
IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 35, NO. 1, FEBRUARY 2022 67

DeePattern: Layout Pattern Generation With
Transforming Convolutional Auto-Encoder

Haoyu Yang , Shuhe Li, Wen Chen, Piyush Pathak, Frank Gennari , Ya-Chieh Lai, and Bei Yu , Member, IEEE

Abstract—VLSI layout patterns provide critical resources in
various design for manufacturability research, from early tech-
nology node development to back-end design and sign-off flows.
However, a diverse layout pattern library is not always avail-
able due to long logic-to-chip design cycle, which slows down the
technology node development procedure. To address this issue,
in this paper, we explore the capability of generative machine
learning models to synthesize layout patterns. A transforming
convolutional auto-encoder (TCAE) family is developed to learn
vector-based instantiation of squish pattern topologies. We show
our TCAE models can capture simple design rules and enlarge
the existing squish topology space under certain transformations.
With adaptive configurations, the proposed G-TCAE framework
allows both massive pattern generation and context-specific pat-
tern generation. Geometry information of each squish topology
is obtained from an associated linear system derived from design
rule constraints. Experiments on 7nm EUV designs show that our
framework can more effectively generate diverse pattern libraries
with DRC-clean patterns compared to a state-of-the-art industrial
layout pattern generator.

Index Terms—Lithography, design for manufacture, machine
learning.

I. INTRODUCTION

VLSI layout patterns provide critical resources in a variety
of design for manufacturability (DFM) researches, from

(1) early technology node development [1] to (2) back-end
design and sign-off flows [2]. The former includes perfec-
tion of design rules [3], OPC recipes [2], [4], lithography
models [5]–[7] and so on. The latter covers, but is not
limited to, layout hotspot detection and correction [8]–[16].
However, layout pattern libraries are sometimes not large
and diverse enough for DFM research/solutions due to long
logic-to-chip design cycle. Even some test layouts can be
synthesized within a short period, they are usually restricted

Manuscript received October 24, 2021; revised November 29, 2021;
accepted December 20, 2021. Date of publication December 30, 2021; date
of current version February 3, 2022. This work was supported in part by the
Cadence Design Systems and in part by the Research Grants Council of Hong
Kong SAR under Project CUHK24209017. The preliminary version has been
presented at the ACM/IEEE Design Automation Conference (DAC), 2019,
doi: 10.1145/3316781.3317795. (Corresponding author: Haoyu Yang.)

Haoyu Yang is with ASIC and VLSI Research, NVIDIA Corporation,
Austin, TX 78717 USA (e-mail: phdyang007@gmail.com).

Shuhe Li, Wen Chen, and Bei Yu are with the Department of Computer
Science and Engineering, The Chinese University of Hong Kong, Hong Kong,
SAR.

Piyush Pathak, Frank Gennari, and Ya-Chieh Lai are with Design and Sign-
Off Group, Cadence Design Systems, Inc., San Jose, CA 95134 USA.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TSM.2021.3139354.

Digital Object Identifier 10.1109/TSM.2021.3139354

by certain design rules and the generated pattern diversity is
limited [5], [17], [18].

One state-of-the-art industrial pattern generation solution is
migrating designs from older technology node [19], where
seed patterns are selected from the process weak points in
older designs and shrunk by a scale factor to match cur-
rent design rules. However, such flow is no longer applicable
when there are large gaps between design nodes. An exam-
ple is some 7nm EUV layers contain all unidirectional shapes
while patterns are still 2D in previous design nodes [20].
Monte Carlo shape generation is another approach that is typ-
ically applied industry-wide to generate metal layer patterns
for lithography and OPC research. In this method, shapes
are randomly created and placed on a given region accord-
ing to certain geometry constraints, which, to some extent,
limits the pattern library diversity created with the flow (see
Fig. 1(a)) [21]. Recently, [6] propsoed a GAN approach to
generate DCT signals that can be converted back to layout
space for machine learning-based OPC model training and
resist model calibration. Reference [22] is another attempt
using machine learning model for test layout generation, where
a set of auto-encoders are trained to produce ISP map and
hence practical layouts. There are also random pattern gener-
ation solutions with legacy algorithms like VIPER [1] using
random walk and [23] with Monte Carlo approach.

In this paper, we study the capability of a new family of
generative models to synthesize test layout patterns. For sim-
plicity, in this work we only focus on uni-directional EUV
layers in our experiments. It should be noted that the precon-
dition of uni-direction patterns seemingly makes the pattern
generation task trivial with previous solutions. However, the
goal of context specific pattern generation poses extreme chal-
lenges on legacy solutions, which therefore motivates us to
design certain flow for such purposes. The most popular gener-
ative machine learning model recently is generative adversarial
network (GAN) that was first proposed in [24]. GAN consists
of two sub-neural networks that interact with each other. One
is called generator, which takes random latent vectors as inputs
and generates images or patterns following some distribution
as of the training data set. The other one is called discrimina-
tor, which aims to discriminate real patterns from the generated
ones. GAN models have been widely studied on computer
vision related tasks like image synthesis [24], [25] and scene
transformation [26], [27]. In EDA area, such architecture and
its variations have also been successfully applied in lithogra-
phy simulation [28], mask optimization [29]–[31] and on-chip
sensor placement [32]. However, generating layout patterns is

0894-6507 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 05,2022 at 01:56:29 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4709-0061
https://orcid.org/0000-0001-7608-4624
https://orcid.org/0000-0001-6406-4810

68 IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 35, NO. 1, FEBRUARY 2022

Fig. 1. Sample pattern topologies generated from (a) Industry Tool,
(b) DCGAN [36], and (c) our proposed TCAE.

a more challenging task as layouts are constrained by design
rules which are hard to learn with native GAN training mech-
anisms [33]–[35], as shown in Fig. 1(b). For the example of
7nm EUV designs, M2 layer shapes are all unidirectional and
cannot appear in adjacent wire tracks.

An alternative approach is the transforming auto-encoders
(TAEs) which are designed to automatically learn features that
instantiate image objects with variations in position, orien-
tation, scale and so on [37]. TAEs are a group of densely
connected auto-encoders and each individual, referred as cap-
sule, is targeting on certain transformations. Such architecture
agrees with the pattern generation tasks in the following
aspects. (1) Feature instantiation attains data set domain
properties. (2) All capsules contribute together to produce vari-
ations of any input objects. However, TAEs cannot be directly
applied here due to the fact that transformations are restricted
by layout design rules and variations of generated patterns are
limited by the number and size of capsules which is highly
correlated with computational cost.

To overcome these problems, we propose a transforming
convolutional auto-encoder (TCAE) architecture that consists
of a recognition unit and a generation unit. The recognition
unit is built with stacked convolutional layers that convert
layout pattern topologies into latent vectors that allow per-
turbation for certain transformations. The generation unit is
expected to capture layout spatial information (e.g., track and
wire direction) well and converts latent vectors back to legal
pattern topologies with corresponding deconvolution opera-
tions. We will show that perturbations on individual latent
vector node contributes to pattern transformation in layout
domain and admits a larger pattern library diversity, as shown
in Fig. 1(c) The architecture is also expected to be com-
putationally efficient. Another advantage of TCAE is that
transformations are introduced in the inference stage that
brings more room to manipulate features for the perspec-
tive of pattern diversity, while transformations in TAEs are
pre-assigned during training. Additionally, we construct the
hybrid GAN-guided TCAE (G-TCAE) to allow (1) massive
pattern generation and (2) context-specific pattern genera-
tion with certain training and inferencing configurations. The
main contributions of this paper are listed as follows.
• We propose a pattern generation framework that reduces

the challenging pattern generation problem into two sim-
pler subproblems with the aid of efficient squish pattern
representation.

• We design a TCAE architecture that aims at generating
pattern topologies efficiently.

• We introduce the GAN-guided TCAE that targets at
massive DRC-clean pattern generation (following certain

Fig. 2. Layout geometry and critical dimensions.

design rules) without losing pattern library diversity;
G-TCAE also enables generation of content-specific
patterns.

• We develop linear systems that can provide solutions
of pattern geometric information which, combined with
generated squish topology, produces DRC-clean layouts.

• We conduct experiments to show that each latent vec-
tor node in TCAE has real physical meanings in layout
domain and transformations on latent vectors can pro-
duce additional topologies of interest. Results show that
the generated pattern library exhibits larger pattern num-
ber and pattern diversity compared to the state-of-the-art
industry layout generator.

The rest of the paper is organized as follows. Section II
introduces basic terminologies and evaluation metrics related
to this work. Section III presents details of the pattern gener-
ation framework including TCAE-based topology generation
and legal pattern assessment. Section IV covers experimental
results and Section V concludes the paper.

II. PRELIMINARIES

In this section, we introduce the geometry concepts to
accommodate layout design rules and the pattern generation
flow. Because in this paper we focus on 7nm EUV M2 layer
designs which contain only unidirectional on-track shapes, fol-
lowing terms are accordingly adopted to describe design rules
as depicted in Fig. 2. Pitch, denoted as p, measures the distance
between two adjacent tracks that contain shapes. T2T, denoted
as t, measures the line-end-to-line-end distance between two
adjacent shapes in a track. Wire length l and width w measure
the shape size along and against the design track, respectively.
In order for a pattern to be DRC-clean, these measurements
will be constrained by some design rules.

All shape edges in a fixed-size window are aligned with
x-axis and y-axis. If we extend all horizontal and vertical edges
infinitely into scan lines, the window will be cut into rectangle
grids and more non-overlapping scan lines imply higher pat-
tern complexity. We hence define the complexity of a layout
pattern as follows.

Definition 1 (Pattern Complexity): The complexity of a pat-
tern in x and y directions (denoted as cx and cy) is defined as
the number of scan lines subtracted by one along x-axis and
y-axis, respectively.

We also introduce the concept of pattern diversity (denoted
as H) to measure how are the pattern complexities distributed
in a given library. A larger H implies the library contains
patterns that are more evenly distributed, as in the following
definition.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 05,2022 at 01:56:29 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: DeePattern: LAYOUT PATTERN GENERATION WITH TCAE 69

Fig. 3. Squish pattern generation.

Definition 2 (Pattern Diversity): The diversity of a pattern
library is given by the Shannon Entropy [38] of the pattern
complexity sampled from the library, as shown in Equation (1),

H = −
m−1∑

i=0

n−1∑

j=0

P
(
cx,i, cy,j

)
log P

(
cx,i, cy,j

)
, (1)

where P(cx,i, cy,j) is the probability of a pattern sampled from
the library has complexities of cx,i and cy,j in x and y direc-
tions respectively, m and n are the total number of different
complexities along x and y-axes respectively.

With above definitions, the pattern generation problem can
be formulated as follows.

Problem 1 (Pattern Generation): Given a set of layout
design rules, the objective of pattern generation is to generate
a pattern library such that the pattern diversity and the number
of unique DRC-clean patterns in the library is maximized.

III. PATTERN GENERATION WITH TCAE FAMILY

Generating layout patterns is extremely challenging for
learning machines as design rules are usually not friendly
to most machine learning models. We therefore simplify the
problem into two stages with the aid of squish patterns [39].
We first deal with the topology generation problem and then
we establish a linear system to finalize the pattern generation
flow with proper geometry vectors.

A. Squish Pattern Extraction

Squish pattern is a scan line-based representation that each
layout clip is cut into grids aligned at all shape edges, as shown
in Fig. 3. The squish pattern representation of a given layout
clip consists of a topology matrix T and two vectors δx and
δy that contain geometry information in x and y directions.
Each entry of T is either zero or one which indicates space
or shape respectively. The geometric information describes the
size of each grid. For example, the pattern in Fig. 3 can be
accordingly expressed as in the right side of Fig. 3. Here xis
and yis are the locations of vertical and horizontal scan lines
respectively, and the pattern complexity is accordingly given
by cx = 4 and cy = 3. Canonically, (x0, y0) is the coordinate of
the bottom left corner of the pattern and xi < xi+1, yi < yi+1.
From the squish pattern extraction procedure, we can observe
that squish pattern representation is lossless.

Now the problem becomes generating legal topologies and
solving associated δxs and δys that are much easier than directly

generating DRC-clean patterns with image-based generative
learning models. Most of the generative machine learning
models perform pixel-wise image generation that follows some
distribution. If we directly generate layout images with these
models, it will be quite hard to create valid polygons or rectan-
gles. Because generated shape pixels could appear anywhere in
the image matrix. Also, design rules cannot be easily handled
within these image generation models. However, with the help
of squish patterns, the layout image generation task is split
into two simpler phases and now we can guarantee that gen-
erated patterns are always polygons or rectangles as desired.
The advantages of squish patterns are two-fold:

1) Squish patterns are storage-efficient compared to pixel-
based layout images. Given a specific layout, squish
patterns are more likely to present the same information
as pixel-based layout images (e.g., 1nm2/pixel) with
much smaller topology matrix and geometry vectors.
For example, suppose the layout in Fig. 3 is with
64nm × 64nm. For image-based representation, we need
64 × 64bits = 512bytes to store the layout. However
with squish patterns, we only need 1.5bytes (topology
matrix)+7 × 4bytes (geometric vectors) = 29.5bytes
storage. Although GDSII or OASIS can store layouts
more efficiently, these formats are not compatible with
deep learning models.

2) Squish patterns are naturally compatible with the neu-
ral network-based pattern generation flow that will be
discussed in following sections.

B. TCAE Basis

1) Transforming Convolutional Auto-Encoder (TCAE): In
this paper, we propose a TCAE architecture that aims at effi-
cient pattern topology T generation. The TCAE is inspired
from original transforming auto-encoders (TAEs) [37] which
are a group of densely connected auto-encoders and each
individual, referred as a capsule, is targeting on certain image-
to-image transformations. Each capsule employs a recognition
unit and a generation unit to capture pose positions and re-
synthesize the translated object, respectively. The translation
(e.g., shift or rotation) is defined on a regular coordination
system that will be added up to the original pose position
before fed into the generation unit. In the training phase, neu-
ron weights are updated by backpropagating the differences
between the output image and the actual translated image given
the translation information. After the neural network is trained,
it takes inputs of an image and translation information and out-
puts the image with desired shifts. Such architecture agrees
with the pattern generation tasks in the following aspects.
(1) Feature instantiation attains data set domain properties.
(2) All capsules contribute together to produce variations of
any input objects. Although such architecture can capture the
feature characteristics from original object pixel intensities,
TAEs cannot be directly applied for pattern generation due to
the fact that transformations are restricted by layout design
rules and only very simple pose transformations are sup-
ported by original TAEs, which does not satisfy our pattern
generation objectives.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 05,2022 at 01:56:29 UTC from IEEE Xplore. Restrictions apply.

70 IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 35, NO. 1, FEBRUARY 2022

Fig. 4. Architecture of transforming convolutional auto-encoder in (a) train-
ing phase and (b) testing phase. conv, fc and dconv represent convolution
layer, fully connected layer and deconvolution layer respectively.

We develop the TCAE architecture for feature learning and
pattern reconstruction, as shown in Fig. 4. The detection unit in
TCAE consists of multiple convolutional layers for hierarchi-
cal feature extraction, followed by several densely connected
layers as an instantiation of the input pattern in the latent
vector space, as in Equation (2).

l = f
(
T;Wf

)
, (2)

where l is the latent vector, T represents the input topology and
Wf contains all the trainable parameters associated with the
recognition unit. The latent vector works similarly as a group
of capsule units with each node being an low level feature
representation. We will show each latent vector node con-
tributes to pattern shape globally or locally in the experiment
section.

The generation unit contains deconvolution layers [40] that
cast the pattern object from the latent vector space back to the
original pattern space, as in Equation (3).

T′ = g
(
l +�l;Wg

)
, (3)

where �l is the perturbation applied on the latent vector that
performs transformations on inputs. During the training phase,
we force the TCAE to learn an identity mapping with the
following objectives.

min
Wf ,Wg

||T − T′||2, s.t. �l = 0. (4)

Fig. 5. Illegal topology examples.

The TCAE-based framework differs from TAEs in the follow-
ing aspects.
• We replace the group capsules with a simpler latent vec-

tor that contains feature nodes connected to different
receptive fields in early convolution layers and hence can
represent certain part-whole feature instantiation.

• The transformation in our framework will be applied
directly on the latent vector space that promises a much
larger diversity of the generated patterns compared to the
limited transformation on the coordinate system in TAEs.

• Identity mapping in the training phase helps the TCAE
capture the design rules of existing patterns.

Once the TCAE is trained, we can adopt the flow in Fig. 4(b)
to generate pattern topologies from perturbed latent vector
space of existing layout patterns. During the inference phase,
we feed a group of squish topologies into the trained recog-
nition unit that extract latent vector instantiations of existing
topologies. Perturbation on the latent vector space is expected
to expand the existing pattern library with legal topologies.
Although there is no mathematical guarantee that a trained
auto-encoder is able to produce diverse outputs with perturba-
tions in the bottleneck layer, we can still expect the proposed
flow to be a sound solution. According to Equations (2)
and (3), the trained f can be viewed as a mapping (one-one
mapping if no ReLU is applied) from topology space T to
latent space L. Similarly, g goes the opposite way. Let T be
the topology space given by the existing pattern library, and L

be the corresponding latent space. Hence, the first challenge
of the TCAE flow for new pattern generation is to maximize
Pr(Tn /∈ T), where

Tn = g
(
ln;Wg

)
, ln /∈ L. (5)

Because the only non-linearity of g(f (•)) comes from ReLU,
we can assume Pr(Tn /∈ T) to be large enough (if no ReLU
is used, f and g will be strictly linear), and this motivates us
to apply noise perturbations for new pattern generation. We
claim the following assumption.

Assumption 1: The latent vector space offers richer
information and each latent vector node represents patten
geometry locally or globally, e.g., some vector nodes may
control shape sizes while some others may control shape
positions.

2) TCAE-Combine: A straightforward perturbation
approach is combining existing topologies in the latent vector
space, which is expected to fill empty spaces of a given
pattern library. The combination rule can be defined as
Equation (6).

Tg = g

(
∑

i

αif (Ti)

)
, (6)

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 05,2022 at 01:56:29 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: DeePattern: LAYOUT PATTERN GENERATION WITH TCAE 71

Fig. 6. Combination of existing patterns with latent vectors.

where 0 < αi < 1,∀i are combination coefficients and satisfy∑
i αi = 1. However, the diversity topologies generated by

such approach might be limited by the existing pattern com-
plexity. We randomly pick two patterns from existing designs
and combine them in the latent vector space using TCAE. As
shown in Fig. 6, even we adjust the combination coefficient
with a large step, there are still repeating topologies in the
reconstructed topology set.

3) TCAE-Random: Another approach is introducing ran-
dom perturbations on the latent vectors. To avoid illegal
topologies, we take Assumption 1 into consideration and intro-
duce the concept of feature sensitivity s which statistically
defines how easily a legal topology can be transformed to
an illegal one when manipulating the latent vector node with
everything else unchanged.

Definition 3 (Feature Sensitivity): Let l = [
l1 l2 · · · ln

]� be
the output of the layer associated with the latent vector space.
The sensitivity si of a latent vector node li is defined as the
probability of reconstructed pattern being invalid when a per-
turbation �li ∈ [− t, t] is added up on li with everything else
unchanged.

It can be seen from Definition 3 that a larger si indicates
the corresponding latent vector node li is more likely to cre-
ate invalid topologies if a large perturbation is applied. We
therefore avoid manipulating such nodes when sampling ran-
dom perturbation vectors from a Gaussian distribution. The
sis are estimated following Algorithm. 1, which requires a set
of legal topologies and trained TCAE. The sensitivity of each
latent vector node is estimated individually (lines 1–2). We first
obtain the latent vectors of all topologies in T and feed them
into the reconstruction unit along with certain perturbation on
one latent vector node (lines 3–5). Reconstructed patterns are
appended in the corresponding set Ri (line 6). The sensitivity
of the latent vector node i is given by the fraction of invalid
topologies in Ri (line 8).

After we get the estimated sensitivity of all latent vec-
tor nodes, we are able to sample perturbation vectors whose

elements are sampled independently from N(0,
1

si
). These per-

turbation vectors will be added up to the latent vectors of
existing pattern topologies to formulate perturbed latent vec-
tors which will be fed into the generation unit to construct
new topologies. Because we focus on EUV metal layers in
this work, a topology is illegal if and only if it contains any
patterns in Fig. 5. That is, illegal topologies can be filtered
out by checking whether shapes appear at any two adjacent
tracks.

4) Why Not Pure Variational Auto-Encoders: The encoder-
decoder architecture for data generation will possibly remind
readers a very similar generative model called variational auto-
encoder (VAE) [41], which shares almost the same architecture

Algorithm 1 Estimating Feature Sensitivity. T =
{T1, T2, . . . , TN} Is a Set of Valid Pattern Topologies,
n is the Number of Nodes in the Latent Layer, f and g Are
Trained Recognition Unit and Generation Unit Respectively,
t Determines the Perturbation Range, and s Is the Estimated
Feature Sensitivity
Require: T, f , g, t.
Ensure: s.

1: Ri ← ∅,∀i = 1, 2, . . . , N;
2: for i = 1, 2, . . . , n do
3: for λ = −t : t do
4: �l← 0,�li ← λ;
5: Ti ← g(f (T)+�l);
6: Ri ← Ri + Ti;
7: end for
8: si ← fraction of invalid topologies in Ri;
9: end for

10: return s.

as TCAE. A VAE also consists of an encoder (recognition unit)
and a decoder (reconstruction unit) which are trained with the
following loss function:

L(We, Wd) = −Ez∼qWd (z|x)

(
log pWe(x|z)

)

+ KL
(
qWd (z|x)||p(z)

)
, (7)

where the first term aims to train the neural network to gen-
erate a latent vector z that can be reconstructed into data
instance following the distribution of the training dataset,
and the second term makes z follow a distribution p(z) via
K-L Divergence. Usually, p(z) is specified as normal distri-
bution N(0, 1). In the inference stage, the decoder can create
data instances following the training set by taking inputs of
z ∼ p(z). Equation (7) tells us that a VAE focuses on the gen-
eration of some data that follows certain (known) distribution,
which shares the same beneath idea as GANs. However, in
the task of test layout pattern generation, we expect to gener-
ate patterns that do not exist before, which explains why VAE
series are discarded as a candidate solution. Although VAE,
like GAN, itself does not comply with our pattern generation
objectives, it can still contribute to perturbation generation, as
will be discussed in the following section.

C. GAN-Guided TCAE

Latent vector sensitivity analysis allows effective random
perturbation by generating more layouts that follow design
rules. We avoid to touch sensitive latent nodes during per-
turbation for the sake of a larger fraction of legal patterns.
However, such mechanism exhibits the following drawbacks.
• Low legal pattern fraction: Analysis of individual latent

nodes does not necessarily guarantee legal pattern gener-
ation because multiple entries in a latent vector are more
likely to work together and contribute to legal or non-
legal patterns. As will seen in the experiments, < 30%
of the patterns in the total generated pattern pool are legal
with sensitivity-aware perturbation.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 05,2022 at 01:56:29 UTC from IEEE Xplore. Restrictions apply.

72 IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 35, NO. 1, FEBRUARY 2022

• Limited controllability of pattern complexity: Sensitivity-
aware perturbations in the latent space only allow gen-
eration of legal patterns without control of pattern style
and complexity, which narrows the application scope of
the pattern generation flow.

To address the above concerns, in this section we introduce
an improved TCAE framework which is guided by generative
neural networks.

1) Latent Generation With GAN: The working mechanism
of TCAE has enabled a mapping between the latent vector
space L and the generated pattern space T. Particularly, for a
trained generation unit g(·;Wg) there exists a latent vector set
Lvalid that generates valid patterns, i.e.,

Tvalid = g
(
Lvalid;Wg

)
. (8)

Equation (8) implies a high valid pattern fraction will be
tightly associated with Lvalid. Recall that a generative adver-
sarial networks (GAN) is designed to learn a mapping from
some distribution pz to a target distribution pdata, where

x = gGAN
(
z;Wg−GAN

)
, (9)

where z ∼ pz and Wg−GAN denotes the trained parameter in a
GAN generator. Also, if a GAN is trained to reach equilibrium,
we will have x ∼ pdata, as proved in [24, Th. 1]. Let pdata to
be the distribution of Lvalid, we can train a generator that gen-
erates latent vectors for valid pattern generation. Accordingly,
we design a GAN-guided TCAE (G-TCAE) which contains
a hybrid architecture of a generator a GAN and a TCAE, as
shown in Fig. 7. In the training phase, a TCAE is trained fol-
lowing Section III, which is able to create massive patterns
afterwards. The latent vectors and the results of pattern valid-
ity assessments hence provide training sources for GAN. The
inference stage requires the interaction between the trained
TCAE and GAN. Some random vector drawn from a distribu-
tion is fed into the generator, which will generate latent vector
that can be directly fed into the generation unit of the TCAE
for final pattern generation.

The above discussion provides an insight that a GAN struc-
ture offers two main advantages over TCAE: (1) A GAN
generates perturbation vectors that follow the distribution of
Lvalid which promises a higher fraction of valid patterns in the
generated library. (2) The distribution control ability of GAN
also allows in demand generation of patterns, such as require-
ments of certain density, complexity and pattern contexts, as
we will show in the experiments. (3) The generation of latent
vectors are much easier than direct pattern generation, which
makes the framework show much better performance than pure
GAN-based layout generation.

2) G-TCAE Flows: Although G-TCAE ideally offers
advantages over TCAE, a fit architecture is always inevitable
to be part of the aspects that lead to these benefits. The dis-
cussion above implies the target of the generator is to provide
both (1) perturbations on latent vectors and (2) pure latent
vectors. Perturbations on latent vectors target to generate a
larger fraction of unique DRC-clean patterns and pure latent
vectors are used for topology control. We hence build a hybrid
structure that support both, as shown in Fig. 7.

Fig. 7. Hybrid G-TCAE Architecture.

The proposed G-TCAE architecture consists of a standard
generative adversarial networks and a TCAE as in Section III.
The generator is a standard three-layer perceptron with 64
hidden nodes using Leaky-ReLU activation and batch normal-
ization. The discriminator is designed with two hidden layers
for feature transformation and logits prediction. We make the
generator shallow and simple for the following reasons: (1) the
GAN is only used to generate a latent vector of length 32, thus
the vanilla multi-layer perceptron is already powerful enough
to complete the task; (2) the outputs of the generator are
directly fed into the reconstruction unit for pattern generation,
and a complicated generator design is more likely to limit the
solution space of generated vectors and hence the diversity of
reconstructed patterns.

Either massive pattern generation or context-specific pattern
generation requires a well-trained TCAE. Thus in the training
procedure, the first step is to train the original TCAE with
objectives defined in Equation (4). Depending on different
applications of G-TCAE, the GAN part should be trained with
different datasets. For the massive unique pattern generation,
the training set consists of perturbation vectors that used in
TCAE phase which will generate DRC-clean topologies. For
the context-specific pattern generation, the training set will be
pure latent vectors that reconstruct certain pattern types. These
vectors can be obtained by feeding desired types of patterns
into the recognition unit of TCAE. It should be noted that
these vectors (as real data) will also be fed into the discrim-
inator together with the generator-generated vectors (as faked
data) to complete the GAN training. The training procedure
of GAN is exactly the same as [24], where neuron weights in
the generator and the discriminator are updated alternatively.
After G-TCAE is trained, the discriminator is no longer taking
effect.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 05,2022 at 01:56:29 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: DeePattern: LAYOUT PATTERN GENERATION WITH TCAE 73

Similarly, there are also different testing flows for two appli-
cation scenarios. In massive pattern generation, the computing
graph contains the generator, the recognition unit and the
reconstruction unit. The recognition unit will take existing
topology as inputs and produce their corresponding latent vec-
tors l. The generator takes some random vectors as inputs and
generate perturbation noises �l. The reconstruction unit will
take the perturbed latent vectors l + �l as inputs and gen-
erate new patterns. In context-specific pattern generation, the
recognition unit is discarded, and the generator will directly
generate latent vectors for the generation unit.

3) Discussion: One thing we would like to mention is the
poor performance of standard GAN and VAE in the pattern
generation task. Superficially, GAN and VAE are designed to
generate instances that follow certain distributions (the distri-
bution of the training set), which seems to be applicable to
the pattern generation problem in this paper. However, due to
the potential insufficiency or weak distribution of the training
data set, GAN and VAE would be easily collapsed with poor
generation ability. We will show the supporting results later in
Section IV.

The TCAE framework, on the other hand, uses the original
auto-encoder as the backbone architecture and tries to converts
the layout into latent space. At the AE training stage, we do
not learn any distributions from the training set and we only
make sure that a good latent vector will always be converted to
a DRC-clean topology. To expand the layout library in terms
of unique pattern count and pattern diversity, we place random
noise to perturb the good latent vectors. Obviously, these noise
will definitely make the latent vectors not good anymore (i.e.,
will generate invalid topology after decoding). This problem
is still solvable. In our experiments, we observe that different
latent vector nodes correspond to different topology charac-
teristics (line-end, spacing or direction). We therefore propose
the sensitivity analysis of the latent vector nodes. With this
approach, we can find out latent nodes that will easily result
in invalid topology if perturbed with large noises. And in the
perturbation stage we will avoid to make large perturbations
on these nodes.

Although sensitive analysis on latent vectors will to some
extent avoid invalid topology generation, this approach does
not consider the interaction among various number of latent
nodes. To improve the valid topology generation efficiency,
we therefore propose the architecture of generative model
enhanced TCAE (GAN-TCAE as our case study). We hope the
generative model can be applied here to directly generate latent
vectors that will be decoded as valid topologies. Another moti-
vation of the GAN-TCAE architecture is the context-specific
pattern generation that controls pattern complexities and styles,
and this is almost impossible with only random enumeration
on pure TCAE.

D. Legal Pattern Assessment

To generate DRC clean patterns, we need legal δxs and δys
of all generated topologies. We first detect all critical dimen-
sions listed in Fig. 2 in each valid topology and then formulate
a linear system combining all associated constraints, as in

Fig. 8. TCAE flow.

Equation (10).

yi+1 − yi = p

2
, ∀i, (10a)

xi − xj = tmin, ∀(i, j) ∈ CT2T , (10b)

xi − xj = lmin, ∀(i, j) ∈ CW , (10c)

xi+1 − xi > 0, ∀i, (10d)

xmax − x0 = dx, ymax − y0 = dy (10e)

where dx, dy, tmin and lmin denote clip width, clip height,
minimum tip-to-tip distance and wire length (refer to Fig. 2),
respectively. Each index pair (i, j) ∈ CT2T indicates that there
exists at least one tip-to-tip pattern at scan lines xi and xj

in the clip. CW is defined similarly for wire patterns. x0 and
y0 define the origin of each clip that can be any value and do
not affect pattern complexities. Certain constraint values corre-
spond to the minimum critical dimensions when no defects are
found in EUV simulation under a given process window [42].
Note that the system in Equation (10) can be efficiently solved
with vast linear programming algorithms or numerical meth-
ods. Because, as discussed previously, all shapes will occupy
the entire track in y direction, pitch and wire width are both
covered by fixed track width and so is δy. We only need
to consider constraints on δx track by track. With the aid
of squish representation, the problems of finding line-end-to-
line-end patterns (for T2T constraints) and floating wires (for
in-clip wire length constraints) become finding 100 · · · 001︸ ︷︷ ︸

continuous zeros
and 011 · · · 110︸ ︷︷ ︸

continuous ones

respectively. A solution of δx, δy and the

associated topology matrix T formulate a complete squish pat-
tern representation. It should be also noted that a linear system
like in Formula (10) tends to have multiple or infinite number
of solutions. In our settings, only one solution is randomly
selected for each generated topology. Actually, the diversity
and the unique pattern count are calculated based on topolo-
gies and we introduce the linear system only to make the
framework a complete pattern generation flow.

E. Overall Flow

We summarize the pattern generation flow as in Fig. 8,
where key steps include squish pattern extraction, topology
generation and pattern generation. In the topology generation
phase, we force the TCAE to learn an identity mapping that
can capture simple but important design rules. Such strat-
egy also allows us to create a large fraction of new legal

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 05,2022 at 01:56:29 UTC from IEEE Xplore. Restrictions apply.

74 IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 35, NO. 1, FEBRUARY 2022

topologies by perturbing the latent vectors with either random
noise or generative learning models. In the final pattern gen-
eration stage, we search critical dimensions that are defined
in the design rules in all generated topologies and formulate
corresponding linear systems to obtain legal δxs and δys.

IV. EXPERIMENTAL RESULTS

A. The Dataset and Configurations

We implement the pattern generation flow using Python
and Tensorflow [43] library. The framework is tested on
a platform with one Tesla P100 Graphic Card. We adopt five
industry benchmark groups that contains metal-2 layout clips
under 7nm EUV design node. The clip size is 192× 192nm2

and the corresponding squish topology size is zero-padded to
24 × 24 that will be the input size of the neural networks.
The initial learning rate is set to 0.001 and decays by 0.7
every 2000 iterations. The maximum number of training steps
is 10000 with a mini-batch size of 64. All neuron weights
are initialized with Xavier [44] initializer and regularized with
l2 regularizer. The regularization coefficients for convolution
layers are 0.001 and we chose 0.01 for densely connected
layers. No data augmentation strategies are employed during
training and the model at last training step is picked during
inference stage. Note that we mark topologies with cx > 12
and cy > 12 as illegal such that the linear systems associated
to legal topologies always admit at least one solution under the
given window size, which ensures the quantity and quality of
the generated pattern libraries. We adopt industrial solver when
generating geometry information with Equation (10) for new
topologies and only one solution is kept for each topology.
Regarding the GAN component, the generator is initialized
with Xavier without any regularization and the discriminator
is l2 regularized with coefficient of 0.01. The learning rate for
GAN is set to be 0.001 and decayed by 0.05 every 10,000
iterations.

B. Understanding Features in TCAE

In the first experiment, we study the relationship between
auto-learned features and human understandable layout space.
Because the TCAE is trained to reconstruct input topolo-
gies as accurate as possible, feature vectors derived from the
latent vector layer must attain all geometry informations that
include wire tracks, line-end alignments, tip-to-tip distances,
shape directions and so on. To show exactly how these auto-
learned features affect the topology space, we conduct simple
transformations on each individual entry of the latent vector
and keep everything else unchanged. The transformed feature
vectors are then fed into the reconstruction unit for topology
reconstruction. We visualize part of the reconstructed patterns
in Table. I, where each row corresponds to the transforma-
tion on certain nodes in the latent vector with everything else
unchanged. In our case, a small perturbation is added up to
a specific entry. We can easily observe that some features
extend or pull back line-ends, some features create or destroy
geometries and some features controls the directions of shapes.
Unlike traditional design rules, auto-learned features control

TABLE I
VISUALIZING HOW CONVOLUTIONAL FEATURES ARE

REFLECTED IN ORIGINAL TOPOLOGY SPACE

Fig. 9. Contribution of Gaussian perturbation on topology reconstruction.
1000 topologies (∼400 legal) are created from one topology randomly picked
from the existing pattern library.

layout patterns in a more global point of view that some fea-
tures determine spacing, wire length and sometimes geometry
direction as a whole.

Here we show how random perturbations on the latent vec-
tors contribute to topology generation. We randomly take one
topology from the training set and obtain its feature vector
through the trained encoder network. 1000 noise vectors sam-
pled from Gaussian are added up to the feature vector before it
is fed into the decoder network for pattern reconstruction. We
visualize the generated topologies in Fig. 9. We can observe
that perturbations create significantly amount of new topolo-
gies where a large fraction of them are consistent with EUV
pattern rules (e.g., no bow-tie shapes and unique direction sin-
gle track polygons). Such results also show that deconvolution
layers have the ability to learn simple design rules during train-
ing. On the contrary, no valid topology will be generated if
the noise are directly applied on pattern space.

C. Evaluation of TCAE

We have shown the manipulation in the latent vector space
can generate new topologies. In this experiment, we will make
use of the flow above to augment the pattern space. Pattern
library statistics are listed in Table II, where we randomly
pick one pattern group to show the advantage of TCAE-
Random. Column “Method” denotes the approach used to

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 05,2022 at 01:56:29 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: DeePattern: LAYOUT PATTERN GENERATION WITH TCAE 75

Fig. 10. Visualization of the distribution of layout libraries: (a) Existing layout pattern dataset. (b) Industrial layout generator; (c) Patterns generated by
DCGAN; (d) Patterns generated by TCAE-Combine; (e) Patterns generated by TCAE-Random.

TABLE II
STATISTICS OF GENERATED PATTERNS

generate layout patterns, column “Pattern #” denotes the num-
ber of DRC clean patterns that are different from others,
and column “Pattern Diversity” corresponds to the Shannon
Entropy of each pattern library in terms of pattern complexity.
Row “TCAE-Random” corresponds to the details of 1M pat-
terns generated by perturbing the features of 1000 patterns in
existing design with Gaussian noise. Row “TCAE-Combine”
represents patterns generated from 1M different combinations
of 10 test layout clip features. “Industry Tool” shows the
cataloged results of a test layout generated from a state-
of-the-art industry layout generator that are used internally.
The test layout has similar total chip area (10000 μm2)
compared to “TCAE-Random-r” (9978 μm2) and is smaller
than “TCAE-Random” (14807 μm2). We also implement a
DCGAN [36] that has similar number of trainable parameters
as the TCAE designed in this paper. Row “VAE” corresponds
to a variational auto-encoder implementation to demonstrate
our discussion in Section III-B4. The VAE has the same archi-
tecture as TCAE except the bottleneck layer that is replaced
by VAE mean/variance vectors. The detailed configurations are
following one state-of-the-art VAE design in [41]. 1M patterns
are generated by feeding random latent vectors in the trained
generator networks.

“Existing Design” lists the statistics of a pattern library
extracted from an industry layout. Perturbation with Gaussian
exhibits greatest pattern generation power with around 30%
generated patterns are unique and DRC clean, thanks to the
sensitive-aware latent node perturbation. Combination of pat-
terns in feature space shows much less unique pattern count
because the generation procedure are restricted by existing pat-
tern space. Intuitively, TCAE-Combine tends to output most
DRC-clean patterns. However, statistics only record <2000
unique DRC-clean patterns as linear combination of existing

patterns are not likely to create new topologies. Combining
more patterns will not affect the result much which will sig-
nificantly reduce the count of DRC clean patterns if any two
candidate patterns contain unaligned wires. Most GAN gener-
ated patterns fail with bow-tie or 2D wires even the training
procedure has reached the equilibrium point because it is very
hard to learn layout track information with randomly generated
latent vectors. VAE, although, behaves better than a vanilla
GAN, we can still see that the generated valid pattern count
and diversity are very limited compared to TCAE-Random.

Fig. 10 compares the distributions of generated patterns and
existing layout data set with similar pattern count, where x-axis
and y-axis denote pattern complexity in each direction and the
heatmap value is the total count (log-scale) of the pattern with
that complexity. We employ Pattern Diversity to measure the
pattern library distribution. We observe that Random pertur-
bation can efficiently expand the weakly distributed pattern
library (large fraction of patterns falls in certain complexi-
ties) with H = 3.337 while the industrial layout generator are
still weakly distributed with H = 1.642 compared to existing
designs.

D. Evaluation of GAN-Guided TCAE

We will evaluate the performance of G-TCAE in two
aspects: (1) massive pattern generation and (2) context-specific
pattern generation.

1) Massive Pattern Generation: In the massive pattern gen-
eration experiments, we train the TCAE model with the same
settings as previous experiments. We dump out perturbation
vectors that are used to create new valid patterns in TCAE-
test phase that will serve as training source of the GAN.
1M of patterns are then created with GAN-generated pertur-
bations. The results are listed in Table III, where columns
“Pattern Diversity (H)” are calculated dataset pattern diversity
in terms of Equation (1), columns “Pattern #” are unique DRC-
clean pattern count amount 1M generated patterns, column
“Benchmarks” lists five benchmark groups directprint1-
directprint5, column “Training Set” corresponds to the
statistics of the data used for training G-TCAE, column
“TCAE” lists the performance of the original TCAE frame-
work on five benchmarks, column “G-TCAE” corresponds to
the performance of the proposed G-TCAE framework, and
column “V-TCAE” corresponds to a case study result when
we replace the GAN in G-TCAE with another prevailing
generative model VAE.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 05,2022 at 01:56:29 UTC from IEEE Xplore. Restrictions apply.

76 IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 35, NO. 1, FEBRUARY 2022

TABLE III
RESULT COMPARISON BETWEEN TCAE-RANDOM [45] AND G-TCAE ON MASSIVE PATTERN GENERATION TASK

Fig. 11. Context specific pattern generation for different complexities.

From the table we can observe that both “TCAE” and
“G-TCAE” successfully enlarges the layout pattern space by
increasing the pattern diversity from 2.91 to 3.70, which
demonstrates the validness of TCAE-family. By comparing
the results of G-TCAE and TCAE, we show that G-TCAE
offers much more unique DRC-clean patterns, with the help of
GAN that transforms random perturbation vectors into design-
rule-preserving vectors. On average, G-TCAE offers ∼ 5.8%
more DRC-clean patterns than TCAE. We also observe that G-
TCAE exhibits similar pattern diversity compared to TCAE,
which can be explained by the fact that the GAN compo-
nent is trained with perturbation vectors that are used for
TCAE pattern generation. Similar pattern diversity will hence
be expected when the GAN is trained well to an optimal state
(px = pdata). As we have discussed in Section III-C, other gen-
erative models will also complete perturbation generation tasks
in G-TCAE framework. Here, we conduct related experiments
by replacing GAN in G-TCAE with a standard VAE (V-TCAE)
and we can observe similar behavior compared to G-TCAE
(424304/3.64 of V-TCAE vs. 419098/3.70 of G-TCAE).

2) Context-Specific Pattern Generation: Regarding
the context-specific pattern generation, we choose
directprint1 as an example for performance evalu-
ation. The first step is still the training of TCAE, after which
latent vectors are divided into groups according to their
pattern complexities. The GAN is then trained with these
different latent vector groups and yields new vectors for
certain complexity generation. We visualize our results in

Fig. 11, that contains mixes of low, medium and high pattern
complexities in x and y directions. Here, we also calculate
the average pattern complexity to quantitatively evaluate such
task. The generated three groups have the average cx of 9.3,
10.3 and 11, respectively. Note that the average complexities
of three groups in y direction are all around 11 ∼ 12 because
patterns in the training set are mostly with cy = 11 or 12.

V. CONCLUSION AND FUTURE WORKS

In this paper, we address the pattern generation problem
in DFM flows/research for advanced technology nodes. We
propose a transforming convolutional auto-encoder frame-
work that can capture layout design rule characteristics. We
show individual element in latent vector instantiation con-
tributes to form the pattern space locally or globally, which
inspires a pattern generation flow by perturbing the latent vec-
tor space. For the perspective of massive diverse DRC-clean
pattern generation and context specific pattern generation,
we propose a GAN-guided TCAE framework that further
enhances the performance and functionality of TCAE-family.
The experimental results show that our framework outperforms
a state-of-the-art industrial layout generation tool in terms of
pattern library diversity, which is promising to facilitate early
technology node development and the back-end and sign-off
flows. Future work includes expansion of TCAE family to
complicated 2D designs, hotspot detection library optimization
and large scale test design generation.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 05,2022 at 01:56:29 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: DeePattern: LAYOUT PATTERN GENERATION WITH TCAE 77

REFERENCES

[1] G. R. Reddy, M.-M. Bidmeshki, and Y. Makris, “Viper: A versatile and
intuitive pattern generator for early design space exploration,” in Proc.
IEEE Int. Test Conf. (ITC), 2019, pp. 1–7.

[2] C. Tabery et al., “In-design and signoff lithography physical analysis for
7/5nm,” in Proc. SPIE Adv. Lithogr., vol. 10147, 2017, Art. no. 1014705.

[3] J. Xu et al., “Design layout analysis and DFM optimization using
topological patterns,” in Proc. SPIE, vol. 9427, 201, Art. no. 94270Q.

[4] A. Hamouda et al., “Enhanced opc recipe coverage and early hotspot
detection through automated layout generation and analysis,” in Proc.
Opt. Microlithogr. XXX, vol. 10147, 2017, Art. no. 101470R.

[5] Y. Lin et al., “Data efficient lithography modeling with transfer learning
and active data selection,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 38, no. 10, pp. 1900–1913, Oct. 2019.

[6] P. Kareem, Y. Kwon, and Y. Shin, “Layout pattern synthesis for
lithography optimizations,” IEEE TSM, vol. 33, no. 2, pp. 283–290,
May 2020.

[7] Y. Du, H. Zhang, M. D. F. Wong, and K.-Y. Chao, “Hybrid lithography
optimization with e-beam and immersion processes for 16nm 1D gridded
design,” in Proc. ASPDAC, 2012, pp. 707–712.

[8] H. Yang, L. Luo, J. Su, C. Lin, and B. Yu, “Imbalance aware lithography
hotspot detection: A deep learning approach,” JM3, vol. 16, no. 3, 2017,
Art. no. 033504.

[9] J.-W. Jeon et al., “Early stage hot spot analysis through standard
cell base random pattern generation,” in Proc. Design-Process-Technol.
Co-Optim. Manufacturability XI, vol. 10148, 2017, Art. no. 101480S.

[10] B. Jiang, H. Zhang, J. Yang, and E. F. Young, “A fast machine
learning-based mask printability predictor for OPC acceleration,” in
Proc. ASPDAC, 2019, pp. 412–419.

[11] M. Zhang et al., “A weak pattern random creation and scoring method
for lithography process tuning,” in Proc. Design-Process-Technol. Co-
Optim. Manufacturability XII, vol. 10588, 2018, Art. no. 105880U.

[12] H. Yang, J. Su, Y. Zou, Y. Ma, B. Yu, and E. F. Y. Young, “Layout
hotspot detection with feature tensor generation and deep biased learn-
ing,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 38,
no. 6, pp. 1175–1187, Jun. 2019.

[13] M. Shin and J.-H. Lee, “Accurate lithography hotspot detection using
deep convolutional neural networks,” JM3, vol. 15, no. 4, 2016,
Art. no. 043507.

[14] H. Yang, P. Pathak, F. Gennari, Y.-C. Lai, and B. Yu, “Detecting multi-
layer layout hotspots with adaptive squish patterns,” in Proc. ASPDAC,
2019, pp. 299–304.

[15] H. Geng, H. Yang, Y. Ma, J. Mitra, and B. Yu, “SRAF insertion via
supervised dictionary learning,” in Proc. ASPDAC, 2019, pp. 406–411.

[16] H. Yang, Y. Lin, B. Yu, and E. F. Y. Young, “Lithography hotspot
detection: From shallow to deep learning,” in Proc. SOCC, 2017,
pp. 233–238.

[17] H. Yang, S. Li, C. Tabery, B. Lin, and B. Yu, “Bridging the gap between
layout pattern sampling and hotspot detection via batch active learning,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 40, no. 7,
pp. 1464–1475, Jul. 2021.

[18] G. R. Reddy, K. Madkour, and Y. Makris, “Machine learning-
based hotspot detection: Fallacies, pitfalls and marching orders,” in
Proc. ICCAD, 2019, pp. 1–8.

[19] L. Zhuang et al., “A novel methodology of process weak-point iden-
tification to accelerate process development and yield ramp-up,” in
Proc. ICSICT , 2016, pp. 852–855.

[20] J. P. Cain, M. Fakhry, P. Pathak, J. Sweis, F. E. Gennari, and
Y.-C. Lai, “Pattern-based analytics to estimate and track yield risk of
designs down to 7nm,” in Proc. SPIE Adv. Lithogr., vol. 10148, 2017,
Art. no. 1014805.

[21] H. Yang, W. Chen, P. Pathak, F. Gennari, Y.-C. Lai, and B. Yu,
“Automatic layout generation with applications in machine learning
engine evaluation,” 2019, arXiv:1912.05796.

[22] P. Kareem and Y. Shin, “Synthesis of lithography test patterns using
machine learning model,” IEEE Trans. Semicond. Manuf., vol. 34, no. 1,
pp. 49–57, Feb. 2021.

[23] M. Shafee et al., “Approaches for full coverage physical design space
exploration and analysis by synthetic layout generation,” in Proc.
Design-Process-Technol. Co-Optim. Manufacturability XIV , vol. 11328,
2020, Art. no. 1132808.

[24] I. Goodfellow et al., “Generative adversarial nets,” in Proc. NIPS, 2014,
pp. 2672–2680.

[25] M.-Y. Liu and O. Tuzel, “Coupled generative adversarial networks,” in
Proc. NIPS, 2016, pp. 469–477.

[26] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in Proc. ICCV ,
2017, pp. 2242–2251.

[27] M. Mirza and S. Osindero, “Conditional generative adversarial nets,”
2014, arXiv:1411.1784.

[28] W. Ye, M. B. Alawieh, Y. Lin, and D. Z. Pan, “LithoGAN: End-
to-end lithography modeling with generative adversarial networks,” in
Proc. DAC, 2019, pp. 1–6.

[29] H. Yang, S. Li, Y. Ma, B. Yu, and E. F. Young, “GAN-OPC: Mask
optimization with lithography-guided generative adversarial nets,” in
Proc. DAC, 2018, p. 131.

[30] H. Geng, H. Yang, B. Yu, X. Li, and X. Zeng, “Sparse VLSI layout
feature extraction: A dictionary learning approach,” in Proc. ISVLSI,
2018, pp. 488–493.

[31] M. B. Alawieh, Y. Lin, Z. Zhang, M. Li, Q. Huang, and D. Z. Pan,
“GAN-SRAF: Sub-resolution assist feature generation using conditional
generative adversarial networks,” in Proc. 56th Annu. Design Autom.
Conf., 2019, pp. 1–6.

[32] J. Liu, Y. Ding, J. Yang, U. Schlichtmann, and Y. Shi, “Generative
adversarial network based scalable on-chip noise sensor placement,” in
Proc. SOCC, 2017, pp. 239–242.

[33] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein
generative adversarial networks,” in Proc. ICML, 2017,
pp. 214–223.

[34] M. Arjovsky and L. Bottou, “Towards principled methods for training
generative adversarial networks,” in Proc. ICLR, 2016, pp. 1–17.

[35] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,
“Improved training of wasserstein GANs,” in Proc. NIPS, 2017,
pp. 5767–5777.

[36] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” in
Proc. ICLR, 2016, pp. 1–16.

[37] G. E. Hinton, A. Krizhevsky, and S. D. Wang, “Transforming auto-
encoders,” in Proc. ICANN, 2011, pp. 44–51.

[38] C. E. Shannon, “A mathematical theory of communication,” ACM
SIGMOBILE Mobile Comput. Commun. Rev., vol. 5, no. 1, pp. 3–55,
2001.

[39] F. E. Gennari and Y.-C. Lai, “Topology design using squish patterns,”
U.S. Patent 8 832 621, Sep. 9, 2014.

[40] V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep
learning,” 2018, arXiv:1603.07285.

[41] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” 2013,
arXiv:1312.6114.

[42] P. Gupta, “What is process window?” ACM SIGDA Newslett., vol. 40,
no. 8, p. 1, 2010.

[43] M. Abadi et al., “TensorFlow: A system for large-scale machine
learning,” in Proc. OSDI, 2016, pp. 265–283.

[44] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proc. AISTATS, vol. 9, 2010,
pp. 249–256.

[45] H. Yang, P. Pathak, F. Gennari, Y.-C. Lai, and B. Yu, “DeePattern:
Layout pattern generation with transforming convolutional auto-
encoder,” in Proc. DAC, 2019, pp. 1–6.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 05,2022 at 01:56:29 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

