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Abstract—Multiple patterning lithography has been widely
adopted in advanced technology nodes of VLSI manufacturing.
As a key step in the design flow, multiple patterning lay-
out decomposition (MPLD) is critical to design closure. Due
to the NP-hardness of the general decomposition problem,
various efficient algorithms have been proposed with high-
quality solutions. However, with increasingly complicated design
flow and peripheral processing steps, developing a high-quality
layout decomposer becomes more and more difficult, slowing
down further advancement in this field. This article presents
OpenMPL (2020), an open-source layout decomposition frame-
work, with well-separated peripheral processing and core solving
steps. Besides, previous algorithms or techniques are inspected
and several issues are discovered. We then propose correspond-
ing new algorithms to resolve these issues. The experiments
demonstrate the effectiveness of our proposed algorithms and
the efficiency of OpenMPL.

Index Terms—Design methodology, layout decomposition,
VLSI design.

I. INTRODUCTION

MULTIPLE patterning layout decomposition (MPLD) has
been adopted to enhance the lithography resolution.

The key idea of MPLD is to assign features that are close
to each other to different masks, such that these features are
far away enough to be printed with existing lithography tech-
niques. MPLD can be divided into double-patterning layout
decomposition (DPLD), triple patterning layout decomposi-
tion (TPLD), and quadruple patterning layout decomposition
(QPLD), according to the number of masks. This problem is
difficult since it is a variation of the graph coloring problem,
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Fig. 1. Example of TPLD with stitches. (a) Input features. (b) Constructed
LG without stitch candidate generation, which is a 4-clique and therefore not
3-colorable. (c) Constructed LG with stitch candidate generation. Two stitch
candidates are introduced and the original 4-clique is dismissed. (d) Coloring
on the LG with stitch candidate generation. The final decomposed layout with
three masks (each color corresponds to one mask). The stitch candidates are
highlighted in blue.

which is NP-hard for k ≥ 3, where k is the number of colors
(masks).

Fig. 1 is an example of TPLD, where different colors rep-
resent different masks. Unlike the classical graph coloring
problem, the MPLD problem has several unique character-
istics: 1) stitch: a polygon feature is allowed to be split into
multiple overlapping segments to resolve coloring conflicts,
as shown by the dashed edge in Fig. 1(c); 2) special pat-
terns: there are different kinds of special features in a circuit
layout, e.g., alternative power and ground lines, which may
help to simplify the graph; and 3) complex rules: besides the
widely adopted spacing constraint for the same color, there are
also other rules. The different color spacing constraints [2] are
related to the ordering of masks. That is, these constraints pre-
determine the colors of some features before decomposition.
All above characteristics impose different challenges to the
MPLD problem, thus specialized algorithms are in demand to
solve the MPLD problem effectively and efficiently.

To achieve high efficiency and to maintain high solution
quality, a variety of decomposition algorithms have been
proposed. These algorithms can be roughly categorized into
three types [3], [4]: 1) mathematical programming and relax-
ation; 2) graph-theoretical approaches; and 3) search-based
approaches. Mathematical programming solves the MPLD
problem by formulating it into a standard optimization model,
such as integer linear programming (ILP) for DPLD [5]–[7]
and TPLD [8]–[10]. Due to the NP-hardness of TPLD and
QPLD, a set of relaxation techniques, such as semidefinite
programming (SDP) [8], linear programming (LP) [11], and
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discrete relaxation method [12], are proposed based on ILP.
Another category is to directly perform color assignment based
on a set of graph-theoretical algorithms, e.g., the maximal-
independent set (MIS) [13], the shortest-path [14], [15], and
fixed-parameter tractable (FPT) algorithms [16]. Search-based
algorithms follow a divide-and-conquer principle with each
subgraph containing a small number of nodes, e.g., less than
20. Then, a search procedure is applied to find the optimal
solutions for small subgraphs [8], [13], [17]–[20]. Besides
the research on the single-layout decomposition stage, recent
work [21], [22] pioneers a new direction that integrates layout
decomposition and mask optimization seamlessly, achieving
compelling results from a global view of the solution space.

No matter how efficient the decomposition algorithm is, the
NP-hardness of TPLD and QPLD still makes the problem
suffer from the runtime issue, especially when the graph
size is large. Therefore, many graph simplification techniques
have been developed to reduce problem size. The represen-
tative techniques include independent component computation
(ICC) [8], iterative vertex removal (IVR) [8], [17], biconnected
component extraction (BCE) [6], [7], and sub-K4 structure
merging for TPLD [11].

To reduce the repeated effort in the reimplementation of the
whole decomposition framework and lower the bar of research
on MPLD, we present OpenMPL as an open platform for
developing MPLD algorithms. OpenMPL contains efficient
implementations of widely adopted graph simplification tech-
niques and state-of-the-art layout decomposition algorithms.
We carefully design the software architectures and APIs to
decouple the innovations on the core optimization steps. For
example, one can focus on developing novel graph simplifica-
tion or decomposition techniques without worrying about the
peripheral processing issues as the platform provides clean and
well-defined APIs for the kernel optimization engines.

Moreover, considering that the framework is well decou-
pled, which makes each step separated clearly, we can inspect
individual algorithm or technique easily. Through the inspec-
tions, a set of issues are discovered and corresponding solu-
tions to these issues are proposed in OpenMPL. Specifically,
there are three possible issues which can be further improved.

1) There exist some redundant stitches which can be
removed without decomposition quality loss.

2) The original problem formulation and corresponding ILP
method cannot quantify the cost accurately, which makes
the previous ILP-based algorithm suboptimal.

3) The original exact cover (EC)-based algorithm fails to
obtain the optimal solution in some cases.

All these issues are well described and solved in this article.
Our contributions are highlighted as follows.

1) We present OpenMPL [1], an open-source layout
decomposition framework, with efficient implemen-
tations of various state-of-the-art simplification and
decomposition algorithms.

2) We prove the stitch candidate redundancy in the state-
of-the-art stitch generation algorithm and propose a
corresponding solution.

3) We find the suboptimality in the widely adopted ILP
formulation and propose an optimized ILP-based algo-
rithm with improved performance.

4) We improve the EC-based algorithm by some techniques
which were not revealed and studied in the previous
work.

5) We conduct experiments on widely recognized bench-
marks and new large-scale designs derived from the
latest ISPD’19 benchmark suites. The results demon-
strate the effectiveness of our proposed algorithms and
techniques.

The remainder of this article is organized as follows.
Section II gives the problem formulation and discusses the
design principles, the workflow, and some other properties
of OpenMPL. Section III discusses the redundancy of the
stitch candidate and gives the corresponding stitch redundancy
removal (SRR) algorithm. Section IV provides the nonoptimal
cases generated by the previous ILP-based algorithm and the
updated optimized ILP-based algorithm is proposed. Section V
introduces the drawbacks of the previous EC-based algorithm
in some cases and proposes the optimized EC-based algorithm.
Section VI lists comprehensive experimental results, followed
by conclusion and future work in Section VII.

II. OpenMPL FRAMEWORK

In this section, we first formulate the MPLD problem, which
is the target of OpenMPL. Then, we introduce OpenMPL by
covering the design principles, workflows, and functionalities.
Finally, some additional features of OpenMPL are discussed.

A. Problem Formulation

The general MPLD problem can be formulated as follows.
Problem 1 (MPLD): Given 1) a routed layout which is a

set of polygonal features; 2) the number of masks k; 3) the
minimal conflict space d; and 4) other constraints like precol-
oring constraints, the goal is to assign one or more masks (if
the stitch is enabled) to each feature so that the weighted sum
of conflict cost and stitch cost is minimized.

B. Design Principles

OpenMPL is designed for end users, developers, and
researchers as a general platform for the MPLD algorithms.
Therefore, we emphasize usability, efficiency, and extensi-
bility during development. The core design principles are
highlighted as follows.

1) Decoupled Design Stages: The implementation clearly
separates different optimization stages, as shown in Fig. 2.
Therefore, the interdependence between them is minimized. In
this way, developers can focus on verifying individual stages
without worrying about cross-stage impacts.

2) Graph Representations Throughout the Core Stages:
After layout graph (LG) construction, the graph simplification,
decomposition solver, and the simplified graph recovery stages
use pure graphs as input/output, without involving mask data.
This design leads to well-defined and highly separable core
algorithms, making the framework highly extensible.

3) Efficiency and Generality for Different Mask Data: As a
mask layer can be a contact layer or a metal layer, the process-
ing efficiency varies significantly for different types of layers.
We design a general mask database with separate processing
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Fig. 2. Workflow of OpenMPL.

routines for contact layers and metal polygon layers for effi-
ciency enabled by C++ polymorphism since contact layers
can be processed in a much simpler way.

C. Workflow and Functionalities

The workflow of OpenMPL is illustrated in Fig. 2. First,
one chip layout information (in the GDS format) file is loaded
and transformed into an LG, which is represented by a vec-
tor of rectangle pointers, where the rectangles are defined in
Boost. Second, LG is simplified by some optional graph sim-
plification techniques, where some of them are implemented
in a third-party library Limbo [23]. Then, if the stitch is
enabled, the stitch insertion process [8] is executed to gen-
erate a decomposed graph (DG) with stitches. DG is further
simplified by several simplification techniques. After the sim-
plification, a coloring solver is called for each component in
DG to solve the component coloring problem. Finally, our
framework recovers nodes removed in the simplification step
and assigns legal color for each removed node. In the following
sections, we are going to introduce all of the functionalities in
two crucial procedures of OpenMPL: 1) graph simplification
and 2) decomposition.

Graph simplification techniques can be used to reduce the
graph size and therefore reduce the computational complex-
ity. Through LG simplification, we only need to deal with the
smaller graph without affecting the final result. All of the sim-
plification techniques mentioned in Section I are supported in
our framework, including ICC, IVR, BCE, and sub-K4 struc-
ture merging for TPLD (Merge sub-K4). ICC is proposed
based on the fact that there are many isolated clusters in a real
layout, which enables ICC to break down the LG into sev-
eral independent components. IVR temporarily removes the
nodes whose degree is less than the number of colors in an
iterative manner. BCE simplifies the graph by duplicating the
bridge vertices and then removing the bridge edges. Merge
sub-K4 detects and merges specific structures whose number
of edges is exactly one less than four-clique structures and thus
is only applicable for TPLD. Except Merge sub-K4, other
implemented simplification techniques support any number of

masks. Besides these simplification methods, we develop a
simplification method which focuses on the removal of redun-
dant stitches. The details are shown in Section III. Different
simplification techniques require different recovery methods.
However, those nodes which are shared among different com-
ponents may be assigned different colors after recovery. To
tackle this, color rotation [6] is implemented in our framework.
Specifically, color rotation is to rotate the color assignments
of the subgraphs to avoid unnecessary conflict when coloring
the whole LG from the subgraphs.

Graph color assignment is the most crucial step in the flow,
which impacts the final coloring results directly. In the graph
color assignment, a simplified graph is provided and each
vertex in the graph should be assigned one color by the speci-
fied algorithm. OpenMPL has supported all of the commonly
used algorithms in the layout decomposition and some updated
algorithms are also implemented. The algorithms are briefly
introduced in the following context.

1) Original ILP: The details are covered in Section IV-A.
We use Gurobi [24], Lemon [25], and CBC [26] as the
ILP solvers.

2) Optimized ILP: The details are covered in Section IV-B.
3) SDP: The discrete integer programming solving process

of (9) is NP-hard, thus it may suffer from runtime
overhead for practical designs. As shown in [8], [27],
and [28], the color assignment can be formulated as a
vector programming and then relaxed and solved by SDP
in polynomial time. Given the solutions of SDP, a map-
ping process is used to map the solutions to coloring
results. CSDP [29] is used as the SDP solver.

4) Backtracking: Backtracking [8] is a DFS fashion algo-
rithm used to find solutions in the whole solution space.
Especially, we use a simple but effective heuristic tech-
nique to speed up the backtracking process. We set the
upper bound of the cost as 0 at the beginning to cut
branches more frequently and thus speed up the pro-
cess. If no feasible solution is found under such an upper
bound constraint, we relax the constraint by adding the
bound to 1 and repeat the procedure until finding the
optimal solution.

5) Original EC-Based Algorithm: The details are covered
in Section V-A. We implement the dancing links data
structure and the EC solver, instead of calling the third-
party solver like ILP and SDP. Therefore, the runtime
of the EC-based algorithm can be optimized further
compared to other algorithms.

6) Flexible EC-Based Algorithm: The details are covered
in Section V-B.

OpenMPL also supports decomposition algorithms like
MIS [13], LP [11], etc., which cannot decompose the graph
containing stitch edges while working well on stitch-free
graphs. Due to the page limit, we leave the details on the
tool release page [1].

D. Additional Features

Some additional features are supported for better usability,
efficiency, and extensibility.
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1) OpenMPL supports multithreading operations by
OpenMP [30] and users can specify the number of
threads. Graph components are solved in parallel and
layout decomposition algorithms also support multi-
threading computations.

2) We can identify all the possible positions of stitches
through pattern projections [8] in stitch insertion, which
is one of the most critical steps to parse a layout. One
example of the stitch is shown in Fig. 1. There are lots
of candidate positions to insert a stitch, and only some
are chosen as the final stitches.

3) In practice, a pattern in the layout may be a poly-
gon or rectangle. Consequently, the storage may vary
from case to case. OpenMPL provides a shape-friendly
system considering this case and users can specify
the shape, POLYGON or RECTANGLE, to guarantee
the performance to avoid unnecessary calculations. For
polygonal inputs, to simplify the storage structure design
and save space, OpenMPL first decomposes the poly-
gons to rectangles. After reading the whole input file,
DFS is utilized to find connected components and
reunion rectangles into polygons. For rectangle cir-
cuits, we directly store these patterns without further
operations.

III. STITCH REDUNDANCY REMOVAL

In this section, we briefly introduce the widely used stitch
candidate generation method and then propose an algorithm
for SRR with mathematical proof.

A. Stitch Candidate Generation

The original layout does not contain stitch information, thus
the framework for the MPLD problem should determine the
positions to insert stitches. One example of the stitch can be
found in Fig. 1(c), where c1-c2 and d1-d2 are two generated
stitch candidates. Previous works proposed solutions to gener-
ate candidate stitches for DPL [5], [6] and TPL [9], [17]. The
key idea of stitch candidate generation is to project each fea-
ture into its neighbor features, where the projection results
are then used to determine stitch candidates. For example,
Kuang and Young [17] proposed a heuristic algorithm to find
all legal stitch positions in TPL using the projection results.
Kahng et al. [6] used the projection sequence to directly
carry out stitch candidate generation by some simple rules.
One example of the stitch candidate insertion by projection
sequence is shown in Fig. 3, where the middle feature a has
three conflict features, b, c, and d. Based on the projection
indicated by the black dashed line in Fig. 3, the feature a
is divided into seven segments. Each segment is labeled by
the number of projected conflict features, then we can get its
projection sequence: 01212101010. The rules of the projec-
tion sequence are different when the number of masks varies.
The general rules of the projection sequence for TPLD can be
summarized as follows [9]. If 1) the projection sequence con-
tains subsequences whose value xyz satisfies x > y, z > y and
2) the subsequence is not at the beginning or end of the projec-
tion sequence with form 01010, then the middle positions of y

Fig. 3. Projection results, where the projection sequence is 0121210 and
the middle segment whose label is “1” should be inserted a stitch for TPLD,
which is highlighted by blue.

Fig. 4. TPLD example of SRR. The conflict edge is marked with black and
the stitch edge is blue. Dotted edges/nodes are removed. (a) DG before SRR.
(b) Nodes a and b are merged into node ab. (c) Node ab and node e are
further removed by IVR. (d) Node c and node d are merged into node cd.

should insert one stitch candidate. As shown in Fig. 3, the mid-
dle feature a has three conflict features, b, c, and d. According
to the rules stated above, one stitch candidate is inserted into
a as shown in the figure. In our implementation, such a stitch
candidate generation approach supports any number of masks
and therefore can be used for general MPL. However, when
the mask number is larger than three, the stitch candidates may
be redundant or missed since we have not considered special
properties for larger mask numbers.

B. Stitch Redundancy Removal

Although the current stitch candidate generation algorithm
is able to find all possible stitches [8], [17], there are a few
stitch candidates that are redundant after further graph simpli-
fication. One example is shown in Fig. 4(a), where the edge
a-b is redundant, i.e., a, b can be assigned with the same color
without additional cost. To clarify the phenomenon, we define
C(u) as the cost of node u and compute as

C(u) =
∑

i∈Nc(u)

c(i, u)+ α
∑

i∈Ns(u)

s(i, u) (1a)

s.t. c(i, u) = min

⎧
⎨

⎩
∑

rj∈pi

(
xj == xu

)
, 1

⎫
⎬

⎭ ∀pi ∈ Nc(u) (1b)

s(i, u) = (xi �= xu) ∀ri ∈ Ns(u) (1c)

xi, xu ∈ {1, . . . , k} (1d)

where Nc(u) is the neighbor feature set of u connected by
conflict edges, Ns(u) is the neighbor node set of u con-
nected by stitch edges, the node/feature is defined by r/p,
respectively, and xi is a variable for the k available colors
of the node ri. xj == xu represents 1 if xi equals to xu

and 0 if they are inequivalent. xi �= xu is defined in an
opposite way. Take Fig. 4(a) as an example, for the node a,
Nc(a) = {cd, e}, Ns(a) = {b}, where cd represents the original
feature divided by the stitch edge c-d.
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Given a coloring solution f : V → {1, . . . , k}, where
{1, . . . , k} is the index set of the k colors. Cf (u) is the cost of
node u when u is colored by f and computed by

Cf (u) =
∑

i∈Nc(u)

cf (i, u)+ α
∑

i∈Ns(u)

sf (i, u) (2)

where cf (i, u) and sf (i, u) are defined similar to c(i, u) and
s(i, u) in (1). The color xu for node u when calculating Cf (u)

is given by f , i.e., xu = f (u). We have the following theorem
about stitch redundancy.

Theorem 1: Given a DG G, if there exists a stitch edge
es = {u, v} and the node pair {u, v} satisfies three constraints:

1) Nc(u) = Nc(v);
2) |Ns(u)\v| ≤ 1;
3) |Ns(v)\u| ≤ 1,

then at least one optimal coloring solution will assign the two
nodes with the same color.

Proof: The proof can be finished by contradiction. Assume
that all of the optimal coloring solutions assign u, v into two
different colors. Let f ∗ be one of the optimal coloring solutions
and we have f ∗(u) �= f ∗(v). We will show that there is another
coloring solution f ′, which assigns u, v into the same color
and has at least the same cost with f ∗ and thus makes f ′ be
the optimal coloring solution. Without loss of generality, we
assume

∑

i∈Nc(u)

cf ∗(i, u) ≤
∑

i∈Nc(v)

cf ∗(i, v). (3)

Then f ′ is defined as follows:

f ′(i) =
{

f ∗(u), if i = v;
f ∗(i), otherwise.

(4)

Since the only difference between f ∗ and f ′ is the color of
v, the cost difference � between f ∗ and f ′ on G is given by

� = Cf ∗(v)− Cf ′(v). (5)

By (2) and (5), � can be further interpreted as

� =
⎛

⎝
∑

i∈Nc(v)

cf ∗(i, v)−
∑

i∈Nc(v)

cf ′(i, v)

⎞

⎠

+ α

⎛

⎝
∑

i∈Ns(v)

sf ∗(i, v)−
∑

i∈Ns(v)

sf ′(i, v)

⎞

⎠. (6)

For the first conflict term, combining the first constraint, (3)
and (4), we have

∑

i∈Nc(v)

cf ∗(i, v) ≥
∑

i∈Nc(v)

cf ′(i, v). (7)

For the second stitch term, the third constraint
|Ns(v)\u| ≤ 1 indicates that:

∑
i∈Ns(v)\u sf ∗(i, v) ≤ 1

and
∑

i∈Ns(v)\u sf ′(i, v) ≤ 1. Moreover, we have
sf ∗(u, v) = 1 > sf ′(u, v) = 0 since the colors of u, v
by f ∗ are different. Therefore, we have

∑

i∈Nc(v)

sf ∗(i, v) ≥ 1 ≥
∑

i∈Nc(v)

sf ′(i, v). (8)

Algorithm 1 STITCHREDUNDANCYREMOVAL

Require: S → Decomposed graph set.
1: for DG ∈ S do
2: NeedSimplification ← False;
3: for si,j ∈ DG do
4: if {i, j} satisfies constraints in theorem 1 then
5: DG′ ← Merge i, j in DG;
6: NeedSimplification ← True;
7: end if
8: end for
9: if NeedSimplification then

10: S′ ← Simplified sub-graph set by simplifying DG′;
11: STITCHREDUNDANCYREMOVAL(S′);
12: end if
13: end for

Combining (6)–(8), it is clear to see that � ≥ 0 always
holds, which means that we can color G by f ′ without addi-
tional cost compared with the optimal solution f ∗ and thus
complete the proof.

According to the theorem, we can conclude that all stitch
edges satisfying constraints specified in Theorem 1 are redun-
dant and corresponding node pairs can be merged to further
simplify the graph. Motivated by this conclusion, we propose
Algorithm 1 to remove redundant stitch candidates. The algo-
rithm is simply described as follows: after the stitch insertion
and the graph simplification, the layout is divided and simpli-
fied into a DG set S. For each decomposed graph (DG) in S,
the algorithm detects all stitch edges which satisfy the con-
straints specified in Theorem 1 (line 4) and merges all valid
stitch edges (line 5). If DG can be further simplified (line
10) after the removal of redundant stitch edges, the simplified
graph set (S′) can be processed again (line 11) by Algorithm 1.
One simple TPLD example is given in Fig. 4. As shown in the
example, the stitch edge a-b is redundant and thus the node
pair {a, b} is merged [Fig. 4(b)]. After the removal of a-b, the
graph can be further simplified by IVR [Fig. 4(c)]. Then, the
stitch edge c-d in the simplified graph is also redundant, and
thus the node pair {c, d} is merged [Fig. 4(d)].

IV. OPTIMIZED ILP-BASED ALGORITHM

In this section, we first introduce the previous cost formu-
lation and the corresponding ILP-based algorithm proposed
in [8], then the nonoptimal case of such formulation is pro-
vided and discussed, followed by a new cost formulation and
the corresponding optimized ILP-based algorithm proposed
by us.

A. Original ILP-Based Algorithm

Given an input layout specified by features in polygonal
shapes, the layout can be translated into an undirected LG
G = (V, E), where every node vi ∈ V corresponds to one
feature/subfeature in the layout and each edge eij ∈ E is used
to characterize relationships between features. E is composed
of both conflict and stitch relationship, denoted by E = {CE∪
SE}, where SE is the set of stitch edges and CE is the set
of conflict edges. One example is shown in Fig. 1(c), where
the stitch edges are orange and the conflict edges are black.
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Previous work [8] formulates the MPLD problem as

min
x

∑
cij + α

∑
sij (9a)

s.t. cij =
(
xi == xj

) ∀eij ∈ CE (9b)

sij =
(
xi �= xj

) ∀eij ∈ SE (9c)

xi ∈ {0, 1, . . . , k} ∀xi ∈ x (9d)

where xi is defined as in (1), cij is a binary variable represent-
ing the conflict edge eij ∈ CE, sij stands for the stitch edge
eij ∈ SE, α, which is a user-defined parameter indicating the
relative importance between the conflict cost and the stitch
cost and set as 0.1 by default, If two nodes, vi and vj, within
the minimal coloring distance are assigned the same color, i.e.,
xi = xj, then cij = 1. On the contrary, sij = 1 when two nodes
connected by the stitch edge are assigned different colors, i.e.,
xi �= xj. The objective function is to minimize the weighted
sum of the conflict number and the stitch number.

Based on the objective function shown in (9), the problem
can be solved by ILP [6], [8], where xi is represented by 1-bit
0–1 variable(s). The ILP model for TPLD can be formulated
as in (10), where the objective function of MPLD in (9) can be
directly applied in the ILP-based formula, as shown in (10a),
constraints (10c)–(10g) play the same role as (9b), where 0–1
variable cij is true only if two nodes connected by the conflict
edge eij are assigned the same color

min
∑

eij∈CE

cij + α
∑

eij∈SE

sij (10a)

s.t. xi1 + xi2 ≤ 1 (10b)

xi1 + xj1 ≤ 1+ cij1 ∀eij ∈ CE (10c)

(1− xi1)+
(
1− xj1

) ≤ 1+ cij1 ∀eij ∈ CE (10d)

xi2 + xj2 ≤ 1+ cij2 ∀eij ∈ CE (10e)

(1− xi2)+
(
1− xj2

) ≤ 1+ cij2 ∀eij ∈ CE (10f)

cij1 + cij2 ≤ 1+ cij ∀eij ∈ CE (10g)∣∣xj1 − xi1
∣∣ ≤ sij1 ∀eij ∈ SE (10h)∣∣xj2 − xi2
∣∣ ≤ sij2 ∀eij ∈ SE (10i)

sij ≥ sij1, sij ≥ sij2 ∀eij ∈ SE (10j)

xij ∈ {0, 1}. (10k)

In (10), cij is true when both cij1 and cij2 are true by
constraint (10g). 0–1 variable cij1(cij2) demonstrates whether
xi1(xi2) equals to xj1(xj2). Therefore, cij is true only when
xi = xj, i.e., vi and vj are assigned the same color. Similarly,
constraints (10h)–(10j) correspond to (9c), where 0–1 variable
sij is true only if vi and vj are assigned different colors.

B. New ILP-Based Algorithm

It is no doubt that the cost of the MPLD problem is the
weighted sum of the conflict cost and the stitch cost. However,
the previous ILP-based algorithm [8] measures the conflict cost
by a summation of the binary variables representing conflict
edges eij ∈ CE, i.e.,

∑
cij. Such a measurement method is

not accurate and ignores a simple but important fact: conflict
happens between features instead of nodes. In other words, If
the stitch candidate divides one feature into two subfeatures,
which are represented by two nodes v1, v2 in the graph, and

Fig. 5. Example of the nonoptimality of the original ILP-based algorithm.
(a) Solution of the original ILP-based algorithm, where one stitch (blue line)
happens at the top of the conflict (red line). (b) Solution of our ILP-based
algorithm, where no stitch is introduced and can obtain the optimal solution.

both nodes have a conflict edge with the third node v3, i.e.,
e12, e13 ∈ CE, then the previous conflict cost shown in (10)
will count both e13 and e23 while they represent the same
conflict between features. Fig. 5 illustrates one example, where
the result of the original ILP, as shown in Fig. 5(a), introduces
one more stitch. The reason is: if the stitch edge e12 is ignored
as shown in Fig. 5(b), i.e., the two connected nodes, v1 and
v2, are assigned the same color and thus x1 = x2, the original
cost function shown in (10) will calculate the cost as 2 since
both e13 and e23 are true. Therefore, ILP with the original
problem formulation prefers to assign v1 and v2 with different
colors, which results in a 1.1 cost value for the original cost
function. However, it is easy to see that when this stitch is
ignored, the conflict should be 1 instead of 2 since only one
conflict between features happens.

Based on this observation, we present a new formulation
shown in (11). The objective function of the new formula-
tion is the weighted sum of conflict cost (

∑
Cmn) and stitch

cost (
∑

sij), which exactly matches the objective of the color
assignment problem. The modified part is highlighted in blue.
P indicates the feature set before stitch insertion, ri and rj are
the subfeatures after stitch insertion and belong to pm and pn,
respectively. For example, d1 and d2 are the subfeatures of the
original feature d in Fig. 1

Given the new formula for MPLD, the problem can also be
solved by ILP. The ILP model for TPLD is formulated in (12):
here the conflict cost is calculated by

∑
Cmn between the fea-

tures m and n instead of
∑

cij between nodes i and j. In (12),
Cmn is true when both Cmn1 and Cmn2 are true by the constraint
formulated in (12g). 0–1 variable Cmn1(Cmn2) demonstrates
whether there exists ri ∈ pm, rj ∈ pn, s.t., xi1(xi2) = xj1(xj2).
By considering Cmn, the conflict cost between features instead
of nodes, our

min
x

∑
Cmn + α

∑
sij, (11a)

s.t. Cmn = min

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

ri∈pm,
rj∈pn,

cij∈CE

(
xi == xj

)
, 1

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

∀pm, pn ∈ P

(11b)

sij =
(
xi �= xj

) ∀eij ∈ SE (11c)
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xi ∈ {0, 1, 2} ∀xi ∈ x. (11d)

min
∑

cij∈CE,ri∈pm,rj∈pn

Cmn + α
∑

eij∈SE

sij (12a)

s.t. xi1 + xi2 ≤ 1 (12b)

xi1 + xj1 ≤ 1+ Cmn1

∀cij ∈ CE, ri ∈ pm, rj ∈ pn (12c)

(1− xi1)+
(
1− xj1

) ≤ 1+ Cmn1

∀cij ∈ CE, ri ∈ pm, rj ∈ pn (12d)

xi2 + xj2 ≤ 1+ Cmn2

∀cij ∈ CE, ri ∈ pm, rj ∈ pn (12e)

(1− xi2)+
(
1− xj2

) ≤ 1+ Cmn2

∀cij ∈ CE, ri ∈ pm, rj ∈ pn (12f)

Cmn1 + Cmn2 ≤ 1+ Cmn

∀cij ∈ CE, ri ∈ pm, rj ∈ pn (12g)

new ILP-based algorithm is able to capture the conflict cost
accurately.

V. FLEXIBLE EXACT COVER-BASED ALGORITHM

In this section, we first introduce the EC-based algorithm
proposed by [19], and then some nonoptimal examples are
discussed. Finally, we propose a flexible EC-based algorithm,
which achieves a tradeoff between quality and runtime and
therefore outperforms the previous algorithm on the quality
with a sacrifice in the runtime.

A. Exact Cover-Based Algorithm

Though our ILP is able to obtain the optimal solution of
the objective function, it suffers from runtime for large graphs.
The EC-based algorithm [19] models the MPLD problem as an
EC problem, which can be efficiently solved by a customized
and augmented combination of dancing links data structure
and algorithm X∗ (DLX). Generally speaking, the layout is
represented by a homogeneous graph. The graph is further
translated into a 0-1 matrix and then can be solved as an
EC problem of the obtained matrix. Each column index in
the matrix can be viewed as the element of a universe U to
be covered, and each row can be viewed as a subset of the
universe. The final solution (a set of rows) of the EC problem
is then translated back to the solution (coloring results of each
node) of the graph coloring problem.

The details of the EC-based algorithm are shown in
Algorithm 2. The input of the algorithm is a no-stitch graph
Gp = {Vp, Ep}, which is obtained from the layout features and
each feature represents exactly one node in Gp. The algorithm
first tries to solve the EC problem induced by the graph col-
oring problem on Gp, in which no stitch is introduced (lines
1–4). To be more specific, the target graph Gp is translated
into a corresponding EC matrix M (line 1). Then, algorithm
X∗ is called to solve M (line 2). The details of algorithm X∗
are illustrated in [19]. If one feasible solution is found by X∗,
then the solution is returned (lines 3 and 4). Otherwise, the
algorithm is going to solve the EC problem induced by the

Algorithm 2 EXACTCOVERSOLVER

Require: Gp ← No-stitch graph;
Ensure: Coloring solution;

1: Convert Gp into exact cover matrix M;
2: Call X∗ with Gp and M;
3: if X∗ exits with a solution then
4: return the found solution;
5: else
6: Construct the stitch-inserted graph G′p based on Gp;
7: Construct the new exact cover matrix M′ based on M;
8: while no solution is found do
9: Call X∗ with G′p and M′;

10: if X∗ exits without a solution then
11: Remove the exact conflict edge in G′p and M′;
12: end if
13: end while
14: return the found solution;
15: end if

Fig. 6. Double-patterning instance with its EC matrix.

graph coloring problem on the stitch-inserted graph G′p (lines
5–15). Here, G′p = {V ′p, E′p} is obtained by splitting the nodes
in Gp whose corresponding features have stitch candidates
and new edges are added following the distance constraints
(line 6). The algorithm then builds up the new matrix M′
based on M (line 7) and calls algorithm X∗ to solve M′ (line 9).
Furthermore, if graph G′p is still uncolorable, the detected exact
conflict edge will be remarked as the reason for uncolorabil-
ity and removed in G′p and M′ (line 11). Such a procedure is
repeated until G′p is colorable and the final coloring solution is
found (lines 8–13).

In the EC matrix M translated from Gp, all nodes in Vp

are inserted into the universe U. In addition, for each edge
e ∈ Ep, k elements ec, s.t. c ∈ {1, . . . , k} are inserted into
U for the k-coloring problem. Therefore, the total size of U
(also the column size of M) is O(|Vp|+ k|Ep|). For each node
v ∈ Vp, k subsets Sv

c, s.t. c ∈ {1, . . . , k} corresponding to k
available colors are created, where each subset contains the
node element v ∈ U and ec for each edge e = {u, v} ∈ Ep.
ec is inserted into both Sv

c and Su
c and thus prevents u, v from

being assigned to the same color, which represents the conflict
constraint between u and v. Therefore, the total size of the
subsets (also the row size of M) is O(k|Vp| + k|Ep|). One
DPLD example of the translation from Gp to M is shown in
Fig. 6, where rows 1, 4, and 6 are selected as the final solution
of the EC problem so that the corresponding coloring solution
is given and shown in Fig. 6.

In the converted matrix with stitch insertion, M′, besides the
original rows (subsets) in M, additional rows are added below
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Fig. 7. Double-patterning instance containing stitch edge with its EC matrix.

the original rows. Specifically, for each stitch candidate ec,
which splits the parent node v ∈ Vp into two nodes v′1, v′2 ∈
V ′p, k(k − 1) subsets Sv

c1c2
, s.t., c1, c2 ∈ {1, . . . , k}, c1 �= c2

corresponding to k(k−1) available coloring solutions of v′1 and
v′2 are created, where each subset contains the node element
v ∈ U and ec1 , ec2 for each edge ec1 = {v′1, v′} ∈ E′p, ec2 ={v′2, v′} ∈ E′p. ec1(ec2) inserted in Sv

c1c2
is to prevent v′1(v′2) and

v′ from being assigned to the same color. Therefore, the total
number of newly added rows is O(k2|Es|), where |Es| is the
number of stitch candidates in all features of Gp. Fig. 7 gives
an example of G′p and M′, where the 7th row is selected as the
part of the final solution so that one stitch candidate is used
to avoid the conflict. When graph G′p is still uncolorable, the
exact conflict edge detected by algorithm X∗ is marked and
removed. Such procedure is repeated until G′p is colorable and
the final coloring solution is found.

B. Flexible Exact Cover-Based Algorithm

The EC-based algorithm shows impressive performance
improvement due to the efficient augmenting DLX. However,
the algorithm cannot always guarantee the optimality of the
results. Here, we propose two techniques to improve the
EC-based algorithm.

1) Flexible Stitch Handling: The first possible reason for
the nonoptimality is the handling rules for stitch cases.
Although the EC-based algorithm considers all stitch can-
didates on features concurrently, the example demonstrated
in [19] uses at most one stitch to resolve conflict in a sin-
gle feature since the rows in M′ are added in the unit of the
stitch candidate. However, there are some features in which
multiple stitch candidates are able to resolve multiple con-
flicts. One example is shown in Fig. 8, where our algorithm
uses two stitches in the feature d and generates a result with
cost 0.2, while the original EC-based algorithm only uses one
stitch and generates a coloring result with cost 1.1. Although
some commercial decomposition tools based on [19] have con-
sidered multiple stitch cases to improve the solution quality,
related techniques are not detailed in [19]. In OpenMPL, we
formalize the flexible stitch handling method by introducing a
maximally usable stitch candidate number n and quantifying
the complexity of the EC-based algorithm with different n.

The direct reason for the nonoptimality in the stitch han-
dling is, the rows are added in the unit of the stitch candidate,

Fig. 8. (a) Nonoptimal case of the original EC-based algorithm. (b) Same
case by our flexible EC-based algorithm, in which the result is optimal.

which constrains at most one stitch candidate to be selected for
each node. To overcome such constraint, i.e., to use an arbi-
trary number of stitch candidates in one feature, we handle
the stitch in the unit of node element. We present our optimal
stitch handling method as follows: denote the maximal num-
ber of usable stitch candidates as n, which is a controllable
parameter. For each node element v ∈ Vp, if the corresponding
feature of v contains tv stitch candidates and thus the feature
is divided into tv + 1 subfeatures, the original stitch handling
approach is going to insert tv(k2 − k) rows while we insert
Cm

tv (k
m+1 − k) rows, where m is the number of used stitch

candidates, which split the feature of v into m + 1 subfea-
tures and is calculated by the minimum value between n and
tv, i.e., m = min{n, tv}. In our flexible algorithm, each row
indicates one possible coloring solution for the divided m+ 1
subfeatures. Clearly, when n equals one, the algorithm is the
same as the previous one, i.e., only one stitch candidate is
used in each feature and the space complexity is also O(tvk2).
When n becomes large enough, i.e., m = tv, the algorithm
will use all stitch candidates at the same time, which is more
possible to be optimal. However, the large n increases the
space complexity to O(ktv+1) and thus exponentially worsens
the runtime. One DPLD example is shown in Fig. 8, where
Fig. 8(a) is the matrix and corresponding coloring solution
following the original stitch handling approach. (d1, d2) and
(d3, d4) are the subfeatures divided by two stitch candidates,
respectively, and one conflict is introduced. Fig. 8(b) shows the
results for our flexible stitch handling, where d1, d2, and d3
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Fig. 9. Nonoptimal case of the original EC-based algorithm due to the
traversal order. (a) Exact conflict(s) selected by the original rule (red) and
ours (orange). (b) Coloring results by the original rule. (c) Coloring results
by our optimized rule.

are the subfeatures divided by two stitch candidates at one
time, and all conflicts are resolved by stitches. Although the
proposed stitch handling approach can obtain optimal results,
it suffers from efficiency due to the explosion of the num-
ber of newly added rows, especially when n and tv are large.
To speed up our algorithm without additional quality loss, we
further use a heuristic technique. First, the graph follows the
original stitch handling approach, i.e., n = 1. If all conflicts are
resolved by stitches or the graph contains no features whose
number of stitch candidates is more than one, then the color-
ing procedure completes and the optimal stitch handling is not
used. Otherwise, the graph is further handled by our flexible
algorithm with n as the maximal number of stitch candidates
in the features, which is closer to the optimal solution.

2) Optimized Traversal Order: Another possible reason
for the nonoptimality is the traversal order of nodes for the
conflict-overlapping cases. Here, we formally define such a
case as the overlapping k-clique.

Definition 1: For a homogeneous graph G = {V, E}, where
V = {Vs, v1, v2}, G is called an overlapping k-clique if
(v1, v2) /∈ E and the subgraphs G1 = G\v1 and G2 = G\v2
are both k-cliques where k > 2.

One example of the overlapping 4-clique is given in Fig. 9,
where Vs = {a, b, c}, v1 = d and v2 = e. With the definition,
the following theorem shows the cost of the optimal solution
for an overlapping k-clique in the |Vs|-coloring problem.

Theorem 2: The optimal solution for an overlapping k-
clique in the |Vs|-coloring problem has exactly one conflict.

Proof: It is obvious that the optimal solution for a k-clique
in the |Vs|-coloring problem has exactly one conflict since
|Vs| = k− 1. Therefore, the optimal solution for both G1 and
G2 has exactly one conflict, which results in a lower bound
of the conflict number for graph G as one. We then prove
that there exists a feasible solution f : V → {1, . . . , k − 1}
which colors G within one conflict. Let us define f as follows.
Given any two different nodes in Vs, vs

1 and vs
2 , f first assigns

color 1 to vs
1 and vs

2 and color 2 to v1 and v2, which generates
one conflict. Then, f assigns colors {3, . . . , |Vs|} to the left
nodes in Vs, i.e., Vs\{vs

1, vs
2}. Since the size of Vs\{vs

1, vs
2} is

|Vs| − 2, which is the same as the size of available colors,
this coloring procedure is conflict-free. Totally, the number of
conflicts is one under this coloring scheme and such completes
the proof.

Although the minimum conflict of an overlapping k-clique
is 1 as stated in Theorem 2, the quality of the results by
algorithm X∗ is highly dependent on the traversal order. The

TABLE I
EFFECTIVE OF SRR

TABLE II
OUR ILP VERSUS ORIGINAL ILP [8] ON ISCAS BENCHMARKS

original algorithm X∗ in [19] traverses the node in the BFS
order unless one uncovered node has only one possible color.
The root of BFS is the node whose corresponding feature has
the largest area. If there are multiple available nodes, nodes
will be selected following a numerical order in the implemen-
tation. However, such BFS-based traversal order may fail to
obtain the optimal solution in some overlapping k-cliques as
mentioned in [19]. Such a situation can be formally described
as follows.

Claim 1: The solution for an overlapping k-clique in the
|Vs|-coloring problem by algorithm X∗ with the BFS-based
traversal order proposed in [19] cannot guarantee optimality.

Proof: The proof can be finished by a simple nonoptimal
case. Assume that k > 2, the corresponding feature of node v1
has the largest area, which makes v1 the root of BFS, and v2
is the node at the end of the numerical order, then the detected
exact conflict edge, i.e., the last reported conflict edge, must
be the edge between v2 and vs

i , where vs
i is the node in Vs.

Therefore, edge {v2, vs
i } is removed and one conflict happens.

However, the subgraph G2 is still a k-clique and contributes
to one conflict in the |Vs|-coloring problem besides the edge
{v2, vs

i }. Therefore, such a traversal order finally results in at
least two conflicts totally, which is not optimal.

One example of nonoptimality is shown in Fig. 9(b). The
edge c-e is first marked as an exact conflict and then one more
conflict c-d is introduced because the left subgraph a-b-c-d
still forms a 4-clique. Considering the nonoptimal case of the
original traversal order, we propose a heuristic traversal order
which is nearer to the optimal solution. The differences of
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TABLE III
OUR ILP VERSUS ORIGINAL ILP [8] ON ISPD BENCHMARKS

TABLE IV
OUR EC VERSUS ORIGINAL EC [19] ON ISCAS BENCHMARKS

our optimized traversal order are organized as follows: 1) the
root of BFS is the node with the largest degree; 2) if nodes
are in the same depth in the BFS, the node with the smallest
degree is selected; and 3) if there are multiple uncovered nodes
that have only one possible color, the node with the maximal
degree is selected. Through these special treatments, the new
traversal order is optimal for the k-clique and can be formally
described as follows.

Theorem 3: The solution for an overlapping k-clique in the
|Vs|-coloring problem by algorithm X∗ with the new traversal
order guarantees optimality.

Proof: Let vs
i be the root, vs

i ∈ Vs since the root has the
largest degree. Because both v1 and v2 have the smallest
degree, which will be selected first, the last detected conflict is
{vs

i , vs
j }, where vs

j ∈ Vs. After the edge {vs
i , vs

j } is removed, both
G1 and G2 are not k-cliques and can be colored by algorithm
X∗ without additional conflict. Therefore, the total number of
conflicts by algorithm X∗ with the new traversal order is one,
which is optimal according to Theorem 2 and completes the
proof.

One example of the new traversal order is shown in
Fig. 9(c), where our new traversal order marks b-c as the exact
conflict and thus achieves optimality.

VI. EXPERIMENTAL RESULTS

We implement OpenMPL in C++ and use Boost [31] as
the basic graphics library. All of the experiments are tested

on an Intel Core 2.9-GHz Linux machine. We conduct exper-
iments under two series of benchmarks. The first smaller
benchmarks are the scaled-down and modified versions of
ISCAS benchmarks, which are widely used in previous works.
The minimum coloring spacing is set to 120 nm for the first
ten cases and 100 nm for the last five cases, as in [8], [13],
and [19]. The second larger benchmarks are the ISPD’19
benchmarks for detailed routing. We use the metal layers in
the benchmark obtained by Dr.CU 2.0 [32] and set the min-
imum coloring spacing as k · s + (k − 1) · w, where k is the
number of colors and set as 3 in our experiments, s is the
minimum spacing between two features and w is the standard
width of one feature. Here, we only show the results of metal
layers which can be decomposed by our ILP within 3 h (six
cases in total). Each selected layer with id n on benchmark m
is represented by m_n. For example, test1_100 represents
the layer with id 100 on the test1 benchmark of ISPD2019.
We only focus on the results of different decomposition algo-
rithms on the TPLD problem due to page limitations, which is
more difficult to obtain optimal results compared with DPLD.
More detailed results and discussions can be found in [1]. The
stitch weight α is set to 0.1, the thread number is 8 and the
graph simplification level is 3 which represents that the frame-
work enables three simplification techniques: 1) ICC; 2) IVR;
and 3) BCE. Especially, SDP is set to one thread due to no
maintenance of CSDP now. Fig. 10 shows the decomposition
results for the case C432 of ISCAS benchmarks and the case
test1_100 of ISPD benchmarks.

A. Effectiveness of Stitch Redundancy Removal

First, we demonstrate the effectiveness of the proposed SRR
technique. Through SRR, some redundant stitch candidates
can be removed and the two connected nodes are merged
into one node. Therefore, the graph size for the decom-
position is reduced and thus the decomposition runtime is
decreased without decomposition quality loss theoretically. We
only conducted SRR on the graphs whose sizes are larger
than 8. Table I compares the performance and runtime on the
target graphs. Column “time (s)” is the total simplification
and decomposition runtime of graphs which have redundant
stitches to be removed. The “cost” column is the total decom-
position cost of our EC. When the case is sparse, i.e., the case
can be easily simplified such that the total number of simplified
graphs is huge while the size of each graph is usually small,
our SRR may harm the runtime since the number of redundant
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Fig. 10. Example of the decomposition results. (a) Decomposition result of the circuit C432 in the ISCAS benchmarks. (b) Decomposition result of the
100th layer in the circuit test1 in the ISPD benchmarks.

TABLE V
OUR EC VERSUS ORIGINAL EC [19] ON ISPD BENCHMARKS

stitches is not very much while the runtime for scanning all
stitches in SRR cannot be avoided. For example, the runtime
for graphs on test1_100 is increased from 2.163 to 2.866 s
when SRR is used. Despite such a sparse case, which may not
be the major bottleneck due to its low complexity, our SRR
shows a considerable runtime improvement in most cases. We
can see that compared with decomposing the graph by our EC
directly, further applying SRR can reduce the average runtime
by 13.6% without any performance loss.

B. Original ILP Versus Our ILP

Second, we compare our ILP with the original ILP proposed
by [8] on both small ISCAS benchmarks and large ISPD
benchmarks. The results are shown in Table II for ISCAS
benchmarks and Table III for ISPD benchmarks. The col-
umn “time (s)” is the real time of decomposition in seconds
instead of CPU time. Columns “st#” and “cn#” are the stitch
number and the conflict number, “cost” is the decomposi-
tion cost calculated by (12). On the small benchmarks, our
ILP shows a slight improvement in both the runtime and the
quality. The time is reduced by 1.6% and the stitch number
is reduced by 1 on circuit C6288 while the costs on other
circuits are not changed, which indicates that such recount
case in the small benchmarks is not frequent. On the large
benchmarks, our ILP reduces 222 stitches and 96.67 conflicts
averagely, i.e., from 3698.667 to 3476.667 and from 4170.167
to 4073.5. Therefore, the average cost is significantly reduced
by 118.867 while the runtime is increased by 27%. However,

TABLE VI
NONSTITCH DECOMPOSITION COST COMPARISON

ON ISCAS BENCHMARKS

such runtime loss is acceptable considering the unignorable
quality improvement.

C. Original EC Versus Our EC

Third, we compare our EC with the original EC proposed
by [19] on both small and large benchmarks. The results are
listed in Table IV for ISCAS benchmarks and Table V for
ISPD benchmarks. As discussed in Section V-B, the original
EC assumes exactly one stitch candidate to be activated for
each feature, which reduces the matrix size and thus reduces
the time complexity with a potential quality loss. Our EC
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TABLE VII
DECOMPOSITION COST COMPARISON ON ISCAS BENCHMARKS

TABLE VIII
DECOMPOSITION COMPARISON ON ISPD BENCHMARKS

assumes that at most n stitch candidates are activated for each
feature, where n is a dynamic parameter and therefore we
can achieve a flexible balance between runtime and quality by
changing n. The results in both the small and large benchmarks
demonstrate our analysis, where n is set to 2 in our EC, i.e., at
most two stitch candidates are activated for each feature. Our
EC reduces the average cost by 3.8% on the small benchmarks
and 2.9% on the large benchmarks. As a tradeoff, the average
runtime is increased from 0.082 to 0.1 s on the small bench-
marks and from 6.996 to 30.776 s on the large benchmarks,
which is not trivial and demonstrates one of the drawbacks
for the EC-based algorithm: the increase of n results in an
exponentially increasing on the runtime.

D. Comparison of Different Decomposers

Fourth, we compare different decomposers in both stitch-
enabled cases and no-stitch cases. The quality results without
a stitch for ISCAS benchmarks are listed in Table VI. Column
“Back.” is the result of the backtracking algorithm introduced
in [33]. As shown in Table VI, our ILP, MIS [13], and back-
tracking [33] in our implementation obtain the optimal solution
while other relaxation-based or heuristic methods degrade the
result quality.

For the stitch-enabled cases, the quality comparison
is shown in Tables VII and VIII. The runtime comparison is
shown in Tables IX and VIII. Especially, backtracking is not
shown in Table VIII, since it cannot be processed within 3 h for

TABLE IX
DECOMPOSITION RUNTIME (S) COMPARISON ON ISCAS BENCHMARKS

any layout in ISPD benchmarks. The results of MIS [13] and
LUT [17] in Table VII are directly quoted from their papers.
The ratio is calculated based on the results of our ILP. For
the decomposition cost, our optimized ILP outperforms other
algorithms and achieves the best cost performance as expected.
On the small benchmarks, SDP is the worst and increases the
cost by 28.4% while the cost of our EC and backtracking are
close to the ILP. On the large benchmarks, SDP only increases
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the cost by 4.4% and is better than our EC, which increases
the cost by 7%. For the runtime, the original EC is the best
due to the efficient augmenting DLX technique. Backtracking
shows a good runtime performance on the small benchmarks
due to our heuristic algorithm but fails to obtain the results on
the large benchmarks within 3 h. The runtime of SDP is much
worse than our ILP on the small benchmarks, i.e., 2.572× run-
time, while much better on the large benchmarks, whose ratio
is close to our EC, i.e., 0.27 versus 0.23.

VII. CONCLUSION AND FUTURE WORK

In this article, we proposed OpenMPL, a general frame-
work for the MPLD problem, with efficient implementations
of various state-of-the-art simplification and decomposition
algorithms. Besides the reimplementation of previous algo-
rithms, we optimized several algorithms based on some typical
nonoptimal cases. We presented a new simplification algo-
rithm to remove the redundant stitches. Then, we proposed
the correct problem formulation followed by a correspond-
ing new ILP-based algorithm, which captures the objective
of the color assignment problem accurately. Furthermore, we
proposed a flexible EC-based algorithm, which achieves a
tradeoff between quality and runtime and therefore outper-
forms the previous algorithm on quality with a sacrifice in
the runtime. The experiments demonstrate the effectiveness of
our proposed algorithms and the efficiency of OpenMPL. In
the future, we plan to integrate post-refinement into the work-
flow and further accelerate the EC-based algorithm. We believe
that this open platform paves the road for the development of
MPLD engines and will stimulate more research in the near
future, eventually contributing to better manufacturability in
advanced technology nodes.
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