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With the down-scaling of CMOS technology, the design complexity of very large-scale integrated is increas-

ing. Although the application of machine learning (ML) techniques in electronic design automation (EDA)

can trace its history back to the 1990s, the recent breakthrough of ML and the increasing complexity of EDA

tasks have aroused more interest in incorporating ML to solve EDA tasks. In this article, we present a com-

prehensive review of existing ML for EDA studies, organized following the EDA hierarchy.
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1 INTRODUCTION

As one of the most important fields in applied computer/electronic engineering, Electronic De-

sign Automation (EDA) has a long history and is still under heavy development incorporating
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cutting-edge algorithms and technologies. In recent years, with the development of semiconduc-
tor technology, the scale of integrated circuit (IC) has grown exponentially, challenging the
scalability and reliability of the circuit design flow. Therefore, EDA algorithms and software are re-
quired to be more effective and efficient to deal with extremely large search space with low latency.

Machine learning (ML) is taking an important role in our lives these days, which has been
widely used in many scenarios. ML methods, including traditional and deep-learning algorithms,
achieve amazing performance in solving classification, detection, and design space exploration
problems. Additionally, ML methods show great potential to generate high-quality solutions
for many NP-complete (NPC) problems, which are common in the EDA field, while tradi-
tional methods lead to huge time and resource consumption to solve these problems. Traditional
methods usually solve every problem from the beginning, with a lack of knowledge accumu-
lation. Instead, ML algorithms focus on extracting high-level features or patterns that can be
reused in other related or similar situations, avoiding repeated complicated analysis. Therefore,
applying machine learning methods is a promising direction to accelerate the solving of EDA
problems.

In recent years, ML for EDA is becoming one of the trending topics, and a lot of studies that use
ML to improve EDA methods have been proposed, which cover almost all the stages in the chip
design flow, including design space reduction and exploration, logic synthesis, placement, rout-
ing, testing, verification, manufacturing, .and so on. These ML-based methods have demonstrated
impressive improvement compared with traditional methods.

We observe that most work collected in this survey can be grouped into four types: decision

making in traditional methods, performance prediction, black-box optimization, and automated de-

sign, ordered by decreasing manual efforts and expert experiences in the design procedure, or an
increasing degree of automation. The opportunity of ML in EDA starts from decision making in

traditional methods, where an ML model is trained to select among available tool chains, algo-
rithms, or hyper-parameters, to replace empirical choice or brute-force search. ML is also used for
performance prediction, where a model is trained from a database of previously implemented de-
signs to predict the quality of new designs, helping engineers to evaluate new designs without the
time-consuming synthesis procedure. Even more automated, EDA tools utilized the workflow of
black-box optimization, where the entire procedure of design space exploration (DSE) is guided
by a predictive ML model and a sampling strategy supported by ML theories. Recent advances
in Deep Learning (DL), especially Reinforcement Learning (RL) techniques have stimulated
several studies that fully automate some complex design tasks with extremely large design space,
where predictors and policies are learned, performed, and adjusted in an online form, showing a
promising future of Artificial Intelligence (AI)-assisted automated design.

This survey gives a comprehensive review of some recent important studies applying ML to
solve some EDA important problems. The review of these studies is organized according to their
corresponding stages in the EDA flow. Although the study on ML for EDA can trace back to the
last century, most of the works included in this survey are in recent five years. The rest of this
survey is organized as follows. In Section 2, we introduce the background of both EDA and ML.
From Section 3 to Section 5, we introduce the studies that focus on different stages of the EDA flow,
i.e., high-level synthesis, logic synthesis and physical design (placement and routing), and mask
synthesis, respectively. In Section 6, analog design methods with ML are reviewed. ML-powered
testing and verification methods are discussed in Section 7. Then, in Section 8, other highly related
studies are discussed, including ML for SAT solver and the acceleration of EDA with deep-learning
engine. The discussion of various studies from the ML perspective is given in Section 9, which is
complementary to the main organization of this article. Finally, Section 10 concludes the existing
ML methods for EDA and highlights future trends in this field.
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Fig. 1. Modern chip design flow.

2 BACKGROUND

2.1 Electronic Design Automation

Electronic design automation is one of the most important fields in electronic engineering. In
the past few decades, it has been witnessed that the flow of chip design became more and more
standardized and complicated. A modern chip design flow is shown in Figure 1.

High-level synthesis (HLS) provides automatic conversion from C/C++/SystemC-based spec-
ifications to hardware description languages (HDL). HLS makes hardware design much more
convenient by allowing the designer to use high-level descriptions for a hardware system. How-
ever, when facing a large-scale system, HLS often takes a long time to finish the synthesis. Con-
sequently, efficient DSE strategy is crucial in HLS [74, 95, 107, 112, 180].

Logic synthesis converts the behavioral level description to the gate level description, which is
one of the most important problems in EDA. Logic synthesis implements the specific logic func-
tions by generating a combination of gates selected in a given cell library, and optimizes the design
for different optimization goals. Logic synthesis is a complicated process that usually cannot be
solved optimally, and hence the heuristic algorithms are widely used in this stage, which include
lots of ML methods [48, 56, 115, 167].

Based on the netlist obtained from synthesis, floorplanning and placement aim to assign the
netlist components to specific locations on the chip layout. Better placement assignment implies
the potential of better chip area utilization, timing performance, and routability. Routing is one
of the essential steps in very large-scale integrated (VLSI) physical design flow based on the
placement assignment. Routing assigns the wires to connect the components on the chip. At the
same time, routing needs to satisfy the requirements of timing performance and total wirelength
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without violating the design rules. The placement and routing are strongly coupled. Thus it is
crucial to consider the routing performance even in the placement stage, and many ML-based
routing-aware methods are proposed to improve the performance of physical design [6, 27, 89,
106, 150, 154].

Fabrication is a complicated process containing multiple steps, which has a high cost in terms
of time and resources. Mask synthesis is one of the main steps in the fabrication process, where
lithography simulation is leveraged to reduce the probability of fabrication failure. Mask opti-
mization and lithography simulation are still challenging problems. Recently, various ML-based
methods are applied in the lithography simulation and mask synthesis [20, 43, 159, 163, 165].

To ensure the correctness of a design, we need to perform design verification before manufac-
turing. In general, verification is conducted after each stage of the EDA flow, and the test set design
is one of the major problems. Traditional random or automated test set generation methods are
far away from optimal, therefore, there exist many studies that apply ML methods to optimize test
set generation for verification [24, 33, 38, 47, 49, 57, 69, 135, 145, 146].

After the chip design flow is finished, manufacturing testing needs to be carried out. The chips
need to go through various tests to verify their functionality and reliability. The coverage and
the efficiency are two main optimization goals of the testing stage. Generally speaking, a large
test set (i.e., a large number of test points) leads to higher coverage at the cost of high resource
consumption. To address the high cost of the testing process, studies have focused on applying ML
techniques for test set optimization [100, 120, 140, 141] and test complexity reduction [5, 34, 142].

Thanks to decades of efforts from both academia and industry, the chip design flow is well-
developed. However, with the huge increase in the scale of integrated circuits, more efficient and
effective methods need to be incorporated to reduce the design cost. Recent advancements in ma-
chine learning have provided a far-reaching data-driven perspective for problem-solving. In this
survey, we review recent learning-based approaches for each stage in the EDA flow and also dis-
cuss the ML for EDA studies from the machine learning perspective.

2.2 Machine Learning

Machine learning is a class of algorithms that automatically extract information from datasets
or prior knowledge. Such a data-driven approach is a supplement to analytical models that are
widely used in the EDA domain. In general, ML-based solutions can be categorized according
to their learning paradigms: supervised learning, unsupervised learning, active learning,
and reinforcement learning. The difference between supervised and unsupervised learning is
whether or not the input data is labeled. With supervised or unsupervised learning, ML mod-
els are trained on static data sets offline and then deployed for online inputs without refine-
ment. With active learning, ML models subjectively choose samples from input space to obtain
ground truth and refine themselves during the searching process. With reinforcement learning,
ML models interact with the environment by taking actions and getting rewards, with the goal
of maximizing the total reward. These paradigms all have been shown to be applied to the EDA
problems.

As for the model construction, conventional machine learning models have been extensively
studied for the EDA problems, especially for physical design [66, 178]. Linear regression, random

forest (RF) [91] and artificial neural networks (ANN) [55] are classical regression models. Sup-

port vector machine (SVM) [12] is a powerful classification algorithm especially suitable for
tasks with a small size of training set. Other common classification models include K-Nearest-

Neighbor (KNN) algorithm [39] and RF. These models can be combined with ensemble or boost-
ing techniques to build more expressive models. For example, XGBoost [23] is a gradient boosting
framework frequently used in the EDA problems.
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Thanks to large public datasets, algorithm breakthrough, and improvements in computation
platforms, there have been efforts of applying DL for EDA. In particular, popular models in recent
EDA studies include convolutional neural network (CNN) [37, 111], recurrent neural net-

works (RNN) [83, 148], generative adversarial network (GAN) [165], deep reinforcement

learning (DRL) [113, 147], and graph neural networks (GNN) [147, 168]. CNN models are com-
posed of convolutional layers and other basic blocks such as non-linear activation functions and
down-sample pooling functions. While CNN is suitable for feature extraction on grid structure
data like 2D image, RNN is good at processing sequential data such as text or audio. GNN is pro-
posed for data organized as graphs. GAN trains jointly a generative network and a discriminative
network, which compete against each other to eventually generate high quality fake samples. DRL
is a class of algorithms that incorporated deep learning into the reinforcement learning paradigm,
where an agent learns a strategy from the rewards acquired with previous actions to determine
the next action. DRL has achieved great success in complicated tasks with large decision space
(e.g., Go game [138]).

3 HIGH LEVEL SYNTHESIS

HLS tools provide automatic conversion from C/C++/SystemC-based specification to hardware
description languages like Verilog or VHDL. HLS tools developed in industry and academia [1, 2,
15] have greatly improved productivity in customized hardware design. High-quality HLS designs
require appropriate pragmas in the high-level source code related to parallelism, scheduling and
resource usage, and careful choices of synthesis configurations in post-Register-Transfer-Level

(RTL) stage. Tuning these pragmas and configurations is a non-trivial task, and the long synthesis
time for each design (hours from the source code to the final bitstream) prohibits exhaustive DSE.

ML techniques have been applied to improve HLS tools from the following three aspects: fast
and accurate result estimation [30, 37, 108, 109, 143, 164, 172], refining conventional DSE algo-
rithms [74, 107, 149], and reforming DSE as an active-learning problem [94, 95, 112, 180]. In ad-
dition to achieving good results on individual problems, previous studies have also introduced
new generalizable techniques about feature engineering [30, 108, 109, 164, 172], selection and cus-
tomization of ML models [143], and design space sampling and searching strategies [95, 112, 180].

This section is organized as follows. Section 3.1 introduces recent studies on employing ML for
result estimation, often in a static way. Section 3.2 introduces recent studies on adopting ML in
DSE workflow, either to improve conventional methods or in the form of active learning.

3.1 Machine Learning for Result Estimation

The reports from HLS tools provide important guidance for tuning the high-level directives. How-
ever, acquiring accurate result estimation in an early stage is difficult due to complex optimizations
in the physical synthesis, imposing a trade-off between accuracy (waiting for post-synthesis re-
sults) and efficiency (evaluating in the HLS stage). ML can be used to improve the accuracy of
HLS reports through learning from real design benchmarks. In Section 3.1.1, we introduce pre-
vious work on predicting the timing, resource usage, and operation delay of an HLS design. In
Section 3.1.2, we describe two types of research about cross-platform performance prediction.

3.1.1 Estimation of Timing, Resource Usage, and Operation Delay. The overall workflow of tim-
ing and resource usage prediction is concluded in Figure 2. This workflow is first proposed by Dai
et al. [30] and augmented by Makrani et al. [108] and Ferianc et al. [37]. The main methodology is
to train an ML model that takes HLS reports as input and outputs a more accurate implementation
report without conducting the time-consuming post-implementation. The workflow proposed by
Dai et al. [30] can be divided into two steps: data processing and training estimation models.
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Fig. 2. FPGA tool flow with HLS, highlighting ML-based result predictor (reproduced from Reference [30]).

Table 1. Categories of Selected Features and Descriptions [30, 108]

Category Brief Description
Clock periods Target clock period; achieved clock period and its uncertainty.
Resources Utilization and availability of LUT, FF, DSP, and BRAM.
Logic Ops Bitwidth/resource statistics of operations.
Arithmetic Ops Bitwidth/resource statistics of arithmetic operations.
Memory Number of memory words/banks/bits; resource usage for memory.
Multiplexer Resource usage for multiplexers; multiplexer input size/bitwidth.

Step 1: Data Processing. To enable ML for HLS estimation, we need a dataset for training
and testing. The HLS and implementation reports are usually collected across individual designs
by running each design through the complete C-to-bitstream flow, for various clock periods and
targeting different FPGA devices. After that, one can extract features from the HLS reports as
inputs and features from implementation reports as outputs. Besides, to overcome the effect of
colinearity and reduce the dimension of the data, previous studies often apply feature selection
techniques to systematically remove unimportant features. The most commonly used features are
summarized in Table 1.

Step 2: Training Estimation Models. After constructing the dataset, regression models are
trained to estimate post-implementation resource usages and clock periods. Frequently used met-
rics to report the estimation error include relative absolute error (RAE) and relative root-mean-

squared error (RMSE). For both metrics, lower is better. RAE is defined in Equation (1), where
ŷ is a vector of values predicted by the model, y is a vector of actual ground truth values in the
testing set, and ȳ denotes the mean value of y:

RAE =
|ŷ − y |
|y − y | . (1)

Relative RMSE is given by Equation (2), where N is the number of samples, and ŷi and yi are
the predicted and actual values of a sample, respectively:

Relative RMSE =

√√√
1

N

N∑
i=1

(
ŷi − yi

yi
)2 × 100%. (2)
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Fig. 3. Overall workflow of XPPE (reproduced from Reference [109]).

Fig. 4. The iterative-refinement DSE framework (reproduced from Reference [95]).

Makrani et al. [108] model timing as a regression problem, and use the Minerva tool [36] to
obtain results in terms of maximum clock frequency, throughput, and throughput-to-area ratio
for the RTL code generated by the HLS tool. Then an ensemble model combining linear regres-
sion, neural network, SVM, and random forest, is proposed to conduct estimation and achieve an
accuracy higher than 95%. There are also studies that predict whether a post-implementation is
required or not, instead of predicting the implementation results. As a representative study, Liu
and Schäfer [94] train a predictive model to avoid re-synthesizing each new configuration.

ML techniques have been applied recently to reduce the HLS tool’s prediction error of the
operation delay [143]. Existing HLS tools perform delay estimations based on the simple addi-
tion of pre-characterized delays of individual operations, and can be inaccurate because of the
post-implementation optimizations (e.g., mapping to hardened blocks like DSP adder cluster). A
customized GNN model is built to capture the association between operations from the dataflow
graph, and train this model to infer the mapping choices about hardened blocks. Their method can
reduce the RMSE of the operation delay prediction of Vivado HLS by 72%.

3.1.2 Cross-platform Performance Prediction. Hardware/software co-design enables designers
to take advantage of new hybrid platforms such as Zynq. However, dividing an application into
two parts makes the platform selection difficult for the developers, since there is a huge variation
in the application’s performance of the same workload across various platforms. To avoid fully im-
plementing the design on each platform, Makrani et al. [109] propose an ML-based cross-platform
performance estimator, XPPE, and its overall workflow is described in Figure 3. The key function-
ality of XPPE is using the resource utilization of an application on one specific FPGA to estimate
its performance on other FPGAs.

XPPE uses a Neural Network (NN) model to estimate the speedup of an application for a
target FPGA over the ARM processor. The inputs of XPPE are available resources on target FPGA,
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Fig. 5. Overview of the STAGE algorithm (reproduced from Reference [74]).

resource utilization report from HLS Vivado tool (extracted features, similar to the features in
Table 1), and application’s characteristics. The output is the speedup estimation on the target FPGA
over an ARM A-9 processor. This method is similar to Dai et al. [30] and Makrani et al. [108]
in that they all take the features in HLS reports as input and aim to avoid the time-consuming
post-implementation. The main difference is that the input and output features in XPPE are from
different platforms. The relative RMSE between the predictions and the real measurements is used
to evaluate the accuracy of the estimator. The proposed architecture can achieve a relative mean
square error of 5.1% and the speedup is more than 0.98×.

Like XPPE, O’Neal et al. [116] also propose an ML-based cross-platform estimator, named
HLSPredict. There are two differences. First, HLSPredict only takes workloads (the applications
in XPPE) as inputs instead of the combination of HLS reports, application’s characteristics and
specification of target FPGA devices. Second, the target platform of HLSPredict must be the same
as the platform in the training stage. In general, HLSPredict aims to rapidly estimate performance
on a specific FPGA by direct execution of a workload on a commercially available off-the-shelf host
CPU, but XPPE aims to accurately predict the speedup of different target platforms. For optimized

workloads, HLSPredict achieves a relative absolute percentage error (APE = | y−ŷ

y
|) of 9.08% and a

43.78× runtime speedup compared with FPGA synthesis and direct execution.

3.2 Machine Learning for Design Space Exploration in HLS

In the previous subsection, we describe how ML models are used to predict the quality of results.
Another application of ML in HLS is to assist DSE. The tunable synthesis options in HLS, provided
in the form of pragmas, span a very large design space. Most often, the task of DSE is to find the
Pareto Frontier Curve, on which every point is not fully dominated by any other points under all
the metrics.

Classical search algorithms have been applied in HLS DSE, such as Simulated Annealing (SA)

and Genetic Algorithm (GA). But these algorithms are unable to learn from the database of
previously explored designs. Many previous studies use an ML predictive model to guide the DSE.
The models are trained on the synthesis results of explored design points, and used to predict
the quality of new designs (See more discussions on this active learning workflow in Section 9.1).
Typical studies are elaborated in Section 3.2.1. There is also a thread of work that involves learning-
based methods to improve the inefficient or sensitive part of the classical search algorithms, as
elaborated in Section 3.2.2. Some work included in this subsection focuses on system-level DSE
rather than HLS design [74], or general active learning theories [180].

3.2.1 Active Learning. The four papers visited in this part utilize the active learning approach
to perform DSE for HLS, and use predictive ML models to surrogate actual synthesis when eval-
uating a design. Liu and Schäfer [94] propose a design space explorer that selects new designs to
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implement through an active learning approach. Transductive experimental design (TED) [95]
focuses on seeking the samples that describe the design space accurately. Pareto active learn-

ing (PAL) in Reference [180] is proposed to sample designs that the learner cannot clearly
classify. Instead of focusing on how accurately the model describes the design space, adaptive

threshold non-pareto elimination (ATNE) [112] estimates the inaccuracy of the learner and
achieves better performance than TED and PAL.

Liu and Schäfer [94] propose a dedicated explorer to search for Pareto-optimal HLS designs for
FPGAs. The explorer iteratively selects potential Pareto-optimal designs to synthesize and verify.
The selection is based on a set of important features, which are adjusted during the exploration.
The proposed method runs 6.5× faster than an exhaustive search, and runs 3.0× faster than a
restricted search method but finds results with higher quality.

The basic idea of TED [95] is to select representative as well as the hard-to-predict samples from
the design space, instead of the random sample used in previous work. The target is to maximize
the accuracy of the predictive model with the fewest training samples. The authors formulate the
problem of finding the best sampling strategy as follows: TED assumes that the overall number
of knob settings is n(|K | = n), from which we want to select a training set K such that |K | =m.
Minimizing the prediction error H (k ) − H (k ) for all k ∈ K is equivalent to the following problem:

max
K

T [KK T (KK T + μI )−1KK T ] s .t . K ⊂ K , |K | =m,

whereT [·] is the matrix trace operator and μ > 0. The authors interpret their solution as sampling
from a set K that span a linear space, to retain most of the information of K [95].

PAL [180] is proposed for general active learning scenarios and is demonstrated by a sorting
network synthesis DSE problem in the paper. It uses Gaussian Process (GP) to predict Pareto-
optimal points in design space. The models predict the objective functions to identify points that
are Pareto-optimal with high probabilities. A point x that has not been sampled is predicted as

f̂ (x ) = μ (x ) and σ (x ) is interpreted as the uncertainty of the prediction, which can be captured by
the hyperrectangle,

Qμ,σ ,β (x ) =
{
y : μ (x ) − β1/2σ (x ) � y � μ (x ) + β1/2σ (x )

}
,

where β is a scaling parameter to be chosen. PAL focuses on accurately predicting points near the
Pareto frontier, instead of the whole design space. In every iteration, the algorithm classifies sam-
ples into three groups: Pareto-optimal, Non-Pareto-optimal, and uncertain ones. The next design
point to evaluate is the one with the largest uncertainty, which intuitively has more information
to improve the model. The training process is terminated when there are no uncertain points. The
points classified as Pareto-optimal are then returned.

ATNE [112] utilizes RF to aid the DSE process. This work uses a Pareto identification threshold
that adapts to the estimated inaccuracy of the RF regressor and eliminates the non-Pareto-optimal
designs incrementally. Instead of focusing on improving the accuracy of the learner, ATNE focuses
on estimating and minimizing the risk of losing “good” designs due to learning inaccuracy.

3.2.2 Machine Learning for Improving Other Optimization Algorithms. In this part, we summa-
rize three studies that use ML techniques to improve classical optimization algorithms.

STAGE [74] is proposed for DSE of many-core systems. The motivating observation of STAGE
is that the performance of simulated annealing is highly sensitive to the starting point of the
search process. The authors build an ML model to learn which parts of the design space should be
focused on, eliminating the times of futile exploration [13]. The proposed strategy is divided into
two stages. The first stage (local search) performs a normal local search, guided by a cost function
based on the designer’s goals. The second stage (meta search) tries to use the search trajectories
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Table 2. Summary of ML for HLS

Section Task ML Algorithm Reference

Result

prediction

Timing and resource usage prediction
Lasso, ANN,
XGBoost

[30]

Max frequency, throughput, area
Ridge regression,
ANN, SVM,
Random Forest

[108]

Latency Gaussian Process [37]

Operation delay
Graph Neural
Network

[143]

Cross-platform
Predict for new FPGA platforms ANN [109]

Predict for new applications through
executing on CPUs

Linear models,
ANN, Random
Forest

[116]

Active learning
Reduce prediction error with fewer samples

Random Forest,
Gaussian Process
Regression

[95]

Reduce prediction error for points near the
Pareto-frontier

Gaussian Process [180]

Reduce the risk of losing Pareto designs Random Forest [112]

Improving
conventional
algorithms

Initial point selection
Quadratic
regression

[74]

Generation of new sample Decision Tree [107]
Hyper-parameter selection Decision Tree [149]

from previous local search runs to learn to predict the outcome of local search given a certain
starting point [74].

Fast Simulated Annealing (FSA) [107] utilizes the decision tree to improve the performance
of SA. Decision tree learning is a widely used method for inductive inference. The HLS pragmas
are taken as input features. FSA first performs standard SA to generate enough training sets to
build the decision tree. Then it generates new design configurations with the decision tree and
keeps the dominating designs [107].

In a recent study, Wang and Schäfer [149] propose several ML techniques to help decide the
hyper-parameter settings of three meta-heuristic algorithms: SA, GA, and Ant Colony Optimiza-

tions (ACO). For each algorithm, the authors build an ML model that predicts the resultant design
quality (measured by Average Distance to the Reference Set, ADRS) and runtime from hyper-
parameter settings. Compared with the default hyper-parameters, their models can improve the
ADRS by more than 1.92× within similar runtime. The authors also combine SA, GA, and ACO to
build a new design space explorer, which further improves the search efficiency.

3.3 Summary of Machine Learning for HLS

This section reviews recent work on ML techniques in HLS, as listed in Table 2. Using ML-based
timing/resource/latency predictors and data-driven searching strategies, the engineering produc-
tivity of HLS tools can be further improved and higher-quality designs can be generated by effi-
ciently exploring a large design space.
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We believe the following practice can help promote future research of ML in HLS:

• Public benchmark for DSE problems. The researches about result estimation are all eval-
uated on public benchmarks of HLS applications, such as Rosetta [174], MachSuite [127],
and so on. However, DSE researches are often evaluated on a few applications, because the
cost of synthesizing a large design space for each application is heavy. Building a bench-
mark that collects different implementations of each application can help fairly evaluate
DSE algorithms.

• Customized ML models. Most of the previous studies use off-the-shelf ML models. Combin-
ing universal ML algorithms with domain knowledge can potentially improve the perfor-
mance of the model. For example, Ustun et al. [143] customize a standard GNN model to
handle the specific delay prediction problem, which brings extra benefit in model accuracy.

4 LOGIC SYNTHESIS AND PHYSICAL DESIGN

In the logic synthesis and physical design stage, there are many key sub-problems that can benefit
from the power of ML models, including lithography hotspot detection, path classification, con-
gestion prediction, placement guide, fast timing analysis, logic synthesis scheduling, and so on. In
this section, we organize the review of studies by their targeting problems.

4.1 Logic Synthesis

Logic synthesis is an optimization problem with complicated constraints, which requires accu-
rate solutions. Consequently, using ML algorithms to directly generate logic synthesis solutions
is difficult. However, there are some studies using ML algorithms to schedule existing traditional
optimization strategies. For logic synthesis, LSOracle [115] relies on DNN to dynamically decide
which optimizer should be applied to different parts of the circuit. The framework exploits two
optimizers, and-inverter graph (AIG) and majority-inverter graph (MIG), and applies k-way
partitioning on circuit directed acyclic graph (DAG).

There are many logic transformations in current synthesis tools such as ABC [14]. To select an
appropriate synthesis flow, Yu et al. [167] formulate a multi-class classification problem and design
a CNN to map a synthesis flow to quality of results (QoR) levels. The prediction on unlabeled
flows are then used to select the optimal synthesis flow. The CNN takes the one-hot encoding of
synthesis flows as inputs and outputs the possibilities of the input flow belonging to different QoR
metric levels.

Reinforcement learning is also employed for logic synthesis in References [48, 56]. A transfor-
mation between two DAGs with the same I/O behaviors is modeled as an action. In Reference
[48], GCN is utilized as a policy function to obtain the probabilities for every action. Reference
[56] employs advantage actor critic agent (A2C) to search the optimal solution.

4.2 Placement and Routing Prediction

4.2.1 Traditional Placers Enhancement. While previous fast placers can conduct random logic
placement efficiently with good performances, researchers find that their placement of data path
logic is suboptimal. PADE [150] proposes a placement process with automatic data path extraction
and evaluation, in which the placement of data path logic is conducted separately from random
logic. PADE is a force-directed global placer, which applies SVM and NN to extract and evaluate
the data path patterns with high dimensional data such as netlist symmetrical structures, initial
placement hints, and relative area. The extracted data path is mapped to bit stack structure and
uses SAPT [151] (a placer placed on SimPL [73]) to optimize separately from random logic.
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4.2.2 Routing Information Prediction. The basic requirements of routing design rules must be
considered in the placement stage. However, it is difficult to predict routing information in the
placement stage accurately and fast, and researchers recently employ machine learning to solve
this. RouteNet [154] is the first work to employ CNN for design rule checking (DRC) hotspot de-
tection. The input features of a customized fully convolutional network (FCN) include the out-
puts of rectangular uniform wire density (RUDY), a pre-routing congestion estimator. An 18-
layer ResNet is also employed to predict design rule violation (DRV) count. A recent work [89]
abstracts the pins and macros density in placement results into image data, and utilizes a pixel-
wise loss function to optimize an encoder-decoder model (an extension of U-Net architecture). The
network output is a heat-map, which represents the location where detailed routing congestion
may occur. PROS [21] takes advantages of fully convolution networks to predict routing conges-
tion from global placement results. The framework is demonstrated efficient on industrial netlists.
Pui et al. [124] explore the possibilities using ML methods to predict routing congestion in Ultra-
Scale FPGAs. Alawieh et al. [6] transfer the routing congestion problem in large-scale FPGAs to
an image-to-image problem, and then uses conditional GAN to solve it. In addition, there are some
studies that only predict the number of congestions instead of the location of congestion [27, 106].
Maarouf et al. [106] use models like linear regression, RF and MLP to learn how to use features
from earlier stages to produce more accurate congestion prediction, so that the placement strat-
egy can be adjusted. Qi et al. [125] predict the detailed routing congestion using nonparametric
regression algorithm, multivariate adaptive regression splines (MARS) with the global infor-
mation as inputs. Another study [18] takes the netlist, clock period, utilization, aspect ratio and
BEOL stack as inputs and utilizes MARS and SVM to predict the routability of a placement. This
study also predicts Pareto frontiers of utilization, number of metal layers, and aspect ratio. Refer-
ence [99] demonstrates the potential of embedding ML-based routing congestion estimator into
global placement stage. Recently, Liang et al. [90] build a routing-free crosstalk prediction model
by adopting several ML algorithms such as regression, NN, GraphSAGE, and GraphAttention. The
proposed framework can identify nets with large crosstalk noise before the routing step, which
allows us to modify the placement results to reduce crosstalk in advance.

There is also a need to estimate the final wirelength, timing performance, circuit area, power
consumption, clock and other parameters in the early stage. Such prediction task can be modeled
as a regression task and commonly used ML models include SVM, Boosting, RF, MARS, and so
on. Jeong et al. [63] learn a model with MARS to predict performance from a given set of cir-
cuit configurations, with NoC router, a specific functional circuit and a specific business tool. In
Reference [60], the researchers introduce linear discriminant analysis (LDA) algorithm to find
seven combined features for the best representation, and then a KNN-like approach is adopted
to combine the prediction results of ANN, SVM, LASSO, and other machine learning models. In
this way, Hyun et al. [60] improve the wirelength prediction given by the virtual placement and
routing in the synthesis. Cheng et al. [27] predict the final circuit performance in the macro place-
ment stage, and Li and Franzon [82] predict the circuit performance in the global routing stage,
including congestion number, hold slack, area and power.

For sign-off timing analysis, Barboza et al. [8] use random forest to give the sign-off timing
slack from hand-crafted features. Another research [67] works on sign-off timing analysis and
use linear regression to fit the static timing analysis (STA) model, thus reduce the frequency
that the incremental static timing analysis (iSTA) tool need to be called. Han et al. [52]
propose SI for Free, a regression method to predict expensive signal integrity (SI) mode sign-off
timing results by using cheap non-SI mode sign-off timing analysis. [68] propose golden timer

extension (GTX), a framework to reduce mismatches between different sign-off timing analysis
tools to obtain neither optimistic nor pessimistic results.
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Lu et al. [102] employ GAN and RL for clock tree prediction. Flip flop distribution, clock net
distribution, and trial routing results serve as input images. For feature extraction, GAN-CTS
adopts transfer learning from a pre-trained ResNet-50 on the ImageNet dataset by adding fully

connected (FC) layers. A conditional GAN is utilized to optimize the clock tree synthesis, of
which the generator is supervised by the regression model. An RL-based policy gradient algorithm
is leveraged for the clock tree synthesis optimization.

4.2.3 Placement Decision Making. As the preliminary step of the placement, floorplanning aims
to roughly determine the geometric relationship among circuit modules and to estimate the cost
of the design. He et al. [53] explore the possibility of acquiring local search heuristics through a
learning mechanism. More specifically, an agent has been trained using a novel deep Q-learning
algorithm to perform a walk in the search space by selecting a candidate neighbor solution at each
step, while avoiding introducing too much prior human knowledge during the search. Google [113]
recently models chip placement as a sequential decision making problem and trains an RL policy
to make placement decisions. During each episode, the RL agent lays the macro in order. After
arranging macros, it utilizes the force-directed method for standard cell placement. GCN is adopted
in this work to embed information related to macro features and the adjacency matrix of the netlist.
Besides, FC layers are used to embed metadata. After the embedding of the macros, the graph and
the metadata, another FC layer is applied for reward prediction. Such embedding is also fed into a
deconvolution CNN model, called PolicyNet, to output the mask representing the current macro
placement. The policy is optimized with RL to maximize the reward, which is the weighted average
of wirelength and congestion.

4.3 Power Deliver Network Synthesis and IR Drop Predictions

Power delivery network (PDN) design is a complex iterative optimization task, which strongly
influences the performance, area and cost of a chip. To reduce the design time, recent studies
have paid attention to ML-based IR drop estimation, a time-consuming sub-task. Previous work
usually adopts simulator-based IR analysis, which is challenged by the increasing complexity of
chip design. IR drop can be divided into two categories: static and dynamic. Static IR drop is mainly
caused by voltage deviation of the metal wires in the power grid, while dynamic IR drop is led by
the switching behaviors and localized fluctuating currents. In IncPIRD [54], the authors employ
XGBoost to conduct incremental prediction of static IR drop problem, which is to predict IR value
changes caused by the modification of the floorplan. For dynamic IR drop estimation, Xie et al.
[155] aim to predict the IR values of different locations and models IR drop estimation problem as a
regression task. This work introduces a “maximum CNN” algorithm to solve the problem. Besides,
PowerNet is designed to be transferable to new designs, while most previous studies train models
for specific designs. A recent work [173] proposes an electromigration-induced IR drop analysis
framework based on conditional GAN. The framework regards the time and selected electrical
features as input images and outputs the voltage map. Another recent work [28] focuses on PDN
synthesis in floorplan and placement stages. This paper designs a library of stitchable templates
to represent the power grid in different layers. In the training phase, SA is adopted to choose a
template. In the inference phase, MLP and CNN are used to choose the template for floorplan
and placement stages, respectively. Cao et al. [16] use hybrid surrogate modeling (HSM) that
combines SVM, ANN, and MARS to predict the bump inductance that represents the quality of the
power delivery network.

4.4 Design Challenges for 3D Integration

3D integration is gaining more attention as a promising approach to further improve the integra-
tion density. It has been widely applied in memory fabrication by stacking memory over logic.
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Different from the 2D design, 3D integration introduces die-to-die variation, which does not
exist in 2D modeling. The data or clock path may cross different dies in through-silicon via

(TSV)-based 3D IC. Therefore, the conventional variation modeling methods, such as on-chip

variation (OCV), advanced OCV (AOCV), parametric OCV (POCV), are not able to accurately
capture the path delay [131]. Samal et al. [131] use MARS to model the path delay variation in 3D
ICs.

3D integration also brings challenges to the design optimization due to the expanded design
space and the overhead of design evaluation. To tackle these challenges, several studies [31, 122,
131] have utilized design space exploration methods based on machine learning to facilitate 3D
integration optimization.

The state-of-the-art 3D placement methods [75, 121] perform bin-based tier partitioning on 2D
placement and routing design. However, the bin-based partitioning can cause significant quality
degradation to the 3D design because of the unawareness of the design hierarchy and technology.
Considering the graph-like nature of the VLSI circuits, Lu et al. [103] proposed a GNN-based un-

supervised framework for tier partitioning (TP-GNN). TP-GNN first performs the hierarchy-
aware edge contraction to acquire the clique-based graph where nodes within the same hierarchy
can be contracted into supernodes. Moreover, the hierarchy and the timing information is included
in the initial feature of each node before GNN training. Then the unsupervised GNN learning can
be applied to general 3D design. After the GNN training, the weighted k-means clustering is per-
formed on the clique-based graph for the tier assignment based on the learned representation. The
proposed TP-GNN framework is validated on experiments of RISC-V-based multi-core system and
NETCARD from ISPD 2012 benchmark. The experiment results indicate 7.7% better wirelength,
27.4% higher effective frequency and 20.3% performance improvement.

4.5 Other Predictions

For other parameters, Chan et al. [17] adopt HSM to predict the embedded memory timing failure
during initial floorplan design. Bian et al. [11] work on aging effect prediction for high-dimensional
correlated on-chip variations using random forest.

4.6 Summary of Machine Learning for Logic Synthesis and Physical Design

We summarize recent studies on ML for logic synthesis and physical design in Table 3. For logic
synthesis, researchers focus on predicting and evaluating the optimal synthesis flows. Currently,
these studies optimize the synthesis flow based on the primitives of existing tools. In the future, we
expect to see more advanced algorithms for logic synthesis be explored, and more metrics can be
formulated to evaluate the results of logic synthesis. Besides, applying machine learning to logic
synthesis for emerging technologies is also an interesting direction.

In the physical design stage, recent studies mainly aim to improve the efficiency and accuracy by
predicting the related information that traditionally needs further simulation. A popular practice
is to formulate the EDA task as a computer vision (CV) task. In the future, we expect to see more
studies that incorporate advanced techniques (e.g., neural architecture search, automatic feature
generation, unsupervised learning) to achieve better routing and placement results.

5 LITHOGRAPHY AND MASK SYNTHESIS

Lithography is a key step in semiconductor manufacturing, which turns the designed circuit and
layout into real objects. Two popular research directions are lithography hotspot detection and
mask optimization. To improve yield, lithography hotspot detection is introduced after the physical
implementation flow to identify process-sensitive patterns prior to the manufacturing. The com-
plete optical simulation is always time-consuming, so it is necessary to analyze the routed layout
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Table 3. Summary of ML for Logic Synthesis and Physical Design

Section Task ML Algorithm Reference

Logic Synthesis

To decide which optimizer (AIG/MIG)
should be utilized for different circuits.

DNN [115]

To classify the optimal synthesis flows. CNN [167]
To generate the optimal synthesis flows. GCN, RL [48]
To generate the optimal synthesis flows. RL [56]

Placement
To train, predict, and evaluate potential
datapaths.

SVM, NN [150]

To make placement decisions. GCN, RL [113]

Routing

To detect DRC hotspot and DRV count. CNN [154]

To predict routing congestion.
CNN [89]
GAN [6]
ML [106]
MARS [125]

To predict routability of a given placement. MARS, SVM [18]
To model on-chip router performance. MARS [63]
To predict wirelength. LDA, KNN [60]
To predict the circuit performance after
placement stage.

ML [27]

To predict detailed routing result after
global routing.

ML [82]

To model sign-off timing analysis.
RF [8]
LR [67]

To predict and optimize the clock tree. GCN, CNN, RL [102]

Power Deliver
Network
Synthesis and
IR Drop
Predictions

To predict incremental static IR drop. XGBoost [54]
To predict dynamic IR drop by regressing. CNN [155]
To predict electromigration-induced IR
drop.

GAN [173]

To choose the power grid template. MLP, CNN [28]

To predict bump inductance.
SVM, ANN,
MARS

[16]

3D Integration

To advance the tier partition. GNN [103]
To model the path delay variation. MARS [131]

To optimize 3D designs.
Local Search [31]
BO [122]

Other
To predict the embedded memory timing
failure.

ML [17]

To predict aging effect. RF [11]

by machine learning to reduce lithography hotspots in the early stages. Mask optimization tries to
compensate diffraction information loss of design patterns such that the remaining pattern after
lithography is as close to the design patterns as possible. Mask optimization plays an important
role in VLSI design and fabrication flow, which is a very complicated optimization problem with
high verification costs caused by expensive lithography simulation. Unlike the hotspot detection
studies in Section 5.1 that take placement and routing stages into consideration, mask optimization
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Fig. 6. Region-based hotspot detection promises better performance (reproduced from Reference [22]).

focuses only on the lithography process, ensuring that the fabricated chip matches the designed
layout. Optical proximity correction (OPC) and sub-resolution assist feature (SRAF)

insertion are two main methods to optimize the mask and improve the printability of the target
pattern.

5.1 Lithography Hotspot Detection

For lithography hotspot detection, Ding et al. [32] uses SVM for hotspot detection and small neural
network for routing path prediction on each grid. To achieve better feature representation, Yang
et al. [162] introduces feature tensor extraction, which is aware of the spatial relations of layout
patterns. This work develops a batch-biased learning algorithm, which provides better trade-offs
between accuracy and false alarms. Besides, there are also attempts to check inter-layer failures
with deep-learning solutions. A representative solution is proposed by Yang et al. [161]. They
employ an adaptive squish layout representation for efficient metal-to-via failure check. Different
layout-friendly neural network architectures are also investigated these include vanilla VGG [160],
shallow CNN [162] and binary ResNet [65].

With the increased chip complexity, traditional deep-learning/machine learning-based solutions
are facing challenges from both runtime and detection accuracy. Chen et al. [22] recently propose
an end-to-end trainable object detection model for large scale hotspot detection. The framework
takes the input of a full/large-scale layout design and localizes the area that hotspots might oc-
cur (see Figure 6). In Reference [44], an attention-based CNN with inception-based backbone is
developed for better feature embeddings.

5.2 Machine Learning for Optical Proximity Correction

For OPC, inverse lithography technique (ILT) and model-based OPC are two representative
mask optimization methodologies, and each of which has its own advantages and disadvantages.
Yang et al. [163] propose a heterogeneous OPC framework that assists mask layout optimization,
where a deterministic ML model is built to choose the appropriate one from multiple OPC solutions
for a given design, as shown in Figure 7.

With the improvement of semiconductor technology and the scaling down of ICs, traditional
OPC methodologies are becoming more and more complicated and time-consuming. Yang et al.
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Fig. 7. A heterogeneous OPC framework (reproduced from Reference [163]).

Fig. 8. The training flow of (a) GAN-OPC and (b) ILT-Guided Pre-training (reproduced from Reference [159]).

[159] propose a new OPC method based on GAN. A Generator (G) is used to generate the mask
pattern from the target pattern, and a discriminator (D) is used to estimate the quality of the
generated mask. GAN-OPC can avoid complicated computation in ILT-based OPC, but it faces
the problem that the algorithm is hard to converge. To deal with this problem, ILT-guided pre-
training is proposed. In the pre-training stage, the D network is replaced with the ILT convolution
model, and only the G network is trained. After pre-training, the ILT model that has huge cost
is removed, and the whole GAN is trained. The training flow of GAN-OPC and ILT-guided pre-
training is shown in Figure 8. The experimental results show that the GAN-based methodology
can accelerate ILT-based OPC significantly and generate more accurate mask patterns.

Traditional ILT-based OPC methods are costly and result in highly complex masks where many
rectangular variable-shaped-beam (VSB) shots exist. To solve this problem, Jiang et al. [64] pro-
pose an ML-based OPC algorithm named neural-ILT, which uses a neural network to replace the
costly ILT process. The loss function is specially designed to reduce the mask complexity, which
gives punishment to complicated output mask patterns. In addition, for fast litho-simulation, a
CUDA-based accelerator is proposed as well, which can save 96% simulation time. The experimen-
tal results show that neural-ILT achieves a 70× speedup and 0.43× mask complexity compared
with traditional ILT methods.

Recently, Chen et al. [20] propose DAMO, an end-to-end OPC framework to tackle the full-chip
scale. The lithography simulator and mask generator share the same deep conditional GAN

(DCGAN), which is dedicatedly designed and can provide a competitively high resolution. The
proposed DCGAN adopts UNet++ [176] backbone and adds residual blocks at the bottleneck of
UNet++. To further apply DAMO on full-chip layouts, a coarse-to-fine window splitting algorithm
is proposed. First, it locates the regions of high via density and then runs KMeans++ algorithm on
each cluster containing the via pattern to find the best splitting window. Results on ISPD 2019
full-chip layout show that DAMO outperforms state-of-the-art OPC solutions in both
academia [43] and an industrial toolkit.
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Fig. 9. Dictionary learning-based feature extraction (reproduced from Reference [43]).

Fig. 10. The LithoGAN framework (reproduced from Reference [165]).

5.3 Machine Learning for SRAF Insertion

Several studies have investigated ML-aided SRAF insertion techniques. Xu et al. [158] propose
an SRAF insertion framework based on ML techniques. Geng et al. [43] propose a framework
with a better feature extraction strategy. Figure 9 shows the feature extraction stage. After their
concentric circle area sampling (CCAS) method, high-dimension features xt are mapped into
a discriminative low-dimension features yt through dictionary training by multiplication of an
atom matrix D. The atom matrix is the dictionary consists of representative atoms of the original
features. Then, the sparse codesyt are used as the input of a machine learning model, more specif-
ically, a logistic regression model that outputs a probability map indicating whether SRAF should
be inserted at each grid. Then, the authors formulate and solve the SRAF insertion problem as an
integer linear programming based on the probability grid and various SRAF design rules.

5.4 Machine Learning for Lithography Simulation

There are also studies that focus on fast simulation of the tedious lithography process. Traditional
lithography simulation contains multiple steps, such as optical model building, resist model build-
ing, and resist pattern generation. LithoGAN [165] proposes an end-to-end lithography modeling
method by using GAN, of which the framework is shown in Figure 10. Specifically, a conditional
GAN is trained to map the mask pattern to a resist pattern. However, due to the characteristic
of GAN, the generated shape pattern is good, while the position of the pattern is not precise. To
tackle this problem, LithoGAN adopts a conditional GAN for shape modeling and a CNN for cen-
ter prediction. The experimental results show that LithoGAN can predict the resist pattern with
high accuracy, and this algorithm can reduce the lithography simulation time for several orders of
magnitude. Reference [20] is also equipped with a machine learning-based lithography simulator
that can output via contours accurately to assist via-oriented OPC.
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Table 4. Summary of ML for Lithography and Mask Optimization

Task Work ML Algorithm References

Lithography
Hotspot
Detection

To detect single layer layout lithography
hotspots.

SVM, NN [32]

To detect multilayer layout lithography

hotspots.

CNN [65, 160, 162]
CNN [161]

To fast detect large scale lithography

hotspots.

CNN [22]
Attention [44]

OPC

Heterogeneous OPC CNN [163]
GAN-OPC GAN [159]
Neural ILT CNN [64]
DAMO DCGAN [20]

SRAF

insertion

ML-based SRAF generation
Decision Tree,
Regression

[158]

SRAF insertion
Dictionary
learning

[43]

Litho-

simulation

LithoGAN CGAN, CNN [165]
DAMO DCGAN [20]

5.5 Summary

This section reviews ML techniques used in the design for manufacturability stage that include
lithography hotspot detection, mask optimization and lithography modeling. Related studies are
summarized in Table 4.

6 ANALOG DESIGN

Despite the promotion of digital circuits, the analog counterpart is still irreplaceable in applications
like nature signal processing, high speed I/O and drive electronics [126]. Unlike digital circuit
design, analog design demands lots of manual work and expert knowledge, which often makes it
the bottleneck of the job. For example, the analog/digital converter and Radio Frequency (RF)1

transceiver only occupy a small fraction of area but cost the majority of design efforts in a typical
mixed-signal System-on-Chip (SoC), compared to other digital processors [129].

The reason for the discrepancy can be summarized as follows: (1) Analog circuits have a larger
design space in terms of device size and topology than digital circuits. Sophisticated efforts are
required to achieve satisfactory results. (2) The specifications of analog design are variable for
different applications. It is difficult to construct a uniform framework to evaluate and optimize
different analog designs. (3) Analog signals are more susceptible to noise and process-voltage-
temperature variations, which cost additional efforts in validation and verification.

6.1 The Design Flow of Analog Circuits

Gielen and Rutenbar [45] provide the design flow followed by most analog designers. As shown in
Figure 11, it includes both top-down design steps from system level to device-level optimizations
and bottom-up layout synthesis and verification. In the top-down flow, designers choose proper
topology, which satisfies system specifications in the circuit level. Then device sizes are optimized

1With a slight abuse of acronym, RF stands for both Random Forest and Radio Frequency. The meaning should be clear

from the context.
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Fig. 11. Hierarchical levels of analog design flow (reproduced from Reference [129]).

in the device level. The topology design and device sizing constitute the pre-layout design. Af-
ter the schematic is well-designed, designers draw the layout of the circuit. Then they extract
parasitics from the layout and simulate the circuit with parasitics. This is known as post-layout
simulations. If the post-layout simulation fails to satisfy the specifications, then designers need to
resize the parameters and repeat the process again. This process can go for many iterations before
the layout is done [136].

Although analog design automation has improved significantly over the past few decades, au-
tomatic tools cannot replace manual work in the design flow [10] yet. Recently, researchers are
trying to introduce machine learning techniques to solve analog design problems. Their attempts
range from topology selection at the circuit level to device sizing at the device level as well as the
analog layout in the physical level.

6.2 Machine Learning for Circuit Topology Design Automation

Typically, topology design is the first step of analog circuits design, followed by the determination
of device sizes and parameters. The process is time-consuming, and unsuitable topology will lead
to redesign from the very beginning. Traditionally, topology design relies on the knowledge and
experiences of expert designers. As the scale and demand of analog circuits are increasing, CAD
tools are urgently needed by engineers. Despite this, automation tools for topology design are still
much less explored due to its high degree of freedom.

Researchers have attempted to use ML methods to speed up the design process. Some re-
searchers [111, 117, 137] deal with topology selection problem, selecting the most suitable topology
from several available candidate. Li et al. [83] focus on extracting well-known building blocks in
circuit topology. Recently, Rotman and Wolf [130] use RNN and hypernetwork to generate two-
port circuit topology.

6.2.1 Topology Selection. For common-used circuit functional units, like amplifiers, designers
may not need to design from the beginning. Instead, it is possible to choose from a fixed set of
available alternatives. It is a much more simple problem than designing from scratch. Early in
1996, Orzáez et al. [117], Silgado et al. [137] put forward a fuzzy-logic-based topology selection tool
called FASY. They use fuzzy logic to describe relationships between specifications (e.g., DC gain)
and alternatives and use backpropagation to train the optimizer. More recent research [111] uses
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CNN as the classifier. They train CNN with circuit specifications as the inputs and the topology
indexes as the labels.

The main problem with the topology selection methods is that the data collection and the train-
ing procedure are time-consuming. Therefore, topology selection is efficient only when repetitive
designs are needed such that a trained model can be reused.

6.2.2 Topological Feature Extraction. One challenge of topology design automation is to make
algorithms learn the complex relationships between components. To make these relationships
more understandable, researchers focus on defining and extracting features from circuit topology.
Li et al. [83] present algorithms for both supervised feature extraction and unsupervised learning
of new connections between known building blocks. The algorithms are also designed to find hier-
archical structures, isolate generic templates (patterns), and recognize overlaps among structures.
Symmetry constraint are one of the most essential topological features in circuits. Liu et al. [96]
propose a spectral analysis method to detect system symmetry with graph similarity. With a graph
representation of circuits, their method is capable of handling passive devices as well. Kunal et al.
[77] propose a GNN-based methodology for automated generation of symmetry constraints. It can
hierarchically detect symmetry constraints in multiple levels and works well in a variety of circuit
designs.

6.2.3 Topology Generation. The aforementioned studies do not directly generate a topology. A
recent study [130] makes the first attempt to generate circuit topology for given specifications.
Their focus is limited to two-port circuits. They utilize an RNN and Hypernetwork to solve the
topology generation problem and report better performance than the traditional methods when
the inductor circuit length n ≥ 4.

6.3 Machine Learning for Device Sizing Automation

6.3.1 Reinforcement Learning-based Device Sizing. The problem of device sizing can be formu-
lated as follows:

arg min
x

∑
x

qc (x ),

s.t. fh (x ) ≥ yh , (3)

where x ∈ Rn denotes the design parameters, including the size of each transistors, capacitors and
resistors. y ∈ Rm denotes the specifications, including the rigid targets yh ∈ Rm1 such as band-
widths, DC gains or phase margins and the optimization targets yo ∈ Rm2 such as power or area.
The simulator f is defined as the map from parameters to specifications. To normalize the contri-
bution of different specifications, the objective function is defined as qc (x ) = fo (x )/yo .

Based on this optimization model, Wang et al. [148] apply the reinforcement learning technique
to deal with device sizing problems. Figure 12 illustrates the proposed reinforcement learning
framework. At each environment step, the observations from the simulator are fed to the agent.
A reward is calculated by the value network based on current performance. Then, the agent re-
sponds with an action to update the device sizes. Because the transistors are both affected by their
local status (e.g., transconductance дm , drain current Ids , etc.) and the global status (DC operating
points) of the circuit, the optimization of each transistor is not independent. To promote learning
performance and efficiency, the authors use a multi-step environment, where the agent receives
both the local status of the corresponding transistor and the global status.

Although the device sizing problem is automated by the reinforcement learning approach, the
training process depends heavily on efficient simulation tools. However, current simulation tools
can only satisfy the need for schematic simulations. As for post-layout simulation that requires
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Fig. 12. The framework of reinforcement learning for device sizing (reproduced from Reference [148]).

parasitic extraction, the time of each training iteration increases significantly. To reduce the sim-
ulation overhead, Settaluri et al. [134] introduce transfer learning techniques into reinforcement
learning. In the proposed approach, the agent is trained by schematic simulations and validated by
post-layout simulations. The authors show that, with some additional iterations on deployment,
the proposed approach can bring 9.4× acceleration compared to previous approaches.

Following their previous work [148], the authors utilize GCN to enhance the transferability of
reinforcement learning methods [147]. Unlike traditional multi-layer agents, the GCN-based agent
extracts topology information from circuit netlists. In a GCN layer, each transistor is represented
by a hidden neuron calculated by aggregating feature vectors from its neighbors. Specifically, the
calculation can be written as

H (l+1) = σ (D−1/2AD−1/2)H (l )W (l ), (4)

where A is the adjacency matrix A of the circuit topology plus the identity matrix IN . Dii =
∑
Ai j

is a diagonal matrix. And H (l+1) is the hidden features of the lth layer. The weight matrix W (l )

is a trainable matrix updated by Deep Deterministic Policy Gradient (DDPG) [92]. Because
different circuits with the same function have similar design principles (e.g., two-stage and three-
stage amplifier). The weight matrix trained for one circuit can be reused by another circuit. Besides
the topologies transferring, the GCN-based RL agent is able to port existing designs from one
technology node to another by sharing the weight matrices.

6.3.2 Artificial Neural Network-based Device Sizing. Rosa et al. [129] propose a data augmenta-
tion method to increase the generalization ability of the trained ML model. Specifically, the original
training set T is replaced by augmented set T ′ = T ∪T1 ∪T2... ∪Tk . For each Ti , the relationship
between its sample x ′i and original sample xi is formulated as follows:

x ′i = xi + (
γ

M

M∑
j=1

x j )ΔΓ, (5)

whereγ ∈ [0, 1] is a hyper-parameter used to adjust the mean value. And Δ and Γ denote a diagonal
matrix composed by random value of [0,1] and value in −1, 1, respectively. For speci to maximize
like DC gain, Γi takes value −1. Conversely, it takes value 1 for speci to minimize, like power or
area. As a result, K copies with worse specifications are generated for each sample xi . The models
trained on the augmented dataset are more robust.

Besides the augmentation method, this article proposes to use a three-layer MLP model
to conduct regression and classification. Given circuit performances as the input, the model
outputs circuit information as two parts: (1) the size of devices in multiple topologies; (2) the
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Table 5. Comparison of Different Device Sizing Methods

ML Algorithm
Simulation

tools

Nums of simulation

(Two-Stage OP)
Reference

Reinforcement learning Commercial tools 1e4 [148]
Genetic algorithm DNN 1e2 [51]
Reinforcement
learning+Transfer learning

Commercial tools 1e4/10 (training/deployment) [134]

Reinforcement
learning+GCN

Commercial tools
1e4/100

(training/deployment)
[147]

ANN Commercial tools 1e4/1 (training/deployment) [129]
Genetic algorithm SVM 1e2 [119]

classification of different topologies. The device sizing problem is solved by regression, while
the topology selection is solved by classification. Compared to the simple regression models, the
regression-and-classification model obtains the best performance.

6.3.3 Machine Learning-based Prediction Methods. As mentioned above, the time cost by simu-
lation is the main overhead of training models, especially for post-layout simulation. To speed up
the training process, Hakhamaneshi et al. [51] and Pan et al. [119] use DNN and SVM to predict
the simulator. Hakhamaneshi et al. [51] use the device information of two circuits as the input of
the DNN predictor. The model outputs the relative superiority of the two circuits on each spec-
ification instead of the absolute values. Because the prediction problem is non-convex and even
ill-posed, and the training data is also limited by computational resources. Learning to compare
(predict the superiority) is a relatively easy task compared to directly fitting each specification.
Besides, enumerating each pair of circuit designs enlarge the training set by N

2 ×, where N denotes
the number of circuit designs.

6.3.4 Comparison and Discussion on Device Sizing. Table 5 lists introduced methods and their
performance. The widely studied two-stage operational amplifier (OPA) is adopted as an ex-
ample for comparison. Instead of performance, sample efficiency is used as the criterion, because
two-stage OPA is a relatively simple design and different algorithms can achieve comparable circuit
performance. It is shown that machine learning algorithms require more simulations on the train-
ing phase than traditional genetic methods. But only a few iterations of inference are needed when
deploying the model. Thus, ML-based methods have more potential in large scale applications at
the cost of increased training costs. However, genetic algorithms combined with ML-based predic-
tor is a popular solution to reduce the number of needed simulations. Note that different learning
algorithms have been adequately verified on simple designs like two-stage OPA. However, design-
ing complicated circuits is still challenging.

6.4 Machine Learning for Analog Layout

Analog layout is a hard problem, because the parasitics in the layout have a significant impact on
circuit performances. This leads to a performance difference between pre-layout and post-layout
simulations. Meanwhile, the relation between layout and performance is complex. Traditionally,
circuit designers estimate parasitics according to their experience, leading to a long design time
and potentials for inaccuracies [128]. Therefore, automated analog layout has drawn attention
from researchers. Recently, the development of machine learning algorithms promotes research
on this problem. All the studies introduced below are summarized in Table 6.
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Table 6. Summary of ML for Analog Layout

Section Task ML Algorithm Reference

Pre-layout

Preparation

circuit hierarchy generation GCN [76]

parasitics estimation
GNN [128]
Random Forest [136]

Layout

Generation

well generation GAN [156]
closed-loop layout synthesis Bayesian Optimization [98]
routing VAE [177]

Post-layer

Evaluation

electromagnetic properties
estimation

GNN [168]

performance prediction
SVM, random forest, NN [84]
CNN [97]
GNN [85]

Xu et al. [156] use GAN to guide the layout generation. The network learns and mimics de-
signers’ behavior from manual layouts. Experiments show that generated wells have comparable
post-layout circuit performance with manual designs on the op-amp circuit. Kunal et al. [76] train
a GCN to partition circuit hierarchy. The network takes circuit netlist as input and outputs circuit
hierarchy. With postprocessing, the framework reaches 100% accuracy in 275 test cases. Zhang
et al. [168] introduce a GNN to estimate Electromagnetic (EM) properties of distributed circuits.
And they inversely use the model to design circuits with targeted EM properties. Zhu et al. [177]
propose a fully automated routing framework based on the variational autoencoder (VAE) algo-
rithm. Wu et al. [152] design a knowledge-based methodology. They compare the targeted circuit
with legacy designs to find the best match. Meanwhile, they expand the legacy database when
new circuits are designed. Liu et al. [98] put forward a closed-loop design framework. They use a
multi-objective Bayesian optimization method to explore circuit layout and use simulation results
as the feedback.

To close the gap between pre-layout and post-layout simulations, some researchers attempt to
estimate parasitics before layout. Ren et al. [128] use GNN to predict net parasitic capacity and de-
vice parameters based on the circuit schematic. Shook et al. [136] define several net features and
use a random forest to regress net parasitic resistance and capacity. They also model the multi-
port net with a star topology to simplify the circuits. Experiments show that with estimated para-
sitics, the error between pre-layout and post-layout circuit simulation reduces from 37% to 8% on
average.

Typically, post-layout simulations with SPICE-like simulators are time-consuming. So many
researchers focus on layout performance prediction with ML algorithms. Li et al. [84] compare the
prediction accuracy of three classical ML algorithms: SVM, random forest, and nerual network.
They also combine the performance prediction algorithms with simulated annealing to fulfill an
automated layout framework. Liu et al. [97] propose a 3D CNN for circuit inputs. First, circuits
are converted to 2D images. Then a third coordinate channel is added to the image to form 3D
inputs. Li et al. [85] propose a customized GNN for performance prediction. They report a higher
accuracy than the CNN-based method [97].

6.5 Conclusion of Analog Design

The power of machine learning algorithms has been demonstrated extensively for analog
device sizing, topology design and layout problems. Compared to previous optimization-based
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algorithms, machine learning methods require fewer simulation rounds but achieve higher quality
designs. However, existing methods cannot replace human experts yet in the analog design flow.
One obstacle is that the models are learned from a limited dataset and have limited flexibility.
Most researchers train and test their method on typical circuits like OTAs. A generalizable model
designed for a variety of circuits is desired in the future study. Another challenge is that the vast
space of system-level design has not been studied. The potential of machine learning in analog
design may be further exploited in the future.

7 VERIFICATION AND TESTING

Verification and testing of a circuit are complicated and expensive processes due to the coverage
requirements and the high complexity. Verification is conducted in each stage of the EDA flow to
ensure that the designed chip has correct functions. However, testing is necessary for a fabricated
chip. Note that from many perspectives, verification and testing share common ideas and strate-
gies, meanwhile face similar challenges. For instance, with the diversity of applications and the
complexity of the design, traditional formal/specification verification and testing may no longer
meet various demands.

For the coverage requirements, a circuit or system can be very complex and may have many
different functions corresponding to different input data. To verify a system with low cost, the test
set design should be compact and avoid containing “repeated” or “useless” situations with covering
enough combinations of inputs to ensure reliability. Therefore, a well-selected test set and a proper
strategy are crucial to the fast and correct verification. Traditionally, for test set design, random
generation algorithms and Automated Test Pattern Generation (ATPG) are usually used in
the verification stage and the testing stage, respectively. And their designs are always far from
the optimal solution. Therefore, it is intuitive to optimize the verification process by reducing the
redundancy of the test set.

High complexity of chip testing/verification is another problem. For example, in the analog/RF
system design, it is expensive and time-consuming to test the performance accurately or to verify
the SPICE netlist formally. Predicting accurate results with low precision test results derived from
cheap testing methods is a promising solution to this problem.

To meet the coverage requirements and reduce complexity, more and more ML algorithms are
applied in the verification and testing process, to make fast analog/RF system testing, build sim-
plified estimation model, infer and predict the verification results, optimize sample strategies, and
even generate high quality test benches. These methodologies can be divided into two categories:
(1) Machine learning for test set redundancy reduction, which is applied in both verification and
testing stage; (2) Machine learning for complexity reduction, which is applied in chip testing,
verification, and diagnosis.

7.1 Machine Learning for Test Set Redundancy Reduction

Coverage is the primary concern when designing a test set in verification and testing problems.
However, the definition of “coverage” is different in different problems. For example, for digital
design, the test set is supposed to cover as many states of the finite-state machine (FSM) or
input situations as possible. For analog/RF design, since the input is continuous and the system
can be very sensitive to environmental disturbance, a sampling strategy that can cover most input
values and working situations is needed. As for the test of semiconductor technology, a test point
is a design that needs to be synthesized or fabricated, and the test set needs to cover the whole
technology library. We will introduce these problems and corresponding studies based on ML
techniques.
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7.1.1 Test Set Redundancy Reduction for Digital Design Verification. The verification of a digital
design will be carried out in each stage of the EDA flow, in which the verification space of a
digital design under test (DUT) usually includes a huge number of situations. Thus, manually
designing the test set requires rich expertise and is not scalable. Originally, the test set is usually
generated by a biased random test generator with some constraints [62], which can be configured
by setting a series of directives. Later on, Coverage-Directed test Generation (CDG) techniques
have been explored to optimize the test set generation process. The basic idea of CDG is to simulate,
monitor, and evaluate the coverage contribution of different combinations of input and initial state.
And then, the derived results are used to guide the generation of the test set. There are many
CDG works that are based on various ML algorithms such as Bayesian Network [38], Markov
Model [145], Genetic Algorithm [49, 135], rule learning [33, 57, 69], SVM [24, 47], and NN [146].
We refer the readers to Reference [62] for a more detailed survey on related papers before 2012.
Note that although the word “test” is mentioned frequently in this field, these works mainly aim
at aiding the verification process.

GA can be applied in CDG problems. Shen et al. [135] combine the biased random test genera-
tion with GA. First, a constraint model is described and encoded, then a set of constraint models
with different configurations is sent into the simulator to evaluate the coverage performance. GA
method is used to search for a better configuration with higher coverage. Habibi et al. [49] propose
a high-level hardware modeling methodology to get a better description of FSM states and use GA
to find a proper configuration of the test generator.

Beyond the traditional search strategies, more studies incorporated ML-based models to guide
the search process. Chen et al. [24] use a one-class SVM for novel test detection. They assume
that novel test instances are more useful and could cover more specific corners, and a one-class
SVM is used to find these novel instances. Guzey et al. [47] conduct the functional test selection by
using unsupervised Support Vector Analysis. The basic idea is to cluster all the input operations
into several groups (e.g., AND operation, other logic operation, and all other operations). Then,
one can select the relevant test subsets for specific functional verification. A recent study [146]
focuses on clustering input instructions and adopts an ANN-based method to decide whether a
single input instruction should be verified.

Probabilistic models are also adopted to model the DUT behavior or the test generator. Fine and
Ziv [38] propose a CDG method by building a Bayesian Network between the test generator direc-
tives and coverage variables. To model the influence of input, some hidden layers are added to the
network with expert domain knowledge to help explain the relationship. The Bayesian Network
is dynamic and can be adjusted according to stimuli results to get a more precise model. Then,
we can change the directives to achieve better coverage by running inference on the Bayesian
Network. Markov model is a special case of Bayesian Network, and Wagner et al. [145] propose a
Markov model for more efficient microprocessor verification. The proposed Markov model shows
the transfer probability of different types of instructions. Activity monitors are used for coverage
estimation, and the results are used for the adjustment of the Markov model. The learned Markov
model is used as the test generator to achieve better coverage performance.

To extract more interpretable and compact knowledge from previous verification experiences,
rule learning techniques also play a role in CDG problems. Katz et al. [69] apply a decision tree for
rule learning of microarchitecture behaviors. Eder et al. [33] adopt the inductive logic program-
ming method to discover instruction rules, which can be directly used as the directives for further
test generation. Hsieh et al. [57] propose to discover a subgroup of states that differentiate the
failing test cases from the success test cases. All these methods aim at extracting the internal rules
of the verification problem. With the extracted rules, one can generate better test instances either
manually or automatically.
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Fig. 13. The framework of Reference [120] (reproduced from Reference [120]).

7.1.2 Test Set Redundancy Reduction for Analog/RF Design Testing. The Analog/RF system test-
ing can be divided into two aspects, including device-level testing and circuit-level testing. The
current practice for testing an Analog/RF system is specification testing [142]. This method needs
to measure the parameters of the circuit directly. The device will be continuously switched to var-
ious test configurations during its operation, resulting in a long setup and establishment time. In
each test configuration, measurements are performed multiple times and averaged to reduce ther-
mal noise and crosstalk. Moreover, this complex process needs to be repeated in various modes
of operation, such as temperature, voltage level, and output load. Therefore, despite the highly
accurate measurement, the overall test process is extremely costly. However, specification testing
requires the use of automatic test equipment (ATE), and the cost of this equipment is also very
high.

A direction to solve these problems is to identify and eliminate the information redundancy
in the test set by machine learning, and make a pass/fail decision only depending on a subset of
it [140, 141]. In the specification test, each performance parameter may have redundant informa-
tion. However, this information needs advanced statistical methods to obtain. ML can help find
the complex association in the specification test, to reduce the types and times of the test set, and
finally complete the result inference with high quality. A multi-objective genetic algorithm is ap-
plied for feature selection of the test set, which is used to extract subsets and build the prediction
model based on a binary classifier to determine whether the equipment is qualified [141]. The
classifier can be constructed by kNN or Ontogenic Neural Network (ONN). Taking the power
set as an example, the results show that a relatively small number of non-RF specification tests
(i.e., digital, DC, and low frequency) can correctly predict a large proportion of pass/fail tags. The
experimental results also show that adding some RF specification tests can further improve the
prediction error.

Pan et al. [120] propose a low-cost characterization method for IC technologies. They assume
the devices on different dies have similar characteristics, and it is possible to use part of test
samples to predict the detailed data. The framework of this work is shown in Figure 13. A small
number of samples are tested, and several features are extracted from the test results. Then, the
features are used to fit a regression model, with which one can infer the performance curve
and predict test results of other samples. In the experiment, the authors use 267 data samples
to predict 3241 data points with 0.3% average error, which reaches a 14× speedup in the test
process.

7.1.3 Test Set Redundancy Reduction for Semiconductor Technology Testing. Sometimes the
problem is to test a new semiconductor technology rather than a specific design. In this situation,
a test instance is a synthesized or fabricated chip design, and building a test set can be extremely
expensive. This problem is a little different from the testing problems mentioned before, but the
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Fig. 14. The flow of proposed method in Reference [100] (reproduced from Reference [100]).

idea of reducing the test set redundancy is still working. If we can predict the test set quality and
select good parts in advance, then the cost can be reduced significantly. Liu et al. [100] focus on
optimizing the test set design via ML, of which the proposed flow is shown in Figure 14. In a tra-
ditional testing flow, every possible configuration in a logic library is synthesized, which causes
huge time and energy consumption. To alleviate the problem, this work uses RF models to predict
whether a test datum is “unique” and “testable” with several features (e.g., the number of nets,
fanout, and max logic depth). “Unique” means that the test data has a different logical structure
compared to other test data, and “testable” means that this test data can cover a great number
of IP fault. The experimental results show that this work can achieve over 11× synthesis time
reduction.

7.2 Machine Learning for Test and Diagnosis Complexity Reduction

7.2.1 Test Complexity Reduction for Digital Design. Recently, GCNs are used to solve the ob-
servation point insertion problem for the testing stage [104]. Inserting an observation point be-
tween the output of module 1 and the input of module 2 will make the test results of mod-
ule 1 observable and the test inputs of module 2 controllable. Ma et al. [104] propose to use
GCN to insert fewer test observation points while maximizing the fault coverage. More specif-
ically, the netlist is first mapped to a directed graph, in which nodes represent modules, and
edges represent wires. Then, the nodes are labeled as easy-to-observe or difficult-to-observe,
and a GCN classifier is trained. Compared with commercial test tools, this method based on
GCN can reduce the observation points by 11% under similar fault coverage, and reduce the
test pattern count by 6%. Note that compared with other studies discussed before, observation
point insertion reduces the test complexity in a different way, by decoupling the test of different
modules.

7.2.2 Verification Diagnosis Complexity Reduction for Digital Design. During the verification
process, a complicated diagnosis is needed whenever a bug is detected. However, this diagno-
sis process might be redundant sometimes, since there are lots of similar bugs caused by the
same hardware problem, and one situation can be analyzed repeatedly. To alleviate this prob-
lem, Mammo et al. [110] propose an automatic hardware diagnosis method named BugMD, which
can classify different bugs and localize their corresponding module. With this framework, the
emerging bugs can be analyzed without a complicated diagnosis process. First, the instruction
windows containing bugs are encoded to input feature vectors based on the mismatch between
DUT and a golden instruction set simulator, then the feature vectors are sent to a classifier for
further triaging and localizing, where the ML algorithm can be a decision tree, RF, SVM, or NN.
To produce sufficient training data, a synthetic bug injection framework is proposed, which is re-
alized by randomly change the functionality of several modules. The experimental results prove
the feasibility of BugMD with over 90% top-3 localization accuracy.

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 5, Article 40. Pub. date: May 2021.



Machine Learning for Electronic Design Automation: A Survey 40:29

Fig. 15. Active learning for circuits testing (reproduced from Reference [58]).

7.2.3 Verification and Test Complexity Reduction for Analog/RF Design. With increasing system
complexity and rising demand for robustness, Analog/RF signal verification has become a key
bottleneck [19], which makes failure detection and design verification very challenging.

A feasible way to reduce the cost of Analog/RF system verification is to use low-cost test equip-
ment to obtain simple results. Then ML models can be used to map from simple results to complex
results obtained by specification testing [5, 34]. The basic assumption is that the training set reflects
the statistical mechanisms of the manufacturing process, thus the learned mapping can generalize
for new device instances. Nevertheless, the ML model might fail to capture the correct mapping
for some devices, since the actual mapping is complex and is not a one-to-one mapping. Thus, a
two-tier test method combining machine learning and specification testing is proposed to improve
the accuracy of results [142]. During the process, the equipment is first tested by low-cost machine
learning-based testing, and the reliability of the results is evaluated. If it is considered insufficient,
then the more expensive specification testing is conducted. An ONN is designed to identify the
ambiguous regions, and forward the devices to the specification testing. This two-tier approach
achieves a trade-off between accuracy and cost.

Although formal verifications can provide guarantees for the specifications under check, they
are only feasible for small analog blocks with idealistic models and fail for practical usage on large
detailed SPICE circuit netlist. Therefore, machine learning is applied to aid the verification process.
HFMV [58] combines a machine learning model with formal verification: When there is insuffi-
cient confidence in the test results of the machine learning model, formal verification is performed.
HFMV proposes a probabilistic machine learning model to check whether there is enough confi-
dence to meet the target specification. As shown in Figure 15, HFMV relies on two active learning
approaches to improve the performance of the ML model, including (1) max variance learning to
reduce model uncertainty and (2) formally guided active learning, to discover rare failure regions.
Their results show that HFMV can detect rare failures.

7.3 Summary of ML for Verification and Testing

There are mainly two ways of accelerating the verification and testing process: (1) reducing the test
set redundancy and (2) reducing the complexity of the testing, verification and diagnosis process.
To reduce the test set redundancy or to optimize the generation of test instances, coverage-directed
test generation has been studied for a long time, which can be aided by lots of ML algorithms. Re-
cently, test set redundancy reduction of analog/RF design or even the test of semiconductor tech-
nology have raised a lot of attention, and more ML methods are applied to solve these problems.
As for reducing the verification and test complexity, there are studies that adopt low-cost tests for
analog/RF design, and some other studies that focus on fast bug classification and localization. The
related works on ML for verification and testing problems are summarized in Table 7.
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Table 7. Summary of ML for Verification and Testing

Section Task ML Algorithm Reference

Test Set
Redundancy
Reduction

Digital Design

Statistical Model [38], [145]
Search Methods [135], [49]
Rule Learning [57], [69], [33]

CNN, SVM, et al.
[24], [47],

[146]
GCN [104]

Analog/RF Design
KNN, ONN [141]
Regression [120]

Semiconductor Technology CNN [100]
Test
Complexity
Reduction

Digital Design SVM, MLP, CNN, et al. [110]

Analog/RF Design
ONN [142]
Active Learning [58]

8 OTHER RELATED STUDIES

8.1 Power Prediction

Power estimation is necessary in electronic system design, which can be carried out at different
levels according to application scenarios. In general, there is a tradeoff between the power esti-
mation accuracy and simulation method complexity. For example, the gate-level estimation can
generate a cycle-by-cycle power track with high accuracy but has a huge time consumption. In
contrast, high-level simulation can only provide less accurate evaluation, but requires less specific
knowledge and computing complexity at the same time. Nevertheless, it is possible for ML meth-
ods to make accurate and detailed power prediction only with high-level evaluation, which shows
significant benefits for fast chip design and verification.

Lee and Gerstlauer [81] propose a multi-level power modeling method, which only uses high-
level C/C++ behavior description and some hardware information to obtain power model at dif-
ferent granularities. The derived power model granularity depends on how much information we
have about the hardware design, i.e., black, grey, or white box modeling. For each modeling prob-
lem, an evaluation flow is designed, and several regression algorithms are applied. The proposed
flow achieves a significant speedup compared with traditional RTL-level or gate-level simulation
within 10% error.

Kim et al. [72] propose an RTL-level power prediction framework named SIMMANI with signal
clustering and power model regression. All the signals are encoded according to the toggle patterns
observed in a specific window, which are then clustered and selected. The regression model takes
the selected signals as the input, and outputs the power estimation result.

Besides traditional regression methods, other ML methods also show great potential in power
predicting problems. PRIMAL [175] is an RTL power estimation framework based on several ML
methods, including Principal Component Analysis (PCA), MLP and CNN. In PRIMAL, the tog-
gle patterns of registers are first encoded into 1D or 2D features and then processed by various ML
algorithms. The trained model can evaluate the power track for new workloads that are very dif-
ferent from the training set. To enhance the local information, a graph-based partitioning method
is leveraged for the mapping strategy from registers to feature pixels. PRIMAL can achieve a 50×
speedup than gate-level power estimation flow with an average error below 5%.

PRIMAL is a promising solution to RTL power prediction. However, there exist transferability
problems with this solution in that a power model can only describe a specific system design.
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That is to say, we have to train a new model for a new design. To solve this problem, a GNN-
based framework named GRANNITE is proposed by Zhang et al. [169]. Different from PRIMAL,
GRANNITE takes the gate-level netlist into consideration to build a GNN. GRANNITE shows good
transferability among different designs by utilizing more hardware details. Note that this work
still conducts an RTL-level power prediction, since the gate-level netlist is only used for the graph
generation, and no gate-level power estimation is involved. Compared to a traditional probabilistic
switching activity estimation, GRANNITE achieves a speed up of two orders of magnitude on
average, and the average relative error is within 5.5%.

8.2 Machine Learning for SAT Solver

SAT plays an important role in circuit design and verification, error diagnosis, model detection of
finite state machines, FPGA routing, logic synthesis and mapping, register allocation, timing, and
so on. Researchers contribute to improving the efficiency of the search engine in SAT solvers and
design various strategies and heuristics. Recently, with the advancement of NNs in representation
learning and solving optimization problems, there have been increasing interests in generating
and solving SAT formula with NNs.

The performance of the conflict-driven Davis Putnam style SAT solver largely depends on the
quality of restart strategies. Haim and Walsh [50] successfully apply a supervised learning method
to design LMPick, a restart strategy selector. Among various heuristics, branching heuristics [40,
46, 88, 114] attract lots of attention for its great performance. Multi-class SVM is applied in Ref-
erence [139] to tune parameters of heuristics, according to the features of both input and output
clauses. SATzilla [157] integrates several solvers and builds an empirical hardness model for solver
selection. Some work [42, 61, 71] evolve heuristics through genetic algorithms by combining ex-
isting primitives, with the latter two aiming at specializing the created heuristics to particular
problem classes. There have also been other approaches utilizing reinforcement learning to dis-
cover variable selection heuristics [41, 79, 86, 87, 88].

Recently, NNs have found their applications in solving SAT. Palm et al. [118] introduce the
recurrent relational network to solve relational inference, e.g., Sudoku. Evans et al. [35] present
an NN architecture that can learn to predict whether one propositional formula entails another
by randomly sampling and evaluating candidate assignments. There have also been several recent
papers showing that various neural network architectures can learn good heuristics for NP-hard
combinatorial optimization problems [9, 70, 144]. Selsam et al. [133] propose to train a GNN (called
NeuroSAT) to classify SAT problems as satisfiable or unsatisfiable. Selsam and Bjørner [132] also
use a simplified NeuroSAT to guide the search process of an existing solver.

In recent studies, a common practice is to use GNN for feature extraction and reinforcement
learning for learning the policy. Lederman et al. [80] learn improved heuristics to solve quantified
Boolean formulas via reinforcement learning while using GNN for formula encoding. Yolcu and
Póczos [166] also use RL to learn local search heuristics with a GNN serving as the policy network
for variable selection. Besides GNN, RNN can also be employed for formula or DAG embedding.
Lately, Amizadeh et al. [7] propose Circuit-SAT to solve SAT problems, employing gated recurrent
units that can implement sequential propagation of DAG-structured data. The training procedure
works in the exploration and exploitation manner, which is similar to the reinforcement learning
paradigm.

8.3 Acceleration with Deep-learning Engine

EDA tools typically involve solving large-scale optimization problems with heavy numerical com-
putation, especially at the physical design stage, and extensive work is devoted to accelerating
these solvers with modern parallel computing hardware like multicore CPUs or GPUs [26, 29,
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101]. Many recent studies have explored GPU’s opportunity in EDA problems [59, 93, 170, 171].
Still, developing good GPU implementation of EDA algorithms is challenging.

Lin et al. [93] leverage the mature deep-learning engines to build a GPU-accelerated placement
framework called DREAMPlace Advancement in ML has encouraged the development of software
frameworks and tool-kits which decouple algorithmic description from system implementation
(e.g., interaction with GPUs, optimizing low-level operator code) to help develop ML models pro-
ductively [3, 123]. The key insight of this article is that the analytical placement problem is anal-
ogous to the training of a NN model. They both involve optimizing some parameters (i.e., cell
locations in placement, weights in NN) to minimize a cost function (i.e., wirelength in placement,
cross-entropy loss in NN). With hand-optimized key operators integrated in DL training frame-
work PyTorch, DREAMPlace demonstrates over 40× speedup against CPU-based multi-threaded
tools [26, 101]. The tool claims to be extensible to new solvers by simply adding algorithmic de-
scription in high-level languages like Python.

8.4 Auto-tuning Design Flow

With the increasing complexity of chip design, massive choices and parameters of the synthesis
tools make up huge design space. To improve the efficiency of tuning, recent studies employ more
advanced learning-based algorithms. In Reference [179], some complete parameter settings are
selected and then gradually adapted during synthesis to achieve optimal results. Kwon et al. [78]
propose the first recommender system based on the collaborative filtering algorithm. The system
consists of two modules: the offline learning module and the online recommendation module. The
offline learning module is to predict QoR given macro specification, parameter configuration, cost
function and iterative synthesis output. The online recommendation module generates several op-
timal settings. A recent study [153] also employs a tree-based XGBoost model for efficient tuning.
Besides, this paper also designs a clustering technique that leverages prior knowledge and an ap-
proximate sampling strategy to balance exploration and exploitation. In Reference [4], a deep RL
framework that adopts unsupervised GNN to generate features is developed to automatically tune
the placement tool parameters.

9 DISCUSSION FROM THE MACHINE LEARNING PERSPECTIVE

In this section, we revisit some aforementioned research studies from an ML-application
perspective.

9.1 The Functionality of ML

Section 2.2 introduces the major ML models and algorithms used in EDA problems. Based on the
functionality of ML in the EDA workflow, we can group most researches into four categories:
decision making in traditional methods, performance prediction, black-box optimization, and au-
tomated design.

Decision making in traditional methods. The configurations of EDA tools, including the choice of
algorithm or hyper-parameters, have a strong impact on the efficiency of the procedure and quality
of the outcome. This class of researches utilizes ML models to replace brute-force or empirical
methods when deciding configurations. ML has been used to select among available tool-chains
for logic synthesis [115, 167], mask synthesis [163], and topology selection in analog design [111,
117, 137]. ML has also been exploited to select hyper-parameters for non-ML algorithms such as
Simulated Annealing, Genetic Algorithm, and so on (refer to Section 3.2.2).

Performance prediction. This type of tasks mainly use supervised or unsupervised learning
algorithms. Classification, regression and generative models are trained by former cases in real
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production to estimate QoR rapidly, to assist engineers to drop unqualified designs without
time-consuming simulation or synthesis.

ML-based performance prediction is a very common type of ML application. Typical applica-
tions of this type include congestion prediction in placement and routing and hotspot detection in
manufacturability estimation (Table 8). The most commonly used models are Linear Regression,
Random Forests, XGBoost, and prevailing CNNs.

Black-box optimization. This type of tasks mainly use active learning. Many tasks in EDA are
DSE, i.e., searching for an optimal (single- or multi-objective) design point in a design space. Lever-
aging ML in these problems usually yields black-box optimization, which means that the search
for optimum is guided by a surrogate ML model, not an explicit analytical model or hill-climbing
techniques. The ML model learns from previously explored design points and guides the search
direction by making predictions on new design points. Different from the first category, the ML
model is trained in an active-learning process rather than on a static dataset, and the inputs are
usually a set of configurable parameters rather than results from other design stages.

Black-box optimization is widely used for DSE in many EDA problems. Related ML theories and
how to combine with the EDA domain knowledge are extensively studied in literature. Typical
applications of this type include tuning HLS-level parameters and physical parameters of 3D inte-
gration (see Table 8). The key techniques are to find an underlying surrogate model and a search
strategy to sample new design points. Options of the surrogate model include GP, along with all
the models used in performance prediction [105, 112]. Search strategies are usually heuristics from
domain knowledge, including uniformly random exploration [95], exploring the most uncertain
designs [180], exploring and eliminating the worst designs [112], and so on.

Automated design. Some studies leverage AI to automate design tasks that rely heavily on human
efforts. Typical applications are placement [113] and analog device sizing [134, 147, 148]. At first
look it is similar to black-box optimization, but we highlight the differences as follows:

• The design space can be larger and more complex, for example in placement, the locations
of all the cells.

• Instead of searching in the decision space, there exists a trainable decision-making pol-

icy that outputs the decisions, which is usually learned with RL techniques.

More complicated algorithms with large volumes of parameters, such as deep reinforcement
learning, are used in these problems. This stream of researches show the potential to fully automate
IC design.

Table 8 summarizes representative work of each category and typical model settings in terms
of algorithm, input, and output.

9.2 Data Preparation

The volume and quality of the dataset are essential to model performance. Almost all studies we
review make some discussions on leveraging EDA domain knowledge to engineer a large, fair, and
clean dataset.

Raw data collection. Raw features and ground truth/labels are two types of data needed by
ML models. Raw feature extraction is often a problem-specific design, but there are some shared
heuristics. Some studies treat the layout as images and leverage image processing algorithms [32,
89, 154]. Some choose geometric or graph-based features from the netlist [150]. Some use
traditional algorithms to generate features [6, 67, 106, 154]. Quite a lot of studies choose features
manually [6, 11, 16, 17, 27, 82, 115]. To some extent, manual feature selection lacks a theoretical
guarantee or practical guidance for other problems. The labels or ground truth are acquired
through time-consuming simulation or synthesis. This also drives researchers to improve data
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Table 8. Overview of ML Functionality in EDA Tasks

ML Functionality
Task / Design
Stage

ML Algorithm Input Output Section

Decision making in

traditional methods

HLS Design space
exploration

Decision Tree,
quadratic
regression, etc.

Hardware directives
(pragmas) in HLS
design

Quality of
hyper-parameters,
e.g., initial state,
termination
conditions

Section 3.2.2

Logic synthesis DNN RTL descriptions
Choice of the
workflow and
optimizer

Section 4.1

Mask synthesis CNN Layout images
Choice of
optimization
methods

[163] in Section 5.1

Analog topology
design

CNN, Fuzzy logic,
etc.

Analog
specifications

Best topology
selection

Section 6.2.1

Performance

prediction

HLS

Linear Regression,
SVM, Random
Forest, XGBoost,
etc.

HLS Report,
workload
characteristics,
hardware
characteristics

Resource usage,
timing, etc.

Section 3.1

Placement and
routing

SVM, CNN, GAN,
MARS, Random
Forest etc.

Features from
netlist or layout
image

Wire-length,
routing congestion,
etc.

Section 4.2

Physical
implementation
(lithography
hotspot detection,
IR drop prediction,
power estimation,
etc.)

SVM, CNN,
XGBoost, GAN, etc.

RTL and gate-level
descriptions,
technology
libraries, physical
implementation
configurations

Existence of
lithography
hotspots, IR drop,
path delay
variation, etc

Section 5.1–4.5, 5.4,
8.1

Verification

KNN, Ontogenic
Neural Network
(ONN), GCN, rule
learning, SVM, CNN

Subset of test
specifications or
low-cost
specifications

boolean pass/fail
prediction

Section 7

Device sizing ANN Device parameter
Possibility of
constraint
satisfaction

Section 6.3

ML Functionality
Task / Design
Stage

ML Algorithm
Tuning
parameters

Optimization
Objective

References

Black-box

optimization

HLS Design Space
Exploration

Random Forest,
Gaussian Process,
Ensemble models,
etc.

Hardware directives
(pragmas) in HLS
design

Quality-of-Results,
including latency,
area, etc.

Section 3.2.1

3D Integration
Gaussian Process,
Neural Network

Physical design
configurations

Clock skew, thermal
performance, etc.

Section 4.4

Automated design

Logic synthesis RL, GCN
Gate-level DAG for
a logic function

Area, latency, etc. Section 4.1

Placement RL, GCN
Macro placement
position

Wire-length,
congestion, etc.

[113] in
Section 4.2.3

Mask synthesis

GAN, CNN,
Decision Tree,
dictionary learning,
etc.

RTL and gate-level
description, layout
images

Generated optical
proximity
correction (OPC)
and sub-resolution
assist feature
(SRAF)

Section 5.1–5.3

Device sizing
RL, GCN, DNN,
SVM

Device parameters
Satisfaction of
design constraints

Section 6.3
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efficiency by carefully architecting their models and preprocessing input features, or use
semi-supervised techniques [25] to expand the dataset.

Feature preprocessing. Standard practices like feature normalization and edge data removal are
commonly used in the preprocessing stage. Some studies also use dimension reduction techniques
like PCA and LDA to further adjust input features [60].

9.3 Domain Transfer

There have been consistent efforts to make ML-based solutions more adaptive to domain shift,
to save training from scratch for every new task. Some researches propose ML models that take
specifications of the new application domain and predict results in the new domain based on results
acquired in original domain. This idea is used in cross-platform performance estimation of FPGA
design instances [109, 116]. It would be more exciting to train AI agents to adapt to new task
without preliminary information of the new domain, and recent studies show that RL might be
a promising approach. RL models pre-trained on one task is able to perform nicely on new tasks
after a fine-tune training on the new domain [113, 134, 147], which costs much less time than
training from scratch and sometimes lead to even better results.

10 CONCLUSION AND FUTURE WORK

It is promising to apply machine learning techniques in accelerating EDA tasks. In this way, the
EDA tools can learn from previous experiences and solve the problem at hand more efficiently.
So far machine learning techniques have found their applications in almost all stages of the EDA
hierarchy. In this article, we have provided a comprehensive review of the literature from both the
EDA and the ML perspectives.

Although remarkable progress has been made in the field, we are looking forward to more
studies on applying ML for EDA tasks from the following aspects.

• Towards full-fledged ML-powered EDA tools. In many tasks (e.g., analog/RF testing, physical
design), the performance of purely using machine learning models is still difficult to meet
the industrial needs. Therefore, smart combination of machine learning and the traditional
method is of great importance. Current machine learning aided EDA methods may be still
restricted to less flexible design spaces, or aim at solving a simplified problem. New models
and algorithms are desired to be developed to make the ML models more useful in real
applications.

• Application of new ML techniques. Very recently, some new machine learning models and
methodologies (e.g., point cloud and GCN) and machine learning techniques (e.g., domain
adaptation and reinforcement learning) begin to find their application in the EDA field. We
expect to see a broader application of these techniques in the near future.

• Trusted Machine Learning. While ML holds the promise of delivering valuable insights and
knowledge into the EDA flow, broad adoption of ML will rely heavily on the ability to trust
their predictions/outputs. For instance, our trust in technology is based on our understand-
ing of how it works and our assessment of its safety and reliability. To trust a decision made
by an algorithm or a machine learning model, circuit designers or EDA tool users need
to know that it is reliable and fair, and that it will cause no harm. We expect to see more
research along this line making our automatic tool trusted.
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