
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 8, AUGUST 2022 2671

Neural-ILT 2.0: Migrating ILT to Domain-Specific
and Multitask-Enabled Neural Network
Bentian Jiang , Lixin Liu, Yuzhe Ma , Member, IEEE, Bei Yu , Member, IEEE,

and Evangeline F. Y. Young, Senior Member, IEEE

Abstract—Optical proximity correction (OPC) in modern
design closures has become extremely expensive and challenging.
Conventional model-based OPC encounters performance degra-
dation and large process variation, while aggressive approach,
such as inverse lithography technology (ILT), suffers from large
computational overhead for both mask optimization and mask
writing processes. In this article, we developed Neural-ILT, an
end-to-end learning-based OPC framework, which literally con-
ducts mask prediction and ILT correction for a given layout
in a single neural network, with the objectives of: 1) mask
printability enhancement; 2) mask complexity optimization; and
3) flow acceleration. A domain-specific model pretraining recipe,
which introduces the domain knowledge of lithography system,
is proposed to help Neural-ILT achieving faster and better
convergence. Quantitative results show that compared to the
state-of-the-art (SOTA) learning-based OPC solutions and con-
ventional OPC flows, Neural-ILT can achieve 15× to 30×
turnaround time (TAT) speedup and the best mask printability
with relatively lower mask complexity. Based on the developed
infrastructure, we further investigated the feasibility of han-
dling multiple mask optimization tasks for different datasets
within a common Neural-ILT platform. We believe this work
could bridge well-developed deep learning toolkits to GPU-
based high-performance lithographic computations to achieve
groundbreaking performance boosting on various computational
lithography-related tasks.

Index Terms—Computational lithography, deep neural
networks, inverse lithography technique (ILT), optical proximity
correction (OPC).

I. INTRODUCTION

COMPUTATIONAL lithography models are designed to
mimic the printing effects of real lithography patterns.

Building on top of these delicate lithographic models, reso-
lution enhancement techniques (RETs), such as subresolution
assist feature (SRAF) insertion and optical proximity correc-
tion (OPC), help the designers to obtain optimized masks that
result in high fidelity printed patterns.

Manuscript received 13 March 2021; revised 16 June 2021; accepted
14 August 2021. Date of publication 1 September 2021; date of current ver-
sion 19 July 2022. This work was supported in part by the Research Grants
Council of the Hong Kong SAR under Project CUHK14209320. The prelim-
inary version has been presented at IEEE/ACM International Conference on
Computer-Aided Design (ICCAD) in 2020. This article was recommended by
Associate Editor L. Behjat. (Corresponding author: Bentian Jiang.)

The authors are with the Department of Computer Science and
Engineering, The Chinese University of Hong Kong, Hong Kong (e-mail:
btjiang@cse.cuhk.edu.hk).

Digital Object Identifier 10.1109/TCAD.2021.3109556

As one of the most prevailing RETs, OPC modifies on-mask
geometries under the guidance of a computational lithog-
raphy simulator, which helps to counteract the effects of
diffraction-related blurring and under-exposure issues for the
given masks. Mainstream OPC approaches can be roughly cat-
egorized into: 1) model-based OPC [1], [2] and 2) inverse
lithography technology-based (ILT) OPC [3]–[6]. Model-based
OPC usually relies on compact model simulation to drive
the movements of polygon edges, which are typically divided
into segments for the reasons of mask manufacturability and
computational efficiency, however, at the expense of lim-
ited solution space and performance bottlenecks. On the
other hand, ILT uses numerical approach, which treats OPC
as an inverse imaging problem, to perform pixelwise mask
optimization. Nowadays, ILT is widely adopted to find flexible
193i and even EUV mask pattern solutions to improve overall
process window [5], [7]. However, with continuous shrinkage
of the technology nodes, the drastically rising of lithography
computational overhead has brought great challenges for ILT
to balance quality of results (QoR), speed, and affordability.

In the past decade, both academia and industry have been
actively working on facilitating the conventional lithography-
related processes as well as maintaining competitive QoR.
Significant efforts have been made, including but not limited
to: 1) migrating high-performance computational lithogra-
phy to GPU acceleration [8]; 2) introducing fast modeling
approaches for rigorous/compact litho-simulations [9]; 3) con-
sidering multiple patterning [10], [11]; and 4) apply-
ing the state-of-the-art (SOTA) machine learning tech-
niques on lithography-related applications such as lithography
system modeling [12], [13], hotspot detection [14]–[16], and
OPC [12], [17]–[19]. Among them, Yang et al. [18] (GAN-
OPC) for the first time applied conditional generative adver-
sarial networks (CGANs) to mimic the process of typical ILT
OPC. The predicted mask by GAN is treated as a better initial
solution for a conventional CPU-based ILT tool [4] for further
refinement, which helps to achieve faster convergence and bet-
ter mask printability. Ye et al. [12] (LithoGAN) developed
a CGAN-based lithography modeling framework that can
directly map mask patterns to resist patterns, while achieving
orders of magnitude speedup with acceptable accuracy loss.

Quantitative results of the above seminal works are encour-
aging, but they also reveal a crucial fact that, in most
lithography-related application scenarios, machine learning is
treated as a compromising solution to tradeoff between result
quality and turn around time. For supervised learning, the

1937-4151 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 19,2022 at 00:23:30 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-8163-3114
https://orcid.org/0000-0002-3612-4182
https://orcid.org/0000-0001-6406-4810


2672 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 8, AUGUST 2022

(a)

(b)

Fig. 1. Visualizations of mask fracturing results on the synthesized masks
with different complexities. (a) Conventional ILT [4] synthesized mask
(high complexity) and corresponding mask fracturing result with 1575 shots.
(b) Neural-ILT synthesized mask (low complexity) and corresponding mask
fracturing result with only 444 shots.

prediction quality is highly related to the quality of the train-
ing dataset, one may need to train different models for datasets
with different distributions, and the inevitable prediction loss
may further degrade its actual performance. From the perspec-
tive of realistic deployment, the prediction error in machine
learning solutions usually requires additional rounds of rig-
orous refinements to ensure correctness, which weakens its
practical value.

In addition, for OPC, the optimized masks need to be frac-
tured as a combination of rectangular variable-shaped beam
(VSB) shots for mask writing. The ideal curvilinear shapes
[Fig. 1(a)] generated by conventional ILT [4] require huge
amounts of shots to accurately replicate the shapes, which
leads to extremely poor mask manufacturability due to the
unmanageable mask writing times [7], [20]. Observing the fact
that reducing the mask complexity can significantly reduce
the shot count [2045 in Fig. 1(a) versus 653 in Fig. 1(b)], it is
imperative to consider mask complexity as an objective during
the ILT correction.

Motivated by these issues, a new challenge naturally arises:
1) can we completely replace the conventional ILT-based OPC
flow by purely learning-based methods; 2) so as to simul-
taneously achieve breakthrough in runtime boosting and the
SOTA result quality; and 3) while considering mask manufac-
turability? In this work, we develop Neural-ILT, an end-to-end
high-performance ILT-based OPC framework based on a single
neural network. Unlike previous learning-based OPC solu-
tions [18], [19], a converged Neural-ILT is able to directly
generate the masks after OPC for the unseen layouts and does
not require any additional rigorous refinement on the network
output. Our key contributions are summarized as follows.

1) We developed Neural-ILT, an end-to-end ILT correc-
tion framework based on a single neural network. A
CUDA-based lithography simulation tool is developed
and deeply embedded into Neural-ILT to enable on-
neural-network lithographic computations.

2) A special training recipe with domain knowledge of a
partial coherent lithography imaging system is applied
to pretrain the backbone network of Neural-ILT, which
helps to achieve faster and better convergence for the
on-neural-network ILT correction.

3) The functionalities of conventional ILT correction and
mask complexity refinement are cast as customized
neural network layers and integrated into Neural-ILT.
Consequently, the on-neural-network ILT correction is
essentially the training procedure of Neural-ILT in an
unsupervised manner.

4) We leveraged the existing Neural-ILT infrastructure to
achieve rapid task adaptation from the domain of 32-nm
metal-layer to the domain of 45-nm cut-layer, which
verified the feasibility of multitask-enabled Neural-ILT
paradigm.

5) Experimental results show that Neural-ILT achieves
breakthrough turn around time speedup with lower mask
complexity and the best mask printability.

The rest of this article is organized as follows. Section II
lists some preliminaries. Section III discusses the details
of the framework and algorithms. Section IV presents the
experimental results, followed by a conclusion in Section V.

II. PRELIMINARIES

In this section, we will go through the background and
problem formulation. Throughout the rest of this article, we
denote Zt as the target layout, M as the mask, I as the inten-
sity (aerial) image, Z, Zin, and Zout as the wafer images under
nominal process condition Pnom (nominal dose and nominal
focus H), min process condition Pmin (min dose and defocus
Hdef), and max process condition Pmax (max dose and nom-
inal focus H), respectively. Operators “⊗” and “�” are used
to represent convolution and elementwise product, and φ(·; ·)
stands for the forward function of the neural network.

A. Lithography Simulation Model

The lithography simulation models are designed to mimic
the printing effects without performing actual lithography. In
practice, the Hopkins diffraction model of the partial coher-
ence imaging system [21] is widely adopted to approximate
the printing behavior of the lithography (193-nm immersion
lithography system with annular illumination in this article).
An approximate solution to the Hopkins imaging equations
called sum of coherent sources (SOCSs) can be applied to
calculate the aerial image I, which is a distribution of light
intensity at the wafer plane. Theoretically, the aerial image can
be obtained by convolving the mask M with a set of precom-
puted coherent convolution kernels H and taking the weighted

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 19,2022 at 00:23:30 UTC from IEEE Xplore.  Restrictions apply. 



JIANG et al.: Neural-ILT 2.0: MIGRATING ILT TO DOMAIN-SPECIFIC AND MULTITASK-ENABLED NEURAL NETWORK 2673

Fig. 2. Overview of Neural-ILT. The on-neural-networks ILT correction is equivalent to the training procedure of Neural-ILT in an unsupervised manner. At
convergence, the fined-grained Neural-ILT is able to directly generate optimized mask with reasonably good printability and low complexity.

summation with corresponding coefficients ω

I(x, y) =
N2∑

k=1

ωk|M(x, y)⊗ hk(x, y)|2 (1)

where hk is the kth kernel of the model and ωk is the cor-
responding weight. The system can be further simplified by
an Nhth order approximation [4], where Nh = 24 in our
implementation. A constant threshold resist (CTR) model that
reflects exposure level on the photo resist is then applied to
the intensity image to control the final binary wafer image
through the following step function:

Z(x, y) =
{

1, if I(x, y) ≥ Ith
0, if I(x, y) < Ith

(2)

where Ith = 0.225 is a constant in our implementation.

B. Mask Manufacturability and Mask Printability

Since ILT naturally generates purely curvilinear features,
conventional fracturing method requires a large number of
small rectangles to approximate the shape (as shown in Fig. 1),
which makes mask writing extremely expensive [7]. Despite
the fact that more advanced mask data preparation techniques
like multibeam fracturing and model-based mask data prepara-
tion (MB-MDP) have been deployed [7], in this article, we will
use the shot count of conventional fracturing (can accurately
replicate the shapes) to measure mask complexity and man-
ufacturability. Without loss of generality, reduction of mask
complexity should generally benefit various mask fracturing
approaches.

Definition 1 (Mask Fracturing Shot Count): Given a mask
M, the mask fracturing shot count denotes the number of
rectangular shots for accurately replicating the mask shapes.

Mask printability can be measured by squared L2 error
and process variation band (PVBand), which are defined as
follows.

Definition 2 (Squared L2 Error): Given the target layout
image Zt and the wafer image Z of a mask M, where
Z = f (M;Pnom), the squared L2 error of Z is given by
||Z− Zt||22.

Definition 3 (PVBand): PVBand denotes the contour area
variations under ±2% dose error, which is measured by

the summation of bitwise-XOR between Zin=f (M;Pmin) and
Zout=f (M;Pmax).

Problem 1 (Learning-Based OPC): Given a target layout
Zt and a lithography simulation model f (·;Pnom), use learning-
based approaches to generate a mask solution Mopt, while
simultaneously minimizes: 1) squared L2 error; 2) PVBand;
3) mask fracturing shot count; and 4) turn around time.

III. NEURAL-ILT ALGORITHMS

The objective of a typical end-to-end ILT OPC process
is to find a mask solution Mopt = f−1(Zt;Pnom) for the
given layout Zt, where f (·;Pnom) is the forward lithogra-
phy simulation under nominal condition. Since different mask
solutions may yield the same wafer image, there are no
explicit closed-form formula for solving the inverse lithogra-
phy process f−1(·;Pnom). Alternatively, the ILT problem can
be solved with numerical algorithms like gradient descent,
where the gradient derived from the loss function is applied
to update the on-mask pixels iteratively until the specific
criterion for convergence is met. Regarding the entire ILT
process as a black-box, learning a mapping between the
input layout and the output mask can be naturally formu-
lated as an image-to-image translation task. More precisely,
to mimic the ILT correction process in an end-to-end manner,
an encoder–decoder neural network architecture (e.g., UNet)
can be applied to perform pixelwise mask prediction.

The overall flow of Neural-ILT is illustrated in Fig. 2.
Neural-ILT consists of three modules: 1) a pretrained backbone
network; 2) an ILT correction layer; and 3) a mask complex-
ity refinement layer. Given an input layout Zt to Neural-ILT,
the forward propagation of the backbone network (a pre-
trained UNet) will first generate a coarsened mask which is
then fed into the customized refinement layers. The refine-
ment layers then return corresponding gradients to update the
weights of the backbone network through backward propaga-
tion. At convergence, Neural-ILT is able to directly generate
a well-optimized mask through the forward inference.

In this section, we will detail our proposed framework in
a bottom-up manner. A high-performance CUDA-based litho-
graphic simulation tool will be first introduced, followed by
the customized ILT functionality layers which serve as the

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 19,2022 at 00:23:30 UTC from IEEE Xplore.  Restrictions apply. 



2674 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 8, AUGUST 2022

Algorithm 1 CUDA-Based Lithography Simulation
Require: Mask M, kernels H, weights ω, DOSE and MODE.

1: function CUDA_LITHO(M, H, ω, DOSE, MODE)
2: Load kernels H, weights ω and mask M into gpu

memory;
3: Mcplx ← Initialize each pixel Mcplx(x, y) as complex

value;
4: Mcplx.real←M ∗ DOSE, Mcplx.img← 0;
5: Mfft ← CUDA_FFT(Mcplx);
6: Ifft ← Initialize each pixel Ifft(x, y) as a complex

vector;
7: for k=1,..,24 do
8: Pad Hk with 0 to the size of Mfft;
9: Ik_fft.real ← Mfft.real � Hk.real − Mfft.img �

Hk.img;
10: Ik_fft.img ← Mfft.img � Hk.real + Mfft.real �

Hk.img;
11: end for
12: Iifft ← CUDA_IFFT(Ifft);
13: if MODE == CONVOLVE then � Litho-convolution
14: for each pixel Iifft(x, y) do
15: Isqrt(x, y)←∑24

k=1 ω
1
2 k ∗ Ik_ifft(x, y);

16: end for
17: return Square rooted intensity map Isqrt;
18: end if
19: if MODE == SIMULATION then � Litho-simulation
20: for each pixel Iifft(x, y) do
21: I(x, y)←∑24

k=1 ωk ∗ I2
k_ifft(x, y);

22: end for
23: Z← Apply resist model in 2 on I;
24: return Intensity map I, wafer image Z;
25: end if
26: end function

core engine for achieving on-neural-network ILT correction.
Finally, we will build the complete Neural-ILT framework.

A. CUDA-Based Lithography Simulation

Since there is no explicit closed-form solutions for the ILT
problem, solving ILT is essentially to minimize the difference
between the lithography simulation output and the target lay-
out by modifying the mask. Therefore, from the perspective
of neural network learning, being able to integrate the lithog-
raphy simulation into a neural network framework is the first
challenge for building up Neural-ILT. The major challenge
comes from the computing overhead of the lithography simula-
tion process. Conventional litho-simulation suffers from severe
computational overhead in advanced technology nodes, and
multiple rounds of litho-simulation (per clip) are usually indis-
pensable for guiding the mask correction. Thus, it is imperative
to derive a fast litho-simulation tool without loss of accuracy.

For the purpose of increasing the algorithmic parallelism,
we develop a GPU-based high performance lithography sim-
ulation tool with CUDA based on the ICCAD 2013 contest
lithography evaluation tool [22]. Algorithm 1 depicts the
details of the implementation. The procedure can be described

Fig. 3. Runtime comparisons for lithography simulation and PVBand
calculation.

as follows: 1) compute the Fourier coefficients of the mask;
2) compute the convolutions (in frequency domain) and inverse
Fourier transform to obtain light intensity on each pixel; and
3) apply the resist model to the intensity image to get the
binary wafer image.

As shown in Fig. 3, equipped with the CUDA-based lithog-
raphy simulation tool, we can achieve more than 96% reduc-
tion in litho-simulation time and 97% reduction in PVBand
calculation time, which significantly enhances the capability
of performing lithography simulation inside neural networks
on deep learning platforms like PyTorch or TensorFlow.
In the following parts, we will show how the proposed CUDA-
based litho-simulation tool helps to drive the key optimization
process of Neural-ILT.

B. Pretrained Backbone Neural Network

Finding a mapping between an input layout and an out-
put mask is usually cast as an image-to-image translation
task. In our case, the general encoder–decoder neural network
architecture can be applied to make pixelwise binary classifi-
cation on whether a pixel belongs to the optimized mask. A
standard encoder–decoder structure is composed of two sub-
networks: 1) an encoder which learns how to compress the
input image into an encoded representation and 2) a decoder
which learns how to reconstruct an output image from an
encoded representation so as to minimize the reconstruction
error.

Just like other learning-based solutions [12], [18], inside
Neural-ILT, a pretrained backbone model is required to pro-
vide the basic layout-to-mask translation functionality. Note
that the primary objective of this work is to demonstrate the
feasibility and effectiveness of on-neural-network ILT cor-
rection, we want to propose a general paradigm to achieve
robust and competitive results on most image-to-image trans-
lation networks, rather than relying on the use of certain
fancy network architectures. Therefore, we selected to use
UNet [23], a well-known but relatively simple model, to serve
as the basic module of Neural-ILT. As depicted in Fig. 2, the
UNet architecture is based on the general encoder–decoder
scheme, which consists of a downsampling path to capture
context and a symmetric upsampling path that enables pixel-
wise mask correction. Long skip connections are introduced to
bridge the symmetric layers in the downsampling and upsam-
pling paths, which deliver fine-grained details of encoding

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 19,2022 at 00:23:30 UTC from IEEE Xplore.  Restrictions apply. 



JIANG et al.: Neural-ILT 2.0: MIGRATING ILT TO DOMAIN-SPECIFIC AND MULTITASK-ENABLED NEURAL NETWORK 2675

(a) (b) (c) (d)

Fig. 4. (a) Target layouts. Wafer images of (b) target layouts, (c) UNet
forward predictions, and (d) ILT synthesized masks.

stage that can be recovered in the decoding stage. In general,
the superior performance of UNet in image-to-image trans-
lation tasks as well as its relatively simple structure make it
a suitable choice for conducting the on-neural-network mask
correction.

Given a training dataset D = {Zt, M∗}, where the input
target layouts Zt={Zt,1, Zt,2, . . . , Zt,n} and the optimized mask
labels M∗={M∗1, M∗2, . . . , M∗n}, the training procedure of
the UNet is to minimize the following objective:

ŵ = argmin
w

λ||φ(Zt;w)−M∗||22 (3)

where φ(·;w) is the network forward output w.r.t the model
weights w, and λ is a configurable hyperparameter. Fig. 4
shows the image fidelity comparison between the wafer images
generated by layouts, pretrained UNet outputs, and ILT syn-
thesized masks. We can see that, the pretrained UNet does
improve the mask printability (corresponds to better wafer
image fidelity) to some extent compared with the wafer images
yielded by the original layouts. However, when dealing with
complex layouts, the printability of UNet outputs can hardly
be maintained at a satisfactory level, especially in compari-
son with the ILT synthesized results. In order to compensate
for the quality loss introduced by the model prediction error,
as well as to maintain the runtime superiority of learning-
based solutions, the neural network should be endowed with
an ability for self-correction to minimize the lithography error.
Such demands indicate the necessity and rationality of our
on-neural-network ILT correction paradigm.

C. ILT Correction and Mask Complexity Refinement Layers

Neural-ILT possesses the ability to conduct on-neural-
network ILT correction and mask complexity refinement. To
enable these features, the functionalities of conventional ILT
correction and mask complexity refinement processes are cast
as customized neural network layers, which can be directly
integrated into an off-the-shelf neural network architecture.

1) ILT Correction Layer: The objective of ILT correction
is essentially minimizing the difference between two images

Lilt =
N∑

x=1

N∑

y=1

(Z(x, y)− Zt(x, y))γ (4)

where Zt is the target layout; Z = f (M;Pnom) is the wafer
image of the mask M; N denotes the image dimension, and γ

is a configurable parameter.
In order to obtain the gradient ([∂Lilt]/[∂M]) for updat-

ing the mask, Z and M should be regarded as matrices with
continuous values so as to make Lilt differentiable. Here, the
binary constraints of Z and M are commonly relaxed by the
sigmoid function so that the variables become unconstrained.
To achieve this, we first introduce an intermediate variable
M̄ to bridge the backbone network output and ILT correction
layer (via the chain rule). The original binary mask M and
wafer image Z are then replaced with their sigmoid approx-
imations M = sig(M̄) = ((1)/[1+ exp(−θM × M̄)]) and
Z = sig(I) = ((1)/[1+ exp(−θZ × (I− Ith))]), where θM and
θZ define the steepness of the sigmoid functions used for M
and Z, respectively. As a result, the gradient of the lithography
loss (4) is then given by

∂Lilt

∂M̄
= γ × (Z− Zt)

γ−1 � ∂Z

∂M̄

= γ × (Z− Zt)
γ−1 � ∂Z

∂I
� ∂I

∂M
� ∂M

∂M̄
(5)

where (∂I)/(∂M) in (5) can be derived as

∂I(i, j)

∂M(x, y)
= ∂{|M(i, j)⊗H(i, j)|2}

∂M(x, y)

= ∂{[M(i, j)⊗H(i, j)][M(i, j)⊗H∗(i, j)]}
∂M(x, y)

= ∂[M(i, j)⊗H(i, j)]

∂M(x, y)
[M(i, j)⊗H∗(i, j)]

+ ∂[M(i, j)⊗H∗(i, j)]

∂M(x, y)
[M(i, j)⊗H(i, j)]

= H(i− x, k − y)[M(i, j)⊗H∗(i, j)]

+ H∗(i− x, k − y)[M(i, j)⊗H(i, j)] (6)

here |M(i, j) ⊗ H(i, j)|2 = ∑Nh
k=1 ωk|M(i, j) ⊗ hk(i, j)|2, and

H∗ is the conjugate transpose of kernel H. Substituting (6)
into (5), we have

∂Lilt

∂M̄
= {Hflip ⊗ [(Z− Zt)

γ−1 � Z� (1− Z)� (M⊗H∗)]

+ (Hflip)∗ ⊗ [(Z− Zt)
γ−1 � Z� (1− Z)� (M⊗H)]}

�M� (1−M)× γ θMθZ (7)

where Hflip is the 180◦ rotation of H.
Considering that the loss and gradient computations of

ILT correction share similar mechanisms of neural network
forward and backward propagation, conventional ILT function-
ality can be implemented as a customized ILT correction layer
of neural network. Regarding Lilt as the forward propagation
loss, and (∂Lilt)/(∂M̄) as the backward propagation gradient,
the weights of the predecessor neural networks wnet can be
updated through the chain rule [(∂Lilt)/(∂M)] [(∂M)/(∂M̄)]
[(∂M̄)/(∂φ(Zt;wnet))] [(∂φ(Zt;wnet))/(∂wnet)]. Moreover,
thanks to the CUDA implementation of the litho-simulation
function (Algorithm 1), the entire forward and backward
procedures can be perfectly integrated into the unified CUDA-
compatible deep learning toolkit like PyTorch to fully
leverage its computational efficiency. Algorithm 2 depicts how

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 19,2022 at 00:23:30 UTC from IEEE Xplore.  Restrictions apply. 



2676 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 8, AUGUST 2022

Algorithm 2 ILT Correction Layer Forward and Backward

Require: Masks M, M̄, layout Zt, kernels H, H∗, weights ω.
1: function FORWARD(M, H, ω)
2: I, Z← CUDA_LITHO(M, H, ω, 1.0, SIMULATION);
3: Lilt ← ||Z− Zt||γγ ; � γ = 4 in forward
4: return Lithography loss Lilt;
5: end function
6: function BACKWARD(M, M̄, H, H∗, ω) � θM = 4,

θZ = 50
7: I, Z ← CUDA_LITHO(M, H, ω, 1.0, SIMULATION);
8: Z← 1

1+exp(−θZ×(I−Ith))
, M← 1

1+exp(−θM×M̄)
;

9: Define common term as TC, gradient left term as GL,
gradient right term as GR;

10: TC ← (Z− Zt)
γ−1 � Z� (1− Z);

11: GL ← TC � CUDA_LITHO(M, H∗, ω, 1.0,
CONVOLVE);

12: GR ← TC � CUDA_LITHO(M, H, ω, 1.0,
CONVOLVE);

13:
∂Lilt
∂M̄

← γ θMθZ × [CUDA_LITHO(GL, Hflip, ω,
1.0, CONVOLVE) + CUDA_LITHO(GR, (Hflip)∗, ω, 1.0,
CONVOLVE)] � M� (1−M); � Compute Equation (7)
using Algorithm 1

14: return Gradient ∂Lilt
∂M̄

;
15: end function

(a) (b)

Fig. 5. Mask complexity comparison: (a) ILT synthesized mask and (b) mask
purified by complexity refinement.

to implement the forward and backward computations of the
ILT correction layer leveraging Algorithm 1.

2) Mask Complexity Refinement Layer: Masks synthesized
by ILT usually consist of nonrectangular complex shapes
which are not manufacturing-friendly. For conventional ILT
which directly updates the mask with gradient descent method,
the initial solution can affect the final synthesized mask signifi-
cantly. As illustrated in Fig. 5(a), the ILT process may generate
complex features like isolated curvilinear stains, edge glitches,
and redundant contours grown along the existing mask shapes.
Therefore, in this work, the optimization of mask complexity is
defined as eliminating the nonmanufacturing-friendly complex
features while maintaining competitive mask printability.

It is observed that most of these complex features are dis-
tributed around/on the original layout patterns [Fig. 5(a)].
They usually will not be printed on wafer image under
the min process condition Pmin and the nominal process
condition Pnom, but are likely to be printed at the max pro-
cess condition Pmax. This causes the area variations between

Zin=f (M;Pmin) and Zout=f (M;Pmax) with respect to the loca-
tions of these features. Therefore, we can formulate the mask
complexity refinement task into minimizing the following loss
function Lcplx:

Lcplx = ||Zin − Zout||22. (8)

Similarly, the gradient of loss Lcplx can be derived as

∂Lcplx

∂M̄
= 2× (Zin − Zout)� (Zin′ − Zout′). (9)

Here, Zin′ is given by

Zin′ = θMθZ × {Hflip
def ⊗

[
Zin � (1− Zin)�

(
M⊗H∗def

)]

+
(

Hflip
def

)∗ ⊗ [Zin � (1− Zin)� (M⊗Hdef)]}
�M� (1−M)

where Hdef is the defocus kernels, and Zout′ can be obtained
by a similar derivation. Just like the ILT correction layer, we
can cast the above optimization process as a customized mask
complexity refinement layer. The detailed implementation of
the layer forward/backward computation is omitted here as it
is similar to Algorithm 2. The effectiveness of the mask com-
plexity refinement layer is demonstrated in Fig. 5, where the
mask in Fig. 5(b) enjoys lower mask complexity and compet-
itive mask printability comparing to the one in Fig. 5(a). Note
that, from the perspective of deployment, we should always
connect the complexity refinement layer with an ILT correction
layer to form a multiobjective loss function (10). Otherwise,
optimization with only mask complexity refinement layer will
eliminate all mask shapes which literally yield “0” loss for (8).

D. Neural-ILT for Mask Printability and Complexity
Co-Optimization

As presented in Fig. 2, the Neural-ILT network model is
composed of three modules: 1) a pretrained backbone UNet
for performing layout-to-mask transformation; 2) an ILT cor-
rection layer for minimizing lithography loss; and 3) a mask
complexity refinement layer for removing redundant complex
features. Consequently, the on-neural-network ILT correc-
tion is equivalent to an unsupervised training procedure of
Neural-ILT with the following objective:

ŵ = argmin
w

α

Lilt︷ ︸︸ ︷
||f (φ(Zt;w);Pnom)− Zt||γγ

+ β ||f (φ(Zt;w);Pmin)− f (φ(Zt;w);Pmax)||22︸ ︷︷ ︸
Lcplx

(10)

where α, β, and γ are the configurable hyperparameters.
The backbone network φ(·;w) of the Neural-ILT can be

replaced by any other network architectures that can yield
image output with the required dimensions (2048 × 2048 in
Neural-ILT). Conceptually, we can update the network weights
w by backward propagation through the chain rule

∂Lrefine

∂w
= ∂Lrefine

∂M
∂M

∂M̄

∂M̄
∂φ(Zt;w)

∂φ(Zt;w)

∂w
(11)

where Lrefine = α · Lilt + β · Lcplx denotes the refine loss and
Zt denotes the layout input.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 19,2022 at 00:23:30 UTC from IEEE Xplore.  Restrictions apply. 



JIANG et al.: Neural-ILT 2.0: MIGRATING ILT TO DOMAIN-SPECIFIC AND MULTITASK-ENABLED NEURAL NETWORK 2677

Fig. 6. Diagram of Neural-ILT training recipe, from pretraining to
deployment.

E. Pretrain Backbone Network With Domain Knowledge of
Partial Coherent Imaging System

In order to improve the training quality of our Neural-ILT,
we propose a domain-specific training recipe, which comprises
of a dataset refinement stage and domain-specific pretraining
stage. Fig. 6 depicts the details of our training recipe.

The original training dataset D{Zt, M} is composed of
4300 pairs of target layout and reference mask, and the ref-
erence masks are synthesized by a conventional ILT tool [4].
However, as shown in Fig. 5(a), ILT synthesized masks usually
consist of numerous complex features, which may results in an
initial prediction with high mask complexity for the Neural-
ILT. As shown in Fig. 6, in order to improve the training
data quality, we will first pretrain a UNet w∗ on the dataset
D using (3) in the dataset refinement stage. Neural-ILT (10)
is then conducted on w∗ to refine the complex features in
M. The resulted masks M̃∗ [e.g., Fig. 5(b)] together with the
original target layouts Zt will form a novel refined dataset
Drefine ={Zt, M̃∗}.

In the domain-specific pretraining stage, we can use this
refined dataset Drefine to pretrain a new UNet with the
following cycle loss Lcycle:

Lcycle =
Supervised term

︷ ︸︸ ︷
||φ(Zt;w)− M̃∗||22+η

Domain-specific regularization (DSR) term
︷ ︸︸ ︷
||f (φ(Zt;w);Pnom)− Zt||22 (12)

where Zt and M̃∗ refer to the input target layouts and ILT mask
labels in the refined dataset, respectively; η is configurable.
The calculations of the first and second terms in Lcycle form
a closed loop. The first supervised term minimizes the image
difference between network predictions and labels. The second
term is essentially the ILT loss in (10), in which the domain
knowledge of the partial coherent imaging model is introduced
into the network training procedure by the litho-simulation
function f (·;Pnom). As a result, the training process simultane-
ously considers both the supervised loss and ILT objective. The
second term essentially serves as a domain-specific regular-
ization (DSR) term, which guides a newly pretrained network

φ(·;w) to gradually converge toward a more ILT-compatible
direction.

F. Multitask-Enabled Neural-ILT

Neural-ILT is highly modular which offers flexibility in:
1) modifying the network architecture and training strategy;
2) reconfiguring the lithographic recipes; 3) adding cus-
tomized objectives during ILT optimization, etc. Through the
recombination of existing capabilities and modified modules,
Neural-ILT is capable of achieving rapid adaptation to con-
duct mask correction on new designs that developed in other
technology nodes, thereby reducing the development overhead.

To verify the feasibility of the above claim, we further
develop Neural-ILT-multitask, a proof-of-concept (POC) pro-
totype based on the original Neural-ILT. As shown in Fig. 7,
Neural-ILT-multitask aims to provide end-to-end mask opti-
mizations for different datasets (i.e., designs with different
styles and technology nodes) on a common pretrained back-
bone network w. In this article, besides the regular ILT
correction for 32-nm metal-layer layouts, Neural-ILT-multitask
is also capable of minimizing the edge placement error (EPE)
violations for 45-nm cut-layer layouts.

There are three factors that distinguish the cut-layer task
from the conventional metal-layer one. First, the 45-nm cut-
layer’s lithography recipe is different from the 32-nm metal-
layer’s recipe. Second, in cut-layer mask optimization, the
minimization of the EPE (see Definition 4) is the most crit-
ical objective to ensure the printability of the via patterns.
Third, as visualized in Fig. 7(b), the characteristics of cut-
layer’s and metal-layer’s layouts varies significantly, which
indicates the difficulty of handling both datasets within a same
backbone network. As a result, modifications on: 1) backbone
network training strategy; 2) lithography model configurations;
and 3) layer functionality are indispensable to carry out the
cut-layer mask optimization.

Definition 4 (EPE): EPE measures the horizontal and ver-
tical edge displacement between the printed contour and the
target layout by a set of on-edge checkpoints (see in Fig. 8).
A checkpoint will be marked as an EPE violation (EPEV) if
its EPE exceeds a given threshold thepe.

1) Fast EPE Correction Heuristic: Instead of counting the
cumulative error among all image pixels like the ILT loss
in (4), the minimization of EPE only focuses on the error
within particular checking segments. As illustrated in Fig. 8,
a set of horizontal/vertical EPE checkpoints (HC/VC) are
evenly distributed on the horizontal/vertical edges of the tar-
get patterns. A horizontal/vertical checking segment (HS/VS)
expands the vertical/horizontal checkpoint (VC/HC) by ±thepe
pixels

HS = [(i− thepe, j), (i+ thepe, j)], if (i, j) ∈ VC

VS = [(i, j− thepe), (i, j+ thepe)], if (i, j) ∈ HC.

An EPEV will be introduced if the cumulative error (pixel
differences) within a specific checking segment exceeds the

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 19,2022 at 00:23:30 UTC from IEEE Xplore.  Restrictions apply. 



2678 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 8, AUGUST 2022

(a) (b)

Fig. 7. (a) Overview of multitask-enabled Neural-ILT framework. (b) T-distributed stochastic neighbor embedding (T-SNE) visualization of two datasets,
each dataset forms a unique cluster, which indicates each dataset possesses its own characteristic.

Fig. 8. Illustration of EPE measurement. The number of EPEV for this
printed contour is 5.

predefined threshold thepe, that is

Depe(i,j) =
i+thepe∑

i−thepe

(Z(i, j)− Zt(i, j))2, if (i, j) ∈ VC

Depe(i,j) =
j+thepe∑

j−thepe

(Z(i, j)− Zt(i, j))2, if (i, j) ∈ HC

EPEV(i,j) =
{

1, if Depe(i,j) ≥ thepe
0, if Depe(i,j) < thepe.

(13a)

We further develop a simple yet effective heuristic to simul-
taneously achieve fast and efficient EPE minimization. Our fast
EPE correction leverages the existing ILT correction layer util-
ity, where the losses on the region of interest for EPE checking
are specially enhanced by a scale factor δ, that is

Lepe_fast =
(
1+ Repe

)� (Lilt + Pdiscrete) (14)

where Pdiscrete is a mask discrete penalty term introduced
in [26], Repe is the region of interest for EPE checking

Repe(i, j) =
{

δ, if (i, j) ∈ {HS, VS}
0, else

(15)

and δ is configurable.
The effectiveness of our fast EPE correction heuristic can be

verified in Fig. 9 on FreePDK45 [25] benchmarks, where the
average number of EPEVs dropped significantly to a compara-
ble SOTA level [24] (even better) as the value of δ increased,
while the L2 loss remains stable, which is much lower than
the baseline. Moreover, unlike ∇Lepe_exact calculation, there is

(a)

(b)

Fig. 9. Selection of parameter δ in Lepe_fast (14). The average #EPEVs
of Neural-ILT-multitask on FreePDK45 [25] benchmarks get significantly
reduced as δ increased, while not changing much L2 loss. (a) Average #EPEVs
w.r.t. different δ. (b) Average L2 loss w.r.t. different δ.

nearly no additional overhead for calculating ∇Lepe_fast beyond
the ∇Lilt calculation.

2) Backbone Model Pretraining for Neural-ILT-Multitask:
In this article, Neural-ILT-multitask aims to simultaneously
conduct ILT correction for 32-nm metal-layer masks [through
the blue layer in Fig. 7(a)] and EPE correction for 45-nm cut-
layer masks [through the red layer in Fig. 7(a)] within the same
pretrained backbone model w. However, the characteristics of
the above two datasets vary significantly [see in Fig. 7(b)].
Therefore, our backbone model w should be able to gener-
ate proper responses for inputs from different tasks. To this
end, we first pretrain a backbone model w (6 epochs) to min-
imize the cycle loss in (12) on the 32-nm metal-layer dataset
{Zt, M̃∗}. Then, we apply an additional round of fine-tuning

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 19,2022 at 00:23:30 UTC from IEEE Xplore.  Restrictions apply. 



JIANG et al.: Neural-ILT 2.0: MIGRATING ILT TO DOMAIN-SPECIFIC AND MULTITASK-ENABLED NEURAL NETWORK 2679

TABLE I
PERFORMANCE COMPARISONS WITH SOTA METHODS

(6 epochs) on the same backbone model to minimize the fol-
lowing EPE-guided cycle loss on the 45-nm cut-layer dataset
{Z45nm

t , M∗45nm}

Lcycle_epe =
Supervised term︷ ︸︸ ︷

||φ(Z45nm
t ;w)−M∗45nm||22+

DSR term︷ ︸︸ ︷
Lepe_fast (16)

where Lepe_fast still serves as the DSR term to introduce the
domain knowledge of partial coherent lithography system. In
our implementation, δ is set to 2 for both training and testing.

IV. EXPERIMENTAL RESULTS

The proposed Neural-ILT framework is developed with
PyTorch and CUDA, and tested on a Linux machine with
2.2-GHz Intel Xeon CPU and a single Nvidia RTX3090 GPU.
The training dataset for 32-nm metal-layer is obtained from
the authors of GAN-OPC [18], which contains 4300 training
instances based on the design specifications from the exist-
ing 32-nm M1 layout topologies. While the training dataset
for 45-nm cut-layer is obtained from Zhong et al. [24] which
contains 150 training instances based on the design specifi-
cations from 45-nm topologies in [25]. For Neural-ILT, the
UNet is pretrained for 20 epochs which takes around 8 h on a
single RTX3090 GPU. As for Neural-ILT-multitask, the UNet
is pretrained for six epochs in each task, which takes around
3 h on a single RTX3090 GPU.

We test the Neural-ILT (“Ours”) on ICCAD 2013 contest
IBM benchmarks [22] to verify their effectiveness on 32-nm
metal-layer ILT correction task. In addition, we test Neural-
ILT-multitask [“Ours (Multitask)”] on the FreePDK45 [25]
benchmarks to verify its effectiveness on 45-nm cut-layer
EPE Minimization task. As for the evaluation, the lithography
recipes and quality checker are provided by: 1) the ICCAD
2013 contest evaluation package [22] for 32-nm M1 layout

designs and 2) Zhong et al. [24] for FreePDK45 45-nm cut-
layer designs.1 The mask fracturing tool is implemented with
C++ programming language based on an efficient contour
decomposition algorithm in [27].

A. Evaluation of Neural-ILT

To verify the effectiveness of our proposed framework
(denoted as “Ours”), we optimize ten industrial 32-nm M1
layout masks (blind for model training, size of mask is
2048×2048) in ICCAD 2013 contest benchmark suite [22] and
compare the results with the model-based OPC [1] (denoted
as “model-based”), the conventional ILT method [4] (denoted
as “ILT”), and the learning-based GAN-OPC method [18]
(denoted as “PGAN-OPC”). Quantitative results are listed in
Table I, where column “TAT” lists the turnaround time for the
entire end-to-end mask optimization on the given input mask;
columns “L2,” and “PVB” denote the squared L2 error and the
PVBand, respectively.

1) Hyper-Parameters and Update Criterion Selection:
During the on-neural-network ILT correction stage, we use a
consistent configuration for every test input. We select Adam
as the optimizer, where the maximum ILT iterations = 60, ini-
tial learning rate lr = 0.002, lr decay rate = 0.1, lr decay step
size = 35 iterations, α = 1, and β = 1.45 [for (10)]. Early stop
will be triggered if the objective does not improve for consec-
utive 15 iterations. We studied the impact of hyperparameter
β in the Neural-ILT objective Lrefine = α · Lilt + β · Lcplx.
Consider that sweeping both α and β introduces too large
searching space, we fixed α = 1.0 and only swept the β from
0 to 4.0 with a stepsize of 0.05 on the ICCAD’13 benchmarks.
The corresponding performance tradeoff profiles are presented
in Fig. 10.

Moreover, three types of criteria for updating the best
solution are compared in Fig. 10.

1To the best of our knowledge, above two benchmark suites are the only
two open-sourced packages with lithography simulation recipes provided.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 19,2022 at 00:23:30 UTC from IEEE Xplore.  Restrictions apply. 



2680 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 8, AUGUST 2022

(a) (b) (c)

Fig. 10. Printability profiles (L2 loss, PVBand, #EPEV) of Neural-ILT w.r.t. different values of β in Lrefine (10).

TABLE II
EPE AND MASK COMPLEXITY COMPARISONS WITH SOTA METHODS

1) Select by Lrefine Only: Let score = α · Lilt + β · Lcplx,
update the best solution if currernt_score < best_score.

2) Select by #EPEV Only: Let #EPEV stands for number
of EPEVs, update the best solution if #currernt_epev <

#best_epev.
3) Select by Lrefine and #EPEV: Update the best solution

if (currernt_score < best_score) and (#currernt_epev ≤
#best_epev).

It is obvious that different criteria generated significantly
different tradeoff curves, especially on the EPE metric. An
interesting observation here is that, in the coarse-grained level,
EPE curve shares the same trend as the L2 curve. But in the
fine-grained level, or in a local range, a better L2 may not
necessarily reflect a better EPE, and vice versa.

For Neural-ILT, we adopt the criterion of “select by Lrefine
and #EPEV” (red lines) to consider L2, PVB, and EPE
simultaneously, and we set β = 1.45 according to the profiles.

2) Performance Comparisons With SOTA Methods: In
Table I, it can be observed that our framework outperforms
all other SOTA approaches in terms of “TAT” and “L2”
metrics. More specifically, comparing with model-based
OPC [1], ILT [4] and PGAN-OPC [18], we achieve more
than 15×, 23×, 30× turnaround time (TAT) speedups, with

12.4%, 14.1%, and 6.5% L2 error reductions and comparable
PVBands.

As for the EPE performance, it can be observed from
Table II, our EPE result outperforms the ILT and GAN-OPC
baselines with 1.6 and 3.8 less average EPEVs, while the
model-based method demonstrating the best EPE performance.
However, model-based method consumes 15% more PVBand
to achieve this EPE and yields the worst L2+PVBand score
among all methods (see in Fig. 11). As mentioned earlier,
EPE approximates the L2 loss with a discrete measurement,
but they may not be able to precisely reflect each other. As a
result, a better EPE result may not necessarily represent a bet-
ter printability in terms of L2 and PVBand. According to the
printability profiles in Fig. 10(a)–(c), our tool can also achieve
comparable average EPE and PVBand results as the model-
based method by setting β within the range of [0, 0.5], while
enjoying a much lower average L2 error.

3) Mask Complexity Comparisons: Table II compares the
complexity of masks (mask shots count) synthesized by the
model-based method, ILT method, GAN-OPC family, and our
Neural-ILT, and Fig. 12 visualizes their synthesized masks
on four testcases. As expected, Neural-ILT family is able to

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 19,2022 at 00:23:30 UTC from IEEE Xplore.  Restrictions apply. 



JIANG et al.: Neural-ILT 2.0: MIGRATING ILT TO DOMAIN-SPECIFIC AND MULTITASK-ENABLED NEURAL NETWORK 2681

Fig. 11. Performance on average mask fracturing shots count and average
L2 + PVBand score of different methods.

(a)

(b)

(c)

(d)

Fig. 12. Mask complexity visualizations of (a) conventional ILT [4],
(b) model-based OPC [1], (c) GAN-OPC family [28], and (d) Neural-ILT
family.

generate clean mask solutions with lower complexity com-
paring with ILT and GAN-OPC family, while achieving the
best mask printability [L2+PVB (nm2)] and 23×∼30× TAT
speedup. Note that model-based OPC achieves the lowest mask
complexity among all methods since its segmentwise modifi-
cations will only generate rectilinear shapes. However, such
limited searching space sacrifices the solution quality, which
leads to the worst mask printability [L2+PVB (nm2)] among
all methods in Fig. 11.

The above results have demonstrated the effectiveness and
superiority of our Neural-ILT framework, which is able to
achieve very significant TAT speedup with better mask manu-
facturability and SOTA mask printability. It is worth mentioning
that the significant speedup of Neural-ILT is mainly contributed
from three aspects: 1) the acceleration by the CUDA-based
litho-simulator; 2) the better initial solution predicted by the
domain-specific pretrained backbone model; and 3) higher
searching efficiency of PyTorch built-in numerical optimizer.

B. Evaluation of Multitask-Enabled Neural-ILT

To verify the feasibility and effectiveness of the multitask-
enabled Neural-ILT, we pretrain a backbone model wpt
for the Neural-ILT-multitask following the steps described
in Section III-F, and test it on the NanGate FreePDK45
library [25] for 45-nm cut-layer EPE minimization task. Note
that the layout decomposition results of the FreePDK45 dataset
is provided by Zhong et al. [24], and we follow exactly the
same experimental settings in [24], where the EPEV thresh-
old thepe is set to 10 nm, θ45nm

M = 8, θ45nm
Z = 120, and

I45nm
th = 0.039.

For each input testcase, we use identical Neural-ILT con-
figurations, where the maximum ILT iterations = 70, initial
learning rate lr = 0.002, lr decay rate = 0.1, lr decay step size
= 40 iterations, early stop patience = 15 iterations. According
to the performance profiles in Fig. 9, we set δ = 2 for Lepe_fast
(14) to achieve the best tradeoff.

As shown in Table I, Neural-ILT-multitask [denoted as
“Ours (Multitask)”] is capable of handling the new task with
a very competitive performance. It outperforms the SOTA
work [24] (denoted as “TCAD’21”) with 13% less average L2
error, 25% less average EPEVs, and 7.6× runtime speedup.

In conclusion, we successfully leverage the off-the-shelf
Neural-ILT utility to achieve rapid task adaptation from the
domain of 32-nm metal-layer to the domain of 45-nm cut-
layer, which verify the feasibility and development efficiency
of our multitask-enabled Neural-ILT prototype.

C. On the Scalability of Neural-ILT Family

We further examine the scalability of the Neural-ILT family
by conducting experiments on ten additional testcases (cases
11–20 in Table III) that contain more patterns and larger target
pattern areas than the original IBM benchmarks (cases 1–10
in Table I).

We use identical on-neural-network ILT correction con-
figurations as in the previous evaluation of Section IV-A,
quantitative results are listed in Table III.2 It is notable that
our framework outperforms the conventional methods in terms
of all metrics. More specifically, comparing with ILT and
PGAN-OPC, we achieve 26.4% and 21.1% squared L2 error
reductions; 1.5% and 2% PVBand reduction; and more than
27× and 21× turnaround runtime speedup. In conclusion,
Neural-ILT demonstrates clear superiority over the conven-
tional methods on larger benchmarks, which indicates better
scalability of our framework.

D. On the Necessity of Domain-Specific Pretrain

In Section III-E, we proposed a domain-specific training
recipe to pretrain the backbone model of Neural-ILT, where
a refined dataset Drefine is generated based on the original
dataset D. Then, the domain knowledge of the partial coherent
lithography model is explicitly introduced by penalizing the
ILT loss in (12) during the network pretraining.

The necessity of the above domain-specific training recipe is
twofold. First, this training strategy strengthens the potentials

2Note that the results of model-based OPC are not presented in Table III
as the binary released in [1] crashed on the new benchmarks.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 19,2022 at 00:23:30 UTC from IEEE Xplore.  Restrictions apply. 



2682 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 8, AUGUST 2022

TABLE III
PERFORMANCE COMPARISONS† ON LARGER BENCHMARKS

of Neural-ILT in terms of both prediction quality and search-
ing efficiency. To verify this claim, in Fig. 13, we profiled the
loss curves of on-neural-network ILT corrections based on two
different pretrained backbone models: 1) a regular backbone
model pretrained without DSR, i.e., trained with dataset D

using (3) and 2) a domain-specific backbone model pretrained
with DSR, i.e., trained with dataset Drefine using (12). We
use identical Neural-ILT configurations as in Section IV-A,
but lager maximum ILT iterations = 70. The loss curves of
the regular backbone model are marked in blue, while that
of the domain-specific backbone model are marked red. The
solid and dotted lines represent the L2 loss and the printability
score (L2+PVBand), respectively. As depicted in Fig. 13, the
domain-specific backbone model Neural-ILT (red curves) out-
performs the regular backbone model Neural-ILT (blue curves)
in terms of: 1) faster convergence speed, most red curves reach
convergence within 20 iterations, while the blue curves usually
take around 30 ∼ 40 iterations; 2) lowest L2 loss attainable;
and 3) smoother loss curves, where the blue curves need to
jump out of local minima frequently, thereby creating num-
bers of zigzags which hinder the ILT optimization in general.
The above three points indicate better searching quality and
efficiency of our domain-specific backbone model.

Second, the DSR training strategy helps Neural-ILT to
achieve SOTA ILT correction quality on a simple and
lightweight model (e.g., a standard UNet), thereby avoiding
unnecessary overhead on over-complicated network archi-
tecture and computational resource occupancy. The entire
Neural-ILT contains only 7.8M trainable parameters, which
takes up only 6.1% of the best GAN-OPC framework (7.8M
versus 127M.)3

E. On the Necessity of On-Neural-Network ILT Correction

Here, we want to have a short discussion on what really
distinguishes Neural-ILT (on-neural-network ILT) from gen-
eral ILT (on-mask-image ILT). We designed an experiment for

3Quoted from [28], EGAN-OPC contains 127M trainable parameters, 39M
for the generator, 88M for the discriminator.

TABLE IV
MASK PRINTABILITY, COMPLEXITY, AND RUNTIME PERFORMANCE

COMPARISON BETWEEN GPU-ILT AND NEURAL-ILT

both conventional ILT and Neural-ILT on five additional test-
cases from the test dataset (blind for model training). In order
to ensure a fair comparison, we develop GPU-ILT, a GPU ver-
sion of the conventional ILT tool [4] using our CUDA-based
litho-simulation tool. For each testcase, Neural-ILT performs
40 iterations of corrections with initial learning rate lr = 0.001,
while GPU-ILT performs 100 iterations of corrections with ini-
tial learning rate lr = 1. Quantitative results are depicted in
Table IV. It is notable that comparing to on-mask ILT (GPU-
ILT), Neural-ILT consumes less ILT iterations (i.e., 100 versus
40) with much smaller initial learning rate (i.e., 1.0 versus
0.001), while achieving better overall quality (i.e., 9% better
printability, 51% less mask shots counts).

Recall that general ILT treats the mask optimization as an
inverse problem of the lithography imaging system [function
f (·; ·)], which essentially tries to find f−1. Considering it is ill-
posed, conventional ILT cannot directly model f−1 and hence
need to modify the mask iteratively based on gradient descent.
However, Neural-ILT is built on top of a neural network, which
allows smooth and fine-grained refinement on the weights and
neurons’ activities with considerably larger searching space.
With the powerful capability of neural network in function
approximation, the feedforward computation for mask gen-
eration φ(Zt; ŵ) in Neural-ILT essentially serves as such an
approximated inverse lithography function f−1(Zt;Pnom) and
results in efficient computation.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 19,2022 at 00:23:30 UTC from IEEE Xplore.  Restrictions apply. 



JIANG et al.: Neural-ILT 2.0: MIGRATING ILT TO DOMAIN-SPECIFIC AND MULTITASK-ENABLED NEURAL NETWORK 2683

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Fig. 13. Loss curves (solid line: L2; dotted line: L2 + PVBand) of on-neural-network ILT corrections based on two different pretrained backbone models:
1) normal backbone model pretrained without DSR, i.e., trained with the original dataset D using (3), marked in blue; 2) domain-specific backbone model
pretrained with DSR, i.e., trained with the refined dataset Drefine using (12), marked in red. (a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4. (e) Case 5. (f) Case
6. (g) Case 7. (h) Case 8. (i) Case 9. (j) Case 10. (k) Case 11. (l) Case 12. (m) Case 13. (n) Case 14. (o) Case 15. (p) Case 16. (q) Case 17. (r) Case 18.
(s) Case 19. (t) Case 20.

Moreover, a neural network can be pretrained in advance,
which offers a better initial solution for achieving faster ILT
convergence.

In conclusion, we believe that a properly pretrained neural
network is more suitable for performing ILT-style mask cor-
rection benefiting from the potentially faster and better ILT
convergence. The potential of transferability of Neural-ILT can
be further explored leveraging the real industrial lithography
recipes and designs in advanced technology nodes.

V. CONCLUSION

In this article, we proposed Neural-ILT, an end-to-end
learning-based OPC framework that literally conducts on-
neural-network ILT for the given layouts. We believe that
the proposed paradigm can be extended on industrial applica-
tions once equipped with industrial ILT solver and lithography
recipe. Future works would include further studies on the
applications of Neural-ILT.

REFERENCES

[1] J. Kuang, W.-K. Chow, and E. F. Y. Young, “A robust approach for
process variation aware mask optimization,” in Proc. IEEE/ACM Proc.
Design Autom. Test Eurpoe (DATE), 2015, pp. 1591–1594.

[2] Y.-H. Su, Y.-C. Huang, L.-C. Tsai, Y.-W. Chang, and S. Banerjee,
“Fast lithographic mask optimization considering process variation,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 35, no. 8,
pp. 1345–1357, Aug. 2016.

[3] F. Liu and X. Shi, “An efficient mask optimization method based on
homotopy continuation technique,” in Proc. IEEE/ACM Design Autom.
Test Eurpoe (DATE), 2011, pp. 1–6.

[4] J.-R. Gao, X. Xu, B. Yu, and D. Z. Pan, “MOSAIC: Mask optimiz-
ing solution with process window aware inverse correction,” in Proc.
ACM/IEEE Design Autom. Conf. (DAC), 2014, pp. 1–6.

[5] K. Hooker, B. Kuechler, A. Kazarian, G. Xiao, and K. Lucas, “ILT
optimization of EUV masks for sub-7nm lithography,” in Proc. SPIE,
vol. 10446, 2017, Art. no. 1044604.

[6] Y. Ma, J.-R. Gao, J. Kuang, J. Miao, and B. Yu, “A unified framework
for simultaneous layout decomposition and mask optimization,” in Proc.
IEEE/ACM Int. Conf. Comput. Aided Design (ICCAD), 2017, pp. 81–88.

[7] R. Pearman et al., “How curvilinear mask patterning will enhance
the EUV process window: A study using rigorous wafer+ mask dual
simulation,” in Proc. SPIE, vol. 11178, 2019, Art. no. 1117809.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 19,2022 at 00:23:30 UTC from IEEE Xplore.  Restrictions apply. 



2684 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 8, AUGUST 2022

[8] I. Torunoglu et al., “A GPU-based full-chip inverse lithography solution
for random patterns,” in Proc. SPIE, 2010, Art. no. 764115.

[9] V. Domnenko et al., “EUV computational lithography using accelerated
topographic mask simulation,” in Proc. SPIE, 2019, Art. no. 109620O.

[10] J. Kuang and E. F. Young, “An efficient layout decomposition approach
for triple patterning lithography,” in Proc. 50th ACM/EDAC/IEEE
Design Autom. Conf. (DAC), 2013, pp. 1–6.

[11] J. Kuang, J. Ye, and E. F. Y. Young, “Simultaneous template optimization
and mask assignment for DSA with multiple patterning,” in Proc.
IEEE/ACM Asia South Pac. Design Autom. Conf. (ASPDAC), 2016,
pp. 75–82.

[12] W. Ye, M. B. Alawieh, Y. Lin, and D. Z. Pan, “LithoGAN: End-to-end
lithography modeling with generative adversarial networks,” in Proc.
ACM/IEEE Design Autom. Conf. (DAC), 2019, pp. 1–6.

[13] Y. Lin et al., “Data efficient lithography modeling with transfer learning
and active data selection,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 38, no. 10, pp. 1900–1913, Oct. 2019.

[14] D. Ding, B. Yu, J. Ghosh, and D. Z. Pan, “EPIC: Efficient prediction
of IC manufacturing hotspots with a unified meta-classification for-
mulation,” in Proc. IEEE/ACM Asia South Pac. Design Autom. Conf.
(ASPDAC), 2012, pp. 263–270.

[15] H. Yang, J. Su, Y. Zou, Y. Ma, B. Yu, and E. F. Y. Young, “Layout
hotspot detection with feature tensor generation and deep biased learn-
ing,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 38,
no. 6, pp. 1175–1187, Jun. 2019.

[16] R. Chen, W. Zhong, H. Yang, H. Geng, X. Zeng, and B. Yu, “Faster
region-based hotspot detection,” in Proc. ACM/IEEE Design Autom.
Conf. (DAC), 2019, pp. 1–6.

[17] X. Ma, S. Jiang, J. Wang, B. Wu, Z. Song, and Y. Li, “A fast and
manufacture-friendly optical proximity correction based on machine
learning,” Microelectron. Eng., vol. 168, pp. 15–26, Jan. 2017.

[18] H. Yang, S. Li, Y. Ma, B. Yu, and E. F. Young, “GAN-OPC: Mask
optimization with lithography-guided generative adversarial nets,” in
Proc. ACM/IEEE Design Autom. Conf. (DAC), 2018, p. 131.

[19] B. Jiang, H. Zhang, J. Yang, and E. F. Young, “A fast machine
learning-based mask printability predictor for OPC acceleration,” in
Proc. IEEE/ACM Asia South Pac. Design Autom. Conf. (ASPDAC), 2019,
pp. 412–419.

[20] T. Chan, P. Gupta, K. Han, A. A. Kagalwalla, and A. B. Kahng,
“Benchmarking of mask fracturing heuristics,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 36, no. 1, pp. 170–183, Jan.
2017.

[21] C. Mack, Fundamental Principles of Optical Lithography: The Science
of Microfabrication. Hoboken, NJ, USA: Wiley, 2008.

[22] S. Banerjee, Z. Li, and S. R. Nassif, “ICCAD-2013 CAD contest in
mask optimization and benchmark suite,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Design (ICCAD), 2013, pp. 271–274.

[23] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional
networks for biomedical image segmentation,” in Proc. MICCAI, 2015,
pp. 234–241.

[24] W. Zhong, S. Hu, Y. Ma, H. Yang, X. Ma, and B. Yu, “Deep learning-
driven simultaneous layout decomposition and mask optimization,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., early access, Feb. 23,
2021, doi: 10.1109/TCAD.2021.3061494.

[25] (2008). NanGate FreePDK45 Generic Open Cell Library. [Online].
Available: http://www.si2.org/openeda.si2.org/projects/nangatelib

[26] A. Poonawala and P. Milanfar, “OPC and PSM design using
inverse lithography: A nonlinear optimization approach,” in Proc. Opt.
Microlithogr. XIX, vol. 6154, 2006, Art. no. 61543H.

[27] B. Jiang et al., “Fit: Fill insertion considering timing,” in Proc.
ACM/IEEE Design Autom. Conf. (DAC), 2019, p. 221.

[28] H. Yang, S. Li, Z. Deng, Y. Ma, B. Yu, and E. F. Y. Young, “GAN-
OPC: Mask optimization with lithography-guided generative adversarial
nets,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39,
no. 10, pp. 2822–2834, Oct. 2020.

Bentian Jiang received the B.Eng. degree in elec-
tronics and information engineering from Sichuan
University, Chengdu, China, in 2017, and the
Ph.D. degree from the Department of Computer
Science and Engineering, The Chinese University of
Hong Kong, Hong Kong, in 2021.

His research interests include very large-scale
integration design for manufacturability and physical
design.

Lixin Liu received the B.Eng. degree in elec-
tronic science and technology from the South China
University of Technology, Guangzhou, China, in
2019. He is currently pursuing the Ph.D. degree
with the Department of Computer Science and
Engineering, The Chinese University of Hong Kong,
Hong Kong.

His research interest includes deep learning and
its applications on physical design.

Yuzhe Ma (Member, IEEE) received the B.E. degree
from the Department of Microelectronics,
Sun Yat-sen University, Guangzhou, China, in
2016, and the Ph.D. degree from the Department of
Computer Science and Engineering, The Chinese
University of Hong Kong, Hong Kong, in 2020.

He has interned with Cadence Design Systems,
San Jose, CA, USA; NVIDIA Research, Austin,
TX, USA; and Tencent Youtu X-Lab, Shenzhen,
China. He is currently with The Chinese University
of Hong Kong, Hong Kong. His research interest

includes very large-scale integration design for manufacturing, physical
design, and machine learning on chips.

Dr. Ma received the Best Paper Award from ASPDAC’2021, the Best
Student Paper Award from ICTAI’2019, the Best Paper Award Nomination
from ASPDAC’2019, and the Best Poster Research Award from Student
Research Forum of ASPDAC’2020.

Bei Yu (Member, IEEE) received the Ph.D. degree
from the University of Texas at Austin, Austin, TX,
USA, in 2014.

He is currently an Associate Professor with the
Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Hong Kong.

Dr. Yu received the seven Best Paper Awards
from ASPDAC 2021, ICTAI 2019, Integration,
the VLSI Journal in 2018, ISPD 2017, SPIE
Advanced Lithography Conference 2016, ICCAD
2013, ASPDAC 2012, and six ICCAD/ISPD contest

awards. He has served as the TPC Chair of ACM/IEEE Workshop on Machine
Learning for CAD and in many journal editorial boards and conference
committees. He is an Editor of IEEE TCCPS Newsletter.

Evangeline F. Y. Young (Senior Member, IEEE)
received the B.Sc. degree in computer science from
The Chinese University of Hong Kong (CUHK),
Hong Kong, and the Ph.D. degree from The
University of Texas at Austin, Austin, TX, USA, in
1999.

She is currently a Professor with the Department
of Computer Science and Engineering, CUHK. Her
research focuses on floorplanning, placement, rout-
ing, DFM, and EDA on physical design in general.
Her research interests include EDA, optimization,

algorithms, and AI.
Prof. Young’s research group has won the best paper awards from ICCAD

2017, ISPD 2017, SLIP 2017, and FCCM 2018, and several championships
and prizes in renown EDA contests, including the 2018–2020, 2015–2016,
2012–2013 CAD Contests at ICCAD, DAC 2012, and ISPD 2015–2020 and
2010–2011. She has served on the organization committees of ICCAD, ISPD,
ARC, and FPT and on the program committees of conferences, including
DAC, ICCAD, ISPD, ASP-DAC, SLIP, DATE, and GLSVLSI. She also served
on the editorial boards of the IEEE TRANSACTIONS ON COMPUTER-AIDED

DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, ACM Transactions on
Design Automation of Electronic Systems, and Integration, the VLSI Journal.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 19,2022 at 00:23:30 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TCAD.2021.3061494


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


