
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 3, MARCH 2022 709

Deep Learning-Driven Simultaneous Layout
Decomposition and Mask Optimization

Wei Zhong , Shuxiang Hu , Yuzhe Ma , Member, IEEE, Haoyu Yang , Xiuyuan Ma,
and Bei Yu , Member, IEEE

Abstract—Combining multiple patterning lithography (MPL)
and optical proximity correction (OPC) pushes the limit of
193-nm wavelength lithography to go further. Considering that
layout decomposition may generate plenty of solutions with
diverse printabilities, relying on conventional mask optimization
(MO) process to select the best candidate for manufacturing
is computationally expensive. Therefore, an accurate and effi-
cient printability estimation is crucial and can significantly
accelerate the layout decomposition and MO (LDMO) flow. In
this article, we propose a convolutional neural network (CNN)-
based prediction and integrate it into our new high-performance
LDMO framework. The optimization process can be considerably
improved as the decomposition quality has been inferred in the
early phase. To facilitate the network training and ensure bet-
ter estimation accuracy, we develop sampling strategies for both
layout and decomposition. Moreover, we enhance the layout sam-
pling approach by adopting autoencoder to distance evaluation
that promises superior sampling results. The experimental results
demonstrate the effectiveness and the efficiency of the proposed
algorithms.

Index Terms—Convolutional neural network, Design for man-
ufacturing, layout decomposition, mask optimization.

I. INTRODUCTION

THE SHRINKAGE of device feature size has reached the
resolution limit of the 193-nm wavelength lithography,

thus various resolution enhancement techniques (RETs) are
heavily applied to maintain a good printability when trans-
ferring patterns from mask to wafer, among which multiple
patterning lithography (MPL) and optical proximity correction
(OPC) are two very promising approaches.

MPL is currently widely applied to enhance the resolution in
the industry. The key step in litho-etch-litho-etch (LELE)-type

Manuscript received June 13, 2020; revised September 17, 2020 and
December 9, 2020; accepted February 10, 2021. Date of publication
February 23, 2021; date of current version February 21, 2022. This work
was supported in part by the National Natural Science Foundation of China
(NSFC) under Grant 61906029; in part by the Fundamental Research Funds
for the Central Universities; and in part by the Research Grants Council
of Hong Kong SAR under Grant CUHK24209017. The preliminary version
has been presented at the ACM/IEEE Design Automation Conference (DAC)
in 2020. This article was recommended by Associate Editor X. L. Behjat.
(Corresponding authors: Wei Zhong; Bei Yu.)

Wei Zhong, Shuxiang Hu, and Xiuyuan Ma are with the DUT-
RU International School of Information Science and Engineering, Dalian
University of Technology, Dalian 116024, China, and also with the Key
Laboratory for Ubiquitous Network and Service Software of Liaoning
Province, Dalian 116024, China.

Yuzhe Ma, Haoyu Yang, and Bei Yu are with the Department of Computer
Science and Engineering, Chinese University of Hong Kong, Hong Kong SAR,
China.

Digital Object Identifier 10.1109/TCAD.2021.3061494

(a)

(b) (c)

Fig. 1. Optimization runtime and decomposition convergence compari-
son. (a) Different decomposition optimization results of the same layout.
(b) Corresponding decomposition convergence of EPE. (c) Runtime break-
down: Comparison between DS and MO.

MPL is the layout decomposition which assigns the conflicting
patterns on a layer to separated masks for manufacturing. To
achieve better decomposition quality, various methods have
been proposed [1]–[4]. OPC or mask optimization (MO) is
able to handle the optical distortions in subwavelength lithog-
raphy by refining the pattern shapes on a mask. Various inverse
lithography technology (ILT)-based approaches are proposed
to implement the OPC process [5]–[8].

After decomposing a layout, multiple solutions can be
obtained, as shown in Fig. 1 (a). To further enhance the
printability, MO is performed. Since the MO is a subsequent
step of the layout decomposition, the final quality is deter-
mined, to a large extent, by the layout decomposition result.
Fig. 1 (b) shows corresponding trajectories during MO of dif-
ferent decomposition results. It is observed that the printability
is not consistently good or bad for a given instance. Only after
the entire process is completed can we tell the good ones
from the bad ones. However, it is computationally expensive
to run all solutions through the MO process due to the over-
head imposed by lithography modeling. Recently it has been
demonstrated that a simultaneous layout decomposition and
MO (LDMO) framework can ease the gap and obtain high
printability masks in a unified way [9], in which the final
masks are generated by the collaboration of MO engine and

1937-4151 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 20,2022 at 01:58:36 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0551-7848
https://orcid.org/0000-0002-3440-5810
https://orcid.org/0000-0002-3612-4182
https://orcid.org/0000-0002-4709-0061
https://orcid.org/0000-0001-6406-4810

710 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 3, MARCH 2022

discrete optimization engine. However, given a situation like
Fig. 1 (b), the method proposed in [9] is not an ideal solution.
On one hand, leveraging MO engine for printability estima-
tion is expensive as mentioned before. Fig. 1 (c) shows the
proportion of MO and decomposition selection (DS) of [9]. It
can be seen that DS even takes more than 50% to find a proper
decomposition, which motivates us to explore a more efficient
way for DS, i.e., printability estimation. On the other hand, the
greedy pruning is based on the printability of intermediate MO
results, which is not an accurate estimation and hence leads
to suboptimal solutions. Therefore, an efficient and accurate
printability prediction approach is of importance to enhance
and accelerate the design flow.

Deep learning has drawn great attention for its ability to
learn automatically from a large amount of data. Compared
with the traditional feature extraction methods, learning fea-
tures from training data is more suitable to characterize the
rich internal information of the data. In the electronic design
automation (EDA) field, deep learning has been widely applied
in various EDA applications. As the most conventional model,
convolutional neural networks (CNNs) have been adopted for
routability estimation [10], lithography hotspot detection [11],
and resist modeling [12]. However, deep learning is far from a
perfect method for printability estimation. In order to achieve
higher estimation accuracy, a large amount of labeled data is
usually the bottleneck due to the following two reasons.

1) The decomposition quality is labeled by OPC, which is
an extremely time-consuming optimization process and
hence restricts the amount of training data.

2) The distribution of training data also determines the
generalization of the trained model. Unbalanced layout
diversity in the training set introduces difficulties for
training. Therefore, we have to cluster layouts to sample
training data.

An important problem for clustering layouts is defining
the distance between two layouts. In the image process-
ing field, scale-invariant feature transform (SIFT) [13] is a
widely applied algorithm that outputs a set of key points
that are detected from different scales of Difference-of-
Gaussian (DOG) images. These key points describe local
features and are invariant to scaling and rotation. Since the
excellent performance in practice, they are adopted to many
complex tasks, such as facial recognition [14] and forgery
detection [15]. Therefore, taking SIFT points as the reference
of layout similarity evaluation is a promising solution.

In this work, we propose a deep learning-driven framework
to predict and further improve the printability of masks. The
framework contains a layout decomposition generation mod-
ule, a printability estimation module and a MO module. To
obtain high-quality decomposition candidates, we build no-odd
graphs to address conflicts. Due to the exponentially growing
solution space, enumerating all possible pattern combinations
is not applicable. Instead, n-wise method is applied to generate
representative decomposition candidates. Since we can hardly
evaluate the printability of a decomposition result by formu-
lating the physical rules, CNN is used to help us select the
best decomposition candidate. Besides, in order to promote the
accuracy of prediction and accelerate the training process, we
design layout distance metrics based on SIFT and autoencoder
to cluster similar layouts, and sample instances from each clus-
ter. Considering the large complexity of OPC limits the size

TABLE I
NOTATIONS IN THIS ARTICLE

of the training set, the decomposition sampling approach also
uses n-wise method to obtain training-friendly decomposition
results. The main contributions of this work are as follows.

1) We propose a CNN predictor to estimate the printability
before optimizing masks.

2) We combine the no-odd graph and n-wise method
to generate layout decomposition candidates more
efficiently.

3) We develop a set of sampling approaches to select the
representative decomposition as the training set. The
comparison with random sampling strategy shows the
superiority of our sampling method.

4) We improve the sampling strategy by integrating autoen-
coder into our training flow to ensure better layout
similarity evaluation.

5) Experimental results show that our framework outper-
forms other previous works and reduces edge placement
error (EPE) by 81.9% in comparison with state-of-the-art
methods.

The remainder of this article is organized as follows.
Section II introduces the background of double patterning
lithography and gives the problem definition. Section III
describes the optimization framework. Section IV shows the
details of training the prediction module, including layout
sampling, decomposition sampling, and CNN training steps.
Experimental results are detailed in Section V. Sections VI
and VII, respectively, present the discussion for future work
and conclusion.

II. PRELIMINARIES

Notations and their descriptions in this article are listed in
Table I.

The task of MO for double patterning lithography is to gen-
erate a pair of optimized masks such that the final printed
image T and the target image T′ are as close as possible.
The lithography simulation process can be represented by two
models: 1) optical model and 2) photo-resist model.

The theoretical basis of optical model is the Hopkins diffrac-
tion model [16] which has been widely applied to a partially
coherent imaging system. It is given by

Ii(x, y) =
N2∑

k=1

wk · |Mi(x, y)⊗ hk(x, y)|2 (1)

where Mi is a given mask to calculate the aerial image Ii. hk
is the kth optical kernel, wk is the weight of hk. The system
contains N2 illumination sources in total.

Due to the high complexity of the Hopkins diffraction
model, a singular value decomposition (SVD) method [17]

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 20,2022 at 01:58:36 UTC from IEEE Xplore. Restrictions apply.

ZHONG et al.: DEEP LEARNING-DRIVEN SIMULTANEOUS LAYOUT DECOMPOSITION AND MASK OPTIMIZATION 711

Fig. 2. Overall flow.

is adopted for approximation, which is described as

Ii(x, y) ≈
K∑

k=1

wk · |Mi(x, y)⊗ hk(x, y)|2 (2)

where K is the total kernel number we selected to approximate
the optical system.

The photo-resist model controls the printing of final wafer
image. The shape is printed to the final image, when the
intensity is greater than a given threshold, as shown in

Ti(x, y) =
{

1, if Ii(x, y) ≥ Ith
0, if Ii(x, y) < Ith.

(3)

In order to use ILT to optimize masks, a new variable Pi is
introduced and the sigmoid function [18] is applied to binary
value Mi so that they are differentiable, as expressed in

Mi(x, y) = 1

1+ e−θmPi(x,y)
. (4)

In this way, the binary mask M is expressed with unbound
parameter P. θm is the coefficient to control the slope of the
sigmoid function. Similarly, the relaxed photo-resist model can
be presented as

Ti(x, y) = 1

1+ e−θt(Ii(x,y)−Ith)
. (5)

In our implementation, hyperparameters θm, θt are set to 8,
120 to achieve better optimization performance. Ith is set to
0.039 according to [19]. In double patterning ILT, the printed
image is organized in the following form:

T(x, y) = min{T1(x, y)+ T2(x, y), 1}. (6)

Then we can derive the gradient of T(x, y) with respect to
Pi(x, y), and update corresponding Mi(x, y) by performing ILT
to reshape masks and obtain better result T. More details about
the gradient formulation can be seen in [9].

Definition 1 (EPE): EPE measures the manufacturing dis-
tortion by the edge displacement between the printed image

and the target layout. A checkpoint will be marked as an EPE
violation if its EPE greater than a given threshold.

Definition 2 (Squared L2 Error): Squared L2 error mea-
sures the difference between the printed image T and the target
image T′, which is defined as ‖T − T′‖22.

EPE is one of the most important criteria of image print-
ability. ILT process reduces the squared L2 error in each
iteration to minimize the number of EPE indirectly, and a
smaller squared L2 error indicates a better layout printabil-
ity. In our work, both EPE and squared L2 error are selected
as printability metrics.

The task of layout decomposition for double patterning
lithography is to generate a pair of decomposed masks so
that the masks follow the design rule. This process can be
presented like

fdecomp(T′) = {M1, M2} (7)

where T′ is the target image and M1, M2 are decomposition
result. The subsequent ILT process generates optimized masks
to minimize the differences between printed image and target
image, (8) describes this process

fILT(M1, M2) = fILT(fdecomp(T′)) = T (8)

where T is the printed image after ILT optimization. We can
evaluate its quality by organizing the combination form of EPE
and L2 Error. Thus, the fILT converts to a continuous function.
In this work, we try to use CNN to regress the continuous
function derived from (8) and use the network to supervise
the process of (7) to generate a better decomposition. For sim-
plicity and to demonstrate the methodology effectiveness, we
use constant photo-resist model instead of variable threshold
model. Since self-aligned double patterning (SADP) technol-
ogy can be applied for metal layer, we only focus on the
contact layer.

Based on the above definitions and discussions, the LDMO
problem can be described as follows.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 20,2022 at 01:58:36 UTC from IEEE Xplore. Restrictions apply.

712 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 3, MARCH 2022

Problem 1 (LDMO): Given a target image T′, decompose
the layout to obtain mask candidates that result in fewer EPE
violations upon MO.

III. OPTIMIZATION FRAMEWORK

The overall flow of our optimization framework is shown
in Fig. 2. It contains two parts: the left part introduces the
optimization flow, while the right part details the predictor
training used in the printability prediction module of the left
part. In this section, we focus on the framework optimization
process (the left part flow). First, decomposition candidates
are generated according to the input layout. In order to obtain
legal decomposition candidates rapidly, we build several no-
odd graphs and apply n-wise method to avoid generating
violated decomposition candidates. Then all candidates are
fed into the printability prediction module. The trained CNN
scores each candidate and outputs the best layout decom-
position. Next, ILT process is used to optimize masks and
outputs the optimized final masks. Besides, print violations
are checked during the ILT optimization process to avoid
printability estimation errors.

A. Decomposition Generation

The decomposition generation module produces decom-
posed mask candidates for the next module based on the
given layout. Since we are seeking for a pair of masks, M1
and M2, from these candidates to achieve the best printabil-
ity, the generated candidates should contain these high-quality
decomposition results. Enumerating all possible decomposi-
tion results can tackle this problem, but the time consumption
is expensive even though there is a decomposition quality pre-
dictor to help select the best one. So we focus on the most
promising results.

In our generating strategy, the key to generating a set of
high-quality decomposed masks in the layout decomposition
phase can be viewed from two different scales. In the macro
view, we should solve the conflicts in accordance with the
coloring rules. It ensures our decomposition results follow the
design rules and discards low-quality results according to our
experience. But from the perspective of micro view, coloring
rules are coarse constraints we manually made, thus they can
not help more in finding a hidden relationship, i.e., select-
ing the best decomposition among the legal decomposition
candidates. Thankfully, due to the powerful modeling ability
of deep networks, they are efficient in distinguishing a better
result among candidates. By combining eligible decomposi-
tion results and through the use of deep networks, we are
able to improve the decomposition quality further. This sec-
tion mainly introduces our generating strategy, as described in
Algorithm 1.

As shown in Fig. 3, layout patterns are first divided into
three sets: 1) separated pattern (SP) set; 2) appended pattern
(AP) set; and 3) normal pattern (NP) set. Based on the dis-
tance d of the nearest patterns, the belonging of pattern E is
determined by

E ∈
⎧
⎨

⎩

SP, if d ≤ nmin
AP, if nmin < d ≤ nmax
NP, if nmax < d.

(9)

Algorithm 1 Decomposition Generation
Require: Input layout L.

SP, AP, NP ← PatternClassify(L);
V ← SolveNoOddGraph(SP);
Arrs1 ← GetThreeWiseArrays(V , SP, AP);
Arrs2 ← GetTwoWiseArrays(NP);
mergedArrs1 ← CheckAndMerge(Arrs1);
mergedArrs2 ← CheckAndMerge(Arrs2);
S ← Combine(mergedArrs1, mergedArrs2);
for j = 1→ S.size do

K ← DrawImage(Sj);
Img.save(K);

end for
return Img;

(a) (b)

Fig. 3. SP distribution solution. (a) Constructed weighted graph. (b) No-odd
graph solution.

A print violation occurs when the distance between two pat-
terns is less than nmin, and it disappears as the distance d
increases, but there may still exist the interaction between
two patterns until the distance reaches nmax. Therefore, pat-
terns in SP always cause print violations, so they ought
to be separated from each other. AP are the kind of pat-
terns that tend to cause printability issues while NP have
minimal or no effect on the performance compared to the
other two types. When generating decomposition candidates,
we take different strategies according to the pattern type.
In our implementation, nmin is set to 80 nm, and nmax is
set to 98 nm.

We first solve the print violations in the macro view.
Print violations in set SP are fixed by allocating the shapes
within the set to two separate masks, which is solved
by constructing a weighted graph and is converted to a
coloring problem. Here, we take patterns in Sp as ver-
tices and the distance among them as the weight of edge,
thus a weighted graph is built. But the generated weighted
graph may not be a colorable graph. Therefore, in order
to optimize the printability and make the generated graph
colorable, our strategy is to find a min-weight graph with-
out odd cycles for each component, which is described
in Algorithm 2. For each component, we are able to obtain
a weighted graph as shown in Fig. 3(a). Obviously, compo-
nent 1 is not a colorable graph, so we take the component as
input W, and store its edges in E. Edges in E are sorted in
ascending order so that we can easily access to the edge with
minimum weight by taking the first element in E. No-edge
graph G is initialized according to W, which has the same
vertices number, but no edges are linked. In each iteration,
the first edge in E is added to G only if it does not cause

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 20,2022 at 01:58:36 UTC from IEEE Xplore. Restrictions apply.

ZHONG et al.: DEEP LEARNING-DRIVEN SIMULTANEOUS LAYOUT DECOMPOSITION AND MASK OPTIMIZATION 713

Algorithm 2 Build Min-Weight Graph Without Odd Cycles
Require: A weighted graph W

Store edges of W in E;
Sort E in an ascending order;
Initialize a graph G without edges;
while E is not empty do

edge ← E.getFront();
E.popFront();
G.addEdge(edge);
if G contains odd cycles then;

Delete edge from G;
end if

end while
return G;

odd cycles. After handling all edges, a min-weight graph, as
shown in Fig. 3(b), is prepared for coloring. Then G can be
legally colored by assigning different colors to neighbor nodes.
Based on the result of no-odd graph, two neighbor vertices can
be assigned to different masks to avoid violations. Besides,
the relative position relationship of patterns in the same no-
odd graph can be inferred, which provides the basis of the
following decomposition analysis.

After solving the SP distribution, we consider the com-
bination of patterns AP and NP in micro view. Another
requirement is that we want to reduce the number of decom-
position candidates as much as possible. So n-wise method
is applied to generate representative decomposition candi-
dates, meanwhile limiting the size of the candidate set. The
n-wise test method (also known as combinatorial test method)
has been used to test compiler by Mandl [20]. Usually, it
is used to analyze the main factors affecting the experi-
ment with the smallest test set. The main idea of n-wise
method is to obtain the full factor combination of local
areas at the price of giving up the global factor combina-
tion strength. Here, n represents how many factors we can
test according to the generated arrays. For example, if n is 2,
we can find the problem caused by the interaction of two
factors.

In our decomposition process, covering all the combinations
of patterns is prohibitively expensive which is similar to soft-
ware testing. An example of two-wise (pairwise) arrays with
four patterns is shown in

factor1 factor2 factor3 factor4
⎡

⎢⎢⎣

⎤

⎥⎥⎦

instance #1 1 0 0 0
instance #2 1 1 1 1
instance #3 0 1 0 1
instance #4 0 0 1 1
instance #5 0 1 1 0

.

In the generated arrays, each row is an instance of decom-
position, each column represents a pattern (factor), and
the value determines which masks this pattern belongs to.
Picking any two columns, the complete combination of them
(00, 01, 10, 11) exists, which means two-wise method reduces
the strength of factor combination to minimize the generated
arrays meanwhile maintaining the complete combination of
any two factors. Naturally, if n is set to the number of factors,
the test set becomes Cartesian product of all factors whose size

(a)

(b)

(c)

Fig. 4. n-wise arrays and dual decomposition. (a) Generated three-wise
arrays. (b) Generated two-wise arrays according to Np. (c) Two different
images represent the same decomposition.

is 16. From the example we can find that the combinatorial
explosion of patterns can be well handled.

Based on the no-odd graph result, we can obtain the relative
position relationship of SP. In order to build the connection
between SP and AP, we randomly pick a pattern from each
connected component as a factor and apply three-wise method
together with the patterns in AP. Then we apply two-wise
method to patterns in NP, thus, two arrays with different com-
bination strengths are created. We can simply combine the
arrays to get the duplicated decomposition results (some lines
in the arrays actually stand for the same decomposition, we
will solve this problem later). Take the layout in Fig. 3(a)
as an example, there are six patterns in SP, two patterns in
AP, three patterns in NP and two connected components, and
the corresponding no-odd graph result of the components is
shown in Fig. 3(b). We randomly select pattern F in com-
ponent 1 and pattern H in component 2 to apply the 3-wise
method together with patterns in AP (E and G), the gener-
ated Arrs1 can be seen in Fig. 4(a). As for patterns in NP
(J, K and L), two-wise method is used to generate Arrs2 [see
Fig. 4(b)]. From Fig. 4(a) and (b), we can see that the num-
ber of instances does not grow too much with the number of
factors.

We call the combination of Arrs1 and Arrs2 is dupli-
cated decomposition results because although n-wise method
generates the minimal training set of strength n, there are
still identical decomposition candidates. The output of the
decomposition generation module is a grayscale image with
different grayscale levels to represent patterns distributed on
different masks. Since the masks are unordered, a layout
decomposition can be represented by two different images,
as shown in Fig. 4(c). Different colors mean the patterns
are distributed on different masks. To solve this problem,
we number the layout patterns from left to right and from
top to bottom. We manually fix the pattern numbered 1 on
M1 so that the two masks become ordered. When generat-
ing the decomposition candidates, once pattern numbered 1
is distributed on M2, the value of this row will be reversed.
After checking and reversing all rows, we merge the same
rows to drop the same decomposition. Note that this opera-
tion will not destroy the relative position relationship among
patterns. So the total decomposition candidate number should
be size(mergedArrs1) × size(mergedArrs2).

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 20,2022 at 01:58:36 UTC from IEEE Xplore. Restrictions apply.

714 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 3, MARCH 2022

B. Mask Pattern Density Balance

Layout density balance for double patterning lithography
is also expected to be considered. The decomposition gener-
ation strategy in Section III-A simply combines the arrays,
but it may generate imbalanced decomposition candidates.
In our approach, we also designed an optional stage to bal-
ance the decomposition candidates. In mergedArrays1 and
mergedArrays2, 0/1 represents which mask the pattern is dis-
tributed on. To uniformly map patterns onto two masks, the
density rule checking is added before combining arrays. The
checking process is implemented by counting how many 0/1
numbers in the two instances (a line in the array is called an
instance), which are, respectively, from mergedArrays1 and
mergedArrays2. Let P0 denote the 0 count and P1 is the 1
count in two instances, the balanced decomposition should

obey the rule that
|P1 − P0|

max(P1, P0)
≤ 40%. The decomposition

candidates are discarded if the density checking is not passed.

C. Printability Prediction

Traditional two-stage approaches focus on formulating rules
to avoid violations. However, more manufacturing friendly
decomposition is hardly obtained by designing the rough
restrictions, i.e., build conflict graph by spacing rules, which
limits the performance of further MO. The CNN can build the
mapping relation from input to output, especially in the image
processing field, so they are suitable for dealing with DS prob-
lems. Another advantage of CNN is that no matter what kind
of searching algorithm is selected to find the best decompo-
sition, the computationally expensive lithography simulation
process will be the bottlenecks of these algorithms, but CNN
replaces simulation by estimation, hence accelerates the DS
process.

The printability prediction module in the left part of Fig. 2
evaluates the decomposition printability by giving candidates
scores. The well-trained estimation model is obtained from the
right part of Fig. 2, which shows a complete training flow and
we will introduce the training process in Section IV.

In the printability prediction module, all decomposition can-
didates are fed to CNN in the form of grayscale images. A
lower score indicates a better printability, so in order to find the
best printability after the ILT optimization, this module scores
each input and output the decomposition of the minimal score.
Considering we have the requirement of reselecting decom-
position candidates because printability prediction errors may
happen, this module will cooperate with the ILT module to
avoid outputting the same decomposition result. ILT mod-
ule optimizes the masks meanwhile detecting print violations,
and the printability prediction module gives the no-repeat
decomposition. There are two measures to ensure different
decomposition results.

1) Each fixed no-odd graph has two possible decomposi-
tion results, so random selecting patterns in each no-odd
graph and combine the results can generate different
decomposition candidates. Naturally, the selection result
should vary with the given candidates.

2) The previous illegal outputs are recorded such that
the printability prediction module can skip the same
decomposition.

D. ILT Optimization

At this point, the best decomposition result has been
obtained. This module optimizes decomposed masks mean-
while detecting print violations. Violations indicate the print-
ability estimation error. Once they are detected, we go back
to the decomposition generation step to create new decompo-
sition candidates and use CNN to select another decomposi-
tion solution, otherwise, we continue to optimize the masks.
Considering the print violations may happen at any iteration
of ILT, we detect them every three iterations and the violation
detection method is from the discrete optimization part of [9].

ILT process calculate the gradient g of object function
‖T − T′‖22 with respect to P1, P2 and update parameters in
the form of Pi = Pi − stepSize × g. Then, we can update
Mi, Ii and printed image T with new Pi according to (2)–(6).
The ILT optimization will early stop when it removes all EPE
violations, or it reaches the max iteration threshold. In our
implementation, the iteration threshold is set to 30.

IV. TRAINING OF PREDICTION NETWORK

In this section, sampling strategies and training approaches
are detailed. As shown in the right part of Fig. 2, sampling
strategies can be divided into two stages: 1) layout sampling
and 2) decomposition sampling. We first describe the defi-
nitions of layout similarity and cluster layouts based on the
distance definitions. After sampling layouts from each cluster,
we introduce the decomposition sampling strategy and discuss
the model structure.

A. Layout Sampling

In order to achieve the purpose of increasing layout diver-
sity in the training set, our strategy is clustering layouts and
sampling them from each cluster. The clustering method gath-
ers similar layouts into a group, so the layouts sampled from
each cluster are called representative layouts, as they have a
large distance from other cluster elements. But before conduct-
ing clustering algorithms, the distance between two layouts
needs to be clearly defined. Layout feature extraction has been
widely investigated in recent studies. Ma [21] reflects layout
distance by XOR operation. Wen et al. [22] used density feature
vectors to extract pattern shapes. Yao et al. [23] encoded layout
into strings to represent pattern topology. Due to the diffrac-
tion and interference of light, printed image quality is largely
dependent on the nearby patterns. The distance metric should
capture common layout features (e.g., recognize representa-
tive pattern distribution, ignore slight layout movement and
rotation) and express light propagation property. But previous
methods are not a perfect fit for our requirements.

In this section, the SIFT-based layout similarity metric is
introduced, then a clustering algorithm is performed to get
representative layouts.

1) SIFT Layout Distance: SIFT [13] has been widely used
in computer vision field to capture local features of an image.
The output of SIFT is a set of key points that are captured
through a staged filtering approach [13]. The key points are
detected from different scales of DOG images by searching
for the extreme points, and these extreme points are filtered so
that the remaining points are stable enough. The detected key
points are invariant to rotation, scaling and contain the main

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 20,2022 at 01:58:36 UTC from IEEE Xplore. Restrictions apply.

ZHONG et al.: DEEP LEARNING-DRIVEN SIMULTANEOUS LAYOUT DECOMPOSITION AND MASK OPTIMIZATION 715

Fig. 5. Example of SIFT feature.

Fig. 6. Example of SIFT matching.

gradient direction, so they can be chosen as the reference for
classifying the layouts. There is an example of SIFT feature
point distribution in Fig. 5. The white squares are patterns, and
the red points stand for SIFT feature points. Local features are
attached to the points, so they can be used to represent local
similarity of an image.

We measure the similarity of the two layouts by matching
the feature points, as shown in Fig. 6. Let p, q be the 128-D
feature vector calculated by the SIFT algorithm. Dth is the
threshold to determine if the two feature points are matched.
Therefore, the distance between two feature points (vectors)
is defined as

d(p, q) =
{ √

p�q, if
√

p�q ≤ Dth
1, otherwise

(10)

where p� is transform of p. Equation (10) shows that if
the two feature points are close enough, the distance is the
Euclidean distance. Otherwise, the distance between them
is their L2-Norm which is 1. We set Dth to 0.7 in our
implementation.

Algorithm 3 shows the similarity calculation between lay-
out w and layout s. For a feature point pw

i in Lw, we need to
find an unmatched point ps

j in Ls so that the distance d(pw
i , ps

j)

between them is minimum. If the d(pw
i , ps

j) is less than Dth,
it means the similarity of these two points is high and the
pattern distribution near this point is very similar, so we mark
them as matched. Fig. 6 shows an example of SIFT match-
ing, where the distance between two matched feature points
is stored in Dws. Since the number of feature points differs as
the change of layout, the length of Dws after matching points
is not the same. If we directly take the Dws as the layout dis-
tance, two layouts with more matched feature points tend to
have a larger distance, which is opposite to the fact. In order
to make all distances comparable, we sort Dws in ascending
order, then take the first C additions as the layout distance,

Algorithm 3 Calculate Layout Similarity
Require: Layout Lw and Ls.

Let pw
1 , pw

2 , ..., pw
n be the feature points in Lw;

Let ps
1, ps

2, ..., ps
m be the feature points in Ls;

Initialize the empty array Dws;
for i = 1→ n do

for pw
i , find unmatched ps

j such that d(pw
i , ps

j) is mini-
mum;

if d(pw
i , ps

j) ≤ Dth then
mark pw

i , ps
j matched;

put d(pw
i , ps

j) in Dws;
else

put 1 in Dws;
end if

end for
sort Dws in an ascending order;
Ssift(Lw, Ls) =∑C

k=1 Dws
k ;

return Ssift(Lw, Ls);

which is defined as

Ssift(Lw, Ls) =
C∑

k=1

Dws
k . (11)

In our implementation, C is set to 60.
2) Clustering: Inputting a set of layouts, an adjacency

matrix representing the layout distance can be calculated
according to (11). Considering the mismatching of feature
points will introduce distance noises, which greatly affect the
performance of k-means, so we select the k-medoids as the
clustering method. The central point of k-means is not a real
point in the cluster and is calculated by all points, so noise
points also contribute to the movement of central points. But
k-medoids chooses real points as the central points, and they
are selected by the sum distance in their clusters, therefore,
the k-medoids is less sensitive to the noises as you can imag-
ine. The performance of k-medoids is evaluated by the sum
of layout distance (SLD), which is given by

SLD =
M∑

i=1

∑

Lk∈Ci

Ssift(Lk, Li) (12)

where Ci is a class whose center point is Li, while Lk is a
noncentral point belongs to Ci. There are M classes in total.
SLD represents the sum of the distance from each noncentral
point to its respective center point. The initial central points
are randomly selected. The object is to reduce SLD iteratively
by changing the center point and calculating the distance of
each class. We set M to 50, and randomly select five layouts
in each cluster.

B. Enhanced Layout Sampling

Although with the SIFT distance metric, our framework is
able to obtain a fairly good performance which has been veri-
fied by our experiments, but due to the limitations of algorithm
characteristics, there are still the following challenges.

1) The SIFT distance is based on the matching of simi-
lar points. Since SIFT only captures the feature points
that are invariant to rotation or scaling, when most parts

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 20,2022 at 01:58:36 UTC from IEEE Xplore. Restrictions apply.

716 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 3, MARCH 2022

Fig. 7. SIFT feature points distribution. (a) Complex layout. (b) Simple
layout.

Fig. 8. Autoencoder structure.

of the image are relatively smooth, SIFT may not be
able to catch enough feature points. In other words,
when extracting the features on a layout composed of
simple shapes, a modicum of feature points may cause
the degradation of algorithm performance. For exam-
ple, when matching points and calculating the distance,
more feature points in Fig. 7(a) are better to describe
the layout than that in Fig. 7(b).

2) Most of the SIFT feature points appear on the corners
to detail the shapes. However, there are a lot of repeated
shapes in a layout, which not only increases the calcu-
lation complexity but also causes over-characterization
of a certain area where most of the feature points
are distributed. This results in an unbalanced distance
measurement among different subareas of a layout.

To address the above issues, we propose an alternative lay-
out distance metric based on autoencoder. Autoencoders are
a set of special neural networks used for extracting the latent
representation, which contains two components: 1) encoder
and 2) decoder. Let f (x)e and f (x)d denote encoder and
decoder, respectively, autoencoder is trying to make the input
x ∈ R

n to be the same as the output, as shown in Fig. 8.
Encoder converts input into latent space expression which

can be described as f (x)e = y ∈ R
m. While decoder recon-

structs the input with the process of f (y)d = x̂ ∈ R
n. If we

set m < n, the training step of the autoencoder forces it to
extract the main features of the image. The output x̂ is usually
a blurred image because encoding is a lossy process that keeps
the important image representation in latent space and drops
unnecessary information. When training the autoencoder, we

Fig. 9. Clustering result of SIFT-based distance and autoencoder-based
distance.

minimize the loss between the original image and the decoder
output iteratively to find the best representation. Ideally, each
parameter in the latent space R

m is an independent variable
that controls some properties of layout images. Based on above
discussions, the layout distance computed from the extracted
features is defined as follows:

Sauto(Lw, Ls) = ‖f (Lw)e − f (Ls)e‖2 (13)

where Lw and Ls represent different layouts. The distance
between these two layouts is the L2 norm of encoder output.
Based on the distance definition, k-medoids algorithm intro-
duced in Section IV-A can divide them into different clusters.
A simple clustering result based on different distance metrics
can be seen in Fig. 9. SIFT approach clusters the left and
the middle layouts, but the autoencoder approach clusters the
middle and the right layouts, which look much more similar.
Considering the number of patterns and pattern density dif-
fer from each other, the degradation of the SIFT algorithm
and the unbalanced measurements of layout may cause the
misclassification using the SIFT approach.

The encoder structure resembles ResNet18 [24] with fully
connected layers excluded and the decoder uses corresponding
deconvolution layers to reconstruct the image. The encoder
structure information can be seen in Table II, where “Layer”
shows the layer type. Columns “Filter” and “Stride” represent
the size of convolution kernels and their strides, and “Output”
is the output shape of each layer. The encoder structure is
mainly composed of basic blocks. There are two convolutional
kernels in a basic block, and batch normalization is added to
the end of each convolutional kernel. Each layer contains an
identity mapping (it is not shown in the table) to enable the
network to go deeper. Each entry in a two-element vector of
“Stride” is the corresponding convolution kernel strides of a
basic block. From the table, we can see there are 7 × 7 ×
512 = 25 088 parameters to describe a layout, which is about
half of the input image size. Table III lists the configurations
of the decoder. It is a reversed structure of the encoder, and
the deconvolution layer is used for the upsampling process to
restore the image. The autoencoder implementation is based
on PyTorch [25].

C. Decomposition Sampling

Similar to the problem of layout sampling, although tra-
ditional layout decomposition prunes many illegal decompo-
sition results, the remaining decomposition choices still can
be very large. The number of decomposition results increases
exponentially with the number of patterns as illustrated in

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 20,2022 at 01:58:36 UTC from IEEE Xplore. Restrictions apply.

ZHONG et al.: DEEP LEARNING-DRIVEN SIMULTANEOUS LAYOUT DECOMPOSITION AND MASK OPTIMIZATION 717

TABLE II
ENCODER STRUCTURE INFORMATION

Fig. 10. As the increase of about 9 patterns, the decompo-
sition result size grows from less than 100 to more than 6000.
Due to the limitations of computing resources, we are moti-
vated to explore an effective decomposition sampling method.
Considering the EPE occurrence is highly related to nearby
pattern distribution, the complete combination of patterns in
a subregion will be more helpful for our training and n-wise
method is able to tackle this problem. In order to focus more
promising decomposition solution, we also combine no-odd
graph result and n-wise method to generate training set.

Different from the decomposition generation phase in
Section III-A, here we divide patterns into two types to reduce
the decomposition number, because generating the score of
decomposition is much more time-consuming than predicting.
According to (14), the patterns T with the distance d less
than nmin are divided into SP, while the remaining pattern are
in RP set

T ∈
{

SP, if d ≤ nmin
RP, if nmin < d (14)

where nmin is set to 80 nm, that is same to the configuration
in Section III-A.

Similar to generating mergedArrs1 in Section III-A, we
first divide patterns into two types, SP and RP. By solving
nonodd graph problem, we can obtain the relative position
relationship of SP, then we build the three-wise arrays together
with RP. Finally, we reverse the value and merge the same
rows. In our implementation, generating three-wise arrays is
a tradeoff between prediction accuracy and layout score sim-
ulation running time. Three-wise sampling strategy ensures
that the training set contains the complete combination of
any subregion with three patterns (part of patterns in SP are
excluded).

D. Model Training

To avoid the dual layout problem, the input will be format-
ted as mentioned in Section III-A. In this article, L2 error and
EPE numbers are selected as the evaluation metrics. Since
the occurrences of print violations will lead to a significant

TABLE III
DECODER STRUCTURE INFORMATION

Fig. 10. Growth of decomposition results.

decline in printability, the score of decomposition is organized
as follows:

score = α × #L2 Error+ β × #EPE+ γ × #Violation. (15)

In our implementation, α, β, and γ are 1, 3500, and 8000,
respectively, and z-score regularization is applied which is
given by

z-score = scorei − μ

σ
(16)

where scorei is the ith layout score we defined in (15), μ is the
mean of decomposition results, and σ is the standard deviation.
It describes how many standard deviations the score is from
the mean, and data are converted into the same magnitude to
ensure the comparability between the data. We use z-score as
the decomposition quality. The mean absolute error (MAE) is
applied as the cost function

MAE =
∑n

i=1 |yi − ŷi|
n

(17)

where yi denotes the label of the ith decomposition in the
training set, and ŷi is the corresponding predicted value.

The image dimension is 224 × 224, which increases the
complexity of training. Here, Adam optimizer [29] is selected
to train the model. Compared to the mini-batch gradient,
Adam computes individual adaptive learning rates for different
parameters which is more suitable for large-scale data.

We also take the structure of ResNet18 as the basic regres-
sion network (see Fig. 11). It is similar to the encoder struc-
ture, and details of convolutional layers can be seen in Table II.
The network implementation is based on PyTorch [25] library.
The identity mapping in each basic block enables the net layer
to become deeper to obtain a better regression of object func-
tion. The input of the net is 224× 224× 1 tensor to receive a
grayscale image, and the output of stacked conventional lay-
ers is 7 × 7 × 512 cube. After average pooling, there is a
1000 dimensions layer, and a fully connected layer is added
to output the score.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 20,2022 at 01:58:36 UTC from IEEE Xplore. Restrictions apply.

718 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 3, MARCH 2022

Fig. 11. Printability predictor structure.

TABLE IV
COMPARISON WITH PREVIOUS FRAMEWORKS

V. EXPERIMENTAL RESULT

The proposed framework is implemented in C++ and
validations are performed on Intel i7 3.6-GHz CPU. The print-
ability estimation network and autoencoder are implemented
in PyTorch [25]. To generate n-wise sampling arrays, we use
PICT [30], an open source C library. The open source lithog-
raphy simulator and EPE checker are from [19]. The EPE
violation threshold is set to 10 nm and the approximated
optical model kernel number K is set to 24. Experiments
are conducted on an open source cell library NanGate [31].
The layout dataset is generated using [32], which takes a
set of design rules for contact layer and yields in total 8000
designs. These designs resemble NanGate 45 nm library and
are verified with Mentor Calibre design rule check.

A. Framework Evaluation

In the first experiment, we compare the optimization result
of our framework with previous unified framework and two-
stage independent flow on standard cell library NanGate, as
shown in Table IV. We obtain binary from the authors of [9],
and the results of the two other conventional flows are directly
from [9]. Columns “EPE” and “Time (s)” list the number of
EPE violations and the time elapsed in seconds when the
optimization is convergent. Column “Ours” lists the results
of our deep learning-based framework without applying den-
sity balance (in Section III-B), while column “Ours-Balanced”
lists the results with the density balance checking. Compared
with previous work [28], our frameworks (“Ours” and “Ours-
Balanced”) use autoencoder as distance metric.

In Table IV, our frameworks show significant improvement
in “EPE” and “Time” on average. The runtime of “Ours” is

239.10 s, which achieves around 4× speed-up compared with
[26]+[5] and [27]+[5], and 8× speed-up compared to “[9].”
That is because our framework does not need to get the
decomposition by solving the SDP problem [9] and select
decomposition candidates by lithography simulation, both of
which are extremely time consuming.

In terms of “EPE,” “Ours” approach reduced five EPE
violations compared with [28] in total. The EPE violation
performance between [28] and “Ours” is very similar in most
cases, except for NOR3_X2 test case (four EPE violations ver-
sus one EPE violation). One possible reason why [28] results
in a greater number of EPE violations (four EPE violations in
cell NOR3_X2) is that the pattern distribution of this layout
is unfriendly for ILT optimization. But it is encouraging to
see the training set of “Ours” reaches better coverage of lay-
out data, so it can handle this kind of layout distribution well.
Our framework reduced 81.9% EPE violations compared to [9]
and 92.9% EPE violations compared to two conventional flows
(i.e., [26]+[5] and [27]+[5]). Besides, we can observe that
applying density balance checking (“Ours-Balanced”) results
in more EPE violations compared with “Ours.” One pos-
sible reason is that the decomposition predictor is trained
with imbalanced decomposition, as we want the predictor
to learn all kinds of data such that it becomes a more
general model.

There are some examples of optimization results in
Fig. 12. The EPE violations are marked as red crosses
in the image. It can be seen that both of SIFT approach
and autoencoder approach have fewer EPE violations
and better printability on contact layers of the standard
cells.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 20,2022 at 01:58:36 UTC from IEEE Xplore. Restrictions apply.

ZHONG et al.: DEEP LEARNING-DRIVEN SIMULTANEOUS LAYOUT DECOMPOSITION AND MASK OPTIMIZATION 719

Fig. 12. Comparison with ICCAD’17 [9] and DAC’20 [28] on: (a) BUF_X1; (b) OAI211_X1; (c) NAND3_X2. (d) NOR3_X2. (e) OAI33_X1. Compared
with the state of the art, in all five cases, our framework results in fewer EPEs.

B. Sampling Strategy Evaluation

To demonstrate the efficiency of our sampling strategy, we
compare the EPE number of the random sampling approach
and the proposed approach. As shown in Fig. 13, “SIFT dis-
tance” and “Autoencoder distance” are trained in the way
we introduced in Section IV. “Random Sampling” is trained
in the same way but the training set is randomly sampled
from generated layouts and layout decompositions are ran-
domly generated from the corresponding sampled layouts.
Although these layouts and decompositions in “Random” are
randomly sampled, the decomposition generation module still
offers legal decomposition results to the estimation module.

It can be observed in the bar chart that the EPE num-
ber of “Random sampling” strategy is more than three times
of “Autoencoder distance” strategy and twice of “SIFT dis-
tance” strategy. Since random sampling layouts can hardly find
promising results in solution space, the training set distribu-
tion should obey the distribution of generated layouts. As a
result, random sampling quality is determined, to some extent,
by the quality of distribution of the generated layout database,
which may not promise a reasonable layout sampling result.

Fig. 13. Comparison with random sampling strategy.

For a specific layout, the solution space is too large, but many
of the results can be discarded by formulating some physical
rules, so random sampling needs to sample more decompo-
sitions to fill the gap. Our sampling strategy focuses on the
possible decomposition while the random sampling is equiv-
alent to sampling evenly at the solution space, which needs
much more training data. An example of a printed image opti-
mized by the three different estimation models is illustrated in
Fig. 14.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 20,2022 at 01:58:36 UTC from IEEE Xplore. Restrictions apply.

720 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 3, MARCH 2022

Fig. 14. Comparison of different approaches on AND2_X1. (a) Result of
random sampling with 2 EPE violations. (b) Result of SIFT distance model
with 0 EPE violation. (c) Result of autoencoder distance model (w/o. density
balance) with 1 EPE violation.

Fig. 15. Comparison with the simplified estimation model.

C. Individual Printability Estimation

In the LELE-type lithography setting, the printability can
be estimated independently, through which two decomposed
mask scores can be estimated individually and summed up. In
the training stage, we can generate decomposition candidates
as two images. The forward optimization flow is the same as
our framework, shown in the left part of Fig. 2, except for the
printability prediction module. The new estimation model has
two advantages.

1) It is a more flexible method, as a well-trained model
can be extended to triple mask patterning technology
and beyond without retraining the model.

2) This kind of model will not meet the dual problem rep-
resented as Fig. 4, so it is an easier way to process
data.

We implemented this model and conducted the experiments,
and the corresponding results are shown in Fig. 15. The
new estimation model is represented with yellow color, while
“Ours” is the approach introduced in Section III. From the
result we can observe that the “Simplified model” shows
a good result with eight EPE violations, which is fewer
than [28], but still has three more EPE violations than “Ours.”

D. Handling Large-Scale Chips

The proposed method is verified on standard cells, and it
is possible to extend our framework to the layouts of large
circuits. In order to show the scalability of our framework,
we conducted the experiment on a large circuit (10840 nm
×7890 nm) synthesized using the same NanGate [31] library
as used in previous experiments. The layout is divided into
22 clips using a sliding window-based method with over-
lap, in which some empty and duplicated clips are ignored
in the result. The results are shown in Table V. We imple-
mented the decomposition generation and selection method
of LDMO [9] as the baseline, the results are listed in the
“LDMO [9]” column of Table V. “Ours” is the introduced

TABLE V
COMPARISON ON LARGE CIRCUIT DESIGN

Fig. 16. Large circuit design and clip optimization examples.

framework without applying density balance checking. The
average EPE violations of “Ours” are 2.09, while “LDMO [9]”
outputs 2.68. Although very dense or very sparse pattern dis-
tributions may lead to the degradation of our decomposition
generation, “Ours” still reduces 22% EPE violations and takes
only 36% runtime compared to the baseline. The printability
prediction module shows its effectiveness and efficiency when
handling divergent layouts. The large circuit design and some
clip optimization results are illustrated in Fig. 16.

VI. DISCUSSION

A. Adopting ML-Based Lithography Simulation

In addition to the machine learning (ML)-based print-
ability prediction method we used in our framework,
ML-based lithography simulation methods [33], [34] are
also widely applied. The main differences are that, given
some masks, ML-based printability prediction tells if the

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 20,2022 at 01:58:36 UTC from IEEE Xplore. Restrictions apply.

ZHONG et al.: DEEP LEARNING-DRIVEN SIMULTANEOUS LAYOUT DECOMPOSITION AND MASK OPTIMIZATION 721

masks/decomposition candidates are OPC-friendly through
inferring some concrete evaluation metrics (e.g., EPE# and
L2 error in this work). While ML-based lithography simula-
tion outputs the printed shapes, which can be used to infer
the performance on different metrics. It usually faces a much
larger solution space. But please note that it cannot estimate
the printability after many iterations of OPC, as this kind of
model just accelerates the lithography simulation process, and
the output changes with the reshaping of masks. In general,
the two methods focus on different points and can be applied
for different purposes.

In our framework, obtaining the optimal MO result can
be divided into two steps: 1) finding the best decomposi-
tion and 2) conducting ILT for this pair of masks. In order
to find the best decomposition, we applied the ML-based
printability prediction method. As for the subsequent ILT pro-
cess, ML-based lithography simulation can be chosen as an
acceleration method.

B. Handling More Masks

The related modules for applying more advanced MPL are
decomposition generation module and ILT optimization mod-
ule. For decomposition generation module, it mainly involves
two processes: 1) building the no-odd graph and 2) applying
n-wise method. In the scenario of triple patterning lithogra-
phy, decomposition generation module solves three-coloring
problems, where assigning different colors to the neighbor
in no-odd graph cannot handle. But methods for triple pat-
terning decomposition have been well investigated [1]–[4]. By
adopting [3], we can solve the conflicts among violated pat-
terns. As for n-wise method, it is suitable for the three-coloring
problem because it can tackle a factor with three levels,
where each level can be viewed as a color. Then applying
(three-level) n-wise method to generate arrays and combining
the results, we are able to obtain three-color decomposition
candidates.

For ILT optimization module, we can observe
from (4) and (5) that the optimization formulations are
not limited to the mask number. Therefore, it can be easily
extended by introducing a new mask variable M3. After
applying the sigmoid transformation to M3, ILT is able to
minimize the L2 error, thus our framework can handle more
advanced MPL.

C. Extend to Other Layers

Our framework is developed based on contact layers, but
it has the potential to be extended to metal layers. Since
the printability prediction module is not limited by a partic-
ular layer, the prediction model still can supervise the layout
decomposition process and is expected to achieve excellent
performance on other layers with sufficient training data. As
for the decomposition generation module, a much denser
conflict graph may cause the degradation on decomposition
generation performance and stitch insertion problems need
to be handled. Therefore, more general decomposition algo-
rithms [1]–[4] that take stitch insertion into consideration, need
to be applied for obtaining more proper decomposed masks.

VII. CONCLUSION

In this article, we propose a deep learning-driven frame-
work to not just bridge the gap between LDMO but also

speed up the procedure of selecting decomposition process.
To improve the prediction accuracy and accelerate the train-
ing process, we use SIFT and autoencoder to extract layout
features. K-medoids clustering and n-wise method are adopted
to generate the training set. We also combine the no-odd graph
and n-wise method to generate decomposition candidates with
different pattern combination strengths. Experiments demon-
strate that our framework can efficiently reduce EPE violations
and accelerate the overall optimization process.

REFERENCES

[1] J. Kuang and E. F. Y. Young, “An efficient layout decomposition
approach for triple patterning lithography,” in Proc. ACM/IEEE Design
Autom. Conf. (DAC), 2013, p. 69, doi: 10.1145/2463209.2488818.

[2] H.-Y. Chang and I. H.-R. Jiang, “Multiple patterning layout decompo-
sition considering complex coloring rules,” in Proc. ACM/IEEE Design
Autom. Conf. (DAC), 2016, p. 40, doi: 10.1145/2897937.2898048.

[3] B. Yu, K. Yuan, D. Ding, and D. Z. Pan, “Layout decomposi-
tion for triple patterning lithography,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 34, no. 3, pp. 433–446, Mar. 2015,
doi: 10.1109/TCAD.2014.2387840.

[4] S.-Y. Fang, Y.-W. Chang, and W.-Y. Chen, “A novel layout decom-
position algorithm for triple patterning lithography,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 33, no. 3, pp. 397–408,
Mar. 2014, doi: 10.1145/2228360.2228579.

[5] J.-R. Gao, X. Xu, B. Yu, and D. Z. Pan, “MOSAIC: Mask opti-
mizing solution with process window aware inverse correction,”
in Proc. ACM/IEEE Design Autom. Conf. (DAC), 2014, p. 52,
doi: 10.1145/2593069.2593163.

[6] A. Poonawala and P. Milanfar, “Mask design for optical
microlithography—An inverse imaging problem,” IEEE Trans.
Image Process., vol. 16, no. 3, pp. 774–788, Mar. 2007,
doi: 10.1109/TIP.2006.891332.

[7] N. Jia and E. Y. Lam, “Machine learning for inverse lithog-
raphy: Using stochastic gradient descent for robust photomask
synthesis,” J. Opt., vol. 12, no. 4, 2010, Art. no. 045601,
doi: 10.1088/2040-8978/12/4/045601.

[8] H. Yang, S. Li, Z. Deng, Y. Ma, B. Yu, and E. F. Y. Young, “GAN-
OPC: Mask optimization with lithography-guided generative adversarial
nets,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39,
no. 10, pp. 2822–2834, Oct. 2020, doi: 10.1109/tcad.2019.2939329.

[9] Y. Ma, J.-R. Gao, J. Kuang, J. Miao, and B. Yu, “A unified frame-
work for simultaneous layout decomposition and mask optimization,”
in Proc. IEEE/ACM Int. Conf. Computer-Aided Design (ICCAD), 2017,
pp. 81–88, doi: 10.1109/iccad.2017.8203763.

[10] Z. Xie et al., “RouteNet: Routability prediction for mixed-
size designs using convolutional neural network,” in Proc.
IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), 2018, p. 80,
doi: 10.1145/3240765.3240843.

[11] H. Yang, J. Su, Y. Zou, Y. Ma, B. Yu, and E. F. Y. Young, “Layout
hotspot detection with feature tensor generation and deep biased learn-
ing,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 38,
no. 6, pp. 1175–1187, Jun. 2019, doi: 10.1109/TCAD.2018.2837078.

[12] Y. Lin et al., “Data efficient lithography modeling with residual neural
networks and transfer learning,” in Proc. ACM Int. Symp. Phys. Design
(ISPD), 2018, pp. 82–89, doi: 10.1145/3177540.3178242.

[13] D. G. Lowe, “Object recognition from local scale-invariant features,” in
Proc. 7th IEEE Int. Conf. Comput. Vis., vol. 2, 1999, pp. 1150–1157,
doi: 10.1109/ICCV.1999.790410.

[14] C. Geng and X. Jiang, “Face recognition using sift features,” in Proc.
16th IEEE Int. Conf. Image Process. (ICIP), 2009, pp. 3313–3316,
doi: 10.1109/ICIP.2009.5413956.

[15] H. Huang, W. Guo, and Y. Zhang, “Detection of copy-move forgery
in digital images using sift algorithm,” in Proc. IEEE Pac. Asia
Workshop Comput. Intell. Ind. Appl., vol. 2. 2008, pp. 272–276,
doi: 10.1109/PACIIA.2008.240.

[16] H. H. Hopkins, “The concept of partial coherence in optics,” Proc. Royal
Soc. London A, Math. Phys. Eng. Sci., vol. 208, no. 1093, pp. 263–277,
1951, doi: 10.1098/rspa.1951.0158.

[17] N. B. Cobb, “Fast optical and process proximity correction algorithms
for integrated circuit manufacturing,” Ph.D. dissertation, Dept. Electr.
Eng. Comput. Sci., Univ. California, Berkeley, CA, USA, 1998.

[18] X. Zhao and C. Chu, “Line search-based inverse lithography technique
for mask design,” VLSI Design, 2012, doi: 10.1155/2012/589128.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 20,2022 at 01:58:36 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1145/2463209.2488818
http://dx.doi.org/10.1145/2897937.2898048
http://dx.doi.org/10.1109/TCAD.2014.2387840
http://dx.doi.org/10.1145/2228360.2228579
http://dx.doi.org/10.1145/2593069.2593163
http://dx.doi.org/10.1109/TIP.2006.891332
http://dx.doi.org/10.1088/2040-8978/12/4/045601
http://dx.doi.org/10.1109/tcad.2019.2939329
http://dx.doi.org/10.1109/iccad.2017.8203763
http://dx.doi.org/10.1145/3240765.3240843
http://dx.doi.org/10.1109/TCAD.2018.2837078
http://dx.doi.org/10.1145/3177540.3178242
http://dx.doi.org/10.1109/ICCV.1999.790410
http://dx.doi.org/10.1109/ICIP.2009.5413956
http://dx.doi.org/10.1109/PACIIA.2008.240
http://dx.doi.org/10.1098/rspa.1951.0158
http://dx.doi.org/10.1155/2012/589128

722 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 3, MARCH 2022

[19] S. Banerjee, Z. Li, and S. R. Nassif, “ICCAD-2013 CAD contest
in mask optimization and benchmark suite,” in Proc. IEEE/ACM
Int. Conf. Comput.-Aided Design (ICCAD), 2013, pp. 271–274,
doi: 10.1109/ICCAD.2013.6691131.

[20] R. Mandl, “Orthogonal latin squares: An application of experi-
ment design to compiler testing,” Commun. ACM, vol. 28, no. 10,
pp. 1054–1058, 1985, doi: 10.1145/4372.4375.

[21] N. Ma, “Automatic IC hotspot classification and detection using pattern-
based clustering,” Ph.D. dissertation, Dept. Mech. Eng., Univ. California,
Berkeley, CA, USA, 2008.

[22] W.-Y. Wen, J.-C. Li, S.-Y. Lin, J.-Y. Chen, and S.-C. Chang, “A fuzzy-
matching model with grid reduction for lithography hotspot detection,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 33, no. 11,
pp. 1671–1680, Nov. 2014, doi: 10.1109/TCAD.2014.2351273.

[23] H. Yao, S. Sinha, C. Chiang, X. Hong, and Y. Cai, “Efficient process-
hotspot detection using range pattern matching,” in Proc. IEEE/ACM
Int. Conf. Comput.-Aided Design (ICCAD), 2006, pp. 625–632,
doi: 10.1145/1233501.1233630.

[24] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), 2016, pp. 770–778, doi: 10.1109/CVPR.2016.90.

[25] A. Paszke et al., “PyTorch: An imperative style, high-performance deep
learning library,” in Proc. Conf. Neural Inf. Process. Syst. (NIPS), 2019,
pp. 8024–8035.

[26] Z. Chen, H. Yao, and Y. Cai, “SUALD: Spacing uniformity-aware
layout decomposition in triple patterning lithography,” in Proc. IEEE
Int. Symp. Qual. Electron. Design (ISQED), 2013, pp. 566–571,
doi: 10.1109/ISQED.2013.6523667.

[27] B. Yu and D. Z. Pan, “Layout decomposition for quadruple pattern-
ing lithography and beyond,” in Proc. ACM/IEEE Design Autom. Conf.
(DAC), 2014, p. 53, doi: 10.1145/2593069.2593152.

[28] W. Zhong, S. Hu, Y. Ma, H. Yang, X. Ma, and B. Yu, “Deep learning-
driven simultaneous layout decomposition and mask optimization,” in
Proc. ACM/IEEE Design Autom. Conf. (DAC), 2020, pp. 1–6.

[29] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learn. Represent. (ICLR), 2015, p. 13.

[30] Microsoft Corporation. Pairwise Independent Combinatorial Testing.
Accessed: Oct. 3, 2019. [Online]. Available: https://github.com/
microsoft/pict

[31] (2008). NanGate FreePDK45 Generic Open Cell Library. [Online].
Available: http://www.si2.org/openeda.si2.org/projects/nangatelib

[32] H. Yang, W. Chen, P. Pathak, F. Gennari, Y.-C. Lai, and B. Yu,
“Automatic layout generation with applications in machine learn-
ing engine evaluation,” 2019. [Online]. Available: arXiv:1912.05796.
doi: 10.1109/mlcad48534.2019.9142121.

[33] B. Jiang, H. Zhang, J. Yang, and E. F. Young, “A fast machine
learning-based mask printability predictor for OPC acceleration,” in
Proc. IEEE/ACM Asia South Pac. Design Autom. Conf. (ASPDAC), 2019,
pp. 412–419, doi: 10.1145/3287624.3287682.

[34] W. Ye, M. B. Alawieh, Y. Lin, and D. Z. Pan, “LithoGAN: End-
to-end lithography modeling with generative adversarial networks,”
in Proc. ACM/IEEE Design Autom. Conf. (DAC), 2019, p. 107,
doi: 10.1145/3316781.3317852.

Wei Zhong received the B.S. degree from the
Dalian University of Technology, Dalian, China,
in 2008, and the M.S. and Ph.D. degrees from
Waseda University, Tokyo, Japan, in 2010 and 2014,
respectively.

He served as a Research Assistant with the
Information, Production and Systems Research
Center, Waseda University, Kitakyushu, Japan,
from 2010 to 2011, an Associate Specialist with
the Central Research Laboratory, Ricoh Company,
Tokyo, from 2011 to 2014, a Chief Designer and

the Director of the Institute of Image Processing Technology, State Key
Laboratory of Digital Multimedia Technology, Hisense Group, Qingdao,
China, from 2014 to 2018. From 2015 to 2017, he also served as a Postdoctoral
Researcher with the University of Science and Technology of China, Hefei,
China. He is currently an Associate Professor with the International School
of Information Science and Engineering, Dalian University of Technology.
His research interests include several aspects of computer vision and image
processing algorithms, VLSI design automation, networks on chips, and
hardware–software co-design of embedded systems.

Shuxiang Hu received the B.E. degree from
the Department of Software, Hefei University of
Technology, Hefei, China. He is currently pursu-
ing the M.S. degree with the International School
of Information Science and Engineering, Dalian
University of Technology, Dalian, China.

His research interests include VLSI automation
and deep learning on chips.

Yuzhe Ma (Member, IEEE) received the B.E. degree
from the Department of Microelectronics, Sun Yat-
sen University, Guangzhou, China, in 2016, and the
Ph.D. degree from the Department of Computer
Science and Engineering, Chinese University of
Hong Kong, Hong Kong, in 2020.

He has interned with Cadence Design Systems,
San Jose, CA, USA, NVIDIA Research, Austin, TX,
USA, and Tencent Youtu X-Lab, Shenzhen, China.
His research interests include VLSI design for man-
ufacturing, physical design, and machine learning
on chips.

Dr. Ma received the Best Paper Award from ASPDAC’2021, the Best
Student Paper Award from ICTAI’2019, the Best Paper Award Nomination
from ASPDAC’2019, and the Best Poster Research Award from Student
Research Forum of ASPDAC’2020.

Haoyu Yang received the B.E. degree from Qiushi
Honors College, Tianjin University, Tianjin, China,
in 2015, and the Ph.D. degree from the Department
of Computer Science and Engineering, Chinese
University of Hong Kong (CUHK), Hong Kong, in
2020.

He is currently working as a Postdoctoral Fellow
with the Department of Computer Science and
Engineering, CUHK. He has interned with ASML,
San Jose, CA, USA, and Cadence Design Systems,
San Jose. His research interests include machine

learning in VLSI design for manufacturability, high performance VLSI phys-
ical design with parallel computing, and machine learning security.

Dr. Yang received the Nick Cobb Scholarship from SPIE’2019 Advanced
Lithography, the Best Paper Award Nomination from ASPDAC’2019, and the
Best Poster Presentation from Student Research Forum of ASPDAC’2019.

Xiuyuan Ma received the B.E. degree from the
Dalian University of Technology, Dalian, China, in
2020, where she is currently pursuing the master’s
degree.

His research interests include machine learning
and edge computing.

Bei Yu (Member, IEEE) received the Ph.D. degree
from the University of Texas at Austin, Austin, TX,
USA, in 2014.

He is currently an Assistant Professor with the
Department of Computer Science and Engineering,
Chinese University of Hong Kong, Hong Kong.

Dr. Yu received the seven Best Paper Awards
from ASPDAC 2021, ICTAI 2019, Integration,
the VLSI Journal in 2018, ISPD 2017, SPIE
Advanced Lithography Conference 2016, ICCAD
2013, and ASPDAC 2012, and six ICCAD/ISPD

contest awards. He has served as a TPC Chair of ACM/IEEE Workshop
on Machine Learning for CAD, and in many journal editorial boards and
conference committees. He is an Editor of IEEE TCCPS Newsletter.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 20,2022 at 01:58:36 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/ICCAD.2013.6691131
http://dx.doi.org/10.1145/4372.4375
http://dx.doi.org/10.1109/TCAD.2014.2351273
http://dx.doi.org/10.1145/1233501.1233630
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/ISQED.2013.6523667
http://dx.doi.org/10.1145/2593069.2593152
http://dx.doi.org/10.1109/mlcad48534.2019.9142121
http://dx.doi.org/10.1145/3287624.3287682
http://dx.doi.org/10.1145/3316781.3317852

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

