 is zero. The learning rates of the
added convolutional layers for offset and modulation learning

(a) (b)

Fig. 7. Visualization of standard and deformable convolutions with a 3 × 3
kernel size. (a) Vanilla convolution. (b) Deformable convolution. Each samples
9 pixels in the layout feature map. The deformable convolution has a larger
receptive field size and thus can capture more information about neighbor vias
and the via distances.

are set to 0.1 times those of the existing layers. Both the con-
volutional kernels for generating the output features and the
offsets are learned simultaneously. To learn the offsets, the gra-
dients are back-propagated via (15). For a better understanding
of the deformable convolution operation, we visualize it with
a standard convolution operation in Fig. 7.

B. Self-Adaptive Margin-Based Triplet Loss

In the proposed preliminary hotspot detector, we have
designed a triplet loss exploring the similarities among tri-
layouts and learning the good feature embedding. But the
loss (6) imposes a constant margin M. The margin parameter
is manually predefined based on the domain knowledge, which
leads to bias and inflexibility. The intrinsic reason is twofold.
In our online semi-hard negative mining, a small threshold
value would produce few semi-hard samples. Consequently,
the model would converge slowly and be stuck in subopti-
mality (usually hard and semi-hard samples contribute to the
loss). In contrast, a large threshold would result in too many
semi-hard training samples to make the model be overfitted.
Since it impacts the performance of the loss, redesigning a
dedicated, and more flexible triplet loss is crucial.

The essence of margin is a threshold boundary separating
anchor-positive and anchor-negative pairs. Inspired by the iso-
tonic regression that estimating a margin separately and then
penalizing scores relative to the margin, we propose our self-
adaptive margin-based loss. The main idea behind it is the
avoidance of the over- or under-sampling problems aforemen-
tioned with the assumption that the distances (or similarities)
between layout features of the positive pairs or negative pairs
are samples from two distinct distributions, i.e., the positive
pair distance distribution and the negative pair distance distri-
bution. The self-adaptive margin threshold is substantially used
to express the average distance of the two distributions, which
should have a positive relationship with the average distance.
So we exploit the average distance of two distinct distributions
to self-adaptively represent our margin thresholds. The margin
threshold is self-adaptive based on the two distributions of the
trained model.

We first write the equation for adaptive margin Ma

Ma = c
(
μ− − μ+) = c

(
1

N−
n∑

i

∥∥fw(xi) − fw
(
xi

−)∥∥2
2

− 1

N+
n∑

i

∥∥fw(xi) − fw
(
xi

+)∥∥2
2

)

(16)
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where with N+ and N− the numbers of positive and negative
pairs, respectively, μ+ and μ− are mean values of two pair
distance distributions, and c is the correlation constant (1 in
the experiment). Note that in the implementation, for efficient
computing, we only compute the mean of two distributions in
each batch. After substituting the constant M with the proposed
adaptive alternative Ma, the loss function denoted as La−metric
is showed in the following:

min
w

1

n

n∑

i=1

max
(

0, μ− − μ+ + ∥∥fw(xi) − fw
(
xi

+)∥∥2
2

− ∥∥fw(xi) − fw
(
xi

−)∥∥2
2

)
(17a)

s.t. ‖fw(xi)‖2
2 = 1 ∀(fw(xi), fw

(
xi

+), fw
(
xi

−)) ∈ T.

(17b)

Assume that the balanced batch size is n, and N+ and N− are
set to be (n/2) and (n/2), respectively. The gradients of (17)
are displayed in (18). The original loss function (6) has a
property that if there is no violation on the triplet relationship,
associated gradients tend to be zeros. It can bee seen that
in (18a) and (18c), this property still holds.

C. Self-Contrastive Layout Learning for Hotspot Detection

Learning effective layout pattern representations is a still
key challenge in DFM-driven applications as it allows for
efficient training on downstream tasks. In preliminary frame-
work, we have explored the relationships among different
layouts in a triplet structure. However, the correlations among
the layout and its own augmented views (e.g., flipped and
180-deg-rotated versions of the layout) are not considered

∂La−metric
(
fw(xi), fw

(
xi

+), fw
(
xi

−))

∂fw
(
xi

+)

= 2n + 4

n2

(
fw
(
xi

+)− fw(xi)
)

· 1
(
La−metric

(
fw(xi), fw

(
xi

+), fw
(
xi

−)) > 0
)

(18a)

∂La−metric
(
fw(xi), fw

(
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+), fw
(
xi

−))

∂fw
(
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−)

= 2n − 4

n2

(
fw(xi) − fw

(
xi

−))

· 1
(
La−metric

(
fw(xi), fw

(
xi

+), fw
(
xi

−)) > 0
)

(18b)

∂La−metric
(
fw(xi), fw

(
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+), fw
(
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−))

∂fw(xi)

= 2n − 4
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(
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(
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−)− fw
(
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+))

· 1
(
La−metric

(
fw(xi), fw

(
xi

+), fw
(
xi

−)) > 0
)
. (18c)

In the computer vision domain, many different training
approaches have been proposed to learn effective representa-
tions, usually relying on visual pretext tasks. Among them, dis-
criminative approaches [47], [48] based on contrastive learning
in the latent space have recently shown great potential, achiev-
ing state-of-the-art results. State-of-the-art contrastive methods
are trained by reducing the distance between representations
of different augmented views of the same image. This kind of
technique learns representations using objective functions sim-
ilar to those used for supervised learning, but train networks

to perform pretext tasks in an unsupervised manner. It is
extremely useful in hotspot detection. Because the problem
that the hotspot clip number is much less than the nonhotspot
clip number always exists. Compared with the previous works
like [17] which performs data augmentation only to enrich
the diversity of the dataset, applying the aforementioned self-
contrastive learning methods in hotspot detection would have
a bigger promise.

Inspired by the notable success of recently proposed con-
trastive learning algorithms, we enhance our detector network
by redesigning the original architecture. The new architecture
is expected to learn representations by maximizing agreement
between differently augmented views of the same data exam-
ple via a contrastive loss in the latent space. Three components
constitute the architecture. First is the data augmentation mod-
ule which transforms any given layout clip resulting in two
correlated views of the same layout clip. Assume that the
source of the lithography system is up-down and left-right
symmetric. For hotspot detection, we can apply the following
simple augmentations: 180-deg rotation, top-bottom, and left-
right flipping. It is worth mentioning that in hotspot detection,
we have to thoroughly select augmentation operations owing
to the symmetry of the system. For example, for a dipole illu-
mination, a hotspot layout pattern may become nonhotpot if
it is rotated by 90 degrees. This is one of the substantial dif-
ferences between the deep learning-based hotspot detection
and typical classification in the computer vision field. These
augmentations would not change the label category. The sec-
ond part is the inception structure- and attention module-based
CNN with its replication as its counterpart. They extract rep-
resentation vectors from an original layout and its augmented
layout pattern. We use this new backbone to obtain the embed-
dings in the latent space. The two kinds of representations are
projected into a space where self-contrastive loss is applied.
The last one is a contrastive loss function defined as Lsc,
where “sc” stands for “self-contrastive.” We write the loss
function in

Lsc �
∑

i

(1 − Cii)
2 + λ

∑

i

∑

j �=j

C2
ij (19)

where λ is a positive constant trading off the importance of the
first and second terms of the loss, and where C is defined as
the cross-correlation matrix which computes the correlations
between the outputs of the two identical networks along the
batch dimension. Assuming the latent embeddings of two input
views are eo and ea, the element Cij in C is computed via

Cij =
∑

b eo
b,iz

a
b,j√

∑
b

(
eo

b,i

)2
√
∑

b

(
ea

b,j

)2
. (20)

More specifically, the self-contrastive learning flow first pro-
duces augmented views for all layout clips of a batch sampled
from a layout clip dataset. Then, the batches of augmented
views and original views are fed into the proposed backbone,
producing batches of latent layout embeddings of two views,
respectively. Ultimately, the self-contrastive learning loss is
computed and back-propagated.
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Fig. 8. Architecture of the enhanced hotspot detector.

D. Overall Architecture of the Enhanced Hotspot
Detection Flow

The illustration of the learning diagram of the proposed
enhanced hotspot detector is in Fig. 8. The learning flow
of the enhanced detector still works in an end-to-end, multi-
branch manner. We replace some vanilla convolution operators
with the deformable convolutions in inception blocks, while
the attention modules keep the same as those in the prelimi-
nary hotspot detector. It can be seen that the backbone looks
like the siamese network structure since the learning flow of
our detector includes the diagram of self-contrastive learn-
ing on different augmented views of the same layout inputs.
The loss Lsc (19) maximizes the agreement between differ-
ently augmented views of the same layout input. Besides, the
self-adaptive margin-based triplet loss La−metric [namely, (17)]
substitutes for the original Lmetric [i.e., (6)] with a constant
margin. On the other hand, we still keep the loss func-
tion defined by Lprediction in (11) for classification. During
training, the total loss which is equivalent to the summa-
tion of Lsc, La−metric, and Lprediction back-propagates the
gradients to update the whole network. To avoid confusion,
we use the red arrows marking the inference flow of the
framework, in other words, the route to detect the layout
hotspots.

TABLE I
BENCHMARK STATISTICS

VI. EXPERIMENTAL RESULTS

The implementation of our framework is in Python with
the TensorFlow library [49], and we test it on a platform
with the Xeon Silver 4114 CPU processor and Nvidia TITAN
Xp Graphic card. To verify the effectiveness and efficiency of
our detector, two benchmarks are employed. One is ICCAD12
benchmarks [26], and the other is a more challenging via
layer benchmark suite which is under 45 nm technology node.
For fair comparisons against previous works, following these
arts, all 28 nm designs in ICCAD12 benchmarks [26] are
merged into a unified case named ICCAD12. The details for
ICCAD12 and the via benchmarks are listed in Table I.
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TABLE II
COMPARISON WITH STATE OF THE ARTS

Columns “Train HS#” and “Train NHS#” list the total num-
ber of hotspots and the total number of nonhotspots in the
training set, whilst columns “Test HS#” and “Test NHS#”
refer to the total number of hotspots and the total number
of nonhotspots in the testing set. “Size/Clip (μm2)” shows
the resolution for each benchmark. It is manifest that the via
benchmark suite has four individual cases, which are arranged
in order of the density of target designs. For example, Via-1
has the highest density of target designs in its layout clips
among other cases. As a result, it contains the most hotspot
patterns. In a low-density case, like Via-4, the number of
hotspot clips are reduced accordingly. We also merge all four
small cases into a big one named “Via-Merge.” Note that,
as listed in Table I, images in the testing set of ICCAD12 have
a resolution of 3600 × 3600 which is larger than the images
in the via benchmarks of 2048×2048, and in all benchmarks,
the pixel size is 1 nm.

Mask images in our employed benchmarks are from distinct
stages of optical proximity correction (OPC), and have differ-
ent targets. For the ICCAD12 benchmark, layout patterns are
before OPC, while regarding the rest via layer benchmarks,
they are from intermediate OPC results (i.e., inserting SRAFs
without OPC). We expect to mimic two scenarios. One is to
target at finding and revising problematic designs at an early
stage of the whole layout verification flow which is associ-
ated with ICCAD12 benchmark. This benchmark is labeled
according to the results of the entire layout verification flow
containing OPC and lithography simulation. The other is to
demonstrate the potential of incorporating the hotspot detec-
tors into OPC engines and facilitate the procedure, which
corresponds to the via layer benchmarks (each layout has
model-based SRAFs and un-OPCed vias). The labeling on
hotspot or nonhotspot patterns in via layer benchmarks is
based on the lithography simulation results of the current OPC
step.

Table II summarizes the comparing results between the
proposed frameworks and several state-of-the-art hotspot
detectors. Column “Bench” lists six benchmarks used in our
experiments. Columns “Accu,” “FA,” and “Time” are hotspot
detection accuracy, false alarm count, and detection run-
time, respectively. Columns “TCAD’19 [17],” “DAC’19 [20],”
“ASPDAC’19 [19],” and “JM3’19 [18]” denote the results
of selected baseline frameworks, respectively. The rest two
columns, “ADM-HSD” and “eADM-HSD,” stand for pre-
liminary hotspot detection framework proposed in [23] and
the enhanced detection flow presented in this work. We can

see that ADM-HSD outperforms TCAD’19 averagely with
15.22% improvement on detection accuracy and 2% less false
alarm penalty, while the enhanced flow, eADM-HSD, sur-
pass ADM-HSD with an average accuracy of 91.42% and
further decrease on the false alarm. Besides, ADM-HSD and
eADM-HSD behaves much better on average detection accu-
racy compared to 74.67%, 83.06%, 67.48%, and 62.9% for
TCAD’19, DAC’19, ASPDAC’19, and JM3’19, respectively.
Moreover, the advantage of the proposed two one-stage multi-
branch flows can also be noticed that they achieve almost 3×
speedup compared to previous two-stage flows.

Note that DAC’19 exhibits a slightly better accuracy on
ICCAD12 case, it suffers from high false alarm penalties over
almost all cases due to the nature of the binarized neural
network. It is worth mentioning that to compare the detection
performance in an easier fashion (i.e., evaluating the accuracy
with a comparatively close false alarm to the one of [23]), we
adjust the hotspot/nonhotspot threshold in the biased learning
strategy exploited in ASPDAC’19. As a result, both of accu-
racy and false alarm of ASPDAC’19 move upward comparing
with the results presented in our previous work [23]. Besides,
it is crystal lucid that in Table II, the accuracy of most works
like TCAD’19, DAC’19, and ASPDAC’19 on Via-Merge
is higher than that on other via benchmarks. What’s more,
excluding Via-1 case, our proposed works also behave simi-
larly. One main factor for this phenomenon is that the number
of the hotspot and nonhotspot layout patterns in Via-Merge
are much larger than the others. Meanwhile, the diversity of
Via-Merge is also far more abundant than others. To put
it from another angle, the models have more chance to be
calibrated better with the training dataset of the Via-Merge
benchmark. When it turns to our framework, as shown by
Theorem 1 with the proof in the Appendix, with the increasing
of the number of training triplets, the generalized representa-
tion ability of triplet-based deep metric learning have high
probability to get improved.

An ablation study is performed on the preliminary
flow [23] to investigate how different configurations affect the
performance. Fig. 9 illustrates the contribution of attention
module, inception block, and layout metric learning loss to
our flow. “w/o. Atten” refers to the detector without attention
modules, “w/o. Incept” stands for the detector with inception
blocks replaced by vanilla convolutional layers, “w/o. Metric”
denotes the detector trained without layout metric learning
loss, whilst “Full” is our detector with entire techniques. The
histogram shows that with attention modules, 1.29% accuracy
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(a) (b)

Fig. 9. Comparisons among different configurations on (a) average accuracy
and (b) average false alarm of the preliminary hotspot detector (ADM-
HSD) [23].

(a) (b)

Fig. 10. Comparisons among new different settings on (a) average accuracy
and (b) average false alarm of the enhanced hotspot detector.

improvement without additional false alarms on average is
achieved, which confirms that the attention modules help
the backbone network extract feature more efficiently. With
inception blocks, we get a notable reduction on false alarm
penalties, i.e., 1245 less on average, which means under the
same experiment settings, the inception blocks capture richer
information on layout patterns than vanilla convolutional lay-
ers. Comparing the whole framework with the model trained
without layout metric learning, the model trained with the lay-
out metric learning loss reduces 49.72% of the false alarm and
get 6.41% further improvement on accuracy.

As the above ablation study on the preliminary flow [23],
we explore the impact of each proposed technique on the
enhanced detection flow as well. Fig. 10 records the con-
tributions of deformable convolution operator in inception
block, the self-adaptive margin in triplet layout metric learn-
ing loss, and the self-contrastive layout learning loss to our
flow. “w/o. Defor” means the detector without deformable con-
volution, and “w/o. aMetric” represents the detector trained
with self-adaptive margin degrading to a constant margin (e.g.,
0.5), and “w/o. Con” corresponds to the detector trained with-
out self-contrastive layout learning loss, while “Full” implies
the enhanced hotspot detector with all proposed techniques.
It can be seen that without applying deformable convolu-
tion operation, the average accuracy drops to 90.72% with
about 5% additional false alarms on average. We can infer
that the deformable convolution operation benefit to the detec-
tion flow by extracting more layout information in a larger
receptive filed. The bar graphs in Fig. 10 also illustrate that
with a self-adaptive margin, the detection flow performs bet-
ter on both two metrics. This observation demonstrates that
the self-adaptive margin can avoid over- and under-fitting
to some extents. Furthermore, comparing with the detector
trained without self-contrastive layout learning, the detector

Fig. 11. Experiment to determine the number of layers.

trained with self-contrastive layout learning loss achieves a
1.41% increase on accuracy and approximately a 7% reduction
on false alarm.

We also conduct an experiment to explore the impact on
detection performance brought about by the number of layers.
Notice that for simplicity, we treat an inception module with
one attention module as a “layer,” and the Via-Merge bench-
mark is exploited in the experiment. The curves in Fig. 11
suggest that as an overall trend, accuracy and false alarm rise
simultaneously regarding the increase of the number of lay-
ers. The accuracy uplifts gradually. By contrast, the upward
trend of false alarm becomes more rapid after the number of
layers going up to 5. Namely, the classification performance
degrades. A similar performance degradation problem has
been exposed and verified in [50]. The results of our experi-
ment demonstrate that configuring the number of layers to be
5 is an optimal solution to tradeoff between the accuracy and
the false alarm.

In spite of the above experimental results and analyses, we
would like to extend the discussion to the scalability concern.
The formulation of our method is the classification on lay-
out clips. The main factor is that directly inserting the larger
full-chip design into a deep learning-based detector may cause
memory issue. Besides, the inappropriate downscaling of the
layout image may change the ratio of width of wire-length
and spacing, which impacts the classification performance.
Instead, we exploit layout clips which are small layout “snip-
pets” contained within a square-shaped region. Generally, they
are clipped from the original layout design via a sliding win-
dow. In other words, the positions of the layout clips in the
full-chip design are known. In addition, the total area of the
clips is in linear proportion to the area of the original full-chip
design. As a consequence, our inference time will linearly rise
respecting to the increase of the area of the full-chip design.
In some extent, classifying the layout clip is equivalent to the
detecting and locating the hotspots in the full-chip design.

VII. CONCLUSION

In this article, for the first time, we have proposed a new
end-to-end hotspot detection flow where layout feature embed-
ding and hotspot detection are simultaneously performed.
Inception block with deformable convolution operation is
exploited in the proposed enhanced hotspot detector to enlarge
the receptive filed. We further exploit attention techniques to
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make backbone network self-adaptively emphasize on more
informative patterns in layout clips. The deep layout metric
learning mechanism with a self-adaptive margin offers a new
solution to extract features from via layer patterns that contain
much less discriminative information than metal layer patterns.
Apart from considering the triplet relationship among different
layouts, we design a self-contrastive layout learning paradigm
to explore the correlations among the layout and its own aug-
mented views. Additionally, to test the true performance of
hotspot detectors, a new via layer benchmark suite has been
used for comprehensive verification. The experimental results
demonstrate the superiority of our framework over current
deep learning-based detectors. The corresponding mathemat-
ical analyses are provided as the theoretical pillars. With the
transistor size shrinking rapidly and the layouts becoming
increasingly complicated, we hope to apply our ideas into
more general VLSI layout feature learning.

APPENDIX

Proof: The proof follows from [51] and [52]. FT is
defined as a replacement to Exi,xj,xk∼D[�(fwT

(·), xi, xj, xk)] −
L(fwT

(·)). In (21a) and (21b), we exploit the triangle inequal-
ity. Then, the upper bound of (21b) is attained by using
Jensen’s inequality and the definition of L. With the com-
bination of the triangle inequality, β-uniform stability, and
B-boundedness, the further bound is found in (21d)
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(·), xj, xk, xi
)

− �
(

fwTi
(·), xj, xk, x′

i

))

+
∑

j �=i,l �=i

(
�
(
fwT

(·), xj, xi, xl
)

− �
(

fwTi
(·), xj, x′

i, xl

))

+
∑

k �=i,l �=i

(
�
(
fwT

(·), xi, xk, xl
)

− �
(

fwTi
(·), x′

i, xk, xl

))
∣∣∣
∣∣∣
+ β

(21c)

≤ β + 3B

n
+ β ≤ 2β + 3B

n
. (21d)

Based on the upper-bound obtained in (21), we utilize
McDiarmid’s inequality [53] to obtain the following:

Pr[FT ≥ ε + E[FT]] ≤ exp

( −2nε2

(2nβ + 3B)2

)
. (22)

With δ set to be exp([−2nε2]/[(2nβ + 3B)2]), ε equals to
(2nβ+3B)

√
([log(1/δ)]/2n). Hence, with confidence 1-δ, (23)

exists

FT ≤ E[FT] + (2nβ + 3B)

√
log 1

δ

2n
. (23)

For an effective bound, β = o(1/
√

n). Assume β = O(np).
Since limn→+∞(−n/[(2nβ + 3B)2]) = −∞, 1 > 2 ∗ (1 + p)

holds and β = o(1/
√

n).
Equation (24) shows the searching computing of the upper

bound of E[FT]. Note that from (24a) and (24b), we har-
ness a fact that replacing the examples with i.i.d exemplars
does not change the expected computation. More specifically,
ET∼D[L(fwT

(·))] = ET∼D[L(fwTi,j,k
(·))]

E[FT] = E
[
Exi,xj,xk∼D

[
�
(
fwT

(·), xi, xj, xk
)]− L

(
fwT

(·))]

(24a)

≤ ET,xi,xj,xk∼D

×
⎡

⎣

∣∣∣∣∣
∣
�
(
fwT
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)

− 1

n

∑
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�
(

fwTi,j,k
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)
∣∣
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⎤

⎦ (24b)

= ET,xi,xj,xk∼D

×
⎡

⎣

∣∣∣∣∣∣

1

n

∑

(xi,xj,xk)∈T
�
(

fwTi,j,k
(·), xi, xj, xk

)

− �
(

fwTi,j
(·), xi, xj, xk

)

+ �
(

fwTi,j
(·), xi, xj, xk

)

− �
(

fwTi
(·), xi, xj, xk

)

+ �
(

fwTi
(·), xi, xj, xk

)

− �
(
fwT

(·), xi, xj, xk
)
∣∣∣
∣∣∣

⎤

⎦ (24c)

≤ ET,xi,xj,xk∼D

×
⎡

⎣1

n

∑

(xi,xj,xk)∈T

∣∣∣�
(

fwTi,j,k
(·), xi, xj, xk

)

− �
(

fwTi,j
(·), xi, xj, xk

)∣∣∣

+
∣∣∣�
(

fwTi,j
(·), xi, xj, xk

)

− �
(
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+
∣∣∣�
(

fwTi
(·), xi, xj, xk

)

− �
(
fwT

(·), xi, xj, xk
)∣∣∣

⎤

⎦ ≤ 3β. (24d)

In (24), fwTi,j,k
(·) is the mapping function learned over the

training set T with xi, xj, xk replaced by x′
i, x′

j, x′
k. Combing

the results of (23) and (24), Inequality (10) holds. Therefore,
with β = o(1/

√
n), the generalization gap will converge in

the order of O(1/
√

n) with high confidence 1-δ. The proof
completes.
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