
31

Correlated Multi-objective Multi-fidelity Optimization

for HLS Directives Design

QI SUN, TINGHUAN CHEN, and SITING LIU, The Chinese University of Hong Kong

JIANLI CHEN, Fudan University

HAO YU, Southern University of Science and Technology

BEI YU, The Chinese University of Hong Kong

High-level synthesis (HLS) tools have gained great attention in recent years because it emancipates engineers

from the complicated and heavy hardware description language writing and facilitates the implementations

of modern applications (e.g., deep learning models) on Field-programmable Gate Array (FPGA), by using

high-level languages and HLS directives. However, finding good HLS directives is challenging, due to the

time-consuming design processes, the balances among different design objectives, and the diverse fidelities

(accuracies of data) of the performance values between the consecutive FPGA design stages.

To find good HLS directives, a novel automatic optimization algorithm is proposed to explore the Pareto de-

signs of the multiple objectives while making full use of the data with different fidelities from different FPGA

design stages. Firstly, a non-linear Gaussian process (GP) is proposed to model the relationships among the

different FPGA design stages. Secondly, for the first time, the GP model is enhanced as correlated GP (CGP)

by considering the correlations between the multiple design objectives, to find better Pareto designs. Fur-

thermore, we extend our model to be a deep version deep CGP (DCGP) by using the deep neural network

to improve the kernel functions in Gaussian process models, to improve the characterization capability of

the models, and learn better feature representations. We test our design method on some public benchmarks

(including general matrix multiplication and sparse matrix-vector multiplication) and deep learning-based ob-

ject detection model iSmart2 on FPGA. Experimental results show that our methods outperform the baselines

significantly and facilitate the deep learning designs on FPGA.

CCS Concepts: • Hardware→ Electronic design automation;

Additional Key Words and Phrases: High-level synthesis, correlated multi-objective optimization, multi-

fidelity optimization, design space exploration, Gaussian process

ACM Reference format:

Qi Sun, Tinghuan Chen, Siting Liu, Jianli Chen, Hao Yu, and Bei Yu. 2022. Correlated Multi-objective Multi-

fidelity Optimization for HLS Directives Design. ACM Trans. Des. Autom. Electron. Syst. 27, 4, Article 31

(March 2022), 27 pages.

https://doi.org/10.1145/3503540

This work is supported by The Research Grants Council of Hong Kong SAR (No. CUHK14209420), The Innovation and

Technology Fund (No. PRP/065/20FX), and SmartMore.

Authors’ addresses: Q. Sun, T. Chen, S. Liu, and B. Yu, Department of Computer Scinece and Engineering, The Chinese

University of Hong Kong, State Key Lab of ASIC & System, Fudan University, Shanghai 200433, China; emails: {qsun,

thchen, stliu, byu}@cse.cuhk.edu.hk; J. Chen, School of Microelectronics, Southern University of Science and Technology,

Shenzhen 518055, China; email: chenjianli@fudan.edu.cn; H. Yu, School of Microelectronics, Southern University of Science

and Technology, Shenzhen, China; email: yuh3@sustech.edu.cn.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

1084-4309/2022/03-ART31 $15.00

https://doi.org/10.1145/3503540

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 31. Pub. date: March 2022.

https://orcid.org/0000-0001-5153-6698
https://doi.org/10.1145/3503540
mailto:permissions@acm.org
https://doi.org/10.1145/3503540

31:2 Q. Sun et al.

1 INTRODUCTION

The Field-programmable Gate Array (FPGA) design flow is complicated, typically composed of
several different steps or phases, including design entry, logic synthesis, and implementation (aka.,
placement-and-routing). Design entry is to describe the functionalities by the hardware descrip-

tion languages (HDLs). Logic synthesis turns the HDLs into a design implementation in terms of
logic gates. Implementation conducts the placement and routing and generates the bitstream. The
workload of the whole flow is heavy and time-consuming. Furthermore, high-level synthesis

(HLS) tools, used as the design entry tools, have made it possible for users who are not experts in
writing HDLs to describe their FPGA designs, by translating high-level programming languages
(e.g., C/C++) to low-level HDLs, under the guidance of HLS directives. An example of the FPGA
design flow relying on HLS is illustrated in Figure 1(a). The HLS directives are embedded into
C/C++ source code, as the inputs to the Field-programmable Gate Array (FPGA) design tool.

HLS directives guide the translation process of the high-level language descriptions, in terms of
how to parallelize the computations, how to allocate the memory and computation resources, and
so on. Given different HLS directive configurations, the final hardware architectures generated
from the same high-level language description may vary a lot from each other and therefore have
distinctive performance values. In the problem of HLS directives design, the target is to find some
HLS directives designs that optimize the design objectives from the entire design space which is
composed of candidate directives designs. Some common performance objectives include power,
delay, and resource consumption. For better understanding, Figure 1(b) shows an example of HLS
directives designs. We need to choose the best factor for each directive to obtain the best perfor-
mance values. With these advantages, HLS tools have been widely used in many applications, e.g.,
floating-point computations [2, 20], and deep neural network (DNN) deployments [14, 45].

Several problems still hinder researchers from finding the optimal directives design efficiently.
Firstly, it is difficult to find designs that balance the multiple design objectives. For example, re-
ducing system delay demands higher parallelisms which would require more computation cores
and have higher resource consumptions, and vice versa. Therefore, optimizing the multiple objec-
tives simultaneously is a multi-objective optimization problem. Secondly, the whole design flow
is time-consuming and the analysis reports of these several stages have different fidelities. Later
stages can report more accurate analyses, at the cost of longer running times. This kind of multi-
stage design problem is also called multi-fidelity design. Besides, the reported results of the three
stages in Figure 1(a) and the HLS directives are usually in complicated relationships which make
it difficult to map between them. We cannot guarantee whether a design is good or valid in the
Implementation stage, though its HLS estimated performance is good. Therefore, we need to pre-
dict the quality of the reports at each stage to determine whether we need to run the later FPGA
design stages to get more accurate reports.

Some efforts have been made to facilitate the selection of HLS directives. Several analyti-
cal/synthesis methods were proposed to analyze the HLS directives, to estimate the performance
with no need of running the FPGA design flow for too many directives designs. For the general
applications, the directive configurations are analyzed by using an analytic model or a simula-
tor, e.g., Lin-analyzer [57], COMBA [54, 55], polyhedral model [58] and so on. Some proposed
to use the dedicated heuristics methods, e.g., lattice [11], clustering [35], divide and conquer [36],
and greedy method [30] to guide the exploration of the directive designs. For the deep neural
network applications, researchers proposed complicated formulations to simulate the systolic ar-
rays for convolutional operations [39, 46], Spatial/Winograd convolution [52], or several specific
code templates [14]. However, these works depend on the accuracy of the analytical models and
lack generality or still consume much time to conduct the detailed code analysis and synthesis

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 31. Pub. date: March 2022.

Correlated Multi-objective Multi-fidelity Optimization for HLS Directives Design 31:3

Fig. 1. (a) The FPGA design flow. C/C++ source code and HLS directives are fed into the design tool. There
are three analysis stages and the later stages obtain more accurate reports but consume longer running
times. (b) HLS pseudo-codes and directives. The directives are in the boxes, beginning with “#PRAGMA”. Each
directive has some factors, e.g., ON and OFF of INLINE, and 2, 5, and 10 of UNROLL. Briefly, in this work,
our task is to determine the optimal factors for each of these directives.

(aka., profiling) to determine the parameters in the analytical models [14, 39, 46, 52]. Typical param-
eters include the unit costs of latency, power, and resource consumptions for the given application
and FPGA device, which vary significantly under different scenarios. For new applications, new
analytic formulations are required, especially for the complicated deep neural networks. These ap-
plications challenge the generality of these analytical methods. Besides, the feature of the multiple
stages (multi-fidelity) in the FPGA design flow is not considered in these works.

Some model-based works use machine learning algorithms to map from the HLS directives to
the performance values, where the complicated FPGA design stages are regarded as black-box func-
tions which can be modeled by machine learning algorithms. Compared to the analytical methods,
model-based methods are more flexible and general. The inputs to these models are the feature en-
codings of the HLS directives and the predicted outputs are the performance values. In these works,
the authors collect lots of data to train machine learning models. [27] uses simulated annealing to
collect training data, to train a decision tree to guide the exploration of new designs. [21] uses ran-

domized transductive experimental design (RTED) to draw efficient designs from the design
space. [22] guides the FPGA designs according to the known ASIC designs by training a regressor,
with the help of [21] as the initialization method. Similarly, [8, 9, 23, 29, 41, 56] propose to use
more machine learning algorithms to predict the routing congestions, power, performance and so
on, according to the reports and results at various design stages, or the reports of some preliminary
analytic models. Some typical algorithms include linear regression, artificial neural networks, and
boosting trees. However, huge amounts of real design reports are necessary to guarantee accuracy
due to the limited performance of these models. The multiple objectives are usually considered
independently, and a machine learning model is built for each objective separately. Besides, the
multi-fidelity reports are also not utilized. They use the post-Implementation reports at the cost of
longer running times or use the post-HLS reports at the cost of data accuracies without considering
the trade-offs are between running times and data accuracies. To reduce the simulation costs and
make full use of the existing reports, recently, Bayesian optimization (BO) approaches based on
the Gaussian process (GP) have been proposed. However, the multiple objectives are indepen-
dent of each other [24]. This work is further extended by considering linear multi-fidelity designs
[25]. Wider communities have discussed similar tasks, e.g., high-speed adder [13], and multi-core
design [19].

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 31. Pub. date: March 2022.

31:4 Q. Sun et al.

However, it is regrettable that some important characteristics of the directive design are ignored.
Firstly, the multiple design objectives are in complex correlated relationships. The correlated rela-
tionship has been proven to be an important factor in various applications in practical scenarios
[6, 7]. Therefore, there exist losses of accuracy in the previous works since they build some in-
dependent models to characterize the design objectives. Secondly, the performance values of the
three design stages and the directives are in non-linear relationships. It is hard for the designers
who implement the high-level descriptions to estimate the performance of the design after place-
ment and routing. Some ignore or evade these complicated relationships by only considering the
lowest fidelity (post-HLS reports), though they miss some data from the later stages. Unfortunately,
to the best of our knowledge, most of the previous methods did not focus on counteracting these
challenges explicitly, no matter the analytical methods, or the model-based methods.

In our previous work [40], to help solve these problems, we proposed a novel correlated multi-
objective and multi-fidelity GP (CGP) model based on Bayesian optimization. The Bayesian opti-
mization can strike a balance between model accuracies and optimization workloads. Non-linear
multi-fidelity models were built to measure the non-linear relationship between the reports of the
three design stages and HLS directives. Correlated multi-objective Gaussian process models are
proposed as the acquisition functions, to tackle both of the correlated relationships among various
design objectives.

Despite that CGP [40] achieved enormous success in modeling the complicated multi-objective
and multi-fidelity problem, the shallow structures of Gaussian process models limit the ability to
extract information from the input configurations, and bring great challenges to the characteriza-
tion ability of the kernel functions in the Gaussian process models [48]. Recently, it has been proven
that neural networks could automatically discover meaningful representations for the input fea-
tures by learning multiple layers of highly adaptive basis functions [28, 34, 47–49]. Combining the
deep neural networks with GP models can be regarded as the enhancement of the kernel functions,
termed as deep kernel functions. The flexibility and automatic calibration provided by the deep
kernel functions provide a better performance, with no need for tuning the searching framework
for different applications. This technique has achieved more and more attention and applications
in the recent few years [34, 47, 49].

In this article, we further extend our CGP method, by introducing the deep kernel functions to
learn better feature representations for the configurations and augment the ability of the Gaussian
process models. Our contributions are as follows:

— Bayesian optimization is combined with the multi-fidelity and multi-objective optimiza-
tion as the optimization framework, to trade-off the model accuracies and optimization
workloads.

— Non-linear multi-fidelity models are built to measure the non-linear relationship between
the reports of the three design stages and HLS directives. Correlated multi-objective Gauss-
ian process models are proposed, to tackle both of the correlated relationships among various
design objectives and the implicit and complicated mapping relationships between directives
and objective values, to find Pareto configurations accurately.

— Our method is further enhanced to be a deep version deep CGP (DCGP) by using deep neu-
ral networks as the kernel functions, to learn better feature representations flexibly. There-
fore the performance of our method can be further improved significantly.

— Three design objectives, power, delay, and resource consumption are considered in this ar-
ticle, thus making the task practical while challenging. We conduct experiments on some
public FPGA design benchmarks (including general matrix multiplication and sparse matrix-
vector multiplication) and DNN-based object detection model iSmart2. The experimental

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 31. Pub. date: March 2022.

Correlated Multi-objective Multi-fidelity Optimization for HLS Directives Design 31:5

Fig. 2. An example of mapping from design space X to objective space Y, with two directives and two design
objectives (e.g., power and delay). We need to learn a black-box function f to bridgeX and Y, so as to simulate
the FPGA design tool.

results show the outstanding performance of our algorithms on the DNN applications and
the related applications. The found Pareto designs cover the optimal designs for various
design objectives, i.e., power, delay, and resource consumption, and strike a good balance
between these objectives.

The rest of our article is organized as follows. Section 2 provides some preliminaries about
the multi-objective, multi-fidelity optimizations, Gaussian process, Bayesian optimization, and an
overview of our method. Section 3 presents the design space of the HLS directive optimization
problem. Section 4 introduces our non-linear correlated multi-objective GP (CGP) model and the
deep version (DCGP) model. Section 5 shows our overall optimization flow. Section 6 conducts
several experiments to validate our methods, followed by conclusions in Section 7.

2 PRELIMINARIES

In selecting an optimal HLS directive design, our target is finding a configuration of directives in
the space of all directive configurations (named design space or configuration space in our context)
X which have the optimal performance values in the objective space (or value space) Y. The design
space X is constructed by enumerating possible HLS directives to be used in the high-level lan-
guage descriptions. In X, each configuration can be represented as a feature vector x . The details
on directive encoding are in Section 3.2. The objective space Y is composed of the performance
values of the designs given HLS directive configurations. Y is not known unless we run all of the
configurations with the FPGA design tool. Our target is to achieve the configurations with the best
performance with no need of knowing the whole objective space Y. In the rest of this article, the
three FPGA design stages are shorted as hls , syn, and impl .

2.1 Bayesian Optimization

Bayesian optimization (BO) is an efficient and widely-used framework [15, 43] to solve global
optimization problems, e.g., optimizing analog circuits [26]. For an optimization problem with a
black-box objective function f , e.g., power consumption, whose concrete form is unknown, the
target of Bayesian optimization is to find a configuration point x ∈ X which has the optimal
objective value in the objective space Y by conducting a limited number of trials or evaluations. A
two-dimensional example of the mapping from the design space to the objective space is shown
in Figure 2.

In Bayesian optimization, firstly, a set of initial configurations is randomly sampled from the
design space X and passed into the FPGA design tools to get the performance values. These initial
data are used to build a surrogate model to mimic the objective function. Secondly, the BO algorithm

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 31. Pub. date: March 2022.

31:6 Q. Sun et al.

iteratively selects a new configuration from the design space for evaluation under the guidance of
an acquisition function and then updates the surrogate model accordingly. Finally, the optimal HLS
directive configuration is the best one explored by the BO algorithm in the optimization process.
Three essential elements in Bayesian optimization are as follows:

(1) Surrogate model to optimize the black-box objective function f : X → Y, BO learns a
probabilistic surrogate model to predict the function value and quantifies the uncertainty of the
predictions. A commonly used surrogate model is the GP model.

(2) Acquisition function α (·) is used as a score function to evaluate the utility of a candidate
point x ∈ X with respect to finding the optimums of the optimization problem. The acquisition
function should balance the exploitation of already-sampled configurations and the exploration of
un-sampled configurations in the design space. It is built on the already-sampled configurations
and utilizes this prior knowledge (i.e., exploitation) to evaluate the un-sampled configurations (i.e.,
exploration). There are some popular acquisition functions, such as expected improvement (EI),
upper confident bound (UCB), and entropy search (ES) [26].

(3) Optimization procedure iteratively samples a configuration from X based on the acquisi-
tion function α (·) in each optimization step and updates the surrogate model accordingly.

2.2 Multi-objective Optimization

In the optimization problem of HLS directives, there are multiple objectives to be minimized, e.g.,
power, delay, and consumption of various types of resources. No matter whether the designers
clearly emphasize the single-objective or multi-objective in their problems or not, these multiple
objectives should always be considered to guarantee the system’s performance. Without loss of
generality, our goal is to minimize a group of objectives f 1 (x), f 2 (x), . . . , f M (x),∀x ∈ X. Denote
the objective values of the x as f (x) = [f 1 (x), f 2 (x), . . . , f M (x)]�. These M objectives would
possibly conflict with each other. Finding one solution that minimizes all of these objectives simul-
taneously is difficult. Practically, to strike a balance between these objectives, we want to identify
the Pareto-optimal set.

Definition 1 (Pareto optimality). In an M-dimension minimization problem, an objective vector
f (x) is said to dominate f (x ′) if

∀i ∈ [1,M], f i (x) ≤ f i (x ′) and

∃j ∈ [1,M], f j (x) < f j (x ′).
(1)

A point x is Pareto-optimal if there is no other x ′ in design space satisfying that f (x ′) domi-
nates f (x). In the whole design space, the set of points that are not dominated by others is called
the Pareto-optimal set, denoted as Y∗ ∈ Y. For the Pareto-optimal designs, there does not exist an
alternative choice that can improve every objective without sacrificing others. In multi-objective
optimization problems, the realistic and accurate goal is to identify the Pareto-optimal set contain-
ing all the Pareto-optimal directive configurations. In the previous works on HLS optimization, the
M objective functions are solved independently [25], while in this article we proposed to combine
them together by a correlation method.

2.3 Multi-fidelity Optimization

Definition 2 (Fidelity). Fidelity refers to the degree to which a model reproduces the state of a
real-world project or application. It is therefore a measure of the realism of the model. Straight-
forwardly, lower fidelity means that the model has lower data accuracy and the higher fidelity is
more accurate.

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 31. Pub. date: March 2022.

Correlated Multi-objective Multi-fidelity Optimization for HLS Directives Design 31:7

Fig. 3. The correspondence relationships between the design stages in the FPGA design flow and the multiple
models and fidelities in the model level.

Definition 3 (Multi-fidelity Model). For a multi-fidelity problem, each fidelity l ∈ {1, 2, . . . ,L}
corresponds to a objective function fl (x). The multi-fidelity model can be defined as

fl+1 (x) = z (fl (x),x), (2)

where z (·) is an aggregation function. In our context, l = 1 means hls , l = 2 means syn, and l = 3
means impl .

We need to define three objective functions for the three stages, i.e., { fhls , fsyn , fimpl }. As shown
in Figure 1(a), the later stages return more accurate reports, at the cost of consuming longer run-
ning times and more computation resources. Therefore, the objective functions for the later stages
with more accurate reports would have higher fidelities. The correspondence relationships are
shown in Figure 3. There are three models, the HLS model, the Syn model, and the Impl model
corresponding to the HLS stage, the Syn stage, and the Impl stage, respectively. That is why it is
called multi-fidelity optimization.

In the Bayesian optimization, we define three surrogate models to mimic the objective functions
for the three stages, and three acquisition functions to evaluate the utilities of new configurations
on these three surrogate models respectively. For convenience, in this article, we treat the design
stage of FPGA design flow and model fidelity of algorithms as equivalent and do not distinguish
between them, e.g., the lower fidelity implicitly means the lower design stage and vice versa.

2.4 Gaussian Process Regression

GP regression [31] is a flexible method to model the objective function, which is specified by a
mean function μ (x) and a covariance function k (x ,x ′) of the objective f (x) as follows:

μ (x) = E[f (x)],

k (x ,x ′) = E[(f (x) − μ (x)) (f (x ′) − μ (x ′))].
(3)

The mean function μ (x) provides the prior estimations of the objective value for input x , and
typically a constant mean function μ (x) = μ0 is widely used. As to the covariance function k (x ,x ′),
the common form is the squared exponential function of x :

k (x ,x ′) = λ2 exp
(
−1

2
(x − x ′)�Λ(x − x ′)

)
, (4)

where Λ = diag(λ−2
1 , λ

−2
2 , . . . , λ

−2
D) is the diagonal length scale matrix, and λ2 is used to scale the

variance of the model.
Define a known single-objective training set {X,Y}, where X = {x1,x2, . . . ,xn } is a set of direc-

tive configurations andY = {y1,y2, . . . ,yn } is the corresponding single-objective value set. Assume

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 31. Pub. date: March 2022.

31:8 Q. Sun et al.

that the objective function f (x) is influenced by the independent and identical zero-mean Gauss-
ian noise ϵe ∼ N(0,σ 2

e). Therefore, we have the relationship between directive configuration and
its corresponding performance yi = f (xi) + ϵe , with i = 1, . . . ,n.

For a newly sampled configuration x∗ and its corresponding objective function f ∗, the joint
distribution between f ∗ and the data set Y which is already sampled in previous steps is defined
as follows:

p (Y, f ∗) = N ��
[
μ0

μ0

]
,

⎡⎢⎢⎢⎢⎣
K (X) + σ 2

e I k (X,x∗)

k� (X,x∗) k (x∗,x∗)

⎤⎥⎥⎥⎥⎦� , (5)

where k (X,x∗) is a vector of covariance values between x∗ and all of the configurations in X,
and K (X) is the intra-covariance matrix among configurations in X, i.e., K (X)i, j = k (xi ,x j) with
xi ,x j ∈ X. According to the Bayes’ theorem, the posterior distribution is obtained by

p (f ∗ |Y) =
p (Y, f ∗)∫
p (Y, f ∗)df ∗

= N(μ (x∗), Σ(x∗)), (6)

with

μ (x∗) = μ0 + k
� (X,x∗)[K (X) + σ 2

e I]−1 (Y − μ0),

Σ(x∗) = k (x∗,x∗) − k� (X,x∗)[K (X) + σ 2
e I]−1k (X,x∗).

(7)

Before the posterior is calculated, the hyper-parameters Λ, λ, and σe need to be determined by
maximum likelihood estimation as follows:

max
Λ,λ,σe

(Y − μ0)� (K (X) + σ 2
e I)−1 (Y − μ0) + log |K (X) + σ e

n I |, (8)

which can be handled by gradient-based methodologies.

2.5 Overview of Our Method

In this article, a correlated multi-objective multi-fidelity deep kernel learning GP-based Bayesian
Optimization algorithm is proposed to explore the Pareto solutions of HLS directives. The main
techniques include the construction of design space, surrogate models and acquisition functions,
and optimal configuration selection. In constructing design space, HLS directives are transformed
into numerical vectors to perform GP-based Bayesian optimization. Besides, a pruning method
is proposed to shrink design space so that the downstream GP-based Bayesian Optimization can
explore design space more efficiently. In constructing surrogate models, we combine deep ker-
nel learning with GP to learn better feature representations flexibly. In constructing acquisition
functions, we use the expected improvement of Pareto hyper-volume as a metric to select the most
representative configuration to run the FPGA design tool. Then performance values obtained from
the FPGA design tool and the corresponding configuration are used to extend the dataset and up-
date the models. All techniques mentioned above are used to achieve more efficient design space
exploration. The brief optimization flow is shown in Figure 4. In Section 5, the overall detailed
optimization flow and algorithm framework are provided to solve the optimization problems of
HLS directives.

3 HLS DIRECTIVE DESIGN SPACE

To construct the design space X, we enumerate the designs, conduct the tree-based design space
pruning to remove infeasible configurations and encode the directive configurations as feature
vectors.

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 31. Pub. date: March 2022.

Correlated Multi-objective Multi-fidelity Optimization for HLS Directives Design 31:9

Fig. 4. The brief flow of our method.

Fig. 5. An example of tree-based design space pruning method. (a) Code with three loops and two arrays. L1

is the outer loop. L2 and L3 are the inner parallel loops. (b) Trees of array A and B, and the merged tree.

3.1 Design Space and Tree-based Space Pruning

Some HLS directives are widely used, including pipelining, loop unrolling, array partitioning, and
so on. These directives are especially popular in DNN-based applications which are composed
of many dense matrix operations. Some typical dense matrix operations include fully connected
operations, convolutional operations, and general matrix multiplication (GEMM). In general ap-
plications, the codes are composed of several for-loops, some arrays, and related computations.
The design space can be generated by direct permutations and combinations of directives.

However, some directives are conflicting and some are obviously non-optimal, especially for
loop unrolling and array partitioning. Infeasible configurations may increase optimization work-
loads. For example, for an array used in a for-loop, if the array partitioning factor is less than the
loop unrolling factor, this loop may not be unrolled successfully because the visits to the array
are limited by the partitioning factor [42]. If the array partitioning factor is greater than the loop
unrolling factor, more memory resources are consumed without increasing the system parallelism.
Under this circumstance, compatible directives and factors are the best. A tree-based design space
pruning method is proposed to help solve this problem, as shown in Algorithm 1. The inputs are
high-level language descriptions and a file that indicates which directives are to be analyzed.

Figure 5 shows an example. There are two arrays A and B, and three loops L1, L2, and L3 in
Figure 5(a). Two trees are built for A and B, with arrays as root nodes and loops as non-root nodes,
as shown in Figure 5(b). The outer loop L1 is the leaf node and nested loops L2 and L3 are non-
leaf nodes. These two trees are merged since they share some common nodes L3 and L1. In each

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 31. Pub. date: March 2022.

31:10 Q. Sun et al.

Fig. 6. Two types of array partitioning, CYCLIC, and BLOCK. The original array is stored in a continuous
memory space. In this example, the partitioning factor is 2. Both the CYCLIC and BLOCK will partition the
array into two separate memory spaces. CYCLIC creates smaller arrays by interleaving elements from the
original array. BLOCK creates smaller arrays from consecutive blocks of the original array.

ALGORITHM 1: The Pseudo-code of The Tree-based Pruning Method

1: Inputs: High-level programming language source code, and a directive file;
2: Outputs: Pruned design space X, initially X← ∅;
3: Construct a tree for each array, with itself as the root node and related loops as children nodes;
4: Merge trees with common nodes, denote the set of trees as T;
5: for all tree ti ∈ T do

6: for root (array) node aj in ti do

7: for partitioning factor fk of aj do

8: Assign fk to aj ;
9: Assign a unrolling factor to each loop node in ti ;

10: Backtrack from leaf nodes, assign partitioning factors to array nodes in ti , except
aj ;

11: end for

12: Record feasible configurations of aj as set Cj ;
13: X← X ∪Cj ;
14: end for

15: end for

16: Traverse X and remove repeated configurations;
17: return Pruned design space X.

tree, the factor of each child node is determined by its parents. Two types of array partitioning are
considered here, CYCLIC and BLOCK, as shown in Figure 6.

If we partition A with type CYCLIC, then we will assign unrolling factors for L2 and L3. But
we will not unroll L1. In other words, the unrolling factor is 1, because L1 is incompatible with
CYCLIC partitioning of A and unrolling of L2 and L3. After that, we will backtrack from L1 to assign
CYCLIC partitioning factors to B because A and B are in the same loop L3 and their partitioning
types should be the same. In the tree, they are connected by the common node L3.

If we partition array A with type BLOCK, we will set the unrolling factors of L2 and L3 as 1. The
reason is that the unrolling of these two loops is incompatible with the BLOCK of A. But we can
unroll loop L1 successfully because they are compatible. After that, we will backtrack from L1 to
B, to partition array B with type BLOCK.

In this process, all factors will be checked whether they are compatible, and more domain knowl-
edge can be used here if wanted. All of the compatible configurations are added into a configura-
tion set CA belonging to A. After identifying CA and adding CA into X, we can conduct the same
configuration assignment process starting at array B in the merged tree. Note that finally, we will

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 31. Pub. date: March 2022.

Correlated Multi-objective Multi-fidelity Optimization for HLS Directives Design 31:11

Fig. 7. An example of directive encoding. In this example, there are two HLS directives and six configurations
in the design space.

traverse X again to remove repeated configurations. The invalid and incompatible directive con-
figurations are pruned with the tree-based method, which also eases the optimization task. For the
applications with extremely large design spaces, sampling techniques can be adopted, e.g., Monte
Carlo-based sampling with reparameterization trick [50, 51]. Therefore, our proposed method can
be used to explore large design spaces efficiently.

3.2 Encoding of Directive Configurations

The GP, as a typical machine learning model, can only work on numerical values. Therefore, it is
necessary to transform the non-numerical design parameters, such as unroll and inline, into nu-
merical arrays. The TRUE/FALSE factors are represented as 0 or 1 directly. The directives which
have several factors are represented as normalized features, e.g., three factors {2, 5, 10} are encoded
as {0, 0.375, 1}. The normalization can adjust all features to the same scale and allows for a more
uniform influence for all weights and faster convergence on learning [5]. If the partitioning fac-
tor 2 has good performances, we will conjecture that 5 is better than 10 because 5 is closer to
2. Figure 7 shows an example. More directives with factors are included in the experiments, e.g.,
pipelining and array partitioning. The final feature vector for a code segment is the concatenations
and combinations of features of all the directives in this segment.

4 CORRELATED MULTI-OBJECTIVE MULTI-FIDELITY MODELS AND DEEP KERNEL

FUNCTIONS

In this section, non-linear multi-fidelity models and correlated multi-objective models are de-
scribed in Sections 4.1 and 4.2 are enhanced by deep kernel functions in Section 4.4.

4.1 Non-linear Multi-Fidelity Model

Traditionally, in HLS directive designs, the relationship among the multiple stages (fidelities) is as-
sumed to be linear. For example, in [25], higher fidelity estimates scale the lower fidelity output by
a factor and add an independent GP to model the remaining differences. However, it is not suitable
and weak for the applications where these three FPGA design stages exhibit strong complicated
correlations. Therefore, non-linear models are proposed in this article to further exploit the cor-
responding non-linear relationships between the low- and high-fidelity objective functions. The
non-linear model can be formulated as Equation (9).

fi+1 (x) = z (fi (x),x) + fe (x),∀i ∈ {1, . . . ,L − 1}, (9)

where z (·) is the non-linear function and is modeled by a GP model in this article, and fe (x) is the
error term which is also defined as a GP model. The outputs fi (x) of the early stage (low Fidelity)
model are concatenated with the directive encoding features x as the input features to the later
stage (high fidelity) GP model.

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 31. Pub. date: March 2022.

31:12 Q. Sun et al.

Fig. 8. Normalized delay values of the three fidelities. The X -axis is the index of the design. We assign
indices for these designs according to their directive values in increasing order. (a) GEMM (general matrix
multiplication). (b) SPMV_ELLPACK (sparse matrix-vector multiplication using the ELLPACK format).

Delay values of two benchmarks are shown in Figure 8 as examples to illustrate the complex
non-linear relationships among the three fidelities. In the GEMM, delay values of the configurations
in the three fidelities are highly overlapping. For the sparse matrix-vector multiplication using the
ELLPACK format (SPMV_ELLPACK), delay values in the three fidelities show high divergences. The
high divergences of various applications make it hard to regress the relationships accurately by
using traditional linear models. Obviously, using non-linear models is a wise and general choice
to handle various applications.

4.2 Correlated Multi-Objective Model

To learn and measure the Pareto set for the multi-objective optimization problem, we introduce
the expected improvement of Pareto hyper-volume (EIPV) [37] and define it as the acquisi-
tion function. Firstly, we will clarify the concept of the expected improvement of Pareto hyper-
volume. Secondly, we will define the probability model and compute the value of the expected
improvement.

Assume that in current optimization step t + 1, we already have a Pareto-optimal set D =

{X∗,Y∗}, with X∗ = {xs }ts=1, and Y∗ = {ys }ts=1. Note that D is the Pareto-optimal set of the designs

explored in the previous t steps. A virtual configuration pointvr ef ∈ RM is defined as the reference

point, which is dominated by Y∗, i.e., ys � vr ef
1 for ∀ys ∈ Y∗. vr ef does not have physical mean-

ings and is only for the ease of computations. In the experiments, we can directly assign extremely
large values which usually do not occur in practical scenarios to vr ef , e.g., 100 W for power. The
Pareto hyper-volume with respect tovr ef in the objective space is defined as Equation (10).

PVvr ef
(Y∗) =

∫
RM

I[y � vr ef]

⎡⎢⎢⎢⎢⎣1 −
∏

u ∈Y∗
I[u � y]

⎤⎥⎥⎥⎥⎦ dy, (10)

where I(·) is the indicator function, which outputs 1 if its argument is true and 0 otherwise. This
equation measures the volume of the objective space composed of configurations, which dominate
vr ef but are dominated by at least one configuration in Y∗. The greater the volume is, the better
the Pareto set is.

1“�” denotes “dominate”. In this minimization problem, its numerical meaning is “≤” as shown in Equation (1).

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 31. Pub. date: March 2022.

Correlated Multi-objective Multi-fidelity Optimization for HLS Directives Design 31:13

Fig. 9. An example of minimizing power and delay. The objective space is divided into cells according to the
locations of the currently found Pareto set. (a) Orange points are Pareto points and blue points are dominated.
Blank cells are dominated while light yellow cells are not. The volume of the blank cells is the current Pareto
hyper-volume. (b) Purple point is predicted to be the Pareto-optimal configuration and the light purple cell
is the corresponding expected improvement of Pareto hyper-volume.

Greedily, in each operation step, we want to sample a configuration, which can lead to the
highest expected improvement of the Pareto hyper-volume. Here the “expected” comes from the
uncertainty information of the predicted performance values of GP models. We will estimate the ex-
pected improvements for the un-sampled configurations and select the configuration which leads
to the largest expected improvement. The expected improvement is defined as Equation (11).

EIPV(xt+1 |D) = Ep (y (xt+1) |D)

[
PVvr ef

(Y∗ ∪y (xt+1)) − PVvr ef
(Y∗)

]
. (11)

We can decompose the whole objective space into grid cells to simplify the integration of
Equation (10), as shown in Figure 9(a). The decomposition is according to the locations of the
found Pareto-optimal configurations in the objective space. The corresponding objective values
at these two axes are b1

i and b2
i . We denote the non-dominated cells as Cnd. Then Equation (11) is

simplified as Equation (12), where ΔC (x) is the volume of cell C ∈ Cnd.

EIPV(xt+1 |D) =
∑

C ∈Cnd

ΔC (x) =
∑

C ∈Cnd

∫
C

PVvc
(y)p (y |D)dy. (12)

In Figure 9(b), the purple node maximizes the expected improvement and therefore, it is the Pareto
design to select in this step.

Now we have clarified the concept of the expected improvement of Pareto hyper-volume. The
next step is to define the probability model p (y |D) and to further deduce the concrete form of the
expected improvements. In previous works [24, 25], the multiple design objectives are predicted
via several independent Gaussian process models, though in real applications, they are usually
correlated. For example, to reduce system delay, we may want to increase the system parallelism
which means we will consume much more on-chip resources, e.g., LUTs. Therefore, delay and
resource consumption are negatively correlated. But power and resource consumption are posi-
tively correlated since instantiating more on-chip resources would increase power consumption
simultaneously.

In this article, p (y |D) is modeled as a correlated multi-objective GP model [4], as shown in
Equation (13).

p (y |D) = N(y1, . . . ,yM ; μ, Σ), (13)

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 31. Pub. date: March 2022.

31:14 Q. Sun et al.

Fig. 10. The combined models, with three stages (fidelities) and three objectives. The orange lines represent
the non-linear relationships. The blue lines represent the inputs. Each fidelity has an acquisition function
PEIPV.

where μ is the mean vector with length M and each element μi in it is the mean value of objective
f i . The covariance matrix Σ is non-diagonal. Specifically, definition of the covariance value is

Σi, j = Cov(f i (x), f j (x ′)) = Ki, jkC (x ,x ′), (14)

where Ki, j is the similarity between objectives i and j and can be obtained by maximizing like-
lihood estimation. kC is a covariance function over X and is defined as automatic relevance

determination (ARD) Matérn 5/2 kernel to avoid over-smoothness [38].

4.3 Combined Model

Our method has two novel modeling techniques, one for modeling the multiple correlated objec-
tives and one for modeling the three fidelities (i.e., three FPGA design stages). At each fidelity, all
of the objectives construct a correlated multi-objective model. Its expected improvement function
of Pareto hyper-volume is denoted as EIPVi (xt+1 |D), with i ∈ {hls, syn, impl }. In the real FPGA
design flow, obtaining results in different stages costs different running times. To characterize the
different costs, an additional penalty term ρi is applied to augment EIPVi (xt+1) as the penalized
EIPV, termed as PEIPVi (xt+1 |D):

PEIPVi (xt+1 |D) = ρi · EIPVi (xt+1 |D),

ρi =
Timpl

Ti
, i ∈ {hls, syn, impl },

(15)

where Ti is the time of running the FPGA design tool from scratch to stage i . Finally, PEIPV func-
tions in Equation (15) are used as the acquisition functions in the Bayesian optimization frame-
work. For the designs that violate the design rules, no valid reports are returned from the FPGA
tool. Their simulation performance is set to be 10× worse than the current worst-case, to pun-
ish the illegal designs and teach the models. Figure 10 visualizes the structures of the combined
models.

4.4 Optimization Based on Deep Kernel Functions

The properties of the distributions over functions induced by a GP are controlled by the kernel
function, and the covariance matrices implicitly depend on the hyper-parameters in the kernel
functions [10, 18, 48, 49, 53]. From this perspective, learning better kernel functions are of
vital importance to the performance of the GP models. In the recent fewer years, deep neural
networks have been shown to have powerful mechanisms to create adaptive functions to discover

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 31. Pub. date: March 2022.

Correlated Multi-objective Multi-fidelity Optimization for HLS Directives Design 31:15

Fig. 11. Our method combines the GP model GPΘ and the deep kernel function ϕW . The original input
feature is x . And the learned novel feature representation is ϕW (x).

meaningful representations of input data. Therefore, we propose to use the deep neural network
as the deep kernel function in the GP models.

As mentioned above, the covariance value in the covariance matrix Σ is defined as Equation (14),
where kC is defined as ARD Matérn 5/2 kernel. ARD Matérn 5/2 kernel [32] takes the form

kC (x ,x ′) =
21−ν

Γ(ν)

(√
2νd
)
Kν

(√
2νd
)
,

d = (x − x ′)�θ−1 (x − x ′),
(16)

where Γ is the gamma function, ν is the smoothness parameter (ν = 5/2), Kν is a modified Bessel
function of the second kind, and θ is the parameters to be learned. Despite the complicated form,
it can be regarded as the inner product of the input feature vectors. Since the covariance only
depends on the distances between inputs, it is stationary. In different applications, it is hard to
give a general and uniform representation for the different feature vectors to characterize the
complicated relationships between the design configurations.

To improve the characterization ability of the kernel function, we propose to use deep neural net-
works to enhance the kernel function, termed as deep kernel function, as shown in Equation (17).

k ′C (x ,x ′) = kC (ϕW (x),ϕW (x ′) |θ ,W), (17)

where ϕW (·) represents the neural network and W represents the parameters in the network.
Implicitly, that is equivalent to learn a novel distance metric to enhance the distance d in
Equation (16), i.e.,

d ′ = (ϕW (x) − ϕW (x ′))�θ−1 (ϕW (x) − ϕW (x ′)). (18)

The structure of the model with a deep kernel function is shown in Figure 11. The learned feature
of the input configuration is ϕW (x). Then ϕW (x) is used as the inputs to the GP models. The
structure of our deep kernel function is described in detail in the experiments.

The weight W of the neural network is a part of the parameters in our method. For brevity,
denote the multi-objective GP model as GPΘ with parameters Θ. Parameters Θ andW are optimized
jointly, by maximizing the log marginal likelihood L of the Gaussian process model. According to
the chain rule of the gradients, Θ andW can be updated according to

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 31. Pub. date: March 2022.

31:16 Q. Sun et al.

∂L

∂Θ
=
∂L

∂KC

∂KC

∂Θ
,

∂L

∂W
=
∂L

∂KC

∂KC

∂ϕW (x)

∂ϕW (x)

∂W
,

(19)

where KC denotes the kernel functions, which contain Ki, j in Equation (14) and k ′C in Equation (17),
∂KC

∂Θ represents the derivatives of the kernel with respect to the kernel parameters. ∂KC

∂ϕW (x) repre-

sents the derivatives of the deep kernel with respect to the neural network ϕW , while Θ is fixed.
With this training method, all of the parameters are trained jointly according to a unified su-
pervised objective, as part of the Gaussian process framework, without requiring approximate
Bayesian inference. During training, the gradients are computed via backpropagation.

5 THE OVERALL OPTIMIZATION FLOW

The Bayesian optimization method is adopted as the algorithm skeleton to explore the Pareto-
optimal directive configurations, with the GP models as the surrogate models, and PEIPV functions
as the acquisition functions.

Using data from later stages contributes to a more accurate surrogate model, at the cost of more
simulation workloads to obtain the performance values. If the results at the early FPGA design
stage are good enough, there is no need to run the FPGA design tool to the later stages. In each
optimization step of the BO algorithm, for the surrogate model of each stage, we need to consider
the quality of the selected point and its acquisition value, so as to determine whether it is necessary
to optimize models of the later stages. For example, in one BO step, PEIPVsyn is the best compared
with PEIPVhls and PEIPVimpl , at configuration xsyn . We will then run the FPGA design tool with
xsyn as the directive configuration input, to get the real performance values at hls and syn stages.
Finally, we will update the surrogate models of hls and syn stages according to these performance
values. If PEIPVimpl is the best, we will run the FPGA design tool to the final impl stage, and update
the models of hls , syn, and impl stages.

The overall optimization flow is detailed in Algorithm 2 and Figure 12. Firstly, we define and
prune the design space according to the tree-based method described in Algorithm 1. Denote the
generated design space as X. Secondly, we randomly sample some configurations from the design
space for initialization. The configurations for the higher fidelities (later FPGA stages) are subsets
of the lower fidelities (earlier FPGA stages), i.e., Ximpl ⊆ Xsyn ⊆ Xhls ⊆ X. These configurations
are then fed into the FPGA design tool to get real performance values Yi , with i ∈ {hls, syn, impl }.
For each stage, we initialize a surrogate model DKLGPi (i.e., GP model with deep kernel learning
function) and an acquisition function PEIPVi . In each optimization time step, for each stage i ,
we will select a configuration x̂i ∈ X which maximizes the expected improvement PEIPVi . x̂i is
regarded as the candidate Pareto configuration of this stage. Then a node-stage pair (x∗,h),which
achieves the highest expected improvement is selected from the three x̂i configurations. Here h
denotes the stage index. x∗ is our final choice of Pareto point in current optimization step. A toy
example on the surrogate models and PEIPV functions is shown in Figure 13. We will then pass the
code together with configuration x∗ into the FPGA design tool, run the tool up to stage h to get the
performance values (i.e.,yi , with i = hls, . . . ,h). Record the configuration and performance values,
i.e., Xi ← Xi ∪ {x∗}, and Yi ← Yi ∪ {yi }, and update all of the corresponding surrogate models and
PEIPV functions. Then we will start the next BO searching step. The final Pareto designs {X∗,Y∗}
found by our optimization method are computed from {Ximpl ,Yimpl }.2

2Note that different from the optimization process, given a set with the known objective values, the Pareto set of this set

is deterministic and can be computed easily.

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 31. Pub. date: March 2022.

Correlated Multi-objective Multi-fidelity Optimization for HLS Directives Design 31:17

ALGORITHM 2: The Optimization Flow Based on Bayesian Optimization Method

1: Inputs: High-level programming language source code, optimization steps Niter , early-
stopping step SE ;

2: Outputs: Pareto configuration set X∗ and objective value set Y∗, initially X∗ ← ∅, Y∗ ← ∅;
3: Enumerate the design space and run tree-based pruning method, to get pruned design space

X; � Section 3.1
4: Randomly sample initial sets Ximpl ⊆ Xsyn ⊆ Xhls ⊆ X;
5: Run FPGA tool to get the performance values Yi for Xi , with i ∈ {hls, syn, impl };
6: Initialize a surrogate model DKLGPi and an acquisition function PEIPVi for each stage i ac-

cording to {Xi ,Yi }, with i ∈ {hls, syn, impl }; � DKLGPi is our method with GPs and deep
kernel learning functions

7: for t ←1 to Niter do

8: for all stage i ∈ {hls, syn, impl } do

9: Update DKLGPi and PEIPVi according to {Xi ,Yi };
10: x̂i ← arg maxx ∈X PEIPVi (x); � Select the candidate Pareto configuration from X

11: end for

12: (x∗,h) ← arg max(x̂i ,i) PEIPVi (x), with i ∈ {hls, syn, impl }; � Determine the Pareto
configuration

13: Run FPGA tool with x∗ up to stage h, to get yi , with i ∈ {hls, ...,h};
14: Xi ← Xi ∪ x∗, Yi ← Yi ∪yi , with i ∈ {hls, ...,h};
15: X← X \ x∗; � Remove x∗ from the design space
16: Compute current hypervolume hvt of {Ximpl ,Yimpl };
17: if hvt has no improvements in the continuous SE steps then � Early-stopping condition
18: break; � Converge and exit the optimization process
19: end if

20: end for

21: Select Pareto configurations {X∗,Y∗} from {Ximpl ,Yimpl }; � Obtain the final results from the
exploration record

22: return Pareto configurations {X∗,Y∗}.

Note that in our framework, no additional model training dataset is required. Some configu-
rations are sampled from the design space to initialize the models during the model initializa-
tion, i.e., train the model from scratch. These initial configurations with their performance values
{Xi ,Yi }, i ∈ {hls, syn, impl } are the initial training set. Then, new configurations are selected from
the design space in the iterative optimization process, according to the expected improvements
discussed above. These newly sampled configurations are passed to the FPGA design tool to get
actual performance values and extend the training set to tune the model further. The deep kernel
modules and GP modules are trained jointly according to Equation (19). The process is repeatedly
performed several times until convergence.

Compared with our previous work CGP [40], considering that the shallow structures of Gaussian
process models limit the ability to extract information from the input configurations, we combine
the deep kernel learning functions with GP models in DCGP, as the enhancement of the kernel
functions to learn better feature representations flexibly. Based on this combination, the proposed
DCGP is expected to further improve significantly the performance.

Our proposed method can be easily used to explore large design spaces. If the design space is
large, our proposed pruning method can effectively prune the design space since some directives
are conflicting and some are obviously non-optimal (discussed in Section 3.1). Moreover, the

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 31. Pub. date: March 2022.

31:18 Q. Sun et al.

Fig. 12. Detailed overall optimization flow.

Fig. 13. A toy example to explain the models of the 3 stages (as shown in Figure 3) and their corresponding
acquisition functions. Red nodes are the sampled configurations. Models of the lower stages have wider error
ranges (light yellow fillers) since their fidelities are lower. Each stage selects a configuration with the highest
expected improvement, i.e., x1, x2, and x3. x1 has the higher expected improvement compared with x2 and
x3. Therefore, in this optimization step, the HLS stage is selected and x1 is sampled.

sampling-based method can handle the design space efficiently. The design space is specified
by the users via configuration files, while also considering the characteristics of FPGA designs.
For example, the sizes of memory blocks are the power of two. Furthermore, considering the
required computation workloads in the applications, the numbers of candidate configurations of

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 31. Pub. date: March 2022.

Correlated Multi-objective Multi-fidelity Optimization for HLS Directives Design 31:19

directives are limited. If in some circumstances the design space is extremely large, we can use
sampling-based methods [50, 51] to help solve the problem.

6 EXPERIMENTAL RESULTS

In our experiments, the initial design space is defined by specifying all of the possible locations
of directives and their factors in YAML files. We parse the YAML files and convert the directives
to feature vectors and HLS TCL files. The target FPGA board is Xilinx Virtex-7 VC707. The FPGA
design tool is Xilinx Vivado 2018.2. Our correlated GP version “CGP” [40] is implemented based
on [4] and [37]. The deep version “DCGP” is implemented based on BoTorch [1] and GPyTorch
[12]. The optimal results in the tables are in bold.

6.1 Objective Selection

Power, performance, and area (PPA) are three popular metrics. To measure the system perfor-
mance, we choose to use delay (task time length), i.e., the product of latency and clock period.
Latency reflects how many clock cycles are needed to finish one task. The clock period is the time
length of each cycle, which reflects the congestion information of the designs and is a key design
indicator for some applications. We use the utilization of the look-up table (LUT) as the area
(i.e., resource consumption) metric. LUT can be used to implement the control logic and simple
computations. For tasks requiring high parallelism designs, the LUT utilization is usually the key
metric. Other resource metrics (RAMs, DSPs, FFs) can also be easily integrated into the multiple
objectives in the same manner. Power as a metric is directly used in this article. Compared to works
that consider only one or two metrics or linear combinations of these metrics, our work is more
practical and challenging.

6.2 Benchmarks and Methods

We conduct experiments on six benchmarks. Five are from the open-source FPGA application
benchmark MachSuite [33], i.e., GEMM, SORT_RADIX, SPMV_ELLPACK, SPMV_CRS, and STENCIL3D.
Another benchmark is iSmart2 [17], an object detection deep neural network model deployed
on FPGA. GEMM is the general matrix multiplication which is widely used to implement the con-
volutional operators, fully connected operations, and so on. Both SPMV_ELLPACK and SPMV_CRS
are for the sparse matrix-vector multiplication while their storage formats are different (ELLPACK
format and CRS format). These two sparse computations are needed by the sparse neural networks.
iSmart2 stacks 12 convolutional modules, including group convolutions, point-wise convolutions,
ReLU, pooling layers, and so on. Stencil3D is the stencil operation used in numerical analysis.
We consider the unrolling and pipelining for the loops and partitioning for the arrays. BRAM core
is used as the storage resource. DSP48 and Mul_LUT are used as the computation resource cores.
Each benchmark contains a large number of possible configurations. The average running times
of the FPGA tool for these designs are shown in Figure 14(a). The sizes of the design spaces before
and after the tree-based pruning method are plotted in Figure 14(b).

In the deep kernel function of DCGP, there are four fully connected layers, with output dimen-
sions 1,000, 500, 50, and 6. Each of the first three fully connected layers is appended with a ReLU
layer. The outputs of the deep kernel functions are the inputs of the GP models. The input features
are enlarged into a high-dimension space (i.e., 1,000, and 500) by the deep model to learn more
information. The dimension is very large compared with the original feature configurations, and
that is why this is called the deep method. Then the features are embedded to learn key information
with smaller dimensions (i.e., 50, and 6).

Four popular and representative methods are compared with our methods. [25], shorted as
FPL18, is also based on Bayesian methods and the Gaussian process. The authors build linear

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 31. Pub. date: March 2022.

31:20 Q. Sun et al.

Fig. 14. (a) Average running time of the FPGA tool for each design; (b) Sizes of the design spaces before and
after the tree-based pruning.

multi-fidelity and independent multi-objective models. [22], abbreviated as DAC19, defines sev-
eral regression models to guide the FPGA HLS designs with existing ASIC designs. Although the
starting points are different, their methods are transferable. Post-HLS reports in our problem can be
regarded as the ASIC implementations, to predict the post-Implementation reports. RTED proposed
by [21] is also used in DAC19 [22] to select better and representative initialization configurations.
Artificial neural network (ANN) and Boosting tree (BT) methods have been used in [9, 41, 56]
to guide the back-end designs and achieve good performances. For these regression algorithms,
some configurations are randomly sampled from the design space to initialize these models. We
use the post-Implementation reports as the regression targets. For each objective, we build one
model. After all of the models are trained, the whole design space is fed into these models to pre-
dict the Pareto points. For these learned Pareto points, we run the Xilinx Vivado design flow to
get their real reports. Note that these models are only used to learn the relative numerical rela-
tionships to determine the Pareto points. Besides, the various design objectives have performance
values that vary greatly in order of magnitude. To guarantee the stability and robustness of the
trained models, the performance values are divided by estimated values to scale different target
values to a suitable range. For fairness, all of these algorithms use the same feature encodings and
design spaces as our method.

Different design objectives have distinctive ranges of performance values, which would mislead
the models significantly. For example, the latencies are several seconds while the consumptions of
LUTs are hundreds of thousands. The objective values should be normalized during optimizations
to avoid inappropriate data shifts. Considering that the maximum power and hardware resources
are specified for a known FPGA platform, in practice, we can use these specifications to help adjust
the data magnitude. For delay, we estimate a scale factor according to the delays obtained in the
initialization stages (2 × of the maximum in the initialization stages). Then the delays are divided
by the scale factor before feeding into the model.

6.3 Experimental Settings

For our methods and FPL18 [25], we run 10 tests on each benchmark and the results reported in this
article are the averages. For each benchmark, 8 configurations are randomly sampled to initialize
the models. The maximum optimization step is 40 and the early stopping factor is 5. There exists a
trade-off between the optimization costs and the quality of results. The experimental results show
that our methods converge after 30 steps. Therefore, we choose to use 40 steps.

For ANN, we design a model with 2 hidden layers. We train the model with
{500, 1, 000, . . . , 5, 000} times. For the Boosting method used in [9, 41, 56], we run a group
of experiments, with tree depth from 1 to 6, and learning rate in {0.1, 0.2, 0.3, 0.4, 0.5}. In DAC19

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 31. Pub. date: March 2022.

Correlated Multi-objective Multi-fidelity Optimization for HLS Directives Design 31:21

Fig. 15. The training loss of our method, and the mean parameters (W and Θ) of the deep kernel functions
and the GP models. The results show the great convergence of the training loss. The mean parameters W
and Θ follow the same convergence trend which validates the effectiveness of our training method.

[22], different numbers of initial sets are sampled to build the models. Therefore, the number of
initial sets is also considered as a hyper-parameter, i.e., {3, 4, . . . , 11}. In experiments of ANN,
Boosting, and DAC19, for each benchmark, the number of initialization configurations is 48.
It is worth mentioning that some optimization techniques require initialization and iterative
optimization (e.g., ours and FPL18), while some methods have only initialization steps (e.g., ANN).
In practical applications, with or without initializations and iterative optimizations is not an
issue since the target is to find the optimal solutions. They both run the FPGA design tools to
get the actual performance values. For each benchmark, we optimize the configurations from
scratch with no prior data. Therefore, the fair comparisons should consider the overall costs
of the initializations and the iterative optimizations for different optimization techniques. This
kind of cost measures the overall overhead for the users to achieve final optimization results.
The overall costs are compared in Section 6.6. Although the maximum optimization step is 40,
the optimization step is usually fewer than 40 because of the early stopping mechanism (i.e.,
convergence).

Two metrics are used to measure the performance: average distance to reference set (ADRS)
and overall running time. ADRS computes the distance between the learned Pareto set and the real
Pareto set [22].

ADRS(Γ,Ω) =
1

|Γ |
∑
γ ∈Γ

min
ω ∈Ω

f (γ ,ω), (20)

where Ω is the learned Pareto set, Γ is the real Pareto set, f (γ ,ω) is the distance between two points,
γ ∈ Γ and ω ∈ Ω, |Γ | is the number of points in Γ. Overall running time is the total time needed to
get all results, including initialization and iterative optimization. To validate the effectiveness of
our method, all the configurations in the design space are run to obtain the whole objective space,
though consuming lots of time, huge amounts of computation, and storage resources.

6.4 Results and Analysis

As mentioned above, all of the parameters are trained jointly with a unified supervised objective
based on the chain rule, as shown in Equation (19). An example of the training loss and parame-
ters of our deep kernel function and GP model is shown in Figure 15. The results show that the
parameters of the deep kernel function and the GP model have good convergence trends, which
validates the performance of our joint training method.

Two examples are plotted in Figure 16 to show the learned Pareto points. For easy visualizations,
three objectives are plotted in two figures. The results demonstrate that our learned Pareto points
are much more closer to the real Pareto points. All of the statistical results are listed in Table 1,
while expressed as ratios to the results of ANN.

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 31. Pub. date: March 2022.

31:22 Q. Sun et al.

Fig. 16. Learned Pareto designs of GEMM and SPMV_ELLPACK in the objective spaces.

Table 1. Normalized Experimental Results

Benchmark
Normalized ADRS Normalized Standard Deviation of ADRS

FPL18 ANN BT DAC19 CGP DCGP FPL18 ANN BT DAC19 CGP DCGP

GEMM 0.50 1.00 0.65 1.08 0.27 0.25 0.46 1.00 0.37 0.90 0.12 0.19
iSmart2 0.68 1.00 1.28 1.49 0.65 0.59 0.75 1.00 1.10 1.24 0.20 0.26

SORT_RADIX 0.72 1.00 1.09 0.94 0.64 0.59 0.57 1.00 1.72 2.28 0.48 0.27

SPMV_ELLPACK 0.47 1.00 0.22 1.21 0.19 0.11 0.24 1.00 0.06 0.99 0.09 0.01

SPMV_CRS 0.29 1.00 2.09 1.15 0.22 0.20 0.26 1.00 2.09 1.52 0.03 0.20
STENCIL3D 0.41 1.00 0.40 0.41 0.39 0.31 0.57 1.00 0.00 0.05 0.03 0.05

Average 0.51 1.00 0.96 1.05 0.39 0.34 0.47 1.00 0.89 1.16 0.16 0.16

Table 2. Profiling Information of Running Times (Hours)

Benchmark
FPL18 ANN BT DAC19 CGP DCGP

Alg. FPGA Overall Alg. FPGA Overall Alg. FPGA Overall Alg. FPGA Overall Alg. FPGA Overall Alg. FPGA Overall

GEMM 0.46 24.92 25.38 0.05 30.03 30.08 0.21 30.03 30.24 0.09 210.21 210.30 0.54 20.42 20.96 0.63 18.48 19.11

iSmart2 0.41 127.83 128.24 0.12 145.26 145.38 0.39 145.26 145.65 0.22 1016.82 1017.04 0.56 61.01 61.57 0.58 59.07 59.65

SORT_RADIX 1.02 15.19 16.21 0.98 32.32 33.30 0.98 32.32 33.30 1.02 226.24 227.26 1.17 10.99 12.16 1.06 10.47 11.53

SPMV_ELLPACK 0.37 16.28 16.65 0.03 38.77 38.80 0.27 38.77 39.04 0.05 271.39 271.44 0.48 25.20 25.68 0.72 19.25 19.97

SPMV_CRS 0.48 77.18 77.66 0.02 85.75 85.77 0.22 85.75 85.97 0.06 600.25 600.31 0.58 61.74 62.32 0.73 60.32 61.05

STENCIL3D 0.54 18.59 19.13 0.07 45.34 45.41 0.43 45.34 45.77 0.12 317.38 317.50 0.63 19.95 20.58 0.42 17.44 17.86

Average 0.55 46.67 47.21 0.21 62.91 63.12 0.42 62.91 63.33 0.26 440.38 440.64 0.66 33.22 33.88 0.69 29.39 30.08

As shown in Table 1, our methods, CGP [40] and DCGP outperform all of these baselines by a lot.
Firstly, compared with FPL18 [25], our methods can achieve much better results on all benchmarks.
That is because we consider practical non-linear and correlated relationships in real applications.
Secondly, the other three methods are also worse than ours, because they cannot handle complex
relationships between multiple fidelities. Thirdly, for benchmarks with complicated code struc-
tures, the models without GP models are inferior. For example, the irregular memory accesses of
SORT_RADIX bring great challenges to ANN, Boosting tree, and DAC19. The results prove that our
methods are general enough to handle various applications. Our methods also achieve much bet-
ter stability according to the standard deviations of ADRSs, as shown in Table 1. Besides, our deep
version DCGP outperforms CGP [40] on all of the six benchmarks with respect to the Pareto re-
sults with lower ADRS values, and the same average standard derivations. These results effectively
prove the performance of the deep method proposed in Section 4.4.

The averages of overall running time are listed in Table 2 to show that our methods can also save
time. For fair, the FPGA times are computed according to the average times listed in Figure 14(a)
and the number of interactions with the FPGA tool. For DAC19, the size of one training data set
equals ANN. But it has 3 ∼ 11 training sets. Therefore the average FPGA running time is 7 × (i.e.,
(3+11)/2 = 7) greater than ANN and Boosting tree. DCGP also consumes less time than CGP [40],
thanks to the fewer interactions with FPGA tools. Though DCGP is more complicated compared

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 31. Pub. date: March 2022.

Correlated Multi-objective Multi-fidelity Optimization for HLS Directives Design 31:23

Table 3. Comparisons of Normalized
ADRS with MES

Benchmark DCGP MES

GEMM 0.25 0.47
iSmart2 0.59 0.61

SORT_RADIX 0.59 0.66
SPMV_ELLPACK 0.11 0.30
SPMV_CRS 0.20 0.26
STENCIL3D 0.31 0.40

Average 0.34 0.45

with CGP, the costs are acceptable with several minutes longer “Alg.” times. More analyses are
provided in Section 6.6.

In summary, our DCGP outperforms our CGP [40] and the other baselines. Numerically, the
DCGP wins CGP 12.8% on average ADRS and up to 42.1% on SPMV_ELLPACK, thanks to the out-
standing performance of using deep kernel learning functions and the joint training method.

6.5 Ablation Studies on Acquisition Function

In this section, we compare our acquisition function with max-value entropy search (MES), an-
other popular acquisition function for multi-objective optimization problems. In literature [3, 15],
the objectives f 1 (x), f 2 (x), . . . , f M (x) are modeled using M independent GP models with zero
mean and i.i.d. noise. Researchers propose maximizing the information gains with respect to the
Pareto designs learned in the previous optimization steps to overcome the challenges of computing

the acquisition function based on input space’s entropy. The GP priors are approximated as f̃ i and
sampled from the M independent GP models [3, 15, 16, 44]. We implement MES and embed it into
our optimization framework in place of our correlated acquisition function. The experimental re-
sults are listed in Table 3, under the same experimental settings as our DCGP. The results show that
using MES degrades performance. The results prove the outstanding performance of our frame-
work with correlated multi-objective optimization methods, which are important contributions of
this article.

6.6 Ablation Studies on Running Time

The DCGP method accelerates the optimization process significantly compared with baselines
because it requires fewer optimization iterations. Though more time is needed to train the model
in each optimization iteration, the training workload is tiny and can be finished in minutes. The
time costs reduced by interacting fewer with the FPGA design flow are exciting. The details are
listed in Table 2. “Alg.” denotes the time costs of running the optimization algorithms, and “FPGA”
represents the time costs to run the FPGA design tool to get the actual performance. The results
show that using DCGP reduces the time costs remarkably compared with the baselines.

7 CONCLUSION

In this article, we solve the problem of FPGA HLS directives design optimization. A tree-based
pruning method is proposed to prune the design space. Correlated multi-objective multi-fidelity
Gaussian process (CGP) models can handle the strong nonlinearities among the multiple fideli-
ties. To the best of our knowledge, the correlated multi-fidelity model is introduced into the HLS
directive optimization domain for the first time and has been proven to be effective. The advanced

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 31. Pub. date: March 2022.

31:24 Q. Sun et al.

deep version further improves the qualities of the learned Pareto points with shorter running times,
by using deep neural networks to enhance the kernel functions. We hope this article will stimu-
late new research directions in this domain. The public benchmarks, e.g., GEMM and SPMV, and an
objective detection deep neural network iSmart2 are tested. The results prove the outstanding
performance of our method.

REFERENCES

[1] Maximilian Balandat, Brian Karrer, Daniel Jiang, Samuel Daulton, Ben Letham, Andrew G. Wilson, and Eytan Bak-

shy. 2020. BoTorch: A framework for efficient Monte-Carlo Bayesian optimization. In Proceedings of the Advances in

Neural Information Processing Systems . 21524–21538. Retrieved from https://proceedings.neurips.cc/paper/2020/hash/

f5b1b89d98b7286673128a5fb112cb9a-Abstract.html.

[2] Samridhi Bansal, Hsuan Hsiao, Tomasz Czajkowski, and Jason H. Anderson. 2018. High-level synthesis of software-

customizable floating-point cores. In Proceedings of the IEEE/ACM Design, Automation and Test in Eurpoe Conference

& Exhibition. 37–42. DOI:https://doi.org/10.23919/DATE.2018.8341976

[3] Syrine Belakaria, Aryan Deshwal, and Janardhan Rao Doppa. 2019. Max-value entropy search for multi-objective

Bayesian optimization. Advances in Neural Information Processing Systems 32 (2019), 7825–7835. Retrieved from https:

//proceedings.neurips.cc/paper/2019/hash/82edc5c9e21035674d481640448049f3-Abstract.html.

[4] Edwin V. Bonilla, Kian M. Chai, and Christopher Williams. 2008. Multi-task Gaussian process prediction. In Proceedings

of the Advances in Neural Information Processing Systems. 153–160. Retrieved from https://proceedings.neurips.cc/

paper/2007/hash/66368270ffd51418ec58bd793f2d9b1b-Abstract.html.

[5] Jason Brownlee. 2020. Data Preparation for Machine Learning: Data Cleaning, Feature Selection, and Data Transforms

in Python. Machine Learning Mastery.

[6] Tinghuan Chen, Bingqing Lin, Hao Geng, Shiyan Hu, and Bei Yu. 2021. Leveraging spatial correlation for sensor drift

calibration in smart building. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 40, 7

(2021), 1273–1286. DOI:https://doi.org/10.1109/TCAD.2020.3015438

[7] Tinghuan Chen, Bingqing Lin, Hao Geng, and Bei Yu. 2019. Sensor drift calibration via spatial correlation model

in smart building. In Proceedings of the ACM/IEEE Design Automation Conference. 1–6. DOI:https://doi.org/10.1145/

3316781.3317909

[8] Tinghuan Chen, Qi Sun, and Bei Yu. 2021. Machine learning in nanometer AMS design-for-reliability (invited pa-

per). In Proceedings of the IEEE International Conference on ASIC. 1–4. DOI:https://doi.org/10.1109/ASICON52560.2021.

9620496

[9] Steve Dai, Yuan Zhou, Hang Zhang, Ecenur Ustun, Evangeline FY Young, and Zhiru Zhang. 2018. Fast and accurate

estimation of quality of results in high-level synthesis with machine learning. In Proceedings of the IEEE International

Symposium on Field-Programmable Custom Computing Machines. 129–132. DOI:https://doi.org/10.1109/FCCM.2018.

00029

[10] Alexander G. de G. Matthews, Jiri Hron, Mark Rowland, Richard E. Turner, and Zoubin Ghahramani. 2018. Gaussian

Process Behaviour in Wide Deep Neural Networks. In International Conference on Learning Representations (ICLR).

https://arxiv.org/abs/1804.11271.

[11] Lorenzo Ferretti, Giovanni Ansaloni, and Laura Pozzi. 2018. Lattice-traversing design space exploration for high level

synthesis. In Proceedings of the IEEE International Conference on Computer Design. 210–217. DOI:https://doi.org/10.

1109/ICCD.2018.00040

[12] Jacob Gardner, Geoff Pleiss, Kilian Q. Weinberger, David Bindel, and Andrew G. Wilson. 2018. GPyTorch: Black-

box matrix-matrix Gaussian process inference with GPU acceleration. In Proceedings of the Advances in Neural

Information Processing Systems. 7587–7597. Retrieved from https://proceedings.neurips.cc/paper/2018/hash/

27e8e17134dd7083b050476733207ea1-Abstract.html.

[13] Hao Geng, Yuzhe Ma, Qi Xu, Jin Miao, Subhendu Roy, and Bei Yu. 2021. High-speed adder design space exploration via

graph neural processes. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 1–1. DOI:https:

//doi.org/10.1109/TCAD.2021.3114262

[14] Cong Hao, Xiaofan Zhang, Yuhong Li, Sitao Huang, Jinjun Xiong, Kyle Rupnow, Wen-mei Hwu, and Deming Chen.

2019. FPGA/DNN Co-Design: An efficient design methodology for IoT intelligence on the edge. In Proceedings of the

ACM/IEEE Design Automation Conference. 1–6. Retrieved from https://ieeexplore.ieee.org/abstract/document/8807043.

[15] Daniel Hernández-Lobato, Jose Hernandez-Lobato, Amar Shah, and Ryan Adams. 2016. Predictive entropy search

for multi-objective Bayesian optimization. In Proceedings of the International Conference on Machine Learning. PMLR,

1492–1501. Retrieved from http://proceedings.mlr.press/v48/hernandez-lobatoa16.html.

[16] José Miguel Hernández-Lobato, Matthew W. Hoffman, and Zoubin Ghahramani. 2014. Predictive entropy search for

efficient global optimization of black-box functions. In Proceedings of the Advances in Neural Information Process-

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 31. Pub. date: March 2022.

https://proceedings.neurips.cc/paper/2020/hash/f5b1b89d98b7286673128a5fb112cb9a-Abstract.html
https://doi.org/10.23919/DATE.2018.8341976
https://proceedings.neurips.cc/paper/2019/hash/82edc5c9e21035674d481640448049f3-Abstract.html
https://proceedings.neurips.cc/paper/2007/hash/66368270ffd51418ec58bd793f2d9b1b-Abstract.html
https://doi.org/10.1109/TCAD.2020.3015438
https://doi.org/10.1145/3316781.3317909
https://doi.org/10.1109/ASICON52560.2021.9620496
https://doi.org/10.1109/FCCM.2018.00029
https://arxiv.org/abs/1804.11271
https://doi.org/10.1109/ICCD.2018.00040
https://proceedings.neurips.cc/paper/2018/hash/27e8e17134dd7083b050476733207ea1-Abstract.html
https://doi.org/10.1109/TCAD.2021.3114262
https://ieeexplore.ieee.org/abstract/document/8807043
http://proceedings.mlr.press/v48/hernandez-lobatoa16.html

Correlated Multi-objective Multi-fidelity Optimization for HLS Directives Design 31:25

ing Systems. 918–926. Retrieved from https://papers.nips.cc/paper/2014/hash/069d3bb002acd8d7dd095917f9efe4cb-

Abstract.html.

[17] iSmartDNN. Retrieved from https://github.com/onioncc/iSmartDNN. (????).

[18] Mohammad Emtiyaz E. Khan, Alexander Immer, Ehsan Abedi, and Maciej Korzepa. 2019. Approximate inference turns

deep networks into Gaussian processes. In Proceedings of the Advances in Neural Information Processing Systems. 3094–

3104. Retrieved from https://proceedings.neurips.cc/paper/2019/hash/b3bbccd6c008e727785cb81b1aa08ac5-Abstract.

html.

[19] Martin Letras, Joachim Falk, and Juergen Teich. 2021. Decision tree-based throughput estimation to accelerate design

space exploration for multi-core applications. In MBMV 2021; 24th Workshop. 1–11. Retrieved from https://ieeexplore.

ieee.org/abstract/document/9399720.

[20] Zipeng Li, Tsung-Yi Ho, Kelvin Yi-Tse Lai, Krishnendu Chakrabarty, Po-Hsien Yu, and Chen-Yi Lee. 2016. High-level

synthesis for micro-electrode-dot-array digital microfluidic biochips. In Proceedings of the ACM/IEEE Design Automa-

tion Conference. 1–6. DOI:https://doi.org/10.1145/2897937.2898028

[21] Hung-Yi Liu and Luca P. Carloni. 2013. On learning-based methods for design-space exploration with high-level

synthesis. In Proceedings of the ACM/IEEE Design Automation Conference. 1–7. DOI:https://doi.org/10.1145/2463209.

2488795

[22] Shuangnan Liu, Francis Lau, and Benjamin Carrion Schafer. 2019. Accelerating FPGA prototyping through predictive

model-based HLS design space exploration. In Proceedings of the ACM/IEEE Design Automation Conference. 1–6. DOI:
https://doi.org/10.1145/3316781.3317754

[23] Siting Liu, Qi Sun, Peiyu Liao, Yibo Lin, and Bei Yu. 2021. Global placement with deep learning-enabled explicit

routability optimization. In Proceedings of the IEEE/ACM Design, Automation and Test in Eurpoe Conference & Exhibition.

1821–1824. DOI:https://doi.org/10.23919/DATE51398.2021.9473959

[24] Charles Lo and Paul Chow. 2016. Model-based optimization of high-level synthesis directives. In Proceedings of the

IEEE International Conference on Field Programmable Logic and Applications. 1–10. DOI:https://doi.org/10.1109/FPL.

2016.7577358

[25] Charles Lo and Paul Chow. 2018. Multi-fidelity optimization for high-level synthesis directives. In Proceedings of the

IEEE International Conference on Field Programmable Logic and Applications. 272–277. DOI:https://doi.org/10.1109/FPL.

2018.00054

[26] Wenlong Lyu, Fan Yang, Changhao Yan, Dian Zhou, and Xuan Zeng. 2018. Batch Bayesian optimization via multi-

objective acquisition ensemble for automated analog circuit design. In Proceedings of the International Conference on

Machine Learning. 3312–3320. Retrieved from http://proceedings.mlr.press/v80/lyu18a.html.

[27] Anushree Mahapatra and Benjamin Carrion Schafer. 2014. Machine-learning based simulated annealer method for

high level synthesis design space exploration. In Proceedings of the 2014 Electronic System Level Synthesis Conference.

IEEE, 1–6. DOI:https://doi.org/10.1109/ESLsyn.2014.6850383

[28] Sebastian W. Ober, Carl E. Rasmussen, and Mark van der Wilk. 2021. The promises and pitfalls of deep kernel learning.

In Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI), Vol. 161. PMLR, 1206–

1216. https://proceedings.mlr.press/v161/ober21a.html.

[29] Kenneth O’Neal, Mitch Liu, Hans Tang, Amin Kalantar, Kennen DeRenard, and Philip Brisk. 2018. HLSPredict: Cross

platform performance prediction for FPGA high-level synthesis. In Proceedings of the IEEE/ACM International Confer-

ence on Computer-Aided Design. 1–8. DOI:https://doi.org/10.1145/3240765.3240816

[30] Adrien Prost-Boucle, Olivier Muller, and Frédéric Rousseau. 2013. A fast and autonomous HLS methodology for hard-

ware accelerator generation under resource constraints. In Proceedings of the Euromicro Conference on Digital System

Design. IEEE, 201–208. DOI:https://doi.org/10.1109/DSD.2013.30

[31] Joaquin Quinonero-Candela and Carl Edward Rasmussen. 2005. A unifying view of sparse approximate Gaussian

process regression. The Journal of Machine Learning Research 6, 65 (2005), 1939–1959. Retrieved from https://www.

jmlr.org/beta/papers/v6/quinonero-candela05a.html.

[32] Carl Edward Rasmussen and C. Williams. 2006. Gaussian processes for machine learning. The MIT Press, Cambridge,

MA. DOI:https://doi.org/10.1007/978-3-540-28650-9_4

[33] Brandon Reagen, Robert Adolf, Yakun Sophia Shao, Gu-Yeon Wei, and David Brooks. 2014. Machsuite: Benchmarks for

accelerator design and customized architectures. In Proceedings of the 2014 IEEE International Symposium on Workload

Characterization. 110–119. DOI:https://doi.org/10.1109/IISWC.2014.6983050

[34] Hitesh Sapkota, Yiming Ying, Feng Chen, and Qi Yu. 2021. Distributionally robust optimization for deep kernel mul-

tiple instance learning. In Proceedings of the International Conference on Artificial Intelligence and Statistics. PMLR,

2188–2196. Retrieved from http://proceedings.mlr.press/v130/sapkota21a.html.

[35] Benjamin Carrion Schafer and Kazutoshi Wakabayashi. 2009. Design space exploration acceleration through opera-

tion clustering. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 29, 1 (2009), 153–157.

DOI:https://doi.org/10.1109/TCAD.2009.2035579

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 31. Pub. date: March 2022.

https://papers.nips.cc/paper/2014/hash/069d3bb002acd8d7dd095917f9efe4cb-Abstract.html
https://github.com/onioncc/iSmartDNN
https://proceedings.neurips.cc/paper/2019/hash/b3bbccd6c008e727785cb81b1aa08ac5-Abstract.html
https://ieeexplore.ieee.org/abstract/document/9399720
https://doi.org/10.1145/2897937.2898028
https://doi.org/10.1145/2463209.2488795
https://doi.org/10.1145/3316781.3317754
https://doi.org/10.23919/DATE51398.2021.9473959
https://doi.org/10.1109/FPL.2016.7577358
https://doi.org/10.1109/FPL.2018.00054
http://proceedings.mlr.press/v80/lyu18a.html
https://doi.org/10.1109/ESLsyn.2014.6850383
https://proceedings.mlr.press/v161/ober21a.html
https://doi.org/10.1145/3240765.3240816
https://doi.org/10.1109/DSD.2013.30
https://www.jmlr.org/beta/papers/v6/quinonero-candela05a.html
https://doi.org/10.1007/978-3-540-28650-9_4
https://doi.org/10.1109/IISWC.2014.6983050
http://proceedings.mlr.press/v130/sapkota21a.html
https://doi.org/10.1109/TCAD.2009.2035579

31:26 Q. Sun et al.

[36] Benjamin Carrion Schafer and Kazutoshi Wakabayashi. 2012. Divide and conquer high-level synthesis design space

exploration. ACM Transactions on Design Automation of Electronic Systems 17, 3 (2012), 1–19. DOI:https://doi.org/10.

1145/2209291.2209302

[37] Amar Shah and Zoubin Ghahramani. 2016. Pareto frontier learning with expensive correlated objectives. In Proceed-

ings of the International Conference on Machine Learning. 1919–1927. Retrieved from http://proceedings.mlr.press/v48/

shahc16.html.

[38] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. 2012. Practical Bayesian optimization of machine learning

algorithms. In Proceedings of the Advances in Neural Information Processing Systems. 2951–2959. Retrieved from

https://proceedings.neurips.cc/paper/2012/hash/05311655a15b75fab86956663e1819cd-Abstract.html.

[39] Qi Sun, Tinghuan Chen, Jin Miao, and Bei Yu. 2019. Power-driven DNN dataflow optimization on FPGA. In Proceedings

of the IEEE/ACM International Conference on Computer-Aided Design. 1–7. DOI:https://doi.org/10.1109/ICCAD45719.

2019.8942085

[40] Qi Sun, Tinghuan Chen, Liu Siting, Jin Miao, Jianli Chen, Hao Yu, and Bei Yu. 2021. Correlated multi-objective multi-

fidelity optimization for HLS directives design. In Proceedings of the IEEE/ACM Design, Automation and Test in Eurpoe

Conference & Exhibition. 46–51. DOI:https://doi.org/10.23919/DATE51398.2021.9474241

[41] Ecenur Ustun, Shaojie Xiang, Jinny Gui, Cunxi Yu, and Zhiru Zhang. 2019. Lamda: Learning-assisted multi-stage

autotuning for FPGA design closure. In Proceedings of the IEEE International Symposium on Field-Programmable Custom

Computing Machines. 74–77. DOI:https://doi.org/10.1109/FCCM.2019.00020

[42] Vivado Design Suite User Guide: High-Level Synthesis. Retrieved from https://www.xilinx.com/support/

documentation/sw_manuals/xilinx2018_3/ug902-vivado-high-level-synthesis.pdf. (????).

[43] Michael Volpp, Lukas P. Fröhlich, Kirsten Fischer, Andreas Doerr, Stefan Falkner, Frank Hutter, and Christian Daniel.

2020. Meta-learning acquisition functions for transfer learning in Bayesian optimization. In Proceedings of the Inter-

national Conference on Learning Representations. Retrieved from https://openreview.net/forum?id=ryeYpJSKwr.

[44] Zi Wang and Stefanie Jegelka. 2017. Max-value entropy search for efficient Bayesian optimization. In Proceedings of

the International Conference on Machine Learning. PMLR, 3627–3635. Retrieved from http://proceedings.mlr.press/v70/

wang17e.html.

[45] Xuechao Wei, Yun Liang, and Jason Cong. 2019. Overcoming data transfer bottlenecks in FPGA-based DNN accelera-

tors via layer conscious memory management. In Proceedings of the ACM/IEEE Design Automation Conference. 125–1.

DOI:https://doi.org/10.1145/3316781.3317875

[46] Xuechao Wei, Cody Hao Yu, Peng Zhang, Youxiang Chen, Yuxin Wang, Han Hu, Yun Liang, and Jason Cong. 2017.

Automated systolic array architecture synthesis for high throughput CNN inference on FPGAs. In Proceedings of the

ACM/IEEE Design Automation Conference. 1–6. DOI:https://doi.org/10.1145/3061639.3062207

[47] Andrew Wilson and Hannes Nickisch. 2015. Kernel interpolation for scalable structured Gaussian processes

(KISS-GP). In Proceedings of the International Conference on Machine Learning. PMLR, 1775–1784. Retrieved from

http://proceedings.mlr.press/v37/wilson15.html.

[48] Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P. Xing. 2016. Deep kernel learning. In Proceed-

ings of the International Conference on Artificial Intelligence and Statistics. 370–378. Retrieved from http://proceedings.

mlr.press/v51/wilson16.html.

[49] Andrew G. Wilson, Zhiting Hu, Russ R. Salakhutdinov, and Eric P. Xing. 2016. Stochastic variational deep kernel

learning. In Proceedings of the Advances in Neural Information Processing Systems. 2586–2594. Retrieved from https:

//proceedings.neurips.cc/paper/2016/hash/bcc0d400288793e8bdcd7c19a8ac0c2b-Abstract.html.

[50] James T. Wilson, Frank Hutter, and Marc Peter Deisenroth. 2018. Maximizing acquisition functions for Bayesian opti-

mization. In Proceedings of the Advances in Neural Information Processing Systems, Vol. 31. 9884–9895. Retrieved from

https://papers.nips.cc/paper/2018/hash/498f2c21688f6451d9f5fd09d53edda7-Abstract.html.

[51] James T. Wilson, Riccardo Moriconi, Frank Hutter, and Marc Peter Deisenroth. 2017. The reparameterization trick for

acquisition functions. In Workshop on Bayesian Optimization of Conference on Neural Information Processing Systems

(NeurIPS). https://arxiv.org/abs/1712.00424

[52] Hanchen Ye, Xiaofan Zhang, Zhize Huang, Gengsheng Chen, and Deming Chen. 2020. HybridDNN: A framework

for high-performance hybrid DNN accelerator design and implementation. In Proceedings of the ACM/IEEE Design

Automation Conference. IEEE, 1–6. DOI:https://doi.org/10.1109/DAC18072.2020.9218684

[53] Zixuan Yin, Warren Gross, and Brett H. Meyer. 2020. Probabilistic sequential multi-objective optimization of convolu-

tional neural networks. In Proceedings of the IEEE/ACM Design, Automation and Test in Eurpoe Conference & Exhibition.

IEEE, 1055–1060. DOI:https://doi.org/10.23919/DATE48585.2020.9116535

[54] Jieru Zhao, Liang Feng, Sharad Sinha, Wei Zhang, Yun Liang, and Bingsheng He. 2017. COMBA: A comprehensive

model-based analysis framework for high level synthesis of real applications. In Proceedings of the IEEE/ACM Interna-

tional Conference on Computer-Aided Design. 430–437. DOI:https://doi.org/10.1109/ICCAD.2017.8203809

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 31. Pub. date: March 2022.

https://doi.org/10.1145/2209291.2209302
http://proceedings.mlr.press/v48/shahc16.html
https://proceedings.neurips.cc/paper/2012/hash/05311655a15b75fab86956663e1819cd-Abstract.html
https://doi.org/10.1109/ICCAD45719.2019.8942085
https://doi.org/10.23919/DATE51398.2021.9474241
https://doi.org/10.1109/FCCM.2019.00020
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug902-vivado-high-level-synthesis.pdf
https://openreview.net/forum?id=ryeYpJSKwr
http://proceedings.mlr.press/v70/wang17e.html
https://doi.org/10.1145/3316781.3317875
https://doi.org/10.1145/3061639.3062207
http://proceedings.mlr.press/v37/wilson15.html
http://proceedings.mlr.press/v51/wilson16.html
https://proceedings.neurips.cc/paper/2016/hash/bcc0d400288793e8bdcd7c19a8ac0c2b-Abstract.html
https://papers.nips.cc/paper/2018/hash/498f2c21688f6451d9f5fd09d53edda7-Abstract.html
https://arxiv.org/abs/1712.00424
https://doi.org/10.1109/DAC18072.2020.9218684
https://doi.org/10.23919/DATE48585.2020.9116535
https://doi.org/10.1109/ICCAD.2017.8203809

Correlated Multi-objective Multi-fidelity Optimization for HLS Directives Design 31:27

[55] Jieru Zhao, Liang Feng, Sharad Sinha, Wei Zhang, Yun Liang, and Bingsheng He. 2019. Performance modeling and

directives optimization for high level synthesis on FPGA. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems. 39, 7 (2021), 1428–1441. DOI:https://doi.org/10.1109/TCAD.2019.2912916

[56] Jieru Zhao, Tingyuan Liang, Sharad Sinha, and Wei Zhang. 2019. Machine learning based routing congestion predic-

tion in FPGA high-level synthesis. In Proceedings of the IEEE/ACM Design, Automation and Test in Eurpoe Conference

& Exhibition. 1130–1135. DOI:https://doi.org/10.23919/DATE.2019.8714724

[57] Guanwen Zhong, Alok Prakash, Yun Liang, Tulika Mitra, and Smail Niar. 2016. Lin-analyzer: A high-level perfor-

mance analysis tool for FPGA-based accelerators. In Proceedings of the ACM/IEEE Design Automation Conference. 1–6.

DOI:https://doi.org/10.1145/2897937.2898040

[58] Wei Zuo, Warren Kemmerer, Jong Bin Lim, Louis-Noël Pouchet, Andrey Ayupov, Taemin Kim, Kyungtae Han, and

Deming Chen. 2015. A polyhedral-based systemc modeling and generation framework for effective low-power design

space exploration. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design. IEEE, 357–364.

DOI:https://doi.org/10.1109/ICCAD.2015.7372592

Received July 2021; revised October 2021; accepted December 2021

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 31. Pub. date: March 2022.

https://doi.org/10.1109/TCAD.2019.2912916
https://doi.org/10.23919/DATE.2019.8714724
https://doi.org/10.1145/2897937.2898040
https://doi.org/10.1109/ICCAD.2015.7372592

