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Leveraging Spatial Correlation for Sensor Drift
Calibration in Smart Building
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Abstract—Sensor drift is an intractable obstacle to practi-
cal temperature measurement in smart building. In this article,
we propose a sensor spatial correlation model. Given prior
knowledge, maximum a posteriori (MAP) estimation is per-
formed to calibrate drifts. MAP is formulated as a nonconvex
problem with three hyper-parameters. An alternating-based
method is proposed to solve this nonconvex formulation. Cross-
validation, Gibbs expectation-maximization (EM) and variational
Bayesian EM (VB-EM) are further exploited to determine hyper-
parameters. Experimental results on widely used benchmarks
from the simulator EnergyPlus demonstrate that compared
with state-of-the-art methods, the proposed framework can
achieve a robust drift calibration and a better tradeoff between
accuracy and runtime. On average, compared with state-of-the-
art, the proposed framework can achieve about 3× accuracy
improvement. In order to attain the same drift calibration accu-
racy with VB-EM, Gibbs EM needs 10 000 samples, which will
incur a 30× runtime overhead.

Index Terms—Bayesian inference, optimization, sensor calibra-
tion.

I. INTRODUCTION

IN MODERN smart building, the temperature measure-
ment is a key step for smart temperature management

implemented by a cyber-physical system (CPS) [1]–[4]. CPS
is a complex, heterogeneous distributed system with seam-
lessly integrated and closely interacted cyber components (e.g.,
sensors, sink nodes, control centers, and actuators) and phys-
ical processes (e.g., temperature) to achieve stability, high
performance, robustness [5]. The physical world is sensed
by corresponding sensors and the acquired data is sent to a
sink node or control center. The sink node or control center
will then send an instruction to actuators to control the phys-
ical world after the data is analyzed [6]. In a smart building,

Manuscript received March 4, 2020; revised June 11, 2020; accepted July
12, 2020. Date of publication August 12, 2020; date of current version
June 18, 2021. This work was supported in part by the Research Grants
Council of Hong Kong SAR under Project CUHK24209017. The prelimi-
nary version, titled “Sensor Drift Calibration via Spatial Correlation Model in
Smart Building,” has been presented at the ACM/IEEE Design Automation
Conference (DAC) in 2019. This article was recommended by Associate
Editor D. Atienza. (Corresponding author: Bei Yu.)

Tinghuan Chen, Hao Geng, and Bei Yu are with the Department of
Computer Science and Engineering, Chinese University of Hong Kong, Hong
Kong (e-mail: byu@cse.cuhk.edu.hk).

Bingqing Lin is with the College of Mathematics and Statistics, Shenzhen
University, Shenzhen 518060, China.

Shiyan Hu is with the School of Electronics and Computer Science,
University of Southampton, Southampton SO17 1BJ, U.K.

Digital Object Identifier 10.1109/TCAD.2020.3015438

(a)
(c)

(b)

Fig. 1. (a) Comparison of different temperature sensors. (b) Sensor
MCP9509. (c) Sensor LM335A.

the in-building temperatures are monitored by several spatially
distributed and immovable temperature sensors.

Although advanced technologies in the semiconductor
industry and micro-electromechanical systems are developed
in recent years, in practice, sensors outputs exist errors, which
are one of the major barriers to the use of sensor networks.
There are three main types of errors: 1) gain; 2) drift;
and 3) noise [7]. Compared with gain and noise, the sen-
sor drift is considered with vital importance since it has a
significantly negative effect on measurement accuracy [8].
Although sensors with high accuracy can be deployed, these
sensors always have expensive prices. As shown in Fig. 1(a),
the temperature sensor AD590JH with ±0.5 ◦C accuracy is
sold at more than tenfold price of TMP100 with ±2 ◦C
accuracy.

The sensor calibration is studied in many previous research
works. These works can be classified into micro- and macro-
calibration or nonblind, semi-blind, and blind calibration
[10], [11]. The micro-calibration is a cumbersome method that
each sensor is individually tuned so that the ground-truth data
can be recovered from measurements [12].

In the macro-calibration schemes, data from uncali-
brated sensors are collected to optimize the overall system
performance. Therefore, macro-calibration schemes are widely
used in practice. For macro-calibration schemes, according to
information whether they need, there are three categories of
sensor calibration: 1) nonblind; 2) semi-blind; and 3) blind.
In the nonblind calibration, one or more than one prior
knowledge is adopted to calibrate measurements (e.g., the
ground-truth data measured by some of the sensors with high
accuracy [13] and the distances between sensors and the sink
node [14]). However, extra costs are required to obtain this
information. For example, several sensors with high accuracy
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have to be deployed to obtain ground truth data, and a Global
Position System module is installed in sensors.

In order to reduce extra costs, some works focused on
semi-blind calibration schemes. In [15], only partial position
information and the ground-truth data are required to cali-
brate all measurements. In order to further decrease extra costs,
blind calibration schemes were proposed.

In literature about the blind calibration, there are two
models to estimate measurement errors: 1) the first-order
autoregression (AR) model and 2) the signal space projec-
tion (SSP) model. For the AR model, assuming that errors are
a time series following Gaussian distribution with zero-mean
and constant variance, adaptive filters, such as Kalman filter
[16], [17], unscented Kalman [18] filter, and particle filter are
adopted to track the error in each time slot so that the measure-
ment can be calibrated [16], [18]. In the AR model, however,
it is assumed that only one sensor has measurement error in
each time instant. In fact, this assumption is hard to satisfy in
practice.

The calibration problem is naturally studied extensively to
be a sparse reconstruction problem, where a sparse set of
sensors are assumed to have significant drifts. Balzano and
Nowak [19] first proposed SSP, in which the measured data are
over-sampled by sensors. In other words, the sensor number is
more than the variance source number. Therefore, the ground-
truth vector has one or more than one null-space. Assuming
that sensors are free-error in the initial time, this null space can
be obtained by principal component analysis or independent
component analysis [20]. In addition, assuming that measure-
ment errors are sparse, the error can be estimated by sparse
regression techniques, such as the maximum likelihood esti-
mation [21] and deep learning [22]. Wang et al. [21] adopted
temporal sparse Bayesian learning (TSBL) [23] to calibrate
time-variant and incremental drifts for the sparse set of sen-
sors. However, due to the sparsity assumption, not all sensors
can be calibrated. In addition, since the observation matrix
is directly determined by drift-free measurement, the method
cannot calibrate drifts if signals lie in a time-variant subspace.

Very recently, in order to calibrate all sensors, Ling and
Strohmer [24] presented three models, which are formulated
as bilinear inverse problems. However, these models heavily
rely on partial information about the sensing matrix. For the
temperature sensor calibration in a smart building, the sens-
ing matrix depends on the weather, the position of sensors
and parameters of the building, e.g., material characteristics,
geometry, and equipment power per area [1], [2], [25]. In prac-
tice, it is hard to obtain this complex and tedious information.
As a result, these models cannot be directly used to calibrate
temperature sensors in a smart building.

Bayesian inference is a very useful theoretical tool in
machine learning and modeling. In recent years, Bayesian
inference has been introduced for sensor calibration [15], [21],
[26]–[30]. The extra location information, as prior knowl-
edge, is obtained by the Global Position System and then
used to perform Bayesian inference [15]. In [27] and [29],
Bayesian inference with Gibbs sampling and particle filter-
ing is developed to calibrate the sensor gain and drift. A
Cal-AMP algorithm is proposed to perform blind calibration

for unknown gains on the sensors [28]. A sensor spatial
correlation model was proposed to calibrate drift in smart
building [26], [30]. In this method, maximum a posteriori
(MAP) is formulated as a nonconvex problem, which is han-
dled by alternating-based optimization. Cross-validation and
Gibbs expectation-maximization (EM) are used to determine
hyper-parameters. Note that we also study stochastic Gibbs
EM, but it cannot achieve stable and accurate performance.

In this article, we make the following contributions.
1) Due to high sensor spatial correlation, we build a sensor

spatial correlation model whose coefficients only depend
on measurements.

2) Given the prior information from drift-free measurement
model coefficients, based on MAP estimation, we formu-
late sensor drift calibration problem to be a nonconvex
problem with three hyper-parameters.

3) We propose an alternating-based optimization algorithm
to handle the nonconvex formulation efficiently and
effectively.

4) Cross-validation, a grid search method, is adopted to
determine hyper-parameters.

5) In order to make a tradeoff between accuracy and
runtime, we propose two EM-based methods to deter-
mine hyper-parameters. Compared with Gibbs EM, a
stochastic method, our proposed variational Bayesian
EM (VB-EM), a deterministic method, can achieve a
better tradeoff between runtime and accuracy.

6) Experimental results show that on benchmarks simu-
lated from EnergyPlus, compared with state-of-the-
art methods, the proposed framework with the VB-EM
method can achieve a better tradeoff between accuracy
and runtime. In order to achieve the same drift calibra-
tion accuracy with VB-EM, Gibbs EM requires 10 000
samples, which will lead to a 30× runtime overhead.

The remainder of this article is organized as follows. In
Section II, we provide a problem formulation about sensor drift
calibration. In Section III, we build a drift calibration model
based on sensor spatial correlation and deliver mathematical
formulation with three hyper-parameters. In Section IV, we
propose a more efficient alternating-based method to handle
the mathematical formulation. In Section V, three hyper-
parameters are determined by cross-validation, Gibbs EM and
VB-EM. In Section VI, we broadly introduce our proposed
whole flow. Section VII presents experimental results with
comparison and discussion, followed by the conclusion in
Section VIII.

II. PRELIMINARY

In this section, we will introduce some backgrounds in
sensor drift calibration.

In smart building, several low-cost sensors are deployed
to sense in-building temperatures. Furthermore, all sensors
are nonremovable once they are deployed in smart building.
Besides, due to a slow-aging effect, all sensors have unknown
time-invariant drifts. As shown in Fig. 2, unlike communica-
tion channels [23], for a sensor signal to be output, i.e., current
(Iout), it is contaminated by a time-invariant drift. Sensor 1 has
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Fig. 2. Drift versus temperature [31].

a drift ε1 so that its transfer function shifts downward denoted
by the blue line in Fig. 2. While Sensor 2 has a drift ε2 so
that its transfer function shifts upward denoted by the red line
in Fig. 2. In order to achieve high-accurate measurements,
drifts need to be estimated and calibrated. Based on the above
description, we define the sensor drift calibration problem as
follows.

Problem 1 (Sensor Drift Calibration): Given the measure-
ment values sensed by all sensors during several time-instants,
drifts will be accurately estimated and calibrated.

III. MATHEMATICAL FORMULATION

We assume that n sensors are deployed to sense in-building
temperatures in a smart building. During a short time after new
sensors are deployed, drifts are assumed to be insignificant
in all sensors. Furthermore, as in [21], we assume that all
sensors are drift-free during m0 initial time-instants. Due to
over-sampling, as illustrated in [21] and [23], signals measured
by sensors lie in a low dimensional subspace. Furthermore, in
a smart building, all actual temperatures measured by sensors
have a high correlation, for example, the dense deployment of
sensors. Therefore, we build a linear model among all actual
temperatures as follows:

x(k)i ≈
n∑

j=1,j �=i

ai,jx
(k)
j + ai,0, k = 1, 2, . . . ,m0 (1)

where x(k)i is the ground-truth temperature sensed by ith
sensor at kth time-instant. ai,j is the drift-free model coeffi-
cient. We define x � [x(1)1 , x(1)2 , . . . , x(1)n , . . . , x(m0)

n ]�, ai �
[ai,0, . . . , ai,i−1, ai,i+1, . . . , ai,n]� ∈ R

n, a � [a�1 , a�2 , . . . ,
a�n ]� ∈ R

n2
.

Due to a slow-aging effect, all sensors have unknown time-
invariant drifts. For multiple measurements during a short
period, all sensors are assumed to suffer a time-invariant drift.
As shown in Fig. 2, unlike communication channels [23], elec-
tric signal output, e.g., current (Iout), by electronic devices
causes a time-invariant drift. During m time-instants, (1) is
naturally extended as

x̂(k)i + εi ≈
n∑

j=1,j �=i

âi,j

(
x̂(k)j + εj

)
+ âi,0, k = 1, 2, . . . ,m

(2)

where x̂(k)i is the measurement value sensed by ith sensor
at kth time-instant. In particular, in order to obtain enough
information, we assume m0,m > n. For ith sensor, εi is a

time-invariant drift calibration, which is independent of time-
instant k. âi,j is the model coefficient when all sensors have
unknown time-invariant drifts. We vectorize these variables
as x̂ � [x̂(1)1 , x̂(1)2 , . . . , . . . , x̂(m)n ]�, âi � [âi,0, . . . , âi,i−1,

âi,i+1, . . . , âi,n]� ∈ R
n, â � [â�1 , â�2 , . . . , â�n ]� ∈ R

n2
and

ε � [ε1, ε2, . . . , εn]� ∈ R
n.

Note that (2) is the essential in our proposed sensor spa-
tial correlation model. Furthermore, the model error in (2)
is assumed to follow identical independent Gaussian distribu-
tion with zero-mean and unknown precision (inverse variance)
δ0. Therefore, the likelihood function P(x̂|â, ε) is defined as
follows:

P(x̂|â, ε) ∝ exp

⎛

⎜⎝− δ0

2

n∑

i=1

m∑

k=1

[
x̂(k)i + εi

−
n∑

j=1,j �=i

âi,j

(
x̂(k)j + εj

)
− âi,0

⎤

⎦
2
⎞

⎟⎠. (3)

However, the likelihood function P(x̂|â, ε) cannot be
directly used to calibrate drifts using maximum-likelihood-
estimation (MLE) since it has not enough information.
Therefore, we need give two priors in development.

For all sensors, drifts are assumed to follow identical inde-
pendent Gaussian distribution with zero-mean and unknown
precision δε as follows:

P(ε) ∝ exp

(
−δε

2

n∑

i=1

ε2
i

)
. (4)

In addition, we assume that the model coefficient âi,j fol-
lows identical independent Gaussian distribution. Intuitively,
âi,j has high dependency on ai,j in statistics. Furthermore, the
probability density function of âi,j is assumed to take a max-
imum value at ai,j. Therefore, the prior mean of âi,j is ai,j.
In addition, in order that each model coefficient âi,j is pro-
vided with a relatively equal probability to deviate from the
corresponding drift-free model coefficient ai,j, the precision
of model coefficient âi,j is defined to be λa−2

i,j , where λ is
a nonnegative hyper-parameter to control the precision of
âi,j. Therefore, each model coefficient âi,j follows identical
independent Gaussian distribution with ai,j mean and λa−2

i,j
precision [32]–[34]. For all model coefficients, we have

P(â) ∝ exp

⎛

⎝−
n∑

i=1

n∑

j=0,j �=i

λ

2a2
i,j

(
âi,j − ai,j

)2
⎞

⎠. (5)

This prior manner is named Bayesian model fusion, which
was developed to combine the early-stage information and the
late-stage information using Bayesian inference in Computer-
Aided Design applications [32]–[34].

In order to calibrate drifts for all sensors, the posterior
P(â, ε|x̂) needs to be maximized in MAP estimation man-
ner. According to Bayes’ rule, the posterior P(â, ε|x̂) can be
expressed by two priors and the likelihood function as follows:

P(â, ε|x̂) ∝ P(x̂|â, ε) · P(â) · P(ε). (6)
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Taking the logarithm, MAP can be transferred to be the
equivalent formulation as follows:

min
â,ε

δ0

n∑

i=1

m∑

k=1

⎡

⎣x̂(k)i + εi −
n∑

j=1,j �=i

âi,j

(
x̂(k)j + εj

)
− âi,0

⎤

⎦
2

+ λ
n∑

i=1

n∑

j=0,j �=i

1

a2
i,j

(
âi,j − ai,j

)2 + δε
n∑

i=1

ε2
i . (7)

To calibrate these unknown drifts in all sensors,
Formulation (7) will be optimized efficiently. Next, we will
propose an efficient alternating-based method to optimize
Formulation (7).

IV. ALTERNATING-BASED OPTIMIZATION

There are two challenges for Formulation (7): how to handle
Formulation (7) and how to induce hyper-parameters λ, δ0, and
δε . Formulation (7) is a nonconvex problem, thus it is difficult
to obtain an optimal solution. In this section, we propose a
fast and efficient alternating-based optimization methodology
to optimize Formulation (7) by alternatively updating in each
iteration.

According to the alternating-based methodology, at each
iteration, the values of â and ε are updated by optimizing
Formulation (7) with respect to (w.r.t.) â and ε. Furthermore,
note that with fixed drift calibration variable ε, Formulation (7)
w.r.t. â is regarded as a convex unconstrained quadratic pro-
gramming (QP) problem, which can be solved by Gaussian
elimination [35]. However, the computational complexity of
Gaussian elimination is O(n6) (n is the sensor number) if all
model coefficients â are calculated in one subformulation [35].
Consider that Formulation (7) w.r.t. â can be decomposed into
n independent subformulations w.r.t. âi. In order to reduce
computational complexity, instead of calculating all model
coefficients â in one subformulation, âi will be calculated in
ith subformulation (i = 1, 2, . . . , n). As a result, the compu-
tational complexity of Gaussian elimination is O(n4) in total
for n subformulations. Formulation (7) w.r.t. â is decomposed
into n independent subformulations w.r.t. âi as follows:

min
âi

δ0

m∑

k=1

⎡

⎣x̂(k)i + εi −
n∑

j=1,j �=i

âi,j

(
x̂(k)j + εj

)
− âi,0

⎤

⎦
2

+ λ
n∑

j=0,j �=i

1

a2
i,j

(
âi,j − ai,j

)2 (8)

with the first-order optimality condition

δ0

m∑

k=1

(
x̂(k)t + εt

)
⎡

⎣
n∑

j=1

âi,j

(
x̂(k)j + εj

)
+ âi,0

⎤

⎦

+ λ
(
âi,t − ai,t

)

a2
i,t

= 0 (9)

where t = 0, 1, . . . , i−1, i+1, . . . , n. In particular, we define
âi,i � −1 and x̂(k)0 +ε0 � 1. The system of linear equations (9)
can be addressed by Gaussian elimination [35].

Algorithm 1 Alternating-Based Method

Require: Sensor measurements x̂, prior a and hyper-
parameters λ, δ0, δε .

1: Initialize â← a and ε ← 0;
2: repeat
3: for i← 1 to n do
4: Fix ε, solve the system of linear equations (9)

using Gaussian elimination to update âi;
5: end for
6: Fix â, solve the system of linear equations (11) using

Gaussian elimination to update ε;
7: until Convergence
8: return â and ε.

In the same manner, with fixed model coefficients â,
Formulation (7) w.r.t. the drift calibration ε can also be
regarded to be a convex unconstrained QP problem as follows:

min
ε

δ0

n∑

i=1

m∑

k=1

⎡

⎣x̂(k)i + εi −
n∑

j=1,j �=i

âi,j

(
x̂(k)j + εj

)
− âi,0

⎤

⎦
2

+ δε
n∑

i=1

ε2
i (10)

with the corresponding first-order optimality condition

δ0

n∑

i=1

m∑

k=1

⎡

⎣âi,t

⎛

⎝
n∑

j=1

âi,j

(
x̂(k)j + εj

)
+ âi,0

⎞

⎠

⎤

⎦+ δεεt = 0

(11)

where t = 1, 2, . . . , n.
A local optimum can be obtained by the proposed

alternating-based method while the convergence speed and
solution quality depend on the initialization of variables. In
our proposed framework, two priors are given for model
coefficients â and drift calibration ε. Therefore, in order to
achieve a better convergence speed and solution quality, the
prior means a and 0 are used to initialize variables â and ε. We
continue to update â and ε until convergence. The convergence
condition is that the relative difference of drift calibration ε

between current and previous iterations is less than a thresh-
old. In summary, our proposed alternating-based method is
shown in Algorithm 1. In fact, if the quadratic objective func-
tions (7) w.r.t. â and ε are strictly convex with lower-bounded
Hessians, the proposed alternating-based method can achieve
convergency of Formulation (7) [36], [37].

V. ESTIMATION OF HYPER-PARAMETERS

It is important to induce the aforementioned three hyper-
parameters so that drifts can be accurately calibrated and
meanwhile the over-fitting can be avoided [38]. In this sec-
tion, cross-validation, Gibbs EM, and VB-EM are utilized to
induce hyper-parameters, respectively.
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Fig. 3. Unsupervised cross-validation.

A. Unsupervised Cross-Validation

Cross-validation is a simple method to select hyper-
parameters [39]. Although there are three hyper-parameters λ,
δ0, and δε in Formulation (7), instead of determined by cross-
validation individually, we design two ratios λ/δ0 and δε/δ0
which demand certain values. As shown in Fig. 3, we parti-
tion temperature measurements during m time-instants into s
nonoverlapping parts. Given each combination of ratios can-
didates λ/δ0 and δε/δ0, in each run, one of the s parts is
exploited to estimate the model error and the rest s− 1 parts
are used to calculate model coefficients and drift calibration. In
addition, different groups will be selected for error estimation
in different runs. In the same manner, each run gives a model
error er (r = 1, 2, . . . , s) estimated from a part of temperature
measurements. The model error is defined as follows:

er �
rm
s∑

k= (r−1)m
s +1

⎡

⎣x̂(k)i + εi −
n∑

j=1,j �=i

âi,j

(
x̂(k)j + εj

)
− âi,0

⎤

⎦
2

.

(12)

The final model error is computed as the average ē =∑s
r=1 er/s. Then two ratios λ/δ0 and δε/δ0 corresponding to

the minimum average model error are chosen.
The pseudocode of the unsupervised cross-validation is

shown in Algorithm 2. We input sensor measurements x̂, the
drift-free model coefficients a, the number of folds for cross-
validation s and several hyper-parameters candidates. Then the
sensor measurements are split into s nonoverlapping parts as
illustrated in Fig. 3. Formulation (7) on model training set
is optimized by Algorithm 1 and the model error defined in
(12) on the validation set is calculated for each run and each
candidate of hyper-parameters. After the grid search on all
hyper-parameters and sensor measurements x̂ is finished, the
model error is averaged on s runs. At last, the hyper-parameters
with the least average model error are chosen to output. The
unsupervised cross-validation flow is summarized in Fig. 4.

Note that unlike conventional cross-validation [1], [2], [25],
[32]–[34], not any golden values are used in metrics to
choose hyper-parameters in model fitting stage. Therefore,
in our proposed framework, cross-validation is adopted in an
unsupervised-learning-like fashion.

Cross-validation is time-consuming since Algorithm 1 has
to be performed for multiple times. Thus, we propose two fast

Algorithm 2 Unsupervised Cross-Validation

Require: Sensor measurements x̂, prior a, number
of folds for cross-validation s, hyper-parameters
candidates {(λ/δ0)1, (λ/δ0)2, · · · , (λ/δ0)dλ/δ0

} and
{(δε/δ0)1, (δε/δ0)2 · · · , (δε/δ0)dδε/δ0

}.
1: for r← 1 to s do
2: for i← 1 to dλ/δ0 do
3: for j← 1 to dδε/δ0 do
4: Obtain the model coefficients â and calibration

ε by Algorithm 1 from sensor measurements with rth part
removed.

5: Compute the model error on rth part of sensor
measurements by Equation (12).

6: end for
7: end for
8: end for
9: Average the computed modeling error for each pair of

hyper-parameters candidates (λ/δ0)i and (δε/δ0)j, i.e.,
ē←∑s

r=1 ek/s.
10: Select (λ/δ0)i and (δε/δ0)j with the smallest modeling

error, i.e., (λ/δ0)opt, (δε/δ0)opt ← argmin ē.
11: return The optimal hyper-parameters (λ/δ0)opt and

(δε/δ0)opt.

Fig. 4. Unsupervised cross-validation flow.

and efficient EM algorithms to determine hyper-parameters in
the statistical model.

B. Gibbs Expectation Maximization

In this section, MLE is used to determine individual
hyper-parameters δ0, λ, and δε . MLE of hyper-parameters is
formulated as follows:

max
δε ,δ0,λ

P(x̂; δ0, λ, δε
)
. (13)

However, in the likelihood function P(x̂; δ0, λ, δε), the inte-
gral is intractable. EM algorithm is leveraged to efficiently find
a solution to Formulation (13), [40]. According to the EM
algorithm, Formulation (13) can be taken the logarithm and
transferred to be its auxiliary lower bound function [41]. Then
the auxiliary lower-bound function is optimized by E-step
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and M-step iteratively after the term independent of hyper-
parameters is omitted. The detailed derivation can be found
in [42]. For convenience, all hyper-parameters are collected
as a set � � {δ0, λ, δε}.

1) Expectation Step With Gibbs Sampling: Since
P(x̂; δ0, λ, δε) = L(Q; δε, δ0, λ)+KL(Q||P) and KL(Q||P)
≥ 0, L(Q; δε, δ0, λ) is a lower-bound function defined as
follows:

L(Q; δε, δ0, λ) = EQ(â,ε) ln
P
(

X̂, â, ε; δε, δ0, λ
)

Q(â, ε) (14)

where E indicates the expectation operator. Q(â, ε) is an
arbitrary joint distribution for â and ε. Instead of maxi-
mizing the marginal likelihood directly, the EM maximizes
the lower bound function. Let’s assume that we can find
P(â, ε|x̂;�old) analytically. Then, we can simply substitute
Q(â, ε) = P(â, ε|x̂;�old). The lower-bound function can be
represented as follows:

L(Q; δε, δ0, λ) = EP(â,ε|x̂;�old) lnP
(

X̂, â, ε; δε, δ0, λ
)

− EP(â,ε|x̂;�old) lnP
(

â, ε|x̂;�old
)
. (15)

The second term EP(â,ε|x̂;�old) lnP(â, ε|x̂;�old) is a constant
w.r.t. δε and δ0 and λ, and we do not take the term into account
when maximizing the lower-bound function. Therefore, we
define a quantity as follows:

Q
(
�|�old

)
= EP(â,ε|x̂;�old) lnP(x̂, â, ε;�) (16)

where �old denotes estimated hyper-parameters in the previous
iteration.

However, the posterior P(â, ε|x;�old) is intractable since
it is hard to calculate the integral in the likelihood function
P(x̂; δ0, λ, δε). There are two main methods to approximate
the posterior P(â, ε|x;�): variational inference and Markov
Chain Monte Carlo (MCMC) [42]. Compared with variational
inference, MCMC has the advantage of being nonparamet-
ric and asymptotically exact [43]. Therefore, Monte Carlo
method is utilized to approximate the quantity defined in (17)
as follows:

Q
(
�|�old

)
≈ 1

L

L∑

l=1

lnP
(

x̂, â(l), ε(l);�
)

(17)

where samples â(l) and ε(l) are sampled from the distribu-
tion P(â, ε|x̂;�old). L is the total number of samples. In
MCMC, there are two main algorithms to obtain samples from
the desired distribution P(â, ε|x̂;�old): Metropolis–Hastings
algorithm and Gibbs sampling. Since the rejection rate will
be high in complex problems, the Metropolis–Hastings algo-
rithm has a very slow convergence rate [42]. Therefore, Gibbs
sampling is harnessed to obtain samples â(l) and ε(l).

Gibbs sampling has the behavior that one or batch vari-
ables are cyclically and repeatedly updated in some particular
order at random from conditional distribution. Sampling order
is arranged to be â(l)1,0, . . . , â(l)1,n, â(l)2,0, . . . , â(l)n,n−1, ε

(l)
1 , . . . , ε

(l)
n .

In Gibbs sampling, one of the key points is the derivation of

the conditional distribution for each variable. Note that accord-
ing to Formulation (7), the logarithm conditional distribution
w.r.t. individual variable is quadratic. Therefore, the condi-
tional distribution of each variable is Gaussian distribution as
follows:

âp,q ∼ P
(

âp,q|ε, â/âp,q , x̂; δε, δ, λ
)
= N

(
âp,q;μâp,q , σ

−1
âp,q

)

εt ∼ P(εt|ε/εt , â, x̂; δε, δ, λ
) = N

(
εt;μεt , σ

−1
εt

)
(18)

in agreement with (4) and (5). μ is mean and σ is precision.
â/âp,q and ε/εt denote â but with âp,q omitted and ε but with

εt omitted, respectively. In particular, we define â(s)i,i � −1,

x̂(k)0 + ε(s)0 � 1 and p �= q. The mean and precision of each
variable are given as follows:

σεt = mδ0

n∑

i=1

â(s)2i,t + δε, (19)

σâp,q = δ0

m∑

k=1

(
x̂(k)q + ε(s)q

)2 + λ

a2
p,q
, (20)

μεt =
δ0

σεt

m∑

k=1

n∑

i=1

â(s)i,t

⎡

⎣
n∑

j=0

â(s)i,j

(
x̂(k)j + ε(s)j

)
− â(s)i,t ε

(s)
t

⎤

⎦ (21)

and

μâp,q =
δ0

σâp,q

m∑

k=1

(
x̂(k)q + ε(s)q

)
⎡

⎣
n∑

j=0

â(s)p,j

(
x̂(k)j + ε(s)j

)

− â(s)p,q

(
x̂(k)q + ε(s)q

)
⎤

⎦+ λ

σâp,q ap,q
.

(22)

Before Gibbs sampling, in order to converge to the desired
posterior, the warm-start has to be performed if there is
no reasonable initialization for samples. Furthermore, it is
very hard to judge whether the warm-start is enough [42].
In order to waive the warm-start, a reasonable initialization
for samples is adopted in Gibbs sampling. Note that Gibbs
sampling is used to obtain samples from the desired pos-
terior P(â, ε|x̂;�old) (6). As we discussed in Section II,
Formulation (7) is equivalent to MAP estimation of â and ε.
Thus, given hyper-parameters �old and measurement values x̂,
Gibbs sampling can be initialized by handling Formulation (7)
to obtain initial samples â(0) and ε(0) which satisfy the dis-
tribution P(â, ε|x̂;�old). As a result, the warm-start can be
totally waived.

2) Maximization Step: After L samples are obtained by
Gibbs sampling, in M-step, we will maximize the approxi-
mated quantity as follows:

max
�

1

L

L∑

l=1

lnP
(

x̂, â(l), ε(l);�
)
. (23)
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Algorithm 3 Gibbs EM
Require: Sensor measurements x̂, prior a;

1: Initialize hyper-parameters �;
2: repeat
3: Initialize samples �(0) by Algorithm 1;
4: for l← 1 to L do
5: for i← 1 to n2 + n do
6: Sample ψ

(l)
i from the desired conditional

distribution N (ψi;μψi , σψi) (18) with ψ
(l)
1 , · · · , ψ(l)i−1,

ψ
(l−1)
i+1 , · · · , ψ(l−1)

n2+n
;

7: end for
8: end for
9: Update hyper-parameters � by Equations (24) to (26);

10: until Convergence
11: return hyper-parameters �.

With the first-order optimality condition, namely, dQ/d� = 0,
hyper-parameters λ, δ0, δε can be updated as follows:

λ = n2L

∑n
i=1

∑n
j=0,j �=i

∑L
l=1

(
â(l)i,j−ai,j

)2

a2
i,j

(24)

δ0 = Lmn
∑L

l=1
∑n

i=1
∑m

k=1

[∑n
j=1 â(l)i,j

(
x̂(k)j + ε(l)j

)
+ â(l)i,0

]2
(25)

δε = nL
∑L

l=1
∑n

i=1 ε
(l)2
i

. (26)

Here, â(l)i,i � −1 and x̂(k)0 + ε
(l)
0 � 1. We continue to

alternate between E-step and M-step until convergence. The
convergence condition is that the relative difference of three
hyper-parameters between current and previous iterations is
less than a threshold. Then hyper-parameters λ, δ, δε can be
determined.

For convenience, all variables are collected as a set � �
{ψ1, ψ2, . . . , ψn2+n} = {â1,0, . . . , â1,n, . . . , ân,n−1, ε1, . . . ,

εn}. The pseudocode of the Gibbs EM is concluded in
Algorithm 3. Given x̂, a, and initialized hyper-parameters as
inputs, the Gibbs EM is performed iteratively. In E-step, sam-
ples are initialized by Algorithm 1 to waive warm start. Then
in Gibbs sampling, each samples are cyclically and repeat-
edly obtained by the desired conditional distributions defined
in (18). Once there are enough samples acquired by Gibbs
sampling, hyper-parameters are updated by (24) to (26) in
M-step. E-step and M-step are iteratively performed until the
convergence criteria is satisfied. At last, we have the optimized
hyper-parameters. For a better understanding, our proposed
Gibbs EM is displayed in Fig. 5.

C. Variational Bayesian Expectation Maximization

In practice, MCMC sampling method is computationally
demanding. As a result, it often limits its use to small-scale
problems [42]. Besides, it can be difficult to judge whether the
sampling method is generating independent samples from the
desired distribution. In this section, we develop a deterministic
approximation scheme which scales well to large applications.

Fig. 5. Gibbs EM flow.

We can even enforce full independence between the model
parameters â and the calibration ε given measurements x̂.
This assumption, known as the mean-field approximation [44],
allows us to compute the update rules for â and the calibration
ε in isolation.

According to the mean-field approximation, in (14), let
Q(â, ε) = Q(â)Q(ε). Then, the lower-bound function
L(Q; δε, δ0, λ) can be factorized into â and ε

L(Q; δε, δ0, λ)

= −KL
(
Q(â)||P̃(ε)

)
− EQ(ε) lnQ(ε)+ c (27)

= −KL
(
Q(ε)||P̃(â)

)
− EQ(â) lnQ(â)+ c (28)

where c is a constant to adjust P̃(â) or P̃(ε) to become a
proper probability density function as follows:

P̃(â) � 1

Z
exp

[
EQ(ε) lnP(x̂, â; λ, δ0, δε

)]
(29)

P̃(ε) � 1

Z
exp

[
EQ(â) lnP(x̂, â; λ, δ0, δε

)]
(30)

where Z is a normalized constant. Since Kullback–
Leibler divergence KL(Q(â)||P̃(ε)) ≥ 0, the lower-bound
function L(Q; δε, δ0, λ) is maximized w.r.t. Q(â) when
KL(Q(â)||P̃(ε)) = 0, which happens when Q(â) =
P̃(ε). Similarity, because KL(Q(ε)||P̃(â)) ≥ 0, the lower-
bound function L(Q; δε, δ0, λ) is maximized w.r.t. Q(ε) if
KL(Q(ε)||P̃(â)) = 0, which happens when Q(ε) = P̃(â).

Therefore, in variational E-step, let

lnQ(â) = EQ(ε) lnP(x̂, â, ε|λ, δ0, δε
)

(31)

lnQ(ε) = EQ(â) lnP(x̂, â, ε|λ, δ0, δε
)

(32)

where according to Formulation (7), the logarithm conditional
distribution w.r.t. individual variable is quadratic. Therefore,
the variational distribution of each variable is Gaussian distri-
bution as follows:

Q(â) ∼ N (â;E(â),�â
)

(33)

Q(ε) ∼ N (ε;E(ε),�ε) (34)
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where �â is the covariance matrix. âi is independent to
each other, since Formulation (7) w.r.t. â can be decom-
posed into n independent subFormulations w.r.t. âi. Therefore,
�â � diag[�â1,�â2 , . . . ,�ân ]. E(â) � [E(â�1 ),E(â2)

�,
, . . . ,E(ân)

�]�. By combining coefficients of âi quadratic
term in (32), we can obtain

�−1
âi
= δ0

(
X̂
�
/iX̂/i + E

(
E/i
)�X̂/i + X̂

�
/iE
(
E/i
)

+ E

(
E�/iE/i

))
+ λA�i Ai (35)

where Ai � diag[ai,0, ai,1, . . . , ai,i−1, ai,i+1, . . . , ai,n]

X̂/i �

⎡

⎢⎢⎢⎢⎣

1 x̂(1)1 · · · x̂(1)i−1 x̂(1)i+1 · · · x̂(1)n

1 x̂(2)1 · · · x̂(2)i−1 x̂(2)i+1 · · · x̂(2)n
...

... · · · ...
... · · · ...

1 x̂(m)1 · · · x̂(m)i−1 x̂(m)i+1 · · · x̂(m)n

⎤

⎥⎥⎥⎥⎦
(36)

E/i �

⎡

⎢⎣
0 ε1 · · · εi−1 εi+1 · · · εn
...

... · · · ...
... · · · ...

0 ε1 · · · εi−1 εi+1 · · · εn

⎤

⎥⎦. (37)

Hence, according to Equations (36) and (37), E(E/i) depends
on the mean vector E(ε) and E(E�/iE/i) depends on the
autocorrelation matrix E(ε�ε) and the mean vector E(ε).

Combining coefficients of âi linear term in (32), we can
obtain the mean vector as follows:

E
(
âi
)� = δ0

(
x̂�i + E(εi)

�)(X̂/i + E
(
E/i
))

�âi (38)

where x̂i � [x̂(1)i , x̂(2)i , . . . , x̂(m)i ]� and E(εi) � [E(εi),

E(εi), . . . ,E(εi)]� ∈ R
m. Once the covariance matrix �−1

âi
and mean vector E(âi) are obtained, we can obtain the
autocorrelation matrix E(âiâ�i ) = �âi + E(âi)E(âi)

�.
Likewise, by combining coefficients of ε quadratic term in

(31), we can get the covariance matrix �ε and the mean vector
E(ε) in (39) and (40), as shown at the bottom of the page,
which depend on the mean vector E(âi) and the autocorrelation
matrix E(âiâ�i ). Then the autocorrelation matrix E(εε�) can
be obtained by E(εε�) = �ε + E(ε)E(ε)�.

Since model coefficients a and calibration ε variational
distributions are dependent on each other, by iteratively

updating them, the variational distributions Q(â) and Q(ε)
can be obtained to maximize the lower-bound function defined
in (28).

Once the optimal variational distributions Q(â) and Q(ε)
can be obtained, unlike Formulation (23), in variational
M-step, the objective function is shown as follows:

max
�

EQ(â)Q(ε) lnP(x̂, â, ε;�). (41)

With the first-order optimality condition, that is dQ/d� = 0,
hyper-parameters λ, δ0, δε can be updated as follows:

λ = n2

∑n
i=1

∑n
j=0,j �=i

E

(
â2

i,j

)
+a2

i,j−2ai,jE(âi,j)

a2
i,j

(42)

δ0 = mn/
n∑

i=1

m∑

k=1

n∑

p=0

n∑

q=0

E
(
âi,pâi,q

)[
x̂(k)p x̂(k)q + x̂(k)p E

(
εq
)

+ x̂(k)q E
(
εp
)+ E

(
εpεq

)]
(43)

δε = n
∑n

i=1 E
(
ε2

i

) . (44)

Here we can obtain the variational distributions’ mean vec-
tor and autocorrelation matrix replace samples i.e., E(εi) =∑L

l=1 ε
(l)
i /L, E(âi,j) =∑L

l=1 â(l)i,j /L, E(εiεj) =∑L
l=1 ε

(l)
i ε

(l)
j /L

and E(âi,pâi,q) = ∑L
l=1 â(l)i,pâ(l)i,q/L. Compared with Gibbs

EM, the variational Bayesian EM is more stable as it is a
deterministic method while Gibbs EM is stochastic method.

Like Gibbs EM, we continue to alternate between varia-
tional E-step and variational M-step until convergence. The
convergence condition is that the relative differences of three
hyper-parameters between current and previous iterations are
less than thresholds. Then hyper-parameters λ, δ, δε can be
determined.

The pseudocode of variational Bayesian EM is listed in
Algorithm 4. Given x̂, a, and initialized hyper-parameters, vari-
ational Bayesian EM is performed iteratively. In variational
E-step, to initialize calibration variational distribution, the cal-
ibration mean and the autocorrelation matrix are obtained by
Algorithm 1. Then calibration and model coefficients varia-
tional distributions are iteratively updated by Equations (35)
and (38)–(40) until the convergence criteria is satisfied. In
variational M-step, hyper-parameters are updated according

�−1
ε = m

n∑

i=1

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E(âi,1âi,1) · · · E(âi,1âi,i−1) − E(âi,1) E(âi,1âi,i+1) · · · E(âi,1âi,n)

E(âi,2âi,1) · · · E(âi,2âi,i−1) − E(âi,2) E(âi,2âi,i+1) · · · E(âi,2âi,n)
...

... · · · ...
...

... · · ·
E(âi,i−1âi,1) · · · E(âi,i−1âi,i−1) − E(âi,i−1) E(âi,i−1âi,i+1) · · · E(âi,i−1âi,n)

−E(âi,1) · · · − E(âi,i−1) 1 − E(âi,i+1) · · · − E(âi,n)

E(âi,i+1âi,1) · · · E(âi,i+1âi,i−1) − E(âi,i+1) E(âi,i+1âi,i+1) · · · E(âi,i+1âi,n)
...

... · · · ...
...

... · · ·
E(âi,nâi,1) · · · E(âi,nâi,i−1) − E(âi,n) E(âi,nâi,i+1) · · · E(âi,nâi,n)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(39)

E(ε) =
(

m
n∑

i=1

[
E
(
âi,0âi,1

) · · · E(âi,0âi,i−1
) −E

(
âi,0

)
E
(
âi,0âi,i+1

) · · ·E(âi,0âi,n
)]+ 1

m

m∑

k=1

(
x(k)

)�
�−1

ε

)
�ε (40)
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Algorithm 4 Variational Bayesian EM

Require: Sensor measurements x̂, prior a;
1: Initialize hyper-parameters �;
2: repeat
3: Initialize calibration mean E(ε) = ε obtained by

Algorithm 1 and the autocorrelation matrix E(εε�) =
E(ε)E(ε)�;

4: repeat
5: Update variational distribution Q(â) with mean

vector E(â) and covariance matrix �â by Equations (35)
and (38);

6: Update variational distribution Q(ε) with mean
vector E(ε) and covariance matrix �ε by Equations (39)
and (40);

7: until Convergence
8: Update hyper-parameters � by Equations (42)

and (44);
9: until Convergence

10: return hyper-parameters �.

Fig. 6. Variational Bayesian EM flow.

to Equations (42)–(44). The variational E-step and the vari-
ational M-step are iteratively performed until the convergence
criteria is satisfied. Finally, the optimal hyper-parameters are
obtained. For a further illustration, our proposed variational
Bayesian EM flow is shown in Fig. 6.

VI. OVERALL FLOW

The overall flow of our proposed sensor drift calibra-
tion is shown in Fig. 7, which consists of four parts:
1) model optimization; 2) cross-validation; 3) Gibbs EM; and
4) variational Bayesian EM. With drift-free measurements
model coefficients and several temperature measurements with
drifts as inputs, an alternating-based optimization algorithm
is proposed to resolve sensor drift calibration formulation
in model optimization. Additionally, cross-validation, Gibbs
EM, and variational Bayesian EM are adopted to induce
hyper-parameters, respectively.

Compared with our previous work [30], our proposed VB-
EM is used to replace cross-validation, Gibbs EM in our

Fig. 7. Proposed sensor drift calibration flow.

Fig. 8. Generated simulation data.

Fig. 9. Benchmark. (a) Hall. (b) Secondary School.

proposed sensor drift calibration flow as shown in Fig. 7. Gibbs
EM is a stochastic approximation methodology while our
proposed VB-EM is a deterministic approximation method-
ology. Therefore, the whole flow with our proposed VB-EM
can achieve a better tradeoff between accuracy and runtime.
Based on the aforementioned techniques, the proposed flow is
expected to accurately calibrate sensor drifts.

VII. EXPERIMENTAL RESULTS

The in-building temperature data are selected to test our
proposed framework. We use several sensors for calibrate
drifts. All data is directly generated from EnergyPlus as
shown in Fig. 8. As illustrated in Fig. 9, the two building
benchmarks, Hall [45] with Washington, D.C weather and
Secondary School [46] with Chicago weather, are simulated
by EnergyPlus to generate the ground-truth in-building
temperatures, which are used to evaluate our proposed frame-
work. The temperature sampling period is set to be one hour.

Practically, both drift and measurement noises need to
be carefully considered and reasonably set to get close
to real temperature measurement. Because of a slow-aging
effect, time effects on sensor performance is not considered
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Fig. 10. Convergence of alternating-based method.

in our experiments. Drift is set to be time-invariant while
measurement noise is configured as time-variant. According
to the sensors’ performance shown in Fig. 1(a), two low-cost
temperature sensors, MCP9509 with accuracy ±4.5 ◦C and
LM335A with accuracy ±5 ◦C as shown in Fig. 1(b) and (c),
are chosen to set drift variance, respectively. According to
the triple standard deviation, we set two drift variances to
be σ 2 = (4.5/3)2 = 2.25 and σ 2 = (5/3)2 = 2.78. In
addition, according to our survey, the noise variance is set
to be 0.001 ◦C. All temperature measurements are generated
by adding noise.

The time-instant number needs to be reasonably set to
mimic practical application and accurately calibrate sensor
drifts. We assume the temperature measurements are drift-free
during first m0 = 240 time-instants (first 10 days). And during
m = 60 time-instants (60 h), the temperature measurements
with drifts are utilized to test our proposed framework.

TSBL [21] and the proposed framework with cross-
validation, Gibbs EM, and VB-EM are exploited to calibrate
sensor drifts, respectively. All methods are implemented by
Python 2.7 on 12-core Linux machine with 256 G RAM
and 2.80 GHz. 100 combinations of hyper-parameters ratios
and s = 5 folds are set in cross-validation. In Gibbs EM, since
the warm-start is waived in Gibbs sampling, to achieve better
tradeoff between accuracy and runtime, only L = 10 samples
are generated to perform Monte Carlo approximation (17), and
three hyper-parameters λ, δ0, δε are initialized with 103, 10−4

and 10−3, respectively. The threshold values of convergence
criterion are set as 10−8, 10−2, and 10−3 in Algorithms 1, 3
and 4.

To verify the optimization and convergence of our proposed
alternating-based algorithm as shown in Algorithm 1 more
clearly, two sensors are used to calibrate sensor drifts and
sense school temperatures in the second benchmark. In
Fig. 10, we can obviously see that, by using our proposed
alternating-based algorithm, the cost of Formulation (7), esti-
mated calibrations ε1 and ε2 converge quickly to the stationary
points.

The drift calibration accuracy is quantified by mean absolute
percent error (MAPE) defined as follows:

MAPE = 1

nm

m∑

k=1

n∑

i=1

∣∣∣∣∣
ε̂
(k)
i − εi

εi

∣∣∣∣∣ (45)

where ε̂
(k)
i is estimated calibration. Specifically, in our

proposed framework, ε̂(k)i = ε̂i. The sensor drift calibration
performances of accuracy and runtime are shown in Figs. 11
and 12.

As shown in Fig. 12, TSBL has acceptable computational
overhead even if its computational complexity is dominated by
multiple matrix inversion operations. However, as displayed
in Fig. 11, TSBL has the worst performance and robustness
for drifts calibration. In fact, temperature signals lie in time-
variant subspace since in-building temperatures are influenced
by multiple time-variant factors, e.g., weather. As a result,
TSBL cannot achieve an obvious drift calibration.

Unlike TSBL, the proposed spatial correlation model can
calibrate drifts even if temperature signals lie in a time-
variant subspace. Therefore, as shown in Fig. 11, the proposed
framework with cross-validation or Gibbs EM or VB-EM
outperforms TSBL in terms of accuracy. On average, the
proposed framework can achieve about 3× accuracy improve-
ment. Moreover, the proposed drift calibration framework with
cross-validation can achieve the best accuracy. However, as
shown in Fig. 12, cross-validation has a heavy computational
overhead since we need to run Algorithm 1 for multiple times.
Compared with cross-validation and TSBL, Gibbs EM and
VB-EM have lower computation complexity. Furthermore, in
order to make a better tradeoff between accuracy and runtime,
Gibbs EM uses fewer samples to perform Monte Carlo approx-
imation so that its accuracy is worse than VB-EM. However,
as shown in Fig. 11, the proposed framework with Gibbs
EM cannot achieve the best accuracy since Gibbs sampling
is a stochastic method and VB-EM ignores the correlations
between model coefficients a and calibration ε.

In Fig. 11, it can be seen that because of incremental
correlation, the more sensors can achieve the higher accu-
racy of drift calibration by using our proposed framework. In
practice, when fewer sensors need to be calibrated, in order to
achieve better accuracy, cross-validation can be used to deter-
mine hyper-parameters within a reasonable response time, e.g.,
1 min. While more sensors need to be calibrated, Gibbs EM
can be exploited to determine hyper-parameters so that sensor
measurement accuracy can be improved to a tolerable level
within acceptable runtime. The proposed calibration frame-
work with Gibbs EM can achieve a robust drift calibration
and a better tradeoff between accuracy and runtime.

In order to illustrate the fact that the warm-start can be
waived and the initialization is reasonable for samples in Gibbs
sampling, 100 Gibbs sampling traces, including the first 10
sampling traces, are shown in Fig. 13. We can observe that
the first 10 samples have the same shape with the 100 samples.
It indicates that the first 10 samples have the same statistics
with the 100 samples. Consequently, the first 10 samples can
be used to represent the 100 samples.

In this application, L = 10 can make a better tradeoff
between runtime and accuracy. More samples can improve the
calibration accuracy. For illustrating the relationships among
the number of samples, accuracy, and runtime, we show the
experimental results in Fig. 14. We set the sampling number
to be 10, 100, 1000, and 10 000. According to Fig. 11,
because of the incremental correlation discussed above, the
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(a) (b)

(c) (d)

Fig. 11. Drift variance is set to (a) and (c) 2.25; (b) and (d) 2.78; Benchmark: (a) and (b) Hall; (c), and (d) Secondary School.

(a) (b) (c) (d)

Fig. 12. Runtime versus # sensor: (a) and (c) 2.25; (b) and (d) 2.78; Benchmark: (a) and (b) Hall; (c) and (d) Secondary School.

Fig. 13. Gibbs sampling traces.

drift calibration performance is more stable when the number
of sensors is more than 15. Therefore, we average MAPE and
runtime on different numbers of sensors when the number of
sensors is more than 15. As the experimental results demon-
strated in Fig. 14, the more number of samples can improve
the calibration accuracy while it has more runtime. In addi-
tion, the more number of samples cannot achieve significant
accuracy improvement while it leads to a significant runtime

cost. Therefore, L = 10 is enough to make a better tradeoff
between runtime and accuracy. Besides, based on the exper-
imental results shown in Fig. 14, to achieve the same drift
calibration accuracy with VB-EM, Gibbs EM needs 10 000
samples, which will incur a 30× runtime overhead. Therefore,
our proposed VB-EM can achieve better a tradeoff between
accuracy and runtime.

Furthermore, considering that the temperature sensors are
used in a severe environment, in order to verify the robustness
for noise, we set another noise variance to be 0.01 ◦C. We
define 	MAPE = MAPE0.001−MAPE0.01, where MAPE0.001
is MAPE under 0.001 noise variance and MAPE0.01 is MAPE
under 0.01 noise variance. 	MAPE > 0 means that noise
brings a positive effect on drift calibration accuracy while
	MAPE < 0 means that noise affects negatively on drift cal-
ibration accuracy. Experimental results are shown in Fig. 15.
Although it is uncertain that which effect the noise will bring
on drift calibration accuracy under different sensor numbers
in each individual experiment, noise brings a negative effect
on drift calibration accuracy on average, i.e.,

∑
	MAPE.

What’s more, the larger noise variance triggers drift calibration
degradation by using our proposed methods, i.e., CV, Gibbs
EM, and VB-EM. Our experimental results as shown in Fig. 15
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(a) (b) (c) (d)

Fig. 14. # samples versus acc. versus runtime: (a) and (b) hall; (c) and (d) school; (a) and (c) drift variance 2.25; (b) and (d) drift variance 2.78.

(a)

(c)

(b)

(d)

Fig. 15. 	 MAPE when noise variance is set 0.01, drift variance (a) and (c) 2.25; (b) and (d) 2.78; Benchmark: (a) and (b) Hall; (c) and (d) Secondary
School.

indicate that compared with CV and Gibbs EM, our proposed
framework with VB-EM is robust for noise.

VIII. CONCLUSION

In this article, a sensor spatial correlation model has been
proposed to perform drift calibration. Thanks to spatial cor-
relation, the unknown actual temperature measured by each
sensor is linearly expressed by all other sensors. The pri-
ors for model coefficients and drift calibration are applied
to MAP estimation. MAP estimation is then formulated as
a nonconvex problem with three hyper-parameters, which is
optimized by the proposed alternating-based method. Cross-
validation, Gibbs EM, and VB-EM are exploited to determine
hyper-parameters, respectively. Experimental results demon-
strate that on benchmarks simulated from EnergyPlus,
the proposed framework with variational Bayesian EM can
achieve a robust drift calibration and a better tradeoff between
accuracy and runtime. Averagely, compared with state-of-the-
art, the proposed framework can achieve about 3× accuracy
improvement. In order to achieve the same drift calibration
accuracy with VB-EM, Gibbs EM needs 10 000 samples,
which will result in a 30× runtime overhead.
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