
1476 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 7, JULY 2021

Efficient Layout Hotspot Detection via Binarized
Residual Neural Network Ensemble

Yiyang Jiang , Fan Yang , Member, IEEE, Bei Yu , Member, IEEE,

Dian Zhou, Senior Member, IEEE, and Xuan Zeng , Senior Member, IEEE

Abstract—Layout hotspot detection is of great importance in
the physical verification flow. Deep neural network models have
been applied to hotspot detection and achieved great successes.
The layouts can be viewed as binary images. The binarized neu-
ral network (BNN) can thus be suitable for the hotspot detection
problem. In this article, we propose a new deep learning archi-
tecture based on BNNs to speed up the neural networks in
hotspot detection. A new binarized residual neural network is
carefully designed for hotspot detection. Experimental results on
ICCAD 2012 and 2019 benchmarks show that our architecture
outperforms previous hotspot detectors in detecting accuracy and
has an 8× speedup over the best deep learning-based solution.
Since the BNN-based model is quite computationally efficient,
a good tradeoff can be achieved between the efficiency and
performance of the hotspot detector by applying ensemble learn-
ing approaches. Experimental results show that the ensemble
models achieve better hotspot detection performance than the
original with acceptable speed loss.

Index Terms—Binarized neural network (BNN), deep neural
network, hotspot detection.

I. INTRODUCTION

THE LITHOGRAPHIC printability is one of the most crit-
ical issues in nanoscale integrated circuits. Although var-

ious resolution enhancement techniques have been proposed to
improve the printability in the past years, there still exist sensi-
tive layout patterns which would lead to manufacture defects.
These lithographic hotspots should be detected and fixed at
early design stages.

Two classes of hotspot detection approaches have been
proposed recently: 1) pattern matching-based approach and
2) machine-learning-based approach. The pattern matching-
based methods characterize the hotspots as explicit patterns

Manuscript received September 30, 2019; revised May 1, 2020; accepted
July 16, 2020. Date of publication August 11, 2020; date of current version
June 18, 2021. This work was supported in part by the National Key Research
and Development Program of China under Grant 2019YFA0709602; in part
by the National Natural Science Foundation of China under Grant 61822402,
Grant 61774045, Grant 61929102, and Grant 62011530132; and in part by the
Research Grants Council of Hong Kong SAR under Project CUHK24209017.
The preliminary version has been presented at the ACM/IEEE Design
Automation Conference (DAC) in 2019. This article was recommended by
Associate Editor S. Held. (Corresponding authors: Fan Yang; Xuan Zeng.)

Yiyang Jiang, Fan Yang, and Xuan Zeng are with the State Key Laboratory
of ASIC & System, Microelectronics Department, Fudan University, Shanghai
200433, China (e-mail: yangfan@fudan.edu.cn; xzeng@fudan.edu.cn).

Bei Yu is with the Department of Computer Science and Engineering,
Chinese University of Hong Kong, Hong Kong.

Dian Zhou is with the Department of Electrical Engineering, University of
Texas at Dallas, Richardson, TX 75080 USA.

Digital Object Identifier 10.1109/TCAD.2020.3015918

and identify the hotspots by matching these patterns. In [1]
and [2], the hotspots are encoded by strings and modified
transitive closure graphs. In [3], a graph is used to rep-
resent the layout. The hotspots are encoded as the critical
“faces” of the graph. In [4], density-based layout encoding and
principal components analysis (PCA) are integrated to detect
the hotspot. In [5], a tangent space-based distance metric is
proposed to classify the hotspot patterns. Generally, pattern
matching-based approaches are relatively fast, but impossible
to detect the unseen patterns.

To address this problem, machine-learning-based
approaches have been proposed recently. In the machine-
learning-based approaches, implicit models are built by
learning from the existing training data. It is possible
to detect the unseen hotspots through the generalization
capacities of the machine learning models. However, the
false alarm issues should be carefully treated in the machine
learning approaches [6], [7]. In [8]–[10], the neural network
and support vector machine (SVM) are proposed for hotspot
detection. In [11], Adaboost and decision tree are adopted
for fast hotspot detection. In [12], multikernel SVM and
critical feature extraction are adopted for hotspot detection.
In [13], an unsupervised SVM model and histogram-based
layout representation are applied to predict hotspots. In [14],
optimized concentric circle sampling (CCS) feature [15] and
online learning scheme are proposed for hotspot detection.
In [16], an algorithm for pattern matching which dissects
patterns into rectangles based on polygon edges is proposed.
In [17], a methodology for machine-learning-based hotspot
detection that uses lithography information to build SVM
during its learning process is proposed.

Deep neural networks have demonstrated great successes in
the image classification, object detection tasks in the commu-
nity of computer vision. Some breakthroughs are achieved in
hotspot detection problem as well [18]–[22]. Yang et al. [18]
proposed a deep learning model that takes the original lay-
out image as input and contains more than 20 layers to detect
the hotspots. Yang et al. [19] proposed a deep neural network
that replaces all pooling layers with stride convolution layers.
In [22], a convolutional neural network (CNN) architecture
is proposed for the hotspot detection. It can achieve a nice
balance between the accuracy and the suppression of false
alarms. The features of the hotspots are represented as the
truncated coefficients of the discrete cosine transforms of the
patterns. And floating-point arithmetic is employed in the CNN
architecture. However, the discrete cosine transforms would

0278-0070 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 19,2021 at 00:53:50 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-9031-3179
https://orcid.org/0000-0003-2164-8175
https://orcid.org/0000-0001-6406-4810
https://orcid.org/0000-0002-8097-4053

JIANG et al.: EFFICIENT LAYOUT HOTSPOT DETECTION VIA BINARIZED RESIDUAL NEURAL NETWORK ENSEMBLE 1477

miss the spatial information of the patterns and the floating-
point arithmetic-based neural network would be computation
intensive.

The layouts can be viewed as binary images. The binarized
neural network (BNN) might thus be suitable for constructing
an efficient hotspot detector. In our preliminary work [23],
we propose a new deep learning architecture based on BNNs
to speed up the neural networks in hotspot detection. The
downsampled images of the patterns are taken as the inputs
directly, and the spatial information of the patterns can be fully
exploited in our approach. A new binarized residual neural
network is carefully designed for hotspot detection. Compared
with the floating-point arithmetic-based neural network, the
BNNs are computationally efficient. Experimental results on
ICCAD 2012 Contest benchmarks show that our architecture
outperforms all previous hotspot detectors in detecting accu-
racy and has an 8× speedup over the best deep learning-based
solution. To further improve the performance of the well-
performed BNN-based architecture, we adopt the ensemble
learning approaches which combine the BNN-based model
and its two shallower virant models. The experimental results
show that the ensemble model achieves better hotspot detec-
tion performance compared with the original BNN-base model
with acceptable efficiency loss.

The remainder of this article is organized as follows. In
Section II, the background of hotspot detection is presented.
In Section III, we propose the BNN-based hotspot detection
method. In Section IV, we show the details of the ensem-
ble learning models. In Section V, experimental results are
shown to demonstrate the efficiency of the proposed method.
In Section VI, we conclude this article.

II. BACKGROUND

In this section, we will present the problem formulation of
layout hotspot detection and then review the background of
BNNs and ensemble learning algorithms.

A. Problem Formulation

The lithographic process in chip manufacturing may involve
various variations, which can cause potential open or short
circuit failures and result in performance degradation and
yield reduction. Layout patterns that are sensitive to process
variations are defined as hotspots.

In the hotspot detection process, the most important issue
is to correctly detect as many hotspots as possible. Identifying
an instance as a hotspot which is nonhotspot should also
be avoided. The following metrics are used to evaluate the
performance of the hotspot detector.

Table I shows the confusion matrix of the hotspot detection
problem, where TN denotes the true negative, FN denotes the
false negative, FP denotes the false positive, and TP denotes
the true positive. We have the following definitions.

Definition 1 (Accuracy): The ratio of correctly predicted
hotspots among the set of actual hotspots [24]

Accuracy = # TP

TP + # FN
. (1)

Fig. 1. Hotspot in the layout.

TABLE I
CONFUSION MATRIX OF HOTSPOT DETECTION PROBLEMS

Definition 2 (False Alarm): The number of incorrectly pre-
dicted nonhotspots [24]

False Alarm = # FP. (2)

Definition 3 [Overall Detection and Simulation Time
(ODST)]: The sum of the lithography simulation time for lay-
out patterns detected as hotspots (including real hotspots and
false alarms) and the learning model evaluation time [14]

ODST = (# FP + # TP)tls
+ (# TN + # FN + # FP + # TP)tev (3)

where tls is the lithography simulation time per instance and
tev is the model evaluation time per instance.

Observe that through utilizing multicore parallelism, the
simulation time for each layout core is around 10 s, thus in
ODST calculation, we set tls to 10 s.

With the above definitions, the hotspot detection problem is
formulated as follows.

Problem 1 (Hotspot Detection): Given a dataset that con-
tains hotspot and nonhotspot instances, train a classifier that
can maximize the accuracy and minimize the false alarm.

B. Binarized Neural Networks

In recent years, deep convolution neural networks [25] have
led to a series of breakthroughs in various aspects of com-
puter vision, including image classification, object detection,
and semantic segmentation. Recently, they are also adopted
in hotspot detection problems [22]. However deep neural
networks often suffer from overparametrization and enormous
redundancy in their models which can result in enormous
computational and storage consumption [26]. Parameter quan-
tizing is usually applied to alleviate this problem because high
precision filters such as 32-b floating-point weights are not
necessary for deep neural networks. Thus, the weights can
be quantized to a low bit with acceptable accuracy loss. It
is demonstrated in [27] that a sparse neural network with

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 19,2021 at 00:53:50 UTC from IEEE Xplore. Restrictions apply.

1478 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 7, JULY 2021

Fig. 2. Difference between real-valued neural networks and BNNs.

+1/0/−1 weights can be trained in polynomial time. 32-b
floating-point activations are quantized to 8-b fixed-point inte-
gers in [28]. Neural networks with 3-b activations and ternary
weights are proposed in [29].

BNN is a special type of parameter quantizing method
because the weights are extremely quantized to 1 b. Fig. 2
shows the difference between real-valued neural networks
and BNNs. Due to the precision loss of parameters,
BNNs were believed to face serious performance degra-
dation [30]. However, expectation backpropagation (EPB)
is proposed in [31] to train a high-performance BNN. In
BinaryNet [32], [33], real-valued weights are used for bina-
rization and they are updated ignoring the binarization in the
backpropagation process. A BNN is obtained by retraining a
trained neural network with binary weights and binary inputs
in [34]. Rastegari et al. [35] adopted a new way of binarizing
parameters and activations and achieved huge advance in large
datasets such as ImageNet Large Scale Visual Recognition
Competition [36] (ILSVRC) 2012.

BNNs are inherently suitable for hardware implementa-
tion because binarization replaces floating-point operations
with binary operations which can be very efficiently operated
in logic circuits, such as FPGA and ASIC. It also reduces
the storage and memory bandwidth requirements which is
suitable for low-power embedded implementation. An FPGA-
based BNN accelerator synthesized from C++ to Verilog
is implemented in [37]. An architecture based on the two-
stage arithmetic unit (TSAU) is proposed in [38] to implement
the low-bit CNN on FPGA. A BNN accelerator on the
Xeon+FPGA platform is implemented in [39].

C. Ensemble Learning

Ensemble learning is a type of method that combines
multiple base learners to make a decision as shown in Fig. 3.
The main premise of ensemble learning is that the errors of
an individual model might be compensated by other models
so that it may achieve a better performance than the single
models. Gomes et al. [40] and Kulkarni and Sinha [41] listed
some comprehensive surveys on ensemble learning.

Fig. 3. Common ensemble architecture.

There are two main types of ensemble methods. One is
sequential ensemble methods that are able to convert weak
learners to strong learners. The base learners are generated
sequentially, with AdaBoost [42] as a representative. The other
is parallel ensemble methods which exploit the independence
between the base learners so as to reduce the error by combin-
ing independent base learners. The base learners are generated
in parallel, with Bagging [43] and Random Forest [44] as
representatives.

III. PROPOSED BNN-BASED HOTSPOT DETECTOR

Different from common RGB images and grayscale images,
layout patterns are inherently binarized. Thus, the BNN might
be suitable for classifying the hotspots and nonhotspots. A
BNN-based architecture is carefully designed to detect layout
hotspot efficiently considering the binarization property of the
layout patterns. We will present the details of the proposed
BNN-based hotspot detector in this section.

A. Convolutional Neural Networks and Gradient Descent

CNNs are widely adopted in deep learning models. A CNN
architecture usually consists of several convolution layers and
fully connected (FC) layers. An L-layer CNN architecture can
be defined as <W, T ,⊗, f >. W is the set of weights of the
network. Wl,k is the kth convolution filter of the lth layer.
Wl,k ∈ R

cin×wk×hk , where (cin, wk, hk) denote the number of
input channels, the width, and height of the convolution kernel,
respectively. T is the set of input tensors of the network,
where Tl is the input tensor of the lth layer and the output
tensor of the (l − 1)th layer as well. Tl ∈ R

cin×win×hin , where
(cin, win, hin) represents the channel, width, and height of the
input tensor. ⊗ represents the convolution computation which
is defined in

Tl ⊗ Wl,k
[
j, k

] =
ck∑

c=1

wk∑

w=1

hk∑

h=1

Wl,k[c, w, h]Tl
[
c, j − w, k − h

]
.

(4)

f represents the activation function so that Tl+1,k = f (Tl ⊗
Wl,k). Following the tradition, we use the rectified linear unit
(ReLU) activation function which is defined in (5) instead of
the old fashioned sigmoid activation function defined in (6)

ReLU(x) =
{

x x > 0
0 else

(5)

Sigmoid(x) = 1

1 + e−x
. (6)

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 19,2021 at 00:53:50 UTC from IEEE Xplore. Restrictions apply.

JIANG et al.: EFFICIENT LAYOUT HOTSPOT DETECTION VIA BINARIZED RESIDUAL NEURAL NETWORK ENSEMBLE 1479

Fig. 4. Redesigned binarized network based on residual network.

The 2 × 2 max pooling performs 2 × 2 downsampling that
outputs the max value of the local 2 × 2 feature. It reveals
the overfitting problem by providing an abstracted form of the
representation and reduces the computational cost by reducing
the number of parameters. Global average pooling (GAP) is
widely used to reveal the overfitting by reducing the total num-
ber of parameters in the model in the last few years. Compared
with max pooling, the GAP performs a more extreme type
of dimensionality reduction. For a tensor with the shape of
c×w×h, GAP reduces the tensor to have dimensions c×1×1
in size where each w × h feature map is averaged to a single
number.

Gradient descent is an optimization algorithm used for find-
ing the weights or coefficients of machine learning algorithms,
including artificial neural networks, logistic regression, etc.
The model makes predictions on training data and the error
on the predictions is used to update the weight so as to reduce
the error. All parameters are updated according to their gra-
dients. Backpropagation [45] is widely applied to calculate
gradients when training neural networks.

Gradient descent can vary in terms of the number of
instances used to update the parameters. The three main kinds
of gradient descent are batch, stochastic, and mini-batch.

In the batch gradient descent (BGD), the error of each exam-
ple in the training set is calculated and the model gets updated
after all training instances are evaluated. The BGD updates the
model at the end of each training epoch. The BGD is compu-
tationally efficient and generates a more stable error gradient
which can result in a more stable convergence. However, the
stable gradient might lead to premature convergence of the
model to a less minima. The BGD usually requires the entire
training dataset in the memory which is not suitable for large
datasets.

In the stochastic gradient descent (SGD), the error is cal-
culated and the model is updated for each training instance in
the training set. The high model update frequency can result in
faster training speed on some problems and avoid local min-
ima. However, the noisy gradient can make the model hard
to converge. Also updating the model too frequently is more
computationally expensive than the BGD.

The mini-BGD (MGD) is a compromise approach. The
training set is split into small batches to calculate error and
update the model parameters. MGD tries to find a balance
between the efficiency of BGD and the robustness of SGD

and is suitable for large datasets. MGD is widely used in
the field of deep learning. The MGD requires an additional
hyperparameter “batch size” which should be carefully tuned.

B. Network Architecture

With networks going deeper, some problems begin to
influence the convergence of the network like gradient van-
ishing/exploding [46] and accuracy saturation. ResNets [47]
bypass information between layers via identity connections
called “shortcut connections” to relieve the effect of the
accuracy saturation problem.

Based on the philosophy of ResNet, we design our binarized
architecture to fit the hotspot detection problem. Considering
the size of the training set and the computational complexity, a
too deep network architecture is not appropriate. The network
is preliminarily set to be with fewer than 20 layers.

Our baseline network architecture is the ResNet-18 model.
The convolution layers of the original model are replaced
by binary convolution layers whose input/output tensors and
weights are binarized. We use two 3 × 3 binary convolution
layers as the basic building block. To further reduce the time
complexity and address the overfitting problem, the number
of layers is reduced and the number of filters of each layer is
readjusted. We generally follow the rule that the deeper a layer
is, the more filters it contains and keep as few filters as possi-
ble for all layers. Finally, we derive a 12-layer network which
achieves high speed and satisfies the accuracy requirement at
the same time.

Our network architecture is shown in Fig. 4. The 1 × 1
convolution blocks in the shortcut connections appear where
the input tensor and output tensor of a residual block do not
have the same shapes. The input tensor is convolved with 1×1
kernel to acquire the same tensor shape as the output tensor
so that they can be summed at the end of a residual block.

In the network architecture, each convolution block consists
of three cascaded layers: 1) batch normalization [48]; 2) bina-
rizing; and 3) binary convolution. Fig. 5 shows the structure
of a convolution block. The batch normalization layer normal-
izes the input tensor by its mean and variance. The binarizing
layer binarizes the input tensors as the input of the next binary
convolution layer. Following the practice in [35], the batch nor-
malization layer is placed before the binarizing layer to further
reduce the information loss due to binarization.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 19,2021 at 00:53:50 UTC from IEEE Xplore. Restrictions apply.

1480 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 7, JULY 2021

Fig. 5. Typical BNN block structure.

C. Binarization Approach

After binarization, the parameters and input tensors of the
layers become binary. The corresponding L-layer BNN can
be defined as <B,AB, I,AT ,�, f >. The binary filter WB ∈
B and the scaling factor αB ∈ AB are used to estimate the
original full-precision filter W ∈ W . The binary input tensor
TB ∈ I and the scaling factor αT ∈ AT are used to estimate the
original input tensor Tin ∈ T . Here, WB ∈ {+1,−1}cin×wk×hk

and TB ∈ {+1,−1}cin×win×hin . αT ∈ R
cin×win×hin, αB ∈ R

+. �
represents the binarized convolution operation, which is much
faster than the full-precision convolution.

The convolution operation consists of shift kernel operations
and dot product operations. The weight filter slides over the
input tensor and the output is the inner product of the kernel
vector and the vector of the corresponding block in the input
tensor. To minimize the binarization loss of the convolution
operation, the gap between inner products of full-precision
input tensors and weight filters and those of binarized input
tensors and weight filters needs to be minimized.

Let W be the kernel which is an n-element vector and X
be the vector of the corresponding block in the input tensor,
n = wk ×hk. Let WB and XB be the binarized kernel and input
vector and αW and αX be the corresponding scaling factors so
that W � X ≈ αWWB � αXXB. Here, W, X ∈ R

n, WB, XB ∈
{−1,+1}n, and αW , αX ∈ R

+.
The binarizing method we adopt is similar to XNOR-

Net’s [35] except that different scaling factors for input vector
in different input channels are adopted which can estimate the
input tensor more accurately.

The binarization loss of inner product operation Li is
defined in

Li(WB, XB, αW , αX) = ‖W � X − αWWB � αXXB‖2. (7)

Minimizing binarization loss can be rewritten to the
optimization problem in

W∗
B, X∗

B, α∗
W , α∗

X = arg min
WB,XB,αW ,αX

Li(WB, XB, αW , αX). (8)

To simplify the problem, we define C = W � X, CB =
WB � XB and α = αWαX , where C ∈ R

n, CB ∈ {−1,+1}n

and α ∈ R
+. Equation (8) can be rewritten as

C∗
B, α∗ = arg min

CB,α

‖C − αCB‖2. (9)

Solving the optimization problem, we have

C∗
B = sign(C)

α∗ = 1

n
‖C‖l1. (10)

Since W∗
B and X∗

B are independent, we decompose C∗
B and

α∗ to get W∗
B, X∗

B, α∗
W , α∗

X

W∗
B = sign(W), X∗

B = sign(X)

α∗
W = ‖W‖l1

n
, α∗

X = ‖X‖l1

n
. (11)

According to the calculations above, the estimated weight W̃
and the estimated corresponding input vector X̃ are

W̃ = 1

n
sign(W)‖W‖l1

X̃ = 1

n
sign(X)‖X‖l1. (12)

D. Training Binarized Networks

Like normal CNNs, we train our network with the
MGD [49] approach which can utilize computation resources
more efficiently than SGD. A group of instances are randomly
picked from the training set to perform forward and backward
process in each training iteration.

During the training process, the main objective is to update
the real-valued kernel W. Backpropagation [45] is widely
applied to calculate gradients when training neural networks.
Modern deep learning libraries can easily calculate the gradi-
ents of the kernels of a normal CNN with backpropagation.
The key difference between CNN and BNN architecture is
the sign function sign(r). The derivative of the sign function
is zero almost everywhere which can interdict the propagation
of the gradients. To compute the gradient for sign function, we
adopt the straight-through estimator introduced in [33] which
considers the saturation effect

∂sign(x)

∂x
= 1‖x‖<1 (13)

where 1‖x‖<1 is the indicator function which is defined as
follows:

1‖x‖<1 =
{

1, ‖x‖ < 1
0, else.

(14)

Adopting the binarization approach, in the forward process,
the estimated convolution kernel W̃ is

W̃ = α∗
WW∗

B (15)

whose gradient can be calculated via standard backward
propagation according to (13).

The gradients of the real-valued weights are calculated
in (16) via the chain rule

∂l

∂W
= ∂l

∂W̃

∂W̃
∂W

= ∂l

∂W̃

∂
(

1
n‖W‖l1sign(W)

)

∂W

= ∂l

∂W̃

(
1

n
+ α∗

W1‖W‖<1

)
(16)

where (∂l/∂W) and (∂l/∂W̃) denote the gradients of the loss
function l with respect to the full-precision weight W and
estimated weight W̃.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 19,2021 at 00:53:50 UTC from IEEE Xplore. Restrictions apply.

JIANG et al.: EFFICIENT LAYOUT HOTSPOT DETECTION VIA BINARIZED RESIDUAL NEURAL NETWORK ENSEMBLE 1481

Algorithm 1 Training a BNN
Input: (T0, Y): a minibatch of input tensors and labels;

1: l(Y, Yout): loss function;
2: W t: current real-valued weight;
3: L: number of layers;
4: n: kernel size of layers;
5: ηt: current learning rate;

Output: W t+1: updated real-valued weight; ηt+1: updated
learning rate.

6: 1. Forward Process:
7: for k = 1 to L do
8: Bt

k = BinarizeWeight(W t
k)

9: Tk+1 = BinarizeInput(BatchNorm(Tk)) � Bt
k

10: end for
11: Yout = TL+1
12: 2. Backward Process:
13: for k = L to 1 do
14: ∂l

∂Tk
= BinaryBackward(∂l

∂Tk+1
, Tk)

15: ∂l
∂Bt

k
= BinaryBackward(∂l

∂Tk+1
,Bt

k)

16: ∂l
∂W t

k
= 1

nl
(1 + ‖W t

k‖l11‖W t
k‖<1)

∂l
∂Bt

k
17: end for
18: 3. Update Parameters:
19: W t+1, ηt+1 = Update(W t, ∂l

∂W t , η
t)

20: return W t+1, ηt+1

The procedure for training a BNN is shown in Algorithm 1.
The called procedures are listed as follows.

1) BatchNorm(): Batch normalization function.
2) BinarizeWeight(): Weight binarization function.
3) BinarizeInput(): Input tensor binarization function.
4) BinaryBackward(): Binarized backward function.
5) Update(): Optimizer for updating weights and learning

rates.
In Algorithm 1, we binarize the convolution kernel and

input tensor and compute the output from first to the Lth layer
first. Next, we calculate the gradients of the binarized weights
(∂l/∂Bt) using the standard backpropagation algorithm. Then,
we calculate the gradients of the real-valued weights (∂l/∂W t)

according to (16). Finally, we update the parameters and learn-
ing rate with an appropriate optimizer, e.g., NAdam [50] in this
article.

E. Implementation Details

We present the implementation details in this section.
1) Redundant Computations in Overlapping Areas: During

the binary convolution, each time the binary convolution kernel
WB ∈ {−1,+1}Rcin×wk×hk shifts over the input tensor Tin ∈
R

cin×win×hin , the scaling factor αX for the corresponding input
vector X ∈ R

cin×wk×hk needs to be recomputed. Because the
stride of convolution is usually lower than the kernel size,
there are overlaps between these input vectors, which leads
to a large number of redundant computations. To address this
problem, we first compute |Tin| which is the scaling factor
of the input tensor for every single pixel. For kernels whose
shape is not 1 × 1, these scaling factors need to be averaged

Fig. 6. Remove redundant computations during scaling factor calculations.

by the shape of the kernel. Next, we construct a matrix K with
shape of [wk, hk] whose every element is (1/wkhk). Matrix K
is used to average |Tin| locally by convolving |Tin| with K for
each channel. The scaling factor for input tensor is αT

αT(c) = |Tin(c, :, :)| ⊗ K (17)

where ⊗ represents the full-precision convolution. The final
output of the binary convolution layer is expressed as

Tout = αB(sign(Tin) � sign(WB)) � αT (18)

where αB is the scaling factor for the kernel and � represents
the binary convolution which is much faster than the full-
precision convolution. The procedure is illustrated in Fig. 6.

2) Biased Learning Algorithm: The loss function we use
is softmax cross-entropy which can provide speedup for back-
propagation and is widely adopted in deep learning models.
In the hotspot detection task, each instance xi that belongs to
class c has a ground-truth label y∗

i , that is

y∗
i [k] =

{
1 k = c
0 k 	= c

(19)

where k ∈ {0, 1} in the hotspot detection problem. The pre-
dicted vector and ground-truth label y∗

i are regard as the
probability distribution of the classes. The hotspot instance
has a label of y∗

h = [0, 1] and the nonhotspot instance has a
label of y∗

n = [1, 0]. To generate the loss, the output vector
[xn, xh] is normalized with the softmax function

x′
n = exn

exn + exh

x′
h = exh

exn + exh
. (20)

The cross entropy loss is defined in

L = −(
log

(
x′

n

)
y∗

i [0] + log
(
x′

h

)
y∗

i [1]
)
. (21)

Note that the dataset is quite biased which contains much
more nonhotspot instances than the hotspot instances. To
further improve the detecting accuracy of our model, the
biased learning in [22] is adopted after the model is trained
with Algorithm 1. The trained model is fine-tuned with non-
hotspot’s label changed to y∗

n = [1 − ε, ε] and hotspot’s label
keeps the same. ε is the bias term. In our experiment, we
set ε = 0.2. The bias learning method improves the detecting
accuracy but also increases the false alarms at the same time.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 19,2021 at 00:53:50 UTC from IEEE Xplore. Restrictions apply.

1482 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 7, JULY 2021

IV. MODELS ENSEMBLE

Due to the efficiency of the BNN model, the ensemble
learning approaches are acceptable for further improving the
performance with some efficiency loss.

Considering a binary classification problem, y ∈ {−1,+1}
and the ground-truth function is f , if the error rate of classifier
hi is ε, we have

P(hi(x) 	= f (x)) = ε. (22)

If we integrate T classifiers by simply voting, we construct a
ensemble classifier H(x), that is

H(x) = sign

(
T∑

i=1

hi(x)

)

. (23)

If the error rates of classifier hi are independent, the error rate
of the ensemble classifier H(x) is

P(H(x) 	= f (x)) =
T/2∑

k=0

(
T
k

)
(1 − ε)kεT−k

≤ exp

(
−1

2
T(1 − 2ε)2

)
. (24)

Theoretically, the error rate will go down to near zero with
more and more classifiers integrated. The variance of the inte-
grated classifiers is important for improving the performance
of the ensemble model. Thus, we propose two shallower
network structures with ten layers and eight layers marked as
BNN-10 and BNN-8 to improve the diversity without increas-
ing too much computation complexity. The details of BNN-10
and BNN-8 are shown in Figs. 7 and 8.

Generally, given a dataset of n examples D = {(xi, yi)}
|D| = n, the ensemble learning model H uses an aggrega-
tion function G that aggregates T inducers, {h1, h2, . . . , hT} to
predict a single output

y = H(x) = G(h1, h2, . . . , hT)(x) (25)

where y ∈ R for regression problems and y ∈ Z for classi-
fication problems. To fit this hotspot detection problem, the
following ensemble policies are adopted for the ensemble
model. In this article, hi(x) = [h0

i (x), h1
i (x)], where hk

i (x) is
the output for the kth class of the classifier hi. Because the
hotspot detection problem is a binary classification problem,
k ∈ {0, 1}. In the voting-based policies hk

i (x) ∈ {0, 1}, the
first-level classifiers output the predicted class indices. In the
averaging-based and stacking policies hi(x) ∈ R

+, the first-
level classifiers output the softmax probability distributions of
classes.

A. Voting-Based Policies

Majority Voting: In this policy, each classifier hi has the
same weight. The class which gets the most votes is selected

H(x) =
{

[0, 1]
∑T

i=1 h0
i (x) <

∑T
i=1 h1

i (x)
[1, 0] else.

(26)

Weighted Voting: In this policy, each classifier hi has weight
wi based on its error rate εi on the test set. The sum of weights

wi is 1. The definition of wi is

wi =
1
εi∑T

k=1
1
εk

. (27)

The class which gets the most weighted votes is selected as
well

H(x) =
{

[0, 1]
∑T

i=1 wih0
i (x) <

∑T
i=1 wih1

i (x)
[1, 0] else.

(28)

B. Averaging-Based Policies

Simple Averaging: In this policy, the output of the single
classifier hi is the predicted probability distribution, the ensem-
ble model simply averages these probability distributions as
the final output

H(x) = 1

T

T∑

i=1

hi(x). (29)

Weighted Averaging: Different from the simple averaging,
each classifier hi gets weight wi based on its error rate εi in
the weighted averaging policy. The definition of wi is shown
in (27). The ensemble model H averages the outputs of the
first-level classifiers hi according to their weights as the final
output

H(x) =
T∑

i=1

wihi(x). (30)

C. Stacking

Different from the above policies, in stacking procedure, a
model is trained to combine the individual first-level classi-
fiers. The combiner is called meta-learner. The basic idea of
the stacking algorithm is to train the first-level classifiers with
the original training dataset and then generate a new dataset
for training the meta-learner, where the outputs of the first-
level classifiers are treated as input features while the original
labels are still regarded as labels of the new training dataset.
The general procedure of stacking is illustrated in Algorithm 2.

A new dataset is built from the outputs of the first-level
classifiers while training the meta-learner. If this dataset is
generated from exactly the same dataset used to train the clas-
sifiers, that may cause overfitting. So following the practice of
the previous paper, the cross-validation procedure is adopted to
exclude the data used for generating the new dataset from the
training set used for training the first-level classifiers. In the
experiment, we adopt the k-fold cross-validation procedure.
The whole dataset D is split into k equal parts D1, . . . , Dk.
D−j is defined as D−j = D\Dj. The first-level classifier ht is
trained on D−j as h−j

t . For an instance xi in Dj, the output
of h−j

t is zit = h−j
t (xi) and the new dataset generated from

the instance xi is zi = (zi1, . . . , ziT), yi. The new dataset for
training the meta-learner is

D′ = {(zi, yi)}m
i=1. (31)

The meta-learner h′ learns a function from zi to yi. Then, the
first-level classifiers are regenerated by training on the whole
training dataset.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 19,2021 at 00:53:50 UTC from IEEE Xplore. Restrictions apply.

JIANG et al.: EFFICIENT LAYOUT HOTSPOT DETECTION VIA BINARIZED RESIDUAL NEURAL NETWORK ENSEMBLE 1483

Fig. 7. Network structure of BNN-10.

Fig. 8. Network structure of BNN-8.

Algorithm 2 Stacking Procedure
Input:

1: D = {(x1, y1), (x2, y2), . . . , (xn, yn)}: Training set;
2: ζ1, . . . , ζT : first-level classifiers learning algorithms;
3: ζ : Ensemble model learning algorithm.
4: for t = 1 to T do
5: hi = ζi(D)

6: end for
7: D′ = ∅

8: for i = 1 to n do
9: for t = 1 to T do

10: zit = ht(xi)

11: end for
12: D′ = D′ ∪ ((zi1, . . . , ziT), yi)

13: end for
14: h′ = ζ(D′)
Output:
15: H(x) = h′(h1(x), . . . , hT(x)): Ensemble classifier.

Because we only have three models, the T-fold cross-
validation procedure can lose too many instances for training
the first-level classifiers although these they will be trained
on the whole training set after the whole cross-validation pro-
cedure. As a result, we adopt tenfold cross-validation in the
training process.

Following the practice in [51] and [52], class probability dis-
tributions are used instead of crisp class labels as features for

the new dataset to show the confidence of the individual first-
level classifiers. Multiresponse linear regression (MLR) [53]
is adopted for the meta-learner. MLR is a variant of the least-
square linear regression algorithm. For conventional linear
regression model Mlr, to predict the probability of the kth class
pk in a K-class classification problem with input instance as xi

pk = Mlr([zi1, . . . , ziT])

min ‖pk − yi[k]‖2 (32)

where zit is the output of the t-th classifier which has K fea-
tures. The model is trained by minimizing the square error
between pk and yi[k], where yi[k] is the kth element of yi. The
class with highest pk is selected as the predicted class.

The MLR model is a little different from LR. Only the
probability of the kth class predicted by first-level classifiers
is used to construct the model when predict the probability of
the kth class

pk = Mmlr([zi1[k], . . . , ziT [k]])

min ‖pk − yi[k]‖2 (33)

where zit[k] is the kth element of the output of the t-th
first-level classifier. With MLR, better performance is usually
achieved than adopting LR.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

All our training and testing code is built on MXNet [54]
referring to the implementation in [55]. We train and test our

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 19,2021 at 00:53:50 UTC from IEEE Xplore. Restrictions apply.

1484 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 7, JULY 2021

Fig. 9. Dataset examples. (a) and (b) Hotspots. (c) and (d) Nonhotspots.

TABLE II
BENCHMARK STATISTICS

TABLE III
TRAINING HYPERPARAMETER SETTINGS

model on a machine with a 4-core Intel CPU and a Nvidia
GTX 1060 GPU.

Following the practice in [22], we merge all the patterns of
the ICCAD 2012 contest to verify the scalability of our model.
Fig. 9 shows some samples of the dataset. Due to the fact that
the ICCAD 2012 benchmark lacks the diversity of patterns,
we further experiment on the more challenging ICCAD 2019
benchmark. The statistics of the datasets is listed in Table II.
For training data, columns “# Training HS” and “# Training
NHS” show the numbers of hotspots and nonhotspots in the
training set, respectively. For testing data, columns “# Testing
HS” and “# Testing NHS” give the numbers of hotspots and
nonhotspots in the testing set. The ICCAD 19-1 dataset and
ICCAD 19-2 dataset share the same training set.

B. Training Details

We present the training details in this section. Table III
shows the hyperparameter settings.

1) Data Preprocessing: Different from normal image clas-
sification problems, the hotspots might be anywhere in the
input layout clips so the widely used randomly cropping aug-
mentation method is not adopted in this article. Note that
the input layout clips are all square. The input binary images
are simply downsampled to [ls, ls]. After careful tuning, ls is
finally set as 128 which achieves a nice balance between accu-
racy and speed. Random horizontal and vertical flipping are
performed for training which can improve the diversity of the
dataset and increase the trained model’s generalization abil-
ity due to the flipping variance of the convolution operation.
Compared with preprocessing methods adopted in previous
works, such as DCT-based feature tensor extraction [22] and

maximal circle mutual information (MCMI) scheme [14], our
preprocessing method keeps the most spatial information of
the original patterns.

2) Training Hyperparameters: The real-valued kernels
are initialized with Xavier initializer [46]. We do not use
dropout [56] following the practice in ResNet paper [47].

The optimizer adopted for training the model is Nesterov-
accelerated adaptive moment estimation (NAdam) opti-
mizer [50], which combines adaptive moment estimation
(Adam) optimizer [57] and Nesterov-accelerated gradient
(NAG) optimizer [58]. We train our model using mini-batches
of size 128 for 150 epoches and pick the model with the best
performance on the validation set. We set the initial learning
rate as 0.15. The learning rate decay scheme is to exponen-
tially decay each 40 epoch which is used in [59]. The bias
term is set to 0.2 as mentioned in Section III-E.

C. Experimental Results on ICCAD 2012 Benchmark

To evaluate the performance of our ensemble learning
model, we compare the results of the ensemble model on the
ICCAD 2012 benchmark with our preliminary results in [23]
as shown in Table IV. Four main metrics are listed in the
table. “False Alarm (%)” denotes the ratio of false alarms
(Definition 2) to all nonhotspots. “Runtime (s)” denotes the
evaluating time of the model. “ODST (s)” denotes the over-
all detection simulation time (Definition 3). “Accuracy (%)”
denotes the hotspot detection accuracy. All deep learning mod-
els are accelerated with a middle-end graphic card Nvidia
GTX1060. The others are tested on CPU only. Following [60],
we set the lithography simulation time per instance tls in (3)
as 10 s to calculate the ODST.

“DAC19 [23]” lists the results of the model in our prelim-
inary work [23]; “BNN-10” and “BNN-8” correspond to the
results obtained by the two shallower models with ten layers
and eight layers, respectively; “E-MV” and “E-WV” show the
results of the ensemble models which take majority voting pol-
icy and weighted voting policy in Section IV-A; “E-SA” and
“E-WA” correspond to the ensemble models with simple aver-
aging policy and weighted averaging policy in Section IV-B;
and “E-Stacking” lists the result of the ensemble model with
stacking algorithm in Algorithm 2.

In this article, we adopt ensemble learning approaches to
further improve the performance of the binary neural network
models. As listed in Table IV, the two shallower networks get
lower accuracy and more false alarms than the original model
due to the network structure complexity loss but with more
computation and storage efficiency. The next five ensemble
models (E-MV, E-WV, E-SA, E-WA, and E-Stacking) com-
bine the original model and the two shallower models BNN-10
and BNN-8 to achieve a better performance. The ensemble
models almost outperform the original BNN model in accu-
racy (99.3%, 99.2%, 99.3%, 99.3%, and 99.4% versus 99.2%
of [23]). The “E-SA” and “E-Stacking” also outperform the
original model in false alarm rate (20.5% of “E-SA,” 19.7%
of “E-Stacking” versus 20.6% of [23]). The “E-MV,” “E-
WV,” and “E-WA” achieve comparable performance in false
alarms as well. The runtime of the ensemble models is almost

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 19,2021 at 00:53:50 UTC from IEEE Xplore. Restrictions apply.

JIANG et al.: EFFICIENT LAYOUT HOTSPOT DETECTION VIA BINARIZED RESIDUAL NEURAL NETWORK ENSEMBLE 1485

TABLE IV
PERFORMANCE COMPARISONS BETWEEN INDIVIDUAL MODELS AND THE ENSEMBLE MODELS ON ICCAD 2012 BENCHMARK

TABLE V
PERFORMANCE COMPARISONS WITH PREVIOUS HOTSPOT DETECTORS ON ICCAD 2012 BENCHMARK

TABLE VI
PERFORMANCE COMPARISONS WITH STATE-OF-THE-ART HOTSPOT DETECTORS ON ICCAD 2019 BENCHMARK

the same which is about 2.25 times of the original model.
But considering the efficiency of the original model, the run-
time increase is acceptable. The best-performed “E-Stacking”
model also outperforms the original model in ODST (51 776 s
of “E-Stacking” versus 52 970 s of [23]) which enormously
remedies the runtime increase.

Some of the ensemble models get more false alarms than the
original model. We think the reason might be that the models
trained with biased learning approaches do not predict con-
fidently enough for nonhotpots. There is a tradeoff between
the accuracy and false alarm achieved by decreasing the
confidence of nonhotspot predictions. Therefore, some inap-
propriate weight distributions can possibly lead to more false
alarms. Also results in [61]–[63] show that weighted aver-
aging is not clearly superior to simple averaging because of
overfitting problems.

We then compare our model’s hotspot detection results with
four previous hotspot detectors in Table V. “SPIE’15 [11]”
adopts the density-based layout features and the AdaBoost-
DecisionTree model. “ICCAD’16 [14]” applies optimized
CCS feature and online learning scheme for hotspot detection.
“TCAD’18 [22]” improves the hotspot detection performance
with DCT-based feature extraction and deep biased learning
algorithm. “DAC’19 [23]” enormously improves the efficiency
of the hotspot detector with a residual BNN architecture.
“E-Stacking” is our best-performed ensemble model which
adopts the stacking algorithm in Algorithm 2 to combine the
model of [23] and its two shallower variants.

The experimental results show that our model achieves
the best performance in the ICCAD-2012 testcase. Overall
our “E-Stacking” ensemble model outperforms the previous
hotspot detectors in both accuracies (99.4% of E-Stacking
versus 84.2% of SPIE’15; 97.7% of ICCAD’16; 98.4% of
TCAD’18; and 99.2% of DAC’19) and false alarm rate
(19.7% of E-Stacking versus 21.6% of SPIE’15; 33.3% of
ICCAD’16; 26.2% of TCAD’18; and 20.6% of DAC’19). Due
to the fewest false alarms our ensemble model achieves, “E-
Stacking” gets the lowest ODST among all hotspot detectors as
well. Although the ensemble “E-Stacking” model loses some
computation efficiency compared with the original BNN model
in DAC’19 due to the models ensemble (136 s of “E-Stacking”
versus 60 s of DAC’19), the runtime of “E-Stacking” is still
acceptable because it is still more efficient than all other hot-
pot detectors. That should be owed to the efficiency of the
BNN architecture.

D. Experimental Results on ICCAD 2019 Benchmark

We further experiment our method on the more challenging
ICCAD 2019 dataset [64]. Table VI shows the results of the
state-of-the-art methods [22], [23] and the best-performed “E-
Stacking” model on the benchmark.

In the ICCAD 2019-1 dataset, the “E-Stacking” ensem-
ble model outperforms the other two state-of-the-art methods
in both accuracy (80.9% of E-Stacking versus 76.0% of
TCAD’18 and 80.9% of DAC’19) and false alarm rate (2.5%

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 19,2021 at 00:53:50 UTC from IEEE Xplore. Restrictions apply.

1486 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 7, JULY 2021

of E-Stacking versus 2.6% of TCAD’18 and 3.5% of DAC’19).
In the ICCAD 2019-2 dataset, the “E-Stacking” ensemble
model gets the best performance as well in both accuracy
(89.8% of E-Stacking versus 88.4% of TCAD’18 and 89.9%
of DAC’19) and false alarm rate (83.9% of E-Stacking ver-
sus 87.8% of TCAD’18 and 84.1% of DAC’19). We also
notice that in the ICCAD 2019 benchmark paper [64] the
VTS’18 [65] method gets a quite low false alarm rate by gener-
ating synthetic hotspot patterns and adding them to the training
set so as to enhance the training set. Since the generated pat-
terns for training is not released yet, we do not compare it with
the other methods which are trained on the released training
set temporarily. The “E-Stacking” model loses some efficiency
compared with the single model (130 s of E-Stacking versus
59 s of DAC’19 and 1090 s of E-Stacking versus 498 s of
DAC’19) which is similar to the results in the previous exper-
iments. Due to the fewest false alarms, the “E-Stacking” model
still gets the lowest ODST among the three methods in both
ICCAD 2019-1 and ICCAD 2019-2 datasets.

VI. CONCLUSION

Deep neural network models have been applied to hotspot
detection and achieved great successes. However, the deep
neural network models can also lead to enormous computa-
tional and storage consumption. In this article, considering
the binary characteristic of the lithography layout, we pro-
pose a BNN-based architecture to address this problem. The
downsampled images of the patterns are taken as the inputs
directly, and the spatial information of the patterns can be cap-
tured in our approach. The experimental results on ICCAD
2012 and 2019 benchmarks show that the BNN-based archi-
tecture outperforms previous hotspot detectors and achieves an
8× speedup over the best deep learning-based solution. We
further adopt ensemble learning approaches which combine
the BNN-based model and its two shallower virant models
to further improve the performance of the BNN model. The
experimental results show that the ensemble model achieves
better hotspot detection performance compared with the orig-
inal BNN-base model with acceptable efficiency loss. Note
that BNNs are more compatible with digital circuits than tra-
ditional CNNs. Thus, the more efficient hardware-accelerated
hotspot detectors are expected.

REFERENCES

[1] H. Yao, S. Sinha, J. Xu, C. Chiang, Y. Cai, and X. Hong, “Efficient
range pattern matching algorithm for process-Hotspot detection,” in
Proc. ICCAD, 2006, pp. 2–15.

[2] Y.-T. Yu, Y.-C. Chan, S. Sinha, I. H.-R. Jiang, and C. Chiang, “Accurate
process-Hotspot detection using critical design rule extraction,” in Proc.
DAC, 2012, pp. 1167–1172.

[3] A. B. Kahng, C.-H. Park, and X. Xu, “Fast dual graph based Hotspot
detection,” in Proc. SPIE, 2006, Art. no. 63490H.

[4] W.-Y. Wen, J.-C. Li, S.-Y. Lin, J.-Y. Chen, and S.-C. Chang, “A fuzzy-
matching model with grid reduction for lithography Hotspot detection,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 33, no. 11,
pp. 1671–1680, Nov. 2014.

[5] F. Yang, S. Sinha, C. C. Chiang, X. Zeng, and D. Zhou, “Improved
tangent space-based distance metric for lithographic Hotspot classifica-
tion,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 36,
no. 9, pp. 1545–1556, Sep. 2017.

[6] J.-Y. Wuu, F. G. Pikus, and M. Marek-Sadowska, “Efficient approach to
early detection of lithographic Hotspots using machine learning systems
and pattern matching,” in Proc. SPIE, 2012, Art. no. 79740U.

[7] D. D. et al., “Efficient prediction of IC manufacturing Hotspots with
a unified meta-classification formulation,” in Proc. ASP-DAC, 2012,
pp. 263–270.

[8] D. Ding and D. Z. Pan, “Machine learning based lithographic Hotspot
detection with critical feature extraction and classifications,” in Proc.
Int. Conf. Integr. Circuit Design Technol., 2009, pp. 219–222.

[9] D. Ding, A. J. Torres, F. G. Pikus, and D. Z. Pan, “High performance
lithographic Hotspot detection using hierarchically refined machine
learning,” in Proc. ASPDAC, 2011, pp. 775–780.

[10] Y. T. Y. et al, “Machine-learning-based Hotspot detection using topolog-
ical classification and critical feature extraction,” in Proc. DAC, 2013,
pp. 95–115.

[11] T. Matsunawa, J.-R. Gao, B. Yu, and D. Z. Pan, “A new lithography
Hotspot detection framework based on adaboost classifier and sim-
plified feature extraction,” in Proc. Design Process Technol. Cooptim.
Manufacturability IX, vol. 9427, 2015, Art. no. 94270S.

[12] D. Ding, B. Yu, J. Ghosh, and D. Z. Pan, “Epic: Efficient prediction of ic
manufacturing Hotspots with a unified meta-classification formulation,”
in Proc. IEEE 17th Asia–South Pac. Design Autom. Conf. (ASP-DAC),
2012, pp. 263–270.

[13] D. G. Drmanac, F. Liu, and L.-C. Wang, “Predicting variability in
nanoscale lithography processes,” in Proc. ACM 46th Annu. Design
Autom. Conf., 2009, pp. 545–550.

[14] H. Zhang, B. Yu, and E. F. Young, “Enabling online learning in lithogra-
phy Hotspot detection with information-theoretic feature optimization,”
in Proc. ACM 35th Int. Conf. Comput. Aided Design, 2016, p. 47.

[15] T. Matsunawa, B. Yu, and D. Z. Pan, “Optical proximity correction
with hierarchical bayes model,” in Proc. Opt. Microlithography XXVIII,
vol. 9426, 2015, Art. no. 94260X.

[16] J. W. Park, R. Todd, and X. Song, “Geometric pattern match using edge
driven dissected rectangles and vector space,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 35, no. 12, pp. 2046–2055, Feb.
2016.

[17] J. W. Park, A. Torres, and X. Song, “Litho-aware machine learning for
Hotspot detection,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 37, no. 7, pp. 1510–1514, Jul. 2018.

[18] H. Yang, L. Luo, J. Su, C. Lin, and B. Yu, “Imbalance aware lithography
Hotspot detection: A deep learning approach,” J. Micro/Nanolithography
MEMS MOEMS, vol. 16, no. 3, 2017, Art. no. 033504.

[19] H. Yang, Y. Lin, B. Yu, and E. F. Young, “Lithography Hotspot detection:
From shallow to deep learning,” in Proc. 30th IEEE Int. System-on-Chip
Conf. (SOCC), 2017, pp. 233–238.

[20] T. Matsunawa, S. Nojima, and T. Kotani, “Automatic layout feature
extraction for lithography Hotspot detection based on deep neural
network,” in Proc. Design Process Technol. Cooptim. Manufacturability
X, vol. 9781, 2016, Art. no. 97810H.

[21] M. Shin and J.-H. Lee, “Accurate lithography Hotspot detection using
deep convolutional neural networks,” J. Micro/Nanolithography MEMS
MOEMS, vol. 15, no. 4, 2016, Art. no. 043507.

[22] H. Yang, J. Su, Y. Zou, Y. Ma, B. Yu, and E. F. Young, “Layout
Hotspot detection with feature tensor generation and deep biased learn-
ing,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 38,
no. 6, pp. 1175–1187, Jun. 2019.

[23] Y. Jiang, F. Yang, H. Zhu, B. Yu, D. Zhou, and X. Zeng, “Efficient layout
Hotspot detection via binarized residual neural network,” in Proc. DAC,
2019, pp. 1–147.

[24] J. A. Torres, “ICCAD-2012 cad contest in fuzzy pattern matching for
physical verification and benchmark suite,” in Proc. IEEE/ACM Int.
Conf. Comput. Aided Design (ICCAD), 2012, pp. 349–350.

[25] Y. LeCun et al., “Backpropagation applied to handwritten zip code
recognition,” Neural Comput., vol. 1, no. 4, pp. 541–551, 1989.

[26] M. Denil, B. Shakibi, L. Dinh, M. Ranzato, and N. De Freitas,
“Predicting parameters in deep learning,” in Proc. Adv. Neural Inf.
Process. Syst., 2013, pp. 2148–2156.

[27] S. Arora, A. Bhaskara, R. Ge, and T. Ma, “Provable bounds for learning
some deep representations,” in Proc. Int. Conf. Mach. Learn., 2014,
pp. 584–592.

[28] V. Vanhoucke, A. Senior, and M. Z. Mao, “Improving the speed of neural
networks on cpus,” in Proc. Deep Learn. Unsupervised Feature Learn.
NIPS Workshop, vol. 1, 2011, p. 4.

[29] K. Hwang and W. Sung, “Fixed-point feedforward deep neural network
design using weights+ 1, 0, and- 1,” in Proc. IEEE Workshop Signal
Process. Syst. (SiPS), 2014, pp. 1–6.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 19,2021 at 00:53:50 UTC from IEEE Xplore. Restrictions apply.

JIANG et al.: EFFICIENT LAYOUT HOTSPOT DETECTION VIA BINARIZED RESIDUAL NEURAL NETWORK ENSEMBLE 1487

[30] M. Courbariaux, Y. Bengio, and J.-P. David. (2014). Training
Deep Neural Networks With Low Precision Multiplications. [Online].
Available: https://arxiv.org/abs/1412.7024

[31] D. Soudry, I. Hubara, and R. Meir, “Expectation backpropagation:
Parameter-free training of multilayer neural networks with continuous
or discrete weights,” in Proc. Adv. Neural Inf. Process. Syst., 2014,
pp. 963–971.

[32] M. Courbariaux and Y. Bengio. (2017). BinaryNet: Training
Deep Neural Networks With Weights and Activations Constrained
to + 1 or −1. [Online]. Available: https://arxiv.org/abs/1602.02830.

[33] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks,” in Proc. Adv. Neural Inf. Process. Syst.,
2016, pp. 4107–4115.

[34] M. Kim and P. Smaragdis. (2016). Bitwise Neural Networks. [Online].
Available: https://arxiv.org/abs/1601.06071

[35] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNoR-Net:
Imagenet classification using binary convolutional neural networks,” in
Proc. Eur. Conf. Comput. Vis., 2016, pp. 525–542.

[36] O. Russakovsky et al., “Imagenet large scale visual recognition chal-
lenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, 2015.

[37] R. Zhao et al., “Accelerating binarized convolutional neural networks
with software-programmable FPGAs,” in Proc. ACM/SIGDA Int. Symp.
Field Program. Gate Arrays, 2017, pp. 15–24.

[38] L. Jiao, C. Luo, W. Cao, X. Zhou, and L. Wang, “Accelerating low bit-
width convolutional neural networks with embedded FPGA,” in Proc.
27th Int. Conf. IEEE Field Program. Logic Appl. (FPL), 2017, pp. 1–4.

[39] D. J. Moss et al., “High performance binary neural networks on the
xeon+ FPGA platform,” in 27th Int. Conf. IEEE Field Program. Logic
Appl. (FPL), 2017, pp. 1–4.

[40] H. M. Gomes, J. P. Barddal, F. Enembreck, and A. Bifet, “A survey on
ensemble learning for data stream classification,” ACM Comput. Surveys,
vol. 50, no. 2, p. 23, 2017.

[41] V. Y. Kulkarni and D. P. K. Sinha, “Pruning of random forest classifiers:
A survey and future,” in Proc. Int. Conf. Data Sci. Eng. (ICDSE), 2012,
pp. 2051–2845.

[42] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” J. Comput. Syst. Sci.,
vol. 55, no. 1, pp. 119–139, 1997.

[43] L. Breiman, “Bagging predictors,” Mach. Learn., vol. 24, no. 2,
pp. 123–140, 1996.

[44] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

[45] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning represen-
tations by back-propagating errors,” Nature, vol. 323, no. 6088, p. 533,
1986.

[46] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in Proc. 13th Int. Conf. Artif. Intell. Stat.,
2010, pp. 249–256.

[47] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[48] S. Ioffe and C. Szegedy. (2015). Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift. [Online].
Available: https://arxiv.org/abs/1502.03167

[49] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, p. 436, 2015.

[50] T. Dozat, “Incorporating nesterov momentum into adam,” in Proc. ICLR
Workshop, 2016, pp. 1–6.

[51] D. H. Wolpert, “Stacked generalization,” Neural Netw., vol. 5, no. 2,
pp. 241–259, 1992.

[52] K. M. Ting and I. H. Witten, “Issues in stacked generalization,” J. Artif.
Intell. Res., vol. 10, no. 1, pp. 271–289, 1999.

[53] L. Breiman, “Stacked regressions,” Mach. Learn., vol. 24, no. 1,
pp. 49–64, 1996.

[54] T. Chen et al. (2015). MxNet: A Flexible and Efficient Machine Learning
Library for Heterogeneous Distributed Systems. [Online]. Available:
https://arxiv.org/abs/1512.01274 .

[55] H. Yang, M. Fritzsche, C. Bartz, and C. Meinel, “BMXNet: An open-
source binary neural network implementation based on MxNet,” in Proc.
ACM Multimedia Conf., 2017, pp. 1209–1212.

[56] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. R. Salakhutdinov. (2012). Improving Neural Networks by
Preventing Co-Adaptation of Feature Detectors. [Online]. Available:
https://arxiv.org/abs/1207.0580

[57] D. P. Kingma and J. Ba. (2014). Adam: A Method for Stochastic
Optimization. [Online]. Available: https://arxiv.org/abs/1412.6980

[58] Y. Nesterov, “A method for unconstrained convex minimization problem
with the rate of convergence o (1/kˆ 2),” in Proc. Doklady AN USSR,
vol. 269, 1983, pp. 543–547.

[59] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2016, pp. 2818–2826.

[60] S. Banerjee, Z. Li, and S. R. Nassif, “ICCAD-2013 cad contest in mask
optimization and benchmark suite,” in IEEE/ACM Int. Conf. Comput.
Aided Design (ICCAD), 2013, pp. 271–274.

[61] L. Xu, A. Krzyzak, and C. Y. Suen, “Methods of combining multiple
classifiers and their applications to handwriting recognition,” IEEE
Trans. Syst., Man, Cybern., vol. 22, no. 3, pp. 418–435, May/Jun. 1992.

[62] T. K. Ho, J. J. Hull, and S. N. Srihari, “Decision combination in multiple
classifier systems,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 16,
no. 1, pp. 66–75, Jan. 1994.

[63] J. Kittler, M. Hater, and R. P. Duin, “Combining classifiers,” in Proc.
IEEE 13th Int. Conf. Pattern Recognit., vol. 2, 1996, pp. 897–901.

[64] G. R. Reddy, K. Madkour, and Y. Makris, “Machine learning-based
Hotspot detection: Fallacies, pitfalls and marching orders,” in Proc.
IEEE/ACM Int. Conf. Comput. Aided Design (ICCAD), 2019, pp. 1–8.

[65] G. R. Reddy, C. Xanthopoulos, and Y. Makris, “Enhanced Hotspot detec-
tion through synthetic pattern generation and design of experiments,” in
Proc. IEEE 36th VLSI Test Symp. (VTS), 2018, pp. 1–6.

Yiyang Jiang received the B.E. degree from the
Department of Microelectronics, Fudan University,
Shanghai, China, in 2016, where he is cur-
rently pursuing the Ph.D. degree with the State
Key Laboratory of Application Specific Integrated
Circuits and System.

His research interests include VLSI design for
manufacturability and machine learning.

Fan Yang (Member, IEEE) received the B.S. degree
from Xi’an Jiaotong University, Xi’an, China, in
2003, and the Ph.D. degree from Fudan University,
Shanghai, China, in 2008.

From 2008 to 2011, he was an Assistant
Professor with Fudan University, where he
is currently an Associate Professor with the
Microelectronics Department. His research interests
include model order reduction, circuit simulation,
high-level synthesis, yield analysis, and design for
manufacturability.

Bei Yu (Member, IEEE) received the Ph.D. degree
from the University of Texas at Austin, Austin, TX,
USA, in 2014.

He is currently an Assistant Professor with the
Department of Computer Science and Engineering,
Chinese University of Hong Kong, Hong Kong.

Dr. Yu received six Best Paper Awards from the
International Conference on Tools with Artificial
Intelligence in 2019, the Integration, the VLSI
Journal in 2018, the International Symposium on
Physical Design in 2017, the SPIE Advanced

Lithography Conference in 2016, the International Conference on Computer
Aided Design in 2013, and the Asia and South Pacific Design Automation
Conference in 2012, and six ICCAD/ISPD Contest Awards. He has served as
the TPC Chair of ACM/IEEE Workshop on Machine Learning for CAD, and
in many journal editorial boards and conference committees. He is an Editor
of IEEE TCCPS Newsletter.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 19,2021 at 00:53:50 UTC from IEEE Xplore. Restrictions apply.

1488 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 7, JULY 2021

Dian Zhou (Senior Member, IEEE) received the
B.S. degree in physics and the M.S. degree in elec-
trical engineering from Fudan University, Shanghai,
China, in 1982 and 1985, respectively, and the
Ph.D. degree in electrical and computer engineer-
ing from the University of Illinois at Urbana–
Champaign, Champaign, IL, USA, in 1990.

He joined the University of North Carolina at
Charlotte, Charlotte, NC, USA, as an Assistant
Professor in 1990, where he became an Associate
Professor in 1995. He joined the University of Texas

at Dallas, Richardson, TX, USA, as a Full Professor in 1999. His research
interests include high-speed VLSI systems, CAD tools, mixed-signal ICs, and
algorithms.

Xuan Zeng (Senior Member, IEEE) received the
B.S. and Ph.D. degrees in electrical engineering
from Fudan University, Shanghai, China, in 1991
and 1997, respectively.

She is a Full Professor with the Department
of Microelectronics, Fudan University, where she
was the Director of the State Key Laboratory
of ASIC & System from 2008 to 2012. She
was a Visiting Professor with the Department
of Electrical Engineering, Texas A&M University,
College Station, TX, USA, and the Department of

Microelectronics, Technische Universiteit Delft, Delft, The Netherlands, in
2002 and 2003, respectively. Her current research interests include ana-
log circuit modeling and synthesis, design for manufacturability, high-speed
interconnect analysis and optimization, and circuit simulation.

Prof. Zeng received the Best Paper Award from the 8th IEEE Annual
Ubiquitous Computing, Electronics & Mobile Communication Conference in
2017, the Changjiang Distinguished Professor with the Ministry of Education
Department of China in 2014, the Chinese National Science Funds for
Distinguished Young Scientists in 2011, the First-Class of Natural Science
Prize of Shanghai in 2012, the 10th For Women in Science Award in
China in 2013, and the Shanghai Municipal Natural Science Peony Award in
2014. He is an Associate Editor of the IEEE TRANSACTIONS ON CIRCUITS

AND SYSTEMS—PART II: EXPRESS BRIEFS, the IEEE TRANSACTIONS ON

COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, and
the ACM Transactions on Design Automation on Electronics and Systems.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 19,2021 at 00:53:50 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

