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Abstract

VLSI mask optimization is one of the most critical stages in manufacturability aware design,
which is costly due to the complicated mask optimization and lithography simulation. Recent
researches have shown prominent advantages of machine learning techniques dealing with
complicated and big data problems, which bring potential of dedicated machine learning
solution for DFM problems and facilitate the VLSI design cycle. However, uncertainty nature
of state-of-the-art machine learning models have posed great challenges when developing
alternative solutions. In this paper, we focus on a heterogeneous OPC framework that
assists mask layout optimization. Instead of fitting neural networks for mask optimization
tasks directly, a multi-class classification model is developed to capture design characteristics
and hence determine the most suitable OPC engines. Experimental results have shown the
efficiency and effectiveness of proposed frameworks that have the potential to be alternatives
to existing EDA solutions.
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1. Introduction

VLSI mask optimization is one of the most critical stages in manufacturability aware
design, which is costly due to the complicated mask optimization and lithography simulation.
Recent studies have shown prominent advantages of machine learning techniques dealing
with complicated and big data problems, which bring the potential of dedicated machine
learning solution for design for manufacturability (DFM) problems and facilitate the VLSI
design cycle [1, 2].

Related researches include layout hotspot detection [3, 4, 5, 6, 7, 8, 9] and mask opti-
mization [10, 11, 9, 12, 13, 14] and pattern generation [15], all of which contribute to high
performance mask optimization flow. Among the above, layout hotspot detection tries to
identify regions that are sensitive to process variations and require additional care in opti-
cal proximity correction (OPC) stage, defect prediction at OPC runtime helps circumvent
costly lithography simulation using efficient machine learning engine, and learning-based
mask optimization flows directly speed-up OPC by either creating a good mask initializa-
tion for legacy OPC engine that requires fewer iterations to converge, or circumventing costly
lithography simulation with regression/classification model and yields faster mask update in

Preprint submitted to Integration, the VLSI Journal February 7, 2021



Classification 
Model

ILT

MB-OPC

Mask

Mask
DesignDesigns

OPC-1

OPC-N

Masks

Masks

… …

Figure 1 A heterogeneous OPC framework. The classification model identifies whether a design fits different
OPC engines.

each iteration. These efforts not only bring benefits for modern OPC flow, but also present
the importance of legacy OPC engines, which most, if not all, machine learning solutions
still rely on.

Inverse lithography technique (ILT) [16, 17, 11] and model-based OPC [18, 19] are two
representative mask optimization methodologies in literature. Compared to model-based
OPC, ILTs usually promise good mask printability due to larger solution space. However,
the conclusion does not always hold as ILTs require to solve a highly non-convex optimiza-
tion problem which, sometimes, is hard to converge. Machine learning and deep neural
networks are recently investigated to aid modern OPC engines. GAN-OPC [11] developed
generative adversarial networks to generates mask starting point for ILT engines to reduce
OPC iterations and achieve better convergence. [9] investigated discriminative model to
predict edge placement error and hence improves per-cycle OPC efficiency. There are other
attempts [12, 20] targeting at direct prediction of edge displaement in mask layouts to reduce
overall optimization runtime.

Apparently, different patterns match different OPC engines as can be seen from a simple
comparison between [19] and [16]. In this paper, we propose a heterogeneous OPC framework
that tackles the possibility of machine learning assisting mask optimization from a different
perspective, where a deterministic machine learning model is built to capture design char-
acterestics and identify a better OPC solution for a given design, as shown in Figure 1. The
framework also makes the development of machine learning engine less challenging, because
misclassification of our neural network model does not pose significant side-effects and we
will always have legacy solutions as our backbone.

This paper makes the following contributions:

• We conduct a survey on recent progress of deterministic machine learning models
assisting printability estimation and generative models contributing to direct-printable
mask synthesis.

• We propose a heterogeneous OPC flow where a deterministic machine learning model
decides the proper OPC engine for a given pattern.

• We carefully design a classification model with task-aware loss function to better cap-
ture design characterestics and achieve our objectives.
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Figure 2 (a) Conventional hotspot detection flow vs. (b) Region based hotspot detection flow as presented
in [21].

• Experiments show that the proposed framework takes advantage of both ILT and
model-based OPC with trivial model prediction overhead.

Rest of the paper is organized as follows: Section 2 discusses state-of-the-art researches
on layout hotspot detection; Section 3 surveys recent progress of OPC and some preliminary
machine learning solutions; Section 4 introduces the development of the heterogeneous OPC
framework followed by the experiments in Section 5; Section 6 concludes the paper.

2. Hotspot Detection via Machine Learning

2.1. Shallow Machine Learning Solutions

Before the exploding of deep neural networks, traditional machine learning solutions have
been deeply investigated to detect lithography hotspots. Representative solutions include
decision tree [22], support vector machine (SVM) [23, 24], artificial neural networks [23] and
naive Bayes [25], which all follows a standard detection flow as in Figure 2(a).

Ding et al. [23] introduced an SVM-based hotspot detection flow, which hierarchically
narrows down the search space for hotspot patterns. Layout designs were converted into
to feature space by capturing fragment-based features. [24] further enhanced the hotspot
detection performance using multiple SVM kernels that focus on difference hotspot clus-
ters. Voting mechanism has made ensemble learning a more promising candidate machine
learning framework. [22] incorporated Adaboost and decision tree learner for efficient layout
hotspot detection and exhibited good trade-off between detection accuracy and false positive
penalty. Another representative ensemble learning framework was proposed in [25], where
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the information-theoretic approach was applied in the feature extraction module. The prob-
lem was solved by a dynamic programming model and embedded into the smooth boosting
model with naive Bayes. The lithography simulation overhead was further reduced.

Different from learning-based model designed for specific manufacturing problem on
hotspot detection, Jiang et al. [9] proposed an independent mask printability evaluation
framework which detects hotspots caused by EPE. A second order maximal circular mutual
information scheme (SO-MCMI) was introduced to select the circle subset. The SO-MCMI
is formulated as

max
w

w>Mw (1a)

s.t.
nc∑
i=1

wi = n∗c , wi ∈ {0, 1},∀i, (1b)

where wi in nc-dimensional vector w indicates whether the ith circle is selected. To overcome
the potential impacts due to the complicated feature presentations, XGBoost is applied to
handle EPE classification and intensity regression modeling.

2.2. Deep Learning Solutions

The fast development of deep neural networks brings new opportunities for hotspot de-
tection solutions. Considering the limitations of conventional machine learning on scalability
requirements for printability estimation and feature representation, a novel deep learning
based hotspot detection model was proposed in [3]. A feature tensor extraction technology
was developed to transform origin features into lower scale representations where spatial in-
formation is reserved. To facilitate the training procedure and find a better trade-off between
accuracy and false alarm, a batch biased learning (BBL) was presented. BBL can adjust
the label penalty for different instances dynamically to improve the model performance, as
in Equation (2).

ε(l) =

{ 1
1+exp(βl)

, if l ≤ 0.3,

0, if l > 0.3,
(2)

where l is the training loss of the current instance or batch in terms of the unbiased ground
truth and β is a manually determined hyper-parameter that controls how much the bias is
affected by the loss.

Adaptive squish pattern was proposed in [4] to handle multilayer patterns. Compared
with conventional squish patterns presents, the adaptive squish pattern not only reserves
the property of lossless representation and store layout topologies and geometry information
separately in a storage efficient format, but also provides a fixed size format which is suitable
for most manchine learning models.

Imbalance of positve and negative samples of layout patterns are crital problem especially
in machine learning based methods. A robust performance metric is needed to evaluate the
model performance. ROC curve based measure for hotspot detection algorithm was proposed
in [5], which provides a holistic view of imbalance on hotspot detection dataset. Multiple
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loss functions for neural network models are applied to handle the imbalance problem during
training. A general loss function designed for maximize the AUC score can be expressed as

LΦ(f) =
1

N+N−

N+∑
i=1

N−∑
j=1

Φ
(
f
(
x+
i

)
− f

(
x−j
))
, (3)

where f(x+
i ) and f(x−j ) are the prediction output of positive and negative samples of model

f respectively. N+ and N− are number of positive and negative samples. The new loss
functions present in [5] outperform the traditional cross-entropy loss on the state-of-the-art
neural network model.

While these works deal with the patterns in small clips, the large regions with multiple
hotspots cannot be handled directly. Recently, a region based method proposed by Chen
et al. [21] solved this problem by enlarging the small clip into large regions (as depicted in
Figure 2(b)). Inspired by the object detection task in computer vision field, a regression and
classification multi-task framework is designed to handle multiple hotspots in large regions
in a single epoch. The clip proposal network is applied to sample hotspot and non-hotspot
regions for both classification and regression training. The loss function for regression on
clip i can be written as

lloc(li, l
′
i) =


1

2
(li − l′i)2, if |li − l′i| < 1,

|li − l′i| − 0.5, otherwise,
(4)

where li and l′i are the coordinates of prediction and ground truth respectively. The classi-
fication loss for clip i can be formulated as

lhotspot(hi, h
′

i) = −(hi log h
′

i + h
′

i log hi), (5)

where hi is the prediction of the model and h′i is the label. Compared to the deterministic
classification flow, the performance in [21] is improved greatly.

2.3. Overcome Imbalance: Pattern Generation

In real VLSI manufacturing scenario, hotspot patterns are usually fetal but rare in a
design. This brings challenge for most learning-based solutions which require massive and
diverse hotspot data to get a machine learning model well trained. [15] studied the possibility
of generating DRC-clean test layout patterns with a generative machine learning model called
transforming convolutional auto-encoder (TCAE). Inspired from transforming auto-encoder
(TAE) [26], TCAE replaced capsule units with simpler latent vector nodes to represent
part-whole feature representation. The identity mapping in TCAE-training allows a neural
network to capture certain design rules. Dedicated perturbations on latent vectors promises
to create diverse and DRC-clean patterns.
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3. Mask Optimization via Machine Learning

Mask optimization ensures good mask printability and hence improves chip manufac-
turing yield. In advanced technology nodes, the conventional mask optimization processes
including model-based and ILT-based approaches consume increasingly more computational
resources. The flows of model-based and ILT-based approaches are shown in Figure 3. In this
section, we will discuss several machine learning-based alternatives that assist traditional
mask optimization flow.

Target
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Figure 3 The flows of conventional OPC approaches: (a) model-based; (b) ILT-based.

3.1. Machine Learning-based OPC

The superiority of machine learning-based solutions has been evaluated in OPC [12].
However, the lack of scalability under advanced technology nodes becomes the main issue
hindering the widespread deployment of a model-based OPC framework. Aiming at ad-
dressing the scalability issue, a fast machine learning-based mask printability prediction
(MPP) framework [9] for lithography-related applications was proposed. The work can be
extended to improve the scalability for different lithography-related applications. To en-
able the performance of the machine learning-based flow, a matrix-based concentric circle
sampling (MCCS) method and a second-order circle subset selection algorithm for feature
extraction were designed in [9]. The MPP framework has been demonstrated its effectiveness
by embedding into a conventional mask optimization tool.

Existing machine learning models [27, 28, 12] can only perform pixel-wise or segment-
wise mask calibration that is not computationally efficient. In accordance with the critical
problem, [11] proposed a generative adversarial network (GAN) based mask optimization
flow that takes target circuit patterns as input and generates quasi-optimal masks for further
inverse lithography technique (ILT) refinement.
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To enhance the computational efficiency and alleviate the over-fitting issue, training
topologies are synthesized. For the sake of faster training procedure, an ILT-guided pre-
training flow was proposed in [11] to initialize the generator with intermediate ILT results.
Besides, the authors designed new objectives of the discriminator to ensure the model is
trained towards a target-mask mapping instead of a distribution. The new objective function
is as follows:

min
G

max
D

EZt∼Z[1− log(D(Zt,G(Zt))) + ||M ∗ −G(Zt)||nn] + EZt∼Z[log(D(Zt,M
∗))], (6)

where Zt represents the target layout, G for the generator output, D for the discriminator
output, px for some distribution, M ∗ for the reference mask, and a set of target patterns Z =
{Zt,i, i = 1, 2, . . . , N} and a corresponding reference mask set M = {M ∗

i , i = 1, 2, . . . , N}.
Experimental results have verified that this flow can facilitate the mask optimization process
as well as ensure a better printability.

3.2. Machine Learning-based SRAF Insertion

Although conventional OPC can size the mask to give the correct critical dimension
(CD) on the wafer, it cannot make the isolated target pattern become dense [29]. As a
result, sub-resolution assist feature (SRAF) [30] insertion was proposed. There is a wealth
of literature on the topic of SRAF insertion for mask optimization, which can be roughly
divided into three categories: rule-based approach, model-based approach, and machine
learning-based approach. However, prior machine learning-based approaches [31, 13] lack
well-discrimination feature extraction techniques as well as a global view in SRAF designs,
which leads to unsatisfied simulation results.

Geng et al. firstly revised conventional concentric circle area sampling (CCAS) feature
construction method, by proposing a supervised online dictionary learning algorithm for
simultaneous feature extraction and dimensionality reduction [10]. In other words, label
information is not only utilized in learning stage but also imposed in feature extraction
stage, which in turn benefits the learning counterpart. Equation (7) is the main objective
function for supervised feature revision, where yt ∈ Rn refers to an input CCAS feature
vector, qt ∈ Rs corresponds to discriminative sparse code of t-th input feature vector, ht ∈ R
is the label of an input, xt ∈ Rs represents sparse codes, D = {dj}sj=1 ,dj ∈ Rn denotes the

dictionary made up of atoms to encode input features, A ∈ Rs×s is a matrix transforming
original sparse code xt into discriminative sparse code, W ∈ R1×s is the related weight
vector, and α, β represent the balancing hyper-parameters.

min
x,D,A,W

1

N

N∑
t=1

{1

2

∥∥∥∥∥∥
(
y>t ,
√
αq>t ,

√
βht

)>
−

 D√
αA√
βW

xt

∥∥∥∥∥∥
2

2

+ λ‖xt‖p}. (7)

To consider SRAF design rules in a global view, the authors construct an integer linear
programming (ILP) model in the post-processing stage of their SRAF insertion framework.
Experimental results demonstrate the efficacy of the proposed SRAF insertion flow in [10].
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with SRAFs). Towards this end, layout files are mapped into
images in a novel encoding scheme that captures the layout
details. This scheme incorporates a multi-channel heatmap
encoding of different layout objects into different layers of an
image [14]–[17]. Additionally, this encoding is accompanied
by a fast GPU-accelerated decoding scheme to recover layout
schemes from images generated by CGAN. With our proposed
encoding/decoding framework, a CGAN is trained to generate
layouts with SRAF inserted using a labeled data set. Once
trained, the CGAN can take an original layout image as an
input and generate a new image with SRAFs inserted. These
generated images can be eventually get mapped back to layout
files.

In this SRAF generation framework, our main contributions
are summarized as follows:

• A conditional generative adversarial network is used for
the first time for SRAF generation.

• We cast the SRAF generation problem as an image-to-
image translation task where the layout is translated from
its original domain to layout with SRAFs domain.

• A novel multi-channel heatmap encoding/decoding
scheme is used to map layouts to images suitable for
CGAN training while preserving the layout details.

• Our proposed framework achieves ⇠14.6⇥ speed-up
with comparable lithographic performance when com-
pared with state-of-art machine learning based approach
and ⇠144⇥ speed-up over the model-based approach
in commercial tool Mentor/Calibre [3] while achieving
comparable results.

The remainder of this paper is organized as follows. In
Section II we review the technical background and then present
the proposed approach in Section III. Section IV presents
numerical results demonstrating the efficacy of our method,
and conclusions are presented in Section V.

II. PROBLEM FORMULATION

The objective of the SRAF generation framework is to insert
SRAFs on any given layout in a manner that mimics the SRAF
scheme generated from model-based techniques. Practically,
the input is a layout clip with target patterns only as shown in
Fig. 1a, and the expected output is a new layout clip similar
to the one shown in Fig. 1b where SRAFs are generated to aid
the printing of target patterns. In other words, the objective is
to train a CGAN to translate images from the target domain,
DTrgt, (Fig. 1a) to the SRAF domain, DSRAF , (Fig. 1b).

In the training phase, each training sample consists of a
pair of images representing the original layout in DTrgt and
its corresponding layout in DSRAF . Based on the training
data, the CGAN model is trained to map images from DTrgt

to DSRAF . Then, the trained model can be used to gener-
ate SRAFs from layouts with target patterns. However, two
challenges should be addressed here. The first is that proper
image encoding/decoding is needed to aid the CGAN training
scheme. Secondly, the generated SRAF scheme may violate
some of the manufacturing rules; hence, a post-processing step
is needed to generate a final layout with SRAFs while abiding
by the specified rules.

To evaluate our proposed SRAF generation method, we
use two metrics to assess the performance of the mask
optimization results: (i) process variation (PV) band and (ii)

(a) (b)

SRAFTarget Pattern

Fig. 1 SRAF generation task can be cast as an image
translation problem where layout with target contacts (a) are
translated to ones with SRAF generated (b) .

edge placement error (EPE). These metrics are defined in a
way analogous to the definitions used in [3].

III. SRAF INSERTION USING CGAN

A. Data Preparation using Heatmap Encoding

As shown in Fig 1, the layouts from both domains DTrgt

and DSRAF can be treated directly as images. However,
this direct image representation is not suitable for the SRAF
generation using CGAN because the expected output cannot
be directly mapped to layout files due to two major limitations.
First, the trained CGAN is not guaranteed to generate ‘clean’
rectangular shapes for the SRAFs. In practice, images gener-
ated from generative adversarial networks (GANs) tend to be
blurry and GANs exhibit inherent limitation in detecting sharp
edges [12]. In addition, and even under the assumption that
the CGAN model can generate sharp-edged rectangles for the
SRAFs, extracting the SRAF information from the image to be
mapped back to the layout file can be prohibitively expensive.
Such mapping requires obtaining both SRAF locations and
sizes from the image generated by the CGAN model. Hence,
the direct image representation similar to that shown is Fig. 1
is ill-equipped for SRAF generation using CGAN.

With this in mind, we propose using a special encoding
scheme, typically used in keypoint estimation [14]–[17], that
can overcome the aforementioned limitations. The proposed
scheme is based on multi-channel heatmaps which associates
each object type with one channel in the image [16], [17].
Specifically, a multi-channel image is a simple representation
where the number of channels is equal to that of the object
types in the problem. On each particular channel, the first step
is to obtain the locations of its corresponding objects in the
original image. Next, a Gaussian noise circle is centered at the
obtained locations on the channel [16], [17].

To elaborate on this, we consider the example shown in Fig.
2 where an original layout is shown in Fig. 2a and the multi-
channel heatmap representation is shown in Fig. 2b. In this
example, we limit the number of channels to 3 to visualize
the encoded representation through a red-green-blue (RGB)
image. These three types are : (i) target patterns (in red), (ii)
horizontal SRAFs (in green) and (ii) vertical SRAFs (in blue).
Similar encoding can be done for images in DTrgt where only
one non-empty channel contains the target patterns.

The representation shown in Fig. 2 has two main ad-
vantages. First, learning sharp edges, which is a hard task
in GANs, is not needed. Instead, training-friendly Guassian
objects are used to encode the objects in the original image.
Secondly, and most importantly, with this representation the
images generated by the CGAN model can be easily mapped
back to layout files. In practice, since each channel represents
a well-defined type of SRAFs, it suffices to detect the location

2

(a)

with SRAFs). Towards this end, layout files are mapped into
images in a novel encoding scheme that captures the layout
details. This scheme incorporates a multi-channel heatmap
encoding of different layout objects into different layers of an
image [14]–[17]. Additionally, this encoding is accompanied
by a fast GPU-accelerated decoding scheme to recover layout
schemes from images generated by CGAN. With our proposed
encoding/decoding framework, a CGAN is trained to generate
layouts with SRAF inserted using a labeled data set. Once
trained, the CGAN can take an original layout image as an
input and generate a new image with SRAFs inserted. These
generated images can be eventually get mapped back to layout
files.

In this SRAF generation framework, our main contributions
are summarized as follows:

• A conditional generative adversarial network is used for
the first time for SRAF generation.

• We cast the SRAF generation problem as an image-to-
image translation task where the layout is translated from
its original domain to layout with SRAFs domain.

• A novel multi-channel heatmap encoding/decoding
scheme is used to map layouts to images suitable for
CGAN training while preserving the layout details.

• Our proposed framework achieves ⇠14.6⇥ speed-up
with comparable lithographic performance when com-
pared with state-of-art machine learning based approach
and ⇠144⇥ speed-up over the model-based approach
in commercial tool Mentor/Calibre [3] while achieving
comparable results.

The remainder of this paper is organized as follows. In
Section II we review the technical background and then present
the proposed approach in Section III. Section IV presents
numerical results demonstrating the efficacy of our method,
and conclusions are presented in Section V.

II. PROBLEM FORMULATION

The objective of the SRAF generation framework is to insert
SRAFs on any given layout in a manner that mimics the SRAF
scheme generated from model-based techniques. Practically,
the input is a layout clip with target patterns only as shown in
Fig. 1a, and the expected output is a new layout clip similar
to the one shown in Fig. 1b where SRAFs are generated to aid
the printing of target patterns. In other words, the objective is
to train a CGAN to translate images from the target domain,
DTrgt, (Fig. 1a) to the SRAF domain, DSRAF , (Fig. 1b).

In the training phase, each training sample consists of a
pair of images representing the original layout in DTrgt and
its corresponding layout in DSRAF . Based on the training
data, the CGAN model is trained to map images from DTrgt

to DSRAF . Then, the trained model can be used to gener-
ate SRAFs from layouts with target patterns. However, two
challenges should be addressed here. The first is that proper
image encoding/decoding is needed to aid the CGAN training
scheme. Secondly, the generated SRAF scheme may violate
some of the manufacturing rules; hence, a post-processing step
is needed to generate a final layout with SRAFs while abiding
by the specified rules.

To evaluate our proposed SRAF generation method, we
use two metrics to assess the performance of the mask
optimization results: (i) process variation (PV) band and (ii)

(a) (b)

SRAFTarget Pattern

Fig. 1 SRAF generation task can be cast as an image
translation problem where layout with target contacts (a) are
translated to ones with SRAF generated (b) .

edge placement error (EPE). These metrics are defined in a
way analogous to the definitions used in [3].

III. SRAF INSERTION USING CGAN

A. Data Preparation using Heatmap Encoding

As shown in Fig 1, the layouts from both domains DTrgt

and DSRAF can be treated directly as images. However,
this direct image representation is not suitable for the SRAF
generation using CGAN because the expected output cannot
be directly mapped to layout files due to two major limitations.
First, the trained CGAN is not guaranteed to generate ‘clean’
rectangular shapes for the SRAFs. In practice, images gener-
ated from generative adversarial networks (GANs) tend to be
blurry and GANs exhibit inherent limitation in detecting sharp
edges [12]. In addition, and even under the assumption that
the CGAN model can generate sharp-edged rectangles for the
SRAFs, extracting the SRAF information from the image to be
mapped back to the layout file can be prohibitively expensive.
Such mapping requires obtaining both SRAF locations and
sizes from the image generated by the CGAN model. Hence,
the direct image representation similar to that shown is Fig. 1
is ill-equipped for SRAF generation using CGAN.

With this in mind, we propose using a special encoding
scheme, typically used in keypoint estimation [14]–[17], that
can overcome the aforementioned limitations. The proposed
scheme is based on multi-channel heatmaps which associates
each object type with one channel in the image [16], [17].
Specifically, a multi-channel image is a simple representation
where the number of channels is equal to that of the object
types in the problem. On each particular channel, the first step
is to obtain the locations of its corresponding objects in the
original image. Next, a Gaussian noise circle is centered at the
obtained locations on the channel [16], [17].

To elaborate on this, we consider the example shown in Fig.
2 where an original layout is shown in Fig. 2a and the multi-
channel heatmap representation is shown in Fig. 2b. In this
example, we limit the number of channels to 3 to visualize
the encoded representation through a red-green-blue (RGB)
image. These three types are : (i) target patterns (in red), (ii)
horizontal SRAFs (in green) and (ii) vertical SRAFs (in blue).
Similar encoding can be done for images in DTrgt where only
one non-empty channel contains the target patterns.

The representation shown in Fig. 2 has two main ad-
vantages. First, learning sharp edges, which is a hard task
in GANs, is not needed. Instead, training-friendly Guassian
objects are used to encode the objects in the original image.
Secondly, and most importantly, with this representation the
images generated by the CGAN model can be easily mapped
back to layout files. In practice, since each channel represents
a well-defined type of SRAFs, it suffices to detect the location

2

(b)

Target SRAF

Figure 4 The visualization of the SRAF image translation in [14]: (a) Original layout with target contacts;
(b) SRAFed layout.

However, [10] lies on raw CCAS feature which is manually-crafted but not automatically
learnt by the learning model yet. Besides, the grid-based ILP method lacks efficiency, espe-
cially for large designs. So there still exists big room to improve. Very recently, GAN-SRAF
[14] casted the original SRAF insertion as an image-to-image translation problem where a
layout is translated from its original domain to SRAFed layout domain. The visualization
of the SRAF image translation is shown in Figure 4. To achieve this formulation, Alawieh
et al. firstly adopted conditional generative adversarial network (CGAN) in SRAF inser-
tion. In addition, to fit CGAN training, a novel multi-channel heatmap encoding/decoding
scheme was proposed to map layouts to images without information loss. The loss function
is designed as Equation (8):

min
G

max
D

Ex,y[logD(x,y)] + Ex,z[log(1−D(x, G(x, z)))] + λL1Ex,z,y [‖y −G(x, z)‖1] ,

(8)

where x is an observed image, y is an output image, z denotes a random noise vector, G
and D refer to the generator and discriminator in a CGAN, respectively. To further reduce
blurring, the authors adopt L1-norm rather than L2-norm. With comparable lithographic
performance, the GAN-SRAF framework surpasses prior works significantly on insertion
speed.

3.3. OPC in Multiple Patterning Scenarios

In advanced technology nodes, layout decomposition and mask optimization are two
of the most critical RET stages. In layout decomposition, a target image is divided into
several masks, while in mask optimization, each decomposed mask is optimized by some
RET techniques like OPC [32].

[33] is a pioneer work that considers multiple exposure effects in ILT framework. To
automatically synthesize the masks and then print the desired wafer pattern, [33] first com-
bined ILTs and double-exposure lithography. Via inverting the forward model from mask to
wafer, ILTs synthesize the input mask to obtain the required wafer pattern. On the other
hand, double-exposure lithography exploits two masks under two illumination settings to
print the desired wafer pattern. The objective function of [33] is shown in Equation (9),
which is formulated as minimizing the L2-norm of the difference between the desired pattern
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Figure 5 Performance gap between model-based OPC and ILT on ten designs from ICCAD2013 CAD Contest
[34].

z∗ and the aerial image |Ha|2 + |Hb|2. Here H is a jinc function with cutoff frequency of
NA/λ, and a, b are sampled from two input masks.

min
a,b

F (a, b) = argmin
a,b

∥∥z∗ − |Ha|2 − |Hb|2
∥∥2

2
. (9)

However, [33] has not addressed the layout decomposition problem yet. Ma et al. firstly
developed a unified optimization framework which solves layout decomposition and mask
optimization simultaneously [17]. To compatible with the objective, an unified mathemati-
cal formulation minM1,M2 F = ‖Zt −Z‖2

2 is proposed in [17], where Zt represents the target
image with Z the printed image, M1 and M2 for output masks. A gradient-based optimiza-
tion approach with a set of discrete optimization techniques is also proposed to solve the
problem efficiently. The experimental results in [17] demonstrate the efficacy of the unified
framework.

4. Heterogeneous OPC

Previous works have shown that different OPC engines exhibit advantages on different
designs. [16] and [19] are two representative implementations of ILT and model-based OPC
engine. Figure 5 depicts the performance gap of two engines on ten designs from ICCAD2013
CAD Contest [34]. Because in most cases model-based OPC runs faster than ILT, if we can
efficiently predict the behavior of different OPC engines and hence choose the best one,
meanwhile the throughput of mask optimization flow can be significantly improved. The
observation, therefore, inspires the design of a heterogeneous OPC framework, which adopts
a deterministic machine learning model identifies the best OPC engine for a given design
with negligible overhead.
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Figure 6 Visualization of bottleneck layer: (a) stride=1; (b) stride=2.

Table 1 Neural Network Configuration.

Layer Kernel Size Stride Output Node #

conv2d 3 2 112× 112× 32
bottleneck 3 1 112× 112× 16
bottleneck 3 1 56× 56× 24
bottleneck 3 1 28× 28× 32
bottleneck 3 1 14× 14× 64
bottleneck 3 1 14× 14× 96
bottleneck 3 1 7× 7× 160
bottleneck 3 1 7× 7× 320

conv2d 1 1 7× 7× 1280
avepooling 7 - 1× 1× 1280

conv2d 1 1 1× 1× 1280
fc - - 2

4.1. Efficient OPC Engine Selection with MobileNetV2

Since the explosion of deep neural networks and machine learning, many powerful neural
network architectures (e.g. VGG, ResNet, MobileNet, and etc) have been proposed. These
neural network designs have been proved to provide satisfactory results on classification
tasks. Therefore, the overhead to achieve satisfactory results will be our consideration.
Here, we pick the model with smallest cost in computation and storage. To accommodate
the demands for efficient back-end design cycle, we adopt the MobileNetV2 [35] as our base-
line neural network model, as detailed in Table 1. The basic components of the network is
bottleneck depth-separable convolution with residuals (referred as bottleneck layer). Bot-
tleneck layers are constructed differently according to their stride settings. Stride-1 blocks
come similarly with residue blocks with short cut connections between input and output
layers (Figure 6(a)). Stride-2 blocks are traditional feed-forward style by stacking 1× 1 and
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depth-wise 3× 3 convolutions with non-linearity.

⌦

(a) Regular convolution

⌦ ⌦

(b) Dwise convolution

Figure 7 Depth-wise separable convolution saves computation cost. (a) Regular convolution. (b) Depth-wise
separable convolution.

The “dwise” represents the depth-wise separable convolution operation that has been
widely used neural network architecture designs. As shown in Figure 7(b), depth-wise con-
volution performs convolution channel by channel to reduce multiplication operations, and
separable convolution decomposes k×k kernel into k×1 and 1×k. Basically, such operation
can achieve the functionality of standard convolutions (see Figure 7(a)) with significantly re-
duced parameter number and computation cost by an order of k2, where k is the convolution
kernel size.

4.2. Channel-wise Attention Assists to Capture Design Characteristics

Although the neural networks are designed with reduced computation cost thanks to
the efficient depth-wise convolution layer. We can observe that different channels are less
correlated than regular convolutions as in Figure 7. Since different channels in intermediate
feature maps are activation of corresponding convolution kernels, it is necessary to select
semantic meaningful channels for efficient feature extraction and classification.

Attention [36] is originally proposed in sequence-to-sequence transformation applications,
aiming to map a query and key-value pairs to an output. In sequence transformation domain,
such structure captures the relationships and relative importance of different nodes in a
given sequence. Interestingly, this neural network design also exhibits promising results in
image understanding [37]. To ensure that our model can capture semantic attributes, we
propose the bottleneck-attention layer that embeds channel-wise attention into bottleneck
layers. The architecture is visualized in Figure 8, where Φ is a mapping function (that
can be composed of pooling and auto-encoders) to acquire attention information. Here, we
represent Φ as a combination of poolings and feature learning. For a given input feature
map X, we first get its abstraction with global average and max pooling (calculate pooling
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Figure 8 Embedding channel-wise attention into bottleneck layers.

across the entire feature map in each channel),

pave = gAveragePool(X),pmax = gMaxPool(X). (10)

The vectors pave, pmax will be feed into an auto-encoder structure for feature learning and
transformation.

p′ave = AE(pave;w),p′max = AE(pmax;w). (11)

Then the pooling information will be added together to obtain attention map,

p = σ(p′ave + p′max), (12)

where σ denotes the activation function. The final output of the attention module will be
the element-wise product between p (cast to the same dimension as X) and X.

5. Experimental Results

5.1. Configurations

As a case study, in this paper, we adopt two OPC engines that are based on ILT and
compact model respectively. We adopt the same training design set (with 4000 randomly
generated designs) as used to train GAN-OPC [11] which are fed into an ILT engine [16]
and a model-based OPC [19]. Each pattern in the training set will be fed into different OPC
engines and hence we can obtain the MSE of corresponding mask simulation contours. We
then label all instances in the training set with the following rule:

y =

{
1, if DATE15 MSE ≥ DAC14 MSE,
0, otherwise.

To fit the neural network well, we also each GDSII design is converted into image with a
resolution of 1nm/pixel and down-sampled to 224×224.
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Table 2 Evaluation of the proposed H-OPC.

ID
MB-OPC [19] ILT [16] H-OPC [38] H-OPC-Attention
MSE Time MSE Time MSE Time MSE Time

1 53816 278 49893 1280 49893 1280 49893 1280
2 41382 142 50369 381 41382 142 41382 142
3 79255 152 81007 1123 79255 152 79255 152
4 21717 307 20044 1271 21717 307 20044 1271
5 48858 189 44656 1120 44656 1120 44656 1120
6 46320 353 57375 391 46320 353 46320 353
7 31898 219 37221 406 31898 219 31898 219
8 23312 99 19782 388 19782 388 19782 388
9 55684 119 55399 1138 55684 119 55684 119
10 19722 61 24381 387 19722 61 19722 61

Avg. 42196.4 191.9 44012.7 788.5 41030.9 414.1 40863.6 510.5
Ratio 1.03 0.46 1.07 1.90 1.00 1.00 0.99 1.23

Acc. - - 80% 90%

5.2. Model Evaluation

We evaluate the proposed framework using ten designs from ICCAD2013 CAD Con-
test [34]. Each design is fed into the trained CNN model before going through the mask
optimization stage. CNN predicts which OPC engine behaves better on the given design.
Detailed results are listed in Table 2, where “MB-OPC”, “ILT”, “H-OPC” and “H-OPC-
Attention” list the results of model-based OPC, inverse lithography technique-based OPC,
a more efficient neural network model that has similar behavior as used in [38] and the
proposed framework with bottleneck-attention layers. In the table, column “ID” represents
10 designs included in the benchmark suite, columns “MSE” indicate the mean square error
between the simulated wafer image and the design for each OPC solution, and columns
“Time” list the mask optimization runtime of each design using three solutions. As can
be seen, the baseline heterogeneous OPC framework can assign better OPC engines to 8
out of ten designs in the benchmark suit, which hence results in better mask optimization
performance with average MSE reduced by ∼ 3%. Also, the trade-off on runtime overhead
is more balanced with the help of a deterministic learning model. With the help of attention
layers, our H-OPC framework is able to increase the prediction accuracy from 80% to 90%
and hence results in 1% improvement compared to the baseline H-OPC model.

5.3. Discussion

Performance of an OPC engine is affected by many aspects. These include the complexity
of target designs and the OPC recipes. Generally speaking, model-based OPC runs faster
than ILT because only one forward lithography simulation is required in each iteration and
the adjustments only target at shape segments. On the other hand, ILT requires both
forward and backward calculations in each optimization step and the mask optimization is
in pixel level.
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ILT, apparently, offers larger solution space and hence hopefully better mask optimization
results. However, we can still observe cases that MBOPC surpasses ILT in terms of contour
MSE. This can be explained by the uncertainty in non-convex nature of ILT. These facts
make it hard to explicitly distinguish the best engine for a given design and motivate the
research to leverage the performance gap between different OPC engines.

The attention component, thanks to its advantage of feature extraction by capturing
key information from the learned feature maps, brings improvements on prediction accuracy
and average MSE. We can also observe that 20% more runtime overhead is introduced with
attention components. Such result is actually what we expected because each design is
labeled only according to the simulated contour MSE. Thus, a better trained classification
model will result in better MSE only. However, more evaluation metrics can be easily
considered by introducing additional label rules when preparing the training set.

6. Conclusion and Future Work

In this paper, we study recent advances of machine learning techniques on VLSI mask
optimization problems. We show that both deterministic and generative machine learning
models assist to manufacturing-friendly layout design. The former helps to identify pro-
cess weak regions in a design and can speed-up OPC by circumventing costly lithography
simulation. The latter focuses on generation of directly printable masks. Observing the
importance of legacy OPC engines in machine learning-based solutions, we propose a new
methodology that a machine learning model facilitates modern OPC flow. A deterministic
classification model is designed to identify the best OPC engine for a given design with neg-
ligible computing overhead. We hope the study can motivate deeper explorations of machine
learning solutions for VLSI mask optimization, which should not only include research on
machine learning-based OPC engine itself but should also dig into a flow control level. To
prototype such framework for the benefits in practical chip manufacturing scenario, future
works include (1) supporting large-scale full chip input and (2) stronger classifier design that
enable increased number of OPC engines and/or OPC recipes.
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