
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 6, JUNE 2019 1147

Synergistic Topology Generation and Route
Synthesis for On-Chip Performance-Critical

Signal Groups
Derong Liu , Bei Yu , Member, IEEE, Vinicius Livramento , Salim Chowdhury, Member, IEEE,

Duo Ding, Huy Vo, Akshay Sharma, and David Z. Pan , Fellow, IEEE

Abstract—As very large scale integration technology scales to
deep submicron, design for interconnections becomes increasingly
challenging. The traditional bus routing follows a sequential bit-
by-bit order, and few works explicitly target interbit regularity
for signal groups via multilayer topology selection. To overcome
these limitations, we present Streak, an efficient framework that
combines topology generation and wire synthesis with a global
view of optimization and constrained metal layer track resource
allocation. In the framework, an identification stage decomposes
binding groups into a set of representative objects; with the
generated backbones, equivalent topologies are accompanied by
the bits in every object; then a formulation guides the routing
considering wire congestion and design regularity. Furthermore,
a bottom-up clustering methodology based on layer prediction
targets to enhance the routability; a post-refinement stage is
developed to match the source-to-sink distance deviation among
bits in one group. Experimental results using industrial bench-
marks demonstrate the effectiveness of the proposed technique.

Index Terms—Primal-dual, regularity, routing, signal groups.

I. INTRODUCTION AND RELATED WORK

AS VERY large scale integration technology scales
to deep submicron and beyond, design for on-chip

interconnections becomes increasingly challenging. In current
industrial designs, data and control signals loading messages
from various sources can be bound as signal groups, as shown
in Fig. 1. Observe that there are three signal groups marked

Manuscript received September 23, 2017; revised February 5, 2018;
accepted April 3, 2018. Date of publication May 8, 2018; date of current ver-
sion May 20, 2019. This work was supported by the Research Grants Council
of Hong Kong SAR under Project CUHK24209017. The preliminary version
has been presented at the Design Automation Conference (DAC) in 2017.
This paper was recommended by Associate Editor L. Behjat. (Corresponding
author: Derong Liu.)

D. Liu and D. Z. Pan are with the Department of Electrical and
Computer Engineering, University of Texas at Austin, Austin, TX 78712 USA
(e-mail: derongliuliu@gmail.com).

B. Yu is with the Department of Computer Science and Engineering,
Chinese University of Hong Kong, Hong Kong.

V. Livramento is with the Automation and Systems Engineering
Department, Federal University of Santa Catarina, Florianópolis 88040-900,
Brazil.

S. Chowdhury is an Independent Consultant in Austin, TX, USA.
D. Ding, H. Vo, and A. Sharma are with Microelectronics Group, Oracle

Corpration, Austin, TX 78729 USA.
Color versions of one or more of the figures in this paper are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TCAD.2018.2834424

Fig. 1. Example of on-chip signal groups.

with different colors. The signal bits in one group may have
different numbers of pins, resulting in different routing styles.
In this example, one style is signified with a pair of solid
lines and a dashed line in the middle. The solid lines represent
two signal bits on the border, as pointed in Fig. 1, while the
dashed lines represent multiple bits inside. For signal bits with
different pin locations in one group, they have to be routed
in a regular manner. That is to say, common topologies are
preferred to be shared among all the bits for design regu-
larity, which is an extension of classic bus routing [1]–[3].
Meanwhile, with more metal layers integrated, it faces more
challenges to control the routing congestion among multiple
layers. For the performance-critical signal bits, the routability
and wire-length should also be optimized to avoid functional
inaccuracy. Therefore, an advanced synergistic router should
be able to not only control routability and wire-length but also
guide each bit routing intelligently for design regularity.

To realize these requirements, we propose an automatic
topology generation and synthesis engine which is able to
guide the routing of signal groups with a global view. Besides
the improvement of routability and wire-lengths, we should
also pay attention to the specific constraints brought by sig-
nal groups, where the bits in one group are encouraged to be
routed in parallel tracks and share common topologies/layers
for regularity. Meanwhile, instead of a bit-by-bit routing, sig-
nal bits can be clustered based on their possible route styles,
as seen in Fig. 1, where two styles in Group1 are circled to
be treated as an individual object. Then the problem size can
be reduced by condensing several bits into an object, but with
the resulting parallel routes, capacity constraints become more

0278-0070 c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-8949-6919
https://orcid.org/0000-0001-6406-4810
https://orcid.org/0000-0001-5167-6359
https://orcid.org/0000-0002-5705-2501

1148 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 6, JUNE 2019

stringent. During the whole procedure, all these constraints
should be taken into accounts carefully.

There are a few previous works focusing on bus architec-
ture synthesis for on-chip designs. Some bus-oriented work
incorporates with floorplanning to satisfy the timing con-
straints [4], minimize total bus area [5], or improve dead
space [6]. For timing analysis, an automated bus synthe-
sis framework, FABSYN, incorporates the floorplanning with
wire delay estimation engine to detect the potential viola-
tions [7]. Considering the impact of vias on lithography, a
revisiting methodology is proposed to minimize the routing
vias while controlling the loss of chip area and wire-length [8].
Furthermore, an OPC-friendly bus floorplanning algorithm
allocates the bus positions with the consideration of the impact
of off axis illumination on pitches [9]. Especially, multibend
shapes are considered in [6] for providing more topology can-
didates through simulated annealing. Additionally, an effective
algorithm minimizes the deviation for large-scale buses while
improving the dead spaces and wire-length [10]. And a bus
thermal analyzer models the potential hot spots on chips [11].
There are also some literature about escape routing on printed
circuit board design: such as pin ordering and untangling [12],
layer resource minimization [13], and an automatic planning
flow in [14] including bus decomposition, escape routing, layer
assignment, and global routing. Compared with the previous
work, our synthesis tool provides a more extensive view to
deal with bundled signal groups with more possibilities.

Very few of previous routing work targets at synergistic
topology generation and routing synthesis of signal groups
with multipin connections. For current industrial designs, reg-
ular topologies with parallel routes are highly preferred to
reduce interbit variability spread on silicon. Therefore, an effi-
cient topology generator should be able to facilitate signal
bits directing to different cells with low twisting or dis-
torted connections. Besides, compared to two-pin buses, signal
groups contain the bits with varying numbers of pins accord-
ing to their specified logic connections. This also increases
the problem complexity by providing more routing possi-
bilities and congestion challenges. Additionally, considering
the requirement of source-to-sink distance control, appropri-
ate twisting routes are required to complement the deviation
among multiple bits in groups. Therefore, an intelligent frame-
work is essential to guide the routing with the respect of
regularity and wire-length efficiently.

In this paper, we propose an automatic topology gener-
ator and routing synthesis for on-chip signal groups. Our
contributions are highlighted as follows.

1) An automatic framework directs topology and routing
synthesis of bundled groups with multipin connections.

2) An identification stage partitions signal groups into
a set of objects, where each bit has an equivalent
topology.

3) A mathematical formulation improves routability and
wire-length while handling the topology similarity.

4) A primal-dual flow benefits the runtime while keeping
very comparable quality.

5) A bottom-up clustering strategy integrates with layer
prediction to enhance the routability of signal groups.

6) A refinement stage allows appropriate twisting routes to
reduce the source-to-sink distance deviation.

The remainder of this paper is organized as follows.
Section II presents the overview of our framework and adopted
models. Section III describes our synergistic topology gen-
eration procedure, presents a mathematical formulation to
optimize wire-length and routability while controlling regu-
larity, and a prime-dual flow benefits the runtime. Section IV
provides a post optimization stage to further enhance the sig-
nal routability and match the source-to-sink distances among
different bits. Section V reports the experimental results and
followed by the conclusion in Section VI.

II. PRELIMINARIES

In this section, we provide the overview of our proposed
framework, and illustrate the adopted model and methodology,
based on which a problem formulation is given.

A. Streak Flow

To provide an explicit view of Streak framework, the over-
all flow is illustrated in Fig. 2. Initially, the information of
specified track allocation and pin locations from bits bundled
in signal groups is provided. To make it explicit, the definition
of signal groups is defined as follows, and signal groups are
predefined and provided by users.

Definition 1 (Signal Group): The performance-critical bits
whose pins are located in adjacent locations and required to
share common topologies are defined as a signal group.

Considering that the bits in a group may require various
routing types, as shown in Fig. 1, we identify the possible rout-
ing types of each bit based on its pin locations. Those bits are
combined as one routing object and able to obtain equivalent
topologies. Since our framework targets at multilayer structure,
3-D topology candidates are required for the objects on differ-
ent layers. To achieve this, we construct a set of 2-D backbones
for each object and derive equivalent topologies for each bit in
an object. In our flow, a backbone contains a complete rout-
ing solution of all the bits in reference to this backbone. Then
the acquired topology candidates are developed to different
layers for a 2-D solution, all of which are considered as can-
didates for selection. After handling the equivalence of each
object, we further quantify the dissimilarity among objects in
a group through regularity ratio. Based on these operations, a
primal-dual flow solves all the objects efficiently. During the
primal-dual flow, we search for the most appropriate solution
for each signal routing object in a progressive manner. The
details of each step in the flow will be given in Section III.
The following sections describe the routing model adopted
through our framework to handle the topology generation and
route synthesis for synergies.

B. Proposed Signal Model

Similar as global routing, signal route can also be modeled
on a 3-D global grid model. In real industrial designs, 3-D
routing is preferred to avoid the suboptimality of a post layer
assignment step. Similarly, each layer is also divided into a
set of rectangular routing cells in a 2-D manner, i.e., G-Cell,

LIU et al.: SYNERGISTIC TOPOLOGY GENERATION AND ROUTE SYNTHESIS FOR ON-CHIP PERFORMANCE-CRITICAL SIGNAL GROUPS 1149

Fig. 2. Overall streak flow.

(a) (b)

Fig. 3. Illustration of signal routing model. (a) Example of 2-D routing and
(b) 3-D routing.

shown as a vertex in Fig. 3(b). Additionally, the edges connect-
ing vertices in 2-D planes are for routing wires, whose capacity
constraints have to be satisfied. This means that the number
of passing bits cannot exceed the maximum capacity for each
edge. Different from traditional routing, signal bits prefer to
be routed in parallel tracks and share common topologies as
much as possible for regularity. For a signal group, several bits
may occupy the same edge simultaneously, which aggravates
the routing congestion. Therefore, edge capacity constraint
becomes more challenging through guiding the overall route
of all signal bits.

Based on the 3-D grid model, efficient routes can be gener-
ated considering the specified requirements of signal groups.
By modeling Group1 from Fig. 1 on a 2-D grid, as shown in
Fig. 3(a), this group is to be divided into two routing styles
based on their pins’ locations as circled. Each style corre-
sponds to an individual object consisting of several bits, and
the topologies of these two objects are encouraged to be shared
as much as possible. Therefore, it turns out that they are routed
in horizontal tracks from the drivers, and their corresponding
3-D solutions are provided in Fig. 3(b), where the horizontal
trunks are assigned on the same metal layer.

C. Proposed Bit Model

As shown in Fig. 1, one signal group contains a speci-
fied number of bits, which may have various numbers of pins
located in different directions. For the bits belonging to one
group, their routes should be coordinated and adhere to some
constraints: topology variance should be well controlled by
matching the connection with the mapped pins located at the
similar direction in the bits; for a pair of mapped pins, their
source-to-sink distances should be within certain bounds to
reduce the deviations. As shown in Fig. 4(a), three bits are
listed with the mapped pins as clustered together, where the

(a) (b)

Fig. 4. Illustration of source-to-sink distance for signal bits. (a) Example of
equivalent distance for all bits. (b) Example of interbit distance deviation.

red dashed squares signify the drivers of the bits. Observe
that the distances between the driver and the mapped pin are
the same in spite of existing different pins. Nevertheless, not
all the bits in one group are able to achieve the equal dis-
tance ideally. An example is provided in Fig. 4(b), from which
a much shorter distance exists for one sink in the leftmost
bit compared to the other bits. This will induce the source-
to-sink distance deviation for this pin, and further result in
diverse arrival times for the modules. To avoid the possible
malfunction, it is essential to control the distance deviation in
an acceptable range. Therefore, a threshold is introduced so
that the deviation should be under this constraint.

D. Proposed Similarity Vector Model

Based on the examples in Figs. 3 and 4, it is imperative
to present a model which distinguishes the bits in a bundled
group according to their different pin connections. That is to
say, all the bits in a distinguished object are to acquire equiv-
alent topologies. FLUTE [15] provides an elegant definition
of equivalent topology through vertical sequences, where the
same sequence is guaranteed to produce an equivalent topol-
ogy. By extending this, we develop a similarity vector for
each pin, SV(pm), to capture its relative location in its bit.
Furthermore, SV(pm) is also utilized to find the correspond-
ing pin in another bit from one signal group. Based on the
corresponding pins from other bits, their routes can be coor-
dinated in a synergistic manner through appropriate mapping
and calibration.

Since the corresponding pins of different bits can be located
in various G-Cells, we prefer to use the relative direction rather
than distance to describe each pin’s location. As shown in
Fig. 5(a), the SV for pin pm in its net is decided through
a quadrant-based model, which characterizes the connecting
directions in comparison to pm. It is seen that there are eight
directions in total: each quadrant contributes a direction while
both x- and y-axes contribute two directions. Then a similarity
vector is presented as shown

SV(pm) = {np(+x), np(I), np(+y), . . . , np(IV)} (1)

which records the number of other pins in this bit, i.e., np,
from each direction by a counter-clockwise sequence. For the
example shown in Fig. 5(a), assume that the driver is in the
middle and each “X” represents a sink, then SV of this driver
is {1, 1, 1, 1, 1, 1, 1, 1}. Taking the example in Fig. 3(a) as
an instance, there are two routing styles which can be distin-
guished through the vector. For the top style, the SV of the

1150 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 6, JUNE 2019

driver is {1, 0, 0, 0, 0, 0, 0, 0}, while the sink has the SV as
{0, 0, 0, 0, 1, 0, 0, 0}. Thus, in each routing style every pin
has the same SV, and these pins belonging to various bits in
a group can be mapped mutually. Based on the mapped pins,
we are able to provide equivalent topologies for the bits in
an object, while topologies among objects can also be coor-
dinated to reduce the dissimilarities. Therefore, SV plays an
important role in processing topology synergy of the bits in a
group.

E. Problem Formulation

Based on the proposed flow and routing model discussed
in the preceding section, we define the synergistic topology
generation and route synthesis (Streak) problem as follows.

Problem 1 (Streak): Given signal bits in bundled groups
and layer capacity information, Streak determines the rout-
ing topology and layer assignment for each signal bit so that
the routability, wire-length, and topology regularity can be
optimized while the edge capacity constraints are satisfied.

III. ALGORITHMS

In this section, we present the technique details adopted
through Streak flow. A preprocessing stage partitions each
signal group into a set of routing objects; a set of back-
bone structures is constructed and equivalent topologies are
developed; a mathematical formulation selects the appropriate
topology and assigns penalties to control irregular topologies;
and a primal-dual algorithm is presented finally for speed-up.

A. Identification of Signal Isomorphism

Besides covering general bus routing, our framework pro-
vides more feasibilities to handle groups of signal bits, which
can be loaded from data or control information. A prepro-
cessing stage provides a set of bits clustered in different
groups, which can belong to multiple buses and prefer to share
common topologies as much as possible. In comparison to
general bus planning, these binding signal bits possess differ-
ent numbers of pins which lead to a set of adjacent physical
locations. Therefore, with the integration of signal groups, the
algorithmic complexity increases with more possibilities.

To provide regular routes for bundled signals, we prefer to
partition a provided signal group into a set of subgroups, and
deal with each subgroup as an individual routing object. In
each object, every bit is able to acquire an equivalent topology
and all its pins have the same SVs as the pins in other bits. That
is to say, each pin is able to find its corresponding reflection
from any other bit in the same object. After the routing flow,
each bit in an object obtains an equivalent topology while for
different objects in a signal group, they are preferable to share
common topologies as much as possible.

With this objective, the partition strategy is illustrated in
Fig. 5(b). The input is one signal group represented by a white
root node, and the output is a set of routing objects represented
by the gray nodes, containing the bits with the same SVs for
the pins. The right squares provide the pin distributions of one
signal bit belonging to an object. When the pins have the same

(a) (b)

Fig. 5. Example of signal identification. (a) Quadrant-based similarity vector.
(b) Hierarchical isomorphic identification.

SVs, their bits are able to reach one topology. The methodol-
ogy is intuitive but naive by calculating the SV for each net
pin, which would result in considerable calculation overhead.
For those bits that are deemed to obtain different topologies
based on their pin locations, we prefer to distinguish them as
soon as possible. Therefore, we adopt a hierarchical strategy
based on the premise that the driver pins of various bits in
one group are mapped mutually. In this way, we calculate the
driver’s SV for each bit at first. Those bits with different val-
ues are separated as the middle blue nodes in Fig. 5(b). For
the signal bits in the top blue node, their drivers have the same
SV as {0, 2, 0, 0, 0, 0, 0, 0}, although they are not able to
obtain one topology. It is easy to see that equivalent topologies
are infeasible for the bits whose drivers have different vectors.
With this stage, the complexity decreases without traversing all
the pins due to the fact that the pins located in each direction
to the driver is quite limited. Then, we only need to evaluate
those pins located in one quadrant, as shown in Fig. 5(b). By
taking the top blue node as an example, we just compare the
SVs of the pins in the first quadrant to the driver. Finally, the
bits with the same SV for all the pins are combined as an
object, and common topologies are encouraged for the objects
in one group. In industrial designs, the signal groups are user-
defined by referencing the specifications from many aspects,
such as signal shielding, cell connection, etc.

B. Topology Generation and Evaluation

Before solving the signal routing problem, an efficient topol-
ogy generation procedure is essential to provide candidate
solutions. In this section, we propose a synergistic topology
generation strategy for multipin connections which require
equivalent topologies in one object and sharing topologies
among objects in one group. It consists of three steps: 1) back-
bone generation for each single object; 2) equivalent routes
generated for the bits based on the backbone; and 3) regularity
evaluation among backbone topologies of various objects.

1) Backbone Structure Construction: After the isomorphic
identification, a set of routing objects can be acquired from
a group, where all the bits can be routed with a topology,
i.e., backbone structure. In essence, it is a topology prototype
of all the bits in this object. The pins of one representative
bit serve as the input information, and the output is a set of
rectilinear connections (RCs) of the pins and bending points
with the same X/Y coordinates. Its formal definition is given
as follows. To select a bit in the object, we choose one bit in
the center region of an object and take its pins as the input.

LIU et al.: SYNERGISTIC TOPOLOGY GENERATION AND ROUTE SYNTHESIS FOR ON-CHIP PERFORMANCE-CRITICAL SIGNAL GROUPS 1151

Since the identification stage distinguishes the bits sufficiently,
a selected bit can be representative of all the bits in one object.

Definition 2 (Backbone Structure): With a representative
bit’s pin locations, backbone structure is defined as a rout-
ing topology which every bit in the same object is able to
use.

For the topology generation, we extend the batched iter-
ated 1-Steiner (BI1S) algorithm [16] based on an industrial
flow. Since the topologies with many bends are not suitable
for signal groups, the number of bending points is also an
important index besides the wire-length. Considering that a
backbone would affect all the bits in an object, it is essential
to save wire-length while keeping as few bending points as
possible. Therefore, a set of promising bending points should
be selected for BI1S. It is known from Hanan grids that Steiner
points should be located at the crossing points of input/output
pins, which also conforms to bending points in our flow.
Nevertheless, it is trivial to traverse all the internal edges con-
necting the pins and points, which may result in too many
inferior candidates. Thus, we only extract the promising points
and remove those resulting in long wire-lengths or complicated
topologies. Then the selected points are saved into one queue
with the priorities which indicate their potential wire-lengths
and bending costs. To generate a set of topologies, we pick
and insert the points from the queue to construct Steiner trees
with the consideration of both wire-length and bending costs.
Through the combination of pins and inserted points with a
set of RCs, we are able to achieve a rectilinear Steiner tree.
Then we select a noninserted point from the queue with the
highest priority to construct another tree. For each tree, at least
one different bending point is adopted for the topology can-
didate. After visiting all the promising points at least once,
we obtain an appropriate set of backbones on 2-D plane for
post-processing.

Since the objective of this procedure is to provide topology
prototypes for the objects, here we do not consider the required
demands of tracks and capacity constraints. For the demands
through G-Cells, the following equivalent topology genera-
tion phase will collect the topologies of the bits and calculate
the total required tracks. With the exact topology of each bit,
then the calculation will be accurate for reference. Besides,
the possibly occuring conflicts from the objects will be taken
into careful consideration in Section III-C. The reasons are
as follows. First, the routing layer has not been decided in
the current stage, so the conflicts cannot be obtained due to
the various capacities in multilayer structure; second, as our
optimal objective is to coordinate the routes from the objects
while satisfying the capacity constraints, a comprehensive for-
mulation with the global view of all these points is provided
in (3) with more details.

2) Equivalent Topology Generation: Compared with clas-
sic escape routing, signal routing has more stringent con-
straints for the bits in a binding group: topology equivalence
is required for those bits in an object; common topolo-
gies among objects should be shared as much as possible.
Section III-A describes how to partition a signal group into a
set of objects, and a set of backbones is constructed for each
object in Section III-B1. This section focuses on equivalent

Algorithm 1 Equivalent Topology Generation
Require: Initial backbone to;

1: Build LUT with SV(p), p ∈ to;
2: Record bt(to) with its connecting pins;
3: for each bit b ∈ do
4: Map p ∈ b to p ∈ to;
5: while ∃ non-visited bt(to) do
6: Select a non-visited bt(to) ∈ to;
7: Find px(bt, to), py(bt, to);
8: Acquire px(bt, b), py(bt, b) from map;
9: Determine bt(b) based on px(bt, b), py(bt, b);

10: bt(b) connect px(bt, b), bt(b) connect py(bt, b);
11: end while
12: end for

(a) (b) (c)

Fig. 6. Equivalent topology generation example: (a) Pin mapping through
similarity vector. (b) Bending points aligning. (c) Topology generation by
connecting mapping pins and points.

topology generation for an object according to each back-
bone. To achieve this objective, we refer to the similarity
vector presented in Section II-B. Through making sure the
corresponding pin in backbone for each bit, we are able to gen-
erate a topology same as backbone. The equivalent topology
generation details are given in Algorithm 1.

After the identification stage, all the bits in one object have
the same SV for each pin. Thus, it is explicit to find the cor-
responding pin in backbone for each bit, and build a map
to show this relationship. Based on a set of backbones gen-
erated beforehand, each equivalent topology is accompanied
for each bit with the same connection of corresponding pins.
To achieve this objective, we first construct a look-up table
(LUT) which captures the relative location of each pin in the
corresponding bit. Take the example in Fig. 6(a), pin1 in the
backbone will be mapped to the SV as {0, 2, 0, 0, 0, 0, 0, 1}.
During LUT construction, all the pins are traversed to record
their SVs for further matching (line 1). Meanwhile, based on
Hanan grids, bending points in the backbone are located with
the same X/Y coordinates as its pins. Hence, each bending
point can be recognized easily through its neighboring con-
nected pins (line 2). For instance, the circled bending point in
Fig. 6(a) can be located by pin1 and the source pin. Then we
traverse each bit for topology generation in reference to each
given backbone.

For each bit, through the LUT, each pin can be mapped
to its reflection in the backbone according to its SV (line 4).
For pin1 of the nonrouted bit in Fig. 6(a), due to the equiv-
alence of its SV to pin1 in the backbone, these two pins are
mapped to each other. In the shown example, each pair of

1152 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 6, JUNE 2019

mapped pins are identified with the same shape in one color.
After setting this matching relationship of pins, we start to
build the topology by calibrating the bending points in each
signal bit. During each iteration, a nonvisited bending point
is selected arbitrarily from the backbone, which has both hor-
izontal and vertical connections to the pins (line 6). These
connected pins, px(bt, to), py(bt, to), are taken and utilized as
reference to align this bending point bt(to) (line 7). Based
on these pins, we obtain the corresponding matched pins in
this signal bit, px(bt, b), py(bt, b), with the assistance of the
constructed map (line 8). Then, the bending point in the bit
can be located with the same X coordinate as the vertical
pin px(bt, b), and Y coordinate as the horizontal pin py(bt, b)

(line 9). For the circled bending point in Fig. 6(a), the corre-
sponding point will be aligned based on the X coordinate of
the source pin, and Y coordinate of pin1 in Fig. 6(b), and so on
for the other bending points. Through connecting the bending
points with these neighboring pins with the same X/Y coordi-
nates, an equivalent topology is able to be obtained (line 10).
It is seen that with the LUT, the runtime of this algorithm is
within O(|Pb||Nb| log |Pb|), where |Nb| represents the number
of bits in an object, and |Pb| represents the number of pins in
a bit.

An explicit example is illustrated with three phases in Fig. 6.
Fig. 6(a) provides the backbone and the mapped pins through
LUT, while each corresponding pin is identified with the same
shape in one color. With these mapped pins, the internal bend-
ing points are determined and aligned in Fig. 6(b). Finally, an
equivalent topology is given through connecting the pins and
points for the specified bit in Fig. 6(c).

Additionally, considering the existing multilayer struc-
ture for current industrial designs, we develop a series of
topologies with different layers based on each 2-D rout-
ing tree. For regularity, the horizontal and vertical trunks
should be assigned on the same uni-directional layer; in
the meantime, these trunks are preferred to be assigned on
the neighboring layers in order to save the unnecessary via
overheads.

3) Regularity Evaluation: Through the previous stages,
equivalent topologies are guaranteed in each routing object.
Nevertheless, since the signal groups are user-defined with
pin locations in different directions, it is infeasible to enforce
topology equivalence for all the objects in a given group.
Therefore, we prefer to use a novel metric to quantify their
topology differences. Considering that a backbone is able to
represent the key structure for each object, it is explicit to take
backbones into accounts for irregularity evaluation.

As described in Section III-A, for two bits with the same
number of pins, these pins can be mapped reciprocally accord-
ing to their SVs. However, for those with different numbers
of pins, SV is able to target the most probable pin of another
bit. To reach this objective, we adjust SV by incrementing the
weight of driver pin which should be mapped to the drivers of
other bits as expected. The weight is set to a value higher
than the overall number of pins. Through this adjustment,
the relative position of each pin to its driver is emphasized.
Also, we calculate the SV for each bending point so that they
can also be mapped to the pins or bending points of other

topologies. By matching the pins/points with the closest SV
in two topologies, t1 and t2, the regularity rate is computed
as in (2). It is equal to the number of mapped RCs formed
by two mapped pins/points, NMRC, divided by the minimum
number of RCs in t1 and t2. As shown in Fig. 3(a), although
the bottom object has one more bending point than the other,
the topologies of these two objects are still regarded as sim-
ilar topologies since this point can be mapped to the sink of
the other object. Therefore, for this example, the ratio is set
to 100% because both the number of mapped RCs and mini-
mum number of RCs are equal to 1. In our algorithm flow, it
is preferable to keep this ratio as high as possible to eliminate
the dissimilar topologies. Since the denominator is more than
or equal to the numerator in (2), the highest value of the ratio
is 1, which indicates that topologies, t1, t2, share one topology

Ratio(t1, t2) = NMRC(t1, t2)

min{NRC(t1), NRC(t2)} . (2)

C. Mathematical Formulation

The mathematical formulation of Streak is provided in (3).
In the objective function, the first term is to calculate the total
costs of all the objects, where c(i, j) gives the cost of candi-
date xij of object i based on its wire-length and assigned layers.
Since layering is taken into accounts, a post layer assignment
stage can be saved to avoid potential suboptimality. The sec-
ond item is to enforce the routing of objects and M is a large
penalty for those nonrouted objects, whose si will be set to 1.
Here, Sc refers to the set of solution candidates, while So refers
to the set of routing objects. To minimize the topology vari-
ance, we add the third item in (3a). It helps to quantify the
topology irregularity of any two objects in group g, which is
the reciprocal of the regularity ratio. For two topologies with-
out sharing any RCs, a large penalty will be set but which
should be smaller than M to ensure the first priority of routabil-
ity. Meanwhile, for xij and xpq, if the RCs are shared but the
routed layers are not adjacent, a penalty proportional to the
layer difference will also be assigned

min
∑

(i,j)∈Sc

c(i, j) · xij +
∑

i∈So

M · si

+
∑

(i,p)∈g

∑

(i,j)∈Sc

∑

(p,q)∈Sc

c(i, j, p, q) · xij · xpq (3a)

s.t.
∑

(i,j)∈Sc

xij + si = 1, ∀i ∈ So (3b)

∑

(i,j)∈el

uel(i, j) · xij ≤ capel
, ∀e ∈ E, ∀l ∈ L (3c)

si ≥ 0, xij is binary, ∀i ∈ So, ∀j. (3d)

Meanwhile, constraint (3b) is to ensure that at most one
topology is selected for each routing object; while con-
straint (3c) places the capacity limitation of each edge on
different layers, i.e., capel . Due to the sharing topologies,
we deal with a stringent edge capacity constraint for one
edge can be utilized multiple times by several bits in an
object concurrently, as shown in Fig. 3(a). Thus, we prefer
to add one constant to provide the edge usage by the current
topology, i.e., uel(i, j). Finally, with the constraints of both

LIU et al.: SYNERGISTIC TOPOLOGY GENERATION AND ROUTE SYNTHESIS FOR ON-CHIP PERFORMANCE-CRITICAL SIGNAL GROUPS 1153

xij and si as binary variables, it is seen that this quadratic
programming problem can be solved through integer linear
programming (ILP).

D. Primal-Dual Algorithm

Although an ILP solver can be utilized to solve (3), in
real design it is not preferable due to its prohibitive runtime
when lots of variables exist. We thus design a primal-dual
algorithm to provide an efficient solution. With the generated
topologies, a fast flow is essential to make a sensible selec-
tion of candidates while satisfying the given requirements. A
primal-dual algorithm is generally utilized for vertex covering
problem, such as layer decomposition work in [17], which can
also be applied in routing flow by incrementing the dual vari-
ables accordingly. This section provides the details to solve
the routing flow through a primal-dual algorithm.

At first, we prefer to linearize the quadratic terms in (3)
for a primal formulation. Some previous works predefine one
of these two variables as a known value through an iteration-
based framework [18], [19], while [20] takes the quadratic
terms through extensive semidefinite programming for more
accuracy. Considering the properties of primal-dual, we search
for the allowable minimum value of each term based on
the states of xij and xpq. Therefore, (4) provides a relatively
accurate approximation

∑

(i,p)∈g

∑

(i,j)∈Sc

∑

(p,q)∈Sc

c(i, j, p, q) · xij · xpq ≈ c′(i, j) · xij (4)

where

c′(i, j) =
{

c(i, j, p, q), ∃xpq = 1
min{c(i, j, p, q)}, ∀xij · xpq
= 0.

(5)

Since the primal-dual algorithm is a progressive flow
through which xijs increase in a step-by-step manner, for a
determined solution xpq as 1, its combining cost with xij will
be integrated with c(i, j) as an additional cost. Nevertheless, if
no solution has been decided for p, the minimum combining
cost with any feasible xpq will be considered as the cost. Here,
the feasibility refers to whether the combination of xij and xpq

can satisfy the current edge capacities. If not, this combina-
tion will be removed from the solution set. With this linear
approximation, a dual problem (DP) can be acquired as in (6)

DP: max
∑

(i,j)∈Sc

αij +
∑

el∈E,L

capel
· βel (6a)

s.t. αij +
∑

i,j:el∈xij

uel(i, j) · βel ≤ c(i, j) + c′(i, j), ∀i, j (6b)

αij ≤ M, ∀i ∈ So, ∀j (6c)

βel ≤ 0, ∀e ∈ E, ∀l ∈ L. (6d)

Formula (6) provides the dual form of (3) with the lineariz-
ing item, which incorporates two types of dual variables: αij

for constraint (3b) and βel for constraint (3c). Based on the
strong duality, the optimal solution for (3) can be determined
by satisfying the constraints in (6). Therefore, we prefer to
start with a primal infeasible but dual feasible solution set,
and increment the primal solutions accordingly until a feasible
solution is obtained.

Algorithm 2 Primal-Dual Algorithm
Require: A set of routing objects with its candidate set.

1: Initiate primal solutions xij, si to 0;
2: Initiate dual solutions αij, βel to 0;
3: Calculate c(i, j), c′(i, j) for each xij;
4: while ∃ ∑

xij + si = 0 do
5: Search for a set of infeasible objects i;
6: Select xij with the minimum c′(i, j) + c(i, j);
7: xij ← 1, si ← 0;
8: Update capel where el ∈ xij;
9: Remove infeasible primal solutions;

10: if no feasible xpq for p then
11: sp ← 1;
12: end if
13: Update c′(p, q) for residual feasible solutions;
14: end while

The outline of primal-dual algorithm is described in
Algorithm 2, where the input is a set of routing objects with
their candidates. The initial primal solutions are set to 0 while
keeping the dual variables also to 0 for their feasibilities
(lines 1 and 2). Then the minimum required cost is calculated
for each candidate to reach the upper bound of constraint (6b)
(line 3). For each iteration, we check whether there still exist
infeasible xijs and si, and the infeasible one with the mini-
mum cost will be selected to increase its primal solution value
(lines 5 and 6). Notably, here xij should be able to satisfy the
current capacity constraints without any violations. Then xij

increases to 1 while si is kept to 0 due to the primal con-
straint. With the update of xij, we recalculate the available
routing tracks of each edge passed by xij (line 8). Meanwhile,
due to the decreasing usable tracks, some xpqs become infeasi-
ble. Thus, they can be removed securely without affecting the
solution quality. For a specified object p, if all its xpqs have
been abandoned, sp can be set to 1 (lines 10–12). Considering
the existence of xij · xpq in (3), c′(p, q) should be updated if it
relates with xij (line 13). Since the physical characteristic of
this quadratic term is the combination of xij and xpq, c′(p, q)

should be recalculated when the combination is not available
due to the reduced capacities. Through the search procedure,
the sum of these dual variables keeps enhancing until an upper
bound is reached by finishing all the solutions. During the
whole process, edge capacity constraints are always held for
infeasible solutions are already bounded beforehand.

IV. POST OPTIMIZATION

Section III provides a complete flow to coordinate topol-
ogy and layering assignment for signal groups appropriately.
Through the proposed similarity vector model in Section II-D,
the bits in a single object can be determined to reach an
equivalent topology. By generating a set of candidates, we
obtain the topology and layer assigning result for each object.
Nevertheless, after the primal-dual flow, some objects may not
be routed due to the high number of bits in an object. That is
to say, even for an object, where its bits can reach one topol-
ogy, we may not be able to provide adequate routing resources

1154 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 6, JUNE 2019

(a) (b)

Fig. 7. Example of blocked routing instance. (a) Routing of some bits blocked
by obstacles. (b) Multiple topology selection for each cluster.

because of its required high widths. Therefore, it is impera-
tive to provide further division for the nonrouted objects so
that more flexibilities are allowed, and the topology variance
should also be controlled among the bits for regularity.

To make it explicit, a blocked instance is given in Fig. 7(a),
where the dashed circles signify the mapped pins for each
bit. It is seen that all the bits can reach the same topology if
there is no obstacle. To deal with this issue, we allow further
division for those bits so that we acquire more opportunities
to enhance the final routability. Fig. 7(b) provides a possible
solution, where three routing patterns are shown for all the
bits. In this way, the blockage is bypassed without paying a
high penalty of wire-length and topology variance. Generally,
with a slight degradation of regularity, multiple clusters can
benefit the routability of those blocked objects. To ensure the
effectiveness, it is essential to balance the tradeoff between
routability and design regularity.

Fig. 8 lists the outline of our post-optimization, which tar-
gets at improving the routability and refining topologies of
signal groups. Instead of using common rip-up and reroute
technique, during signal routing we prefer to maintain the
current topology and layer assignment result. The reasons are
twofold: First, since one signal group contains the bits with
regular routes and concurrent bending points, this increases
the complexity of splitting those bits simultaneously. It is also
hard to find another feasible routing space for rerouting the
bits based on the limited track resources, and a domino effect
can be caused by ripping up others continuously, resulting in
unexpected distortion. Second, the proposed primal-dual flow
considers the optimization of wire-length and topology regu-
larity concurrently. Based on its closure to a global optimal
result, it is intuitive to provide an incremental approach to take
advantage of the residual resources without causing further
disturbance. Therefore, our post optimization flow is provided
in Fig. 8. For the signal groups to be routed, the preferable
layers are predicted based on the congestion; and a bottom-up
clustering methodology combines the bits while keeping legal-
ity for capacity constraints. This procedure continues until all
these groups have been traversed. After this stage, we check if
there exist source-to-sink distance deviation violations. If so,
we will introduce appropriate twisting detours to refine the
topologies. The details of each step are given in the following
sections.

A. Possible Layer Prediction

Different from traditional layer assignment which behaves
after 2-D routing, we take layering into consideration before

Fig. 8. Post-optimization flow.

exact routing. Based on the limited resources, we can narrow
down the solution space by predicting the layers efficiently.
Due to unidirectional routing, it is required to select two
layers favoring horizontal and vertical directions. Since the
eventual routes have not been decided, a predictive method-
ology is utilized to estimate track usages on each layer.
With this approximation, the appropriate layers are acquired
with the least conflict values regarding the already routed
bits.

To provide an estimation of track utilization, we take all the
available topologies of the bits into accounts. For a 2-D edge
e, its possible usage by a group g is calculated as follows:

u(e, g) =
∑

b∈g

∑

tj∈Sc(b)

1

|Sc(b)| · u
(
e, tj

)
(7)

where Sc(b) denotes the set of solution candidates for bit b,
and u(e, tj) denotes if this edge is used by the jth topology
candidate of bit b. Different from before, here we handle a
nonrouted bit as an individual object. Thus, two bits even in
an object can have different routing styles in order to reach
a higher routability. Since backbone generation provides a
series of topologies for objects, every bit owns the same set of
topologies according to that of backbones, i.e., Sc(b). Assume
that each candidate has an equal probability to be routed for bit
b. We divide the sum of track usages from all the candidates
by the set size. This calculation offers a close approxima-
tion of resource utilization by accumulating the bits in group
g. Through considering all the bits’ candidates, we obtain an
estimated usage map of each concerned 2-D edge. Based on
the map, we calculate the possible routing conflicts for each
layer, as shown

cf (l, g) =
∑

el∈e

max(u(e, g) − capel
, 0) (8)

where el is the corresponding 3-D edge on layer l for 2-D
edge e in (7), capel provides the available tracks for el, and
cf (l, g) is the estimated conflict value of routing g on layer l.
In each routing direction, the layer with the minimum conflict
has the highest probability to assign. As this conflict is based
on an approximated congestion map, a legal solution can still
be achieved even for a positive value. Therefore, an efficient
clustering and routing scheme plays an important role to avoid
the conflicts while keeping regularity.

B. Bottom-Up Clustering and Routing

In order to enhance the routability, it is feasible to allow
different topologies for the bits in one object. In this way,
each bit can be handled as an individual for routing so that
a higher routability can be achieved. Based on the obtained

LIU et al.: SYNERGISTIC TOPOLOGY GENERATION AND ROUTE SYNTHESIS FOR ON-CHIP PERFORMANCE-CRITICAL SIGNAL GROUPS 1155

layers, we are able to search for the solutions while encour-
aging the routability and topology sharing among all the
bits. Taking the example in Fig. 7(b), there are three rout-
ing styles, instead of one in Section III-A. Here, one style
corresponds to one cluster, where the bits share a com-
mon topology for regularity. To achieve this, we propose
a bottom-up clustering strategy to handle multibit routing
intelligently.

The whole procedure is listed in Algorithm 3, where a set
of nonrouted groups serves as inputs. Initially, we produce the
same set of topologies for the bits based on the backbones
(line 1), and predict the layers with the highest probability
for every group in both horizontal and vertical dimension
(line 2). In each group, we construct a cluster for each bit
so that they can be combined with others later (line 4). As a
bottom-up clustering method, during each iteration, we ensure
if there is a nonvisited pair of clusters (line 5). If so, we
will select a pair with the minimum achievable cost (line 6).
To obtain this cost, we employ a similar way of cost calcu-
lation in Algorithm 2. For two clusters, if neither of them
is routed, all the candidates will be traversed and the feasi-
ble solutions will be recorded with the corresponding cost;
if one of them has been routed successfully, we will only
take the nonrouted cluster into accounts during the calcula-
tion. However, if no legal solution has been found, then a large
penalty value will be counted. By considering all the available
routes in two clusters, we acquire the minimum cost, which
is set to the weighted sum of wire-length and regularity ratio.
For the nonrouted cluster, the candidate route with the best
cost will be adopted (lines 7–9), and this pair of clusters will
be marked as a visited one (line 10). Also, based on the rout-
ing styles, we check the regularity ratio to see if they share
the equivalent topology (line 11). In this case, these two clus-
ters should be combined further and the second one will be
removed (lines 12 and 13). Through traversing and combining
the cluster pairs appropriately, the bottom-up scheme explores
the solution space efficiently with adequate options for the
signal bits.

C. Post-Routing Refinement

The techniques above provide efficient routing control of
signal bits through both top-down and bottom-up method-
ologies. Nevertheless, non-negligible source-to-sink distance
variations result in possible signal malfunction. Different from
classic bus routing, our flow deals with signal groups in which
bits may have a different number of pins in various loca-
tions. Considering that the movement of one pin may disturb
the other pins in a bit, the problem becomes more compli-
cated. Meanwhile, topology regularity should also be taken
into accounts. Therefore, we present the following routing
refinement methodology which shrinks the distance difference
with the consideration of regularity simultaneously.

As stated, it is likely that only partial pins in a bit violate the
source-to-sink distance constraint. Thus, our target is to adjust
the distances of the violating pins while maintaining the other
pins’ connections. An example is illustrated in Fig. 9, where
two bits possess the same number of pins and each pair of

Algorithm 3 Bottom-Up Clustering Algorithm
Require: A set of non-routed signal groups.

1: Topology candidate generation for bits in groups;
2: Possible layer prediction of signal groups;
3: for each group do
4: Build one cluster clus for each bit;
5: while ∃ non-visited pair of clusters do
6: Find a pair (clus1, clus2) with the minimum cost;
7: if clus1, clus2 not routed then
8: Route with the minimum cost route;
9: end if

10: Mark this pair as visited;
11: if Ratio(clus1, clus2) = 1 then � Equation (2)
12: Merge two clusters clus1 & clus2 into clus1;
13: Remove clus2;
14: end if
15: end while
16: end for

(a) (b)

Fig. 9. Example of bit-based source-to-sink distance adjustment. (a) Pin 2
violates the distance constraint. (b) Violation is fixed by introducing detour
for pin 2.

mapped pins is signified with the same shape in one color.
Observe that for these two bits the regularity ratio is equal
to 1. However, in Fig. 9(a), large distance difference exists for
pin2 but pin1 and pin3 share similar values without exceeding
the threshold. To handle this, we split the topology of each
bit into a set of RCs and only consider those connecting to
pin2. This is to say, only the connection from Steiner2 to pin2
should be reconstructed. In this manner, not only does the
problem size reduce, but the topology regularity is also under
control by keeping the major topology. The resulting topology
is shown in Fig. 9(b), where a twisting route is added for pin2
to alleviate the distance violation.

The refinement details are provided in Algorithm 4, where
a set of violating groups is taken as the input. First, we locate
those bits which exceed the distance threshold. As the wire-
length has been considered during primal-dual flow, there is
little space to reduce the maximum distance for its close to
optimality. Thus, we signify the bits whose pins show much
shorter distances compared to the other mapped pins (line 1).
The distances of the pins, i.e., dstpv , are recorded while the
target distances, i.e., dst′pv

, are also calculated (lines 2 and 3).
Since there may be a few violating pins for a multipin bit, we
traverse the original topology and locate the connections to be
adjusted (line 4). Then we come to the details about allowing
appropriate detours.

1156 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 6, JUNE 2019

Algorithm 4 Post Routing Refinement
Require: Set of violating signal groups gvs;

1: Find violating bits bvs and pins pvs in gvs;
2: Calculate current distance dstpv for pv, pv ∈ bv;
3: Calculate target distance dst′pv

for pv, pv ∈ bv;
4: Acquire connection conn(pv) for pv, pv ∈ bv;
5: for each group gv do
6: for each bit bv do
7: for each pin pv do
8: Get starting point sppv of conn(pv);
9: Get ending point eppv of conn(pv);

10: if conn(pv) is horizontal then
11: VerticalShift(conn(pv), dst′pv

);
12: else if conn(pv) is vertical then
13: HorizontalShift(conn(pv), dst′pv

);
14: else
15: for x ← 0 to dst′pv

do
16: y ← dst′pv

− x;
17: VerticalShift(conn(pv), x);
18: HorizontalShift(conn(pv), y);
19: if conn(pv) is updated then
20: Break;
21: end if
22: end for
23: end if
24: if conn(pv) is updated then
25: Re-connect sppv and eppv ;
26: end if
27: end for
28: end for
29: end for

During detour production, our flow takes multilayer capacity
constraints into careful consideration to avoid further over-
flows. Thus, the expected twisting route should complement
the distance difference, i.e., dst′(pv) − dst(pv), without any
capacity violations. To exploit the residual available tracks,
we allow the twisting route in four directions, i.e., left, right,
lower, and upper directions. As shown in Fig. 10, three possi-
ble types of horizontal shifting (left and right) can make up for
the distance deviation, where the red (blue) points refer to the
starting (ending) points of this connection. Each type has an
equal probability to be adopted as long as capacity constraints
can be satisfied. Similarly, vertical (lower and upper) shifting
is performed when the starting and ending points have the
same Y co-ordinate. In the shifting methodology, as we focus
on modifying the connections to the violating pins, topology
regularity can still be maintained as much as possible.

Taking advantage of this shifting method, we traverse every
violating pin pv in the bit. Based on the acquired connec-
tion, we ensure its starting point, sppv , and ending point, eppv

(lines 8 and 9). Then we investigate whether this connection is
an L-shape or a straight horizontal/vertical connection. For the
horizontal connection, we perform vertical shifting in either
upper or lower direction (lines 10 and 11). Similarly, horizon-
tal shifting adjusts the vertical connection (lines 12 and 13).

(a) (b)

Fig. 10. Example of horizontal shifting for source-to-sink distance matching.
(a) Left shifting. (b) Right shifting.

Nevertheless, for an L-shape connection, we search for twist-
ing routes in both two directions and obtain more choices
for tuning (lines 17 and 18). Due to the stringent capacity
constraint, we traverse all the possible candidates for a legal
solution. If it is found in both directions, then this search-
ing procedure can be terminated to save the runtime overhead
(lines 19–21). Based on the updated connection, the previous
one is reconnected to form a new topology (lines 24–26). Since
we build the new tree by traversing each violating pin, the
final topology should be a connected tree structure without
any loops. After visiting the violating pins in the certain bits
and groups, the refinement stage returns the improved routes.
With the slight degradation of wire-lengths, the source-to-sink
distance deviation can be controlled efficiently.

V. EXPERIMENTAL RESULTS

We implemented the proposed Streak framework in C++,
and tested it on a Linux machine with eight 3.3 GHz
CPUs. Meanwhile, we selected GUROBI [21] as our ILP
solver. To evaluate its performance, we adopt seven industrial
benchmarks with 10 nm technology node: Industry1–
Industry7. Each benchmark provides a set of signal groups
which require further identification and synergistic operations
as individual objects. The details of each benchmark suite are
listed in the left part of Table I. Here, column “#SG” provides
the number of signal groups, and column “#Net” corresponds
to the total number of nets. With the existing multipin bench-
marks, the maximum pin number of all the nets is listed
in column “Npmax,” and the maximum bit number in each
benchmark is also listed in column “Wmax.”

A. ILP + Primal-Dual Performance Comparison

Considering that few works handle signal routing of bun-
dled bits with a varying number of pins in different directions,
we obtain the manual designs by experienced designers from
industry as shown in Table I. Column “Route” provides the
routability of all the groups, and column “WL” provides the
wire-length measured manually. Since Streak also targets at
synergistic routing for bits bundled in groups, an evaluation
metric, “Avg(Reg),” is listed to show the average routing regu-
larity for all the routed groups so that the routing synergy can
be reflected without relying on the routability. Equation (9)
explains how to calculate Reg for each group

Reg =
2 · ∑

ti,tp∈g Ratio(ti, tp)

No · (No − 1)
(9)

LIU et al.: SYNERGISTIC TOPOLOGY GENERATION AND ROUTE SYNTHESIS FOR ON-CHIP PERFORMANCE-CRITICAL SIGNAL GROUPS 1157

TABLE I
PERFORMANCE COMPARISONS ON 10 nm INDUSTRIAL BENCHMARKS

where ti, tp represent the solutions from any two objects i, p
in group g, and No is the number of objects in this group
which should be larger than 1. Explicitly, for two topolo-
gies with more mapped RCs, the ratio will be higher but
still smaller than 100%. In real design, the majority of signal
groups are routed for regularity and wire-length improvement.
In this manner, the signal bits in one group are encouraged to
share the parallel routes, as the example shown in Fig. 1, and
the parallel connections are assigned on the same layer. For
the residual signal groups with complicated routing styles, the
commercial tool, ICC [22], is called to accomplish the whole
design, so the regularity ratio may not be guaranteed with the
integration of this commercial tool. Finally, column “CPU”
provides the runtime in seconds.

From the experimental results, it is shown that compared
to manual design, around 4% wire-length overheads exist in
average for seven benchmarks from ILP, where primal-dual
provides a slightly higher value. To make a fair comparison,
we calculate the total wire-length including both the routed
and nonrouted signal groups. For the nonrouted groups, we
estimate the wire-length based on rectilinear Steiner mini-
mum tree algorithm. Thus, the reported wire-length represents
the routing condition of a whole design. And both the
average routability for ILP and primal-dual are more than
99%. Meanwhile, for the regularity rate, ILP and primal-
dual can reach over 95% for two-pin signal groups, and
keep more than 88% for test cases with multipin signal
bits. Considering that a bit may have sinks in different
directions to the driver, the regularity rate has already been
constrained and this value is reasonable. Due to the capacity
constraint in our flow, there is no capacity violation for all the
benchmarks.

Additionally, the problem becomes complicated with both
congestions and multipin connections. For a multipin design
with low congestion, e.g., Industry7, ILP provides a
good performance in short runtime. Nevertheless, for those
with serious congestions, the ILP runtime is prohibitively
long, so we terminate the flow by setting a timing limit
to 3600 s. Comparatively, primal-dual is able to achieve
comparable wire-length, routability, and regularity rate much
faster.

To provide a detailed comparison, we show the congestion
densities for Industry7 in Fig. 11 and Industry6 in
Fig. 12. Fig. 11(a) gives the congestion map from manual

(a) (b)

Fig. 11. Routing congestion map for Industry7. (a) Manual design result.
(b) Streak result.

(a) (b)

Fig. 12. Routing congestion map for Industry6. (a) Manual design result.
(b) Streak result.

design, where the red regions indicate hotspots with over-
flows and lighter regions indicate more congested routing
conditions. Both with 100% as the routability, Streak in
Fig. 11(b) allocates the routes in a balanced manner with-
out any overflows. Meanwhile, regular routes can be observed
with concurrent bending points. For a congested benchmark
Industry6 in Fig. 12, it is seen that the routes become
complex for both manual and Streak result. Still, scattered
overflow hotspots can be avoided by Streak efficiently. It is
seen that with the slight sacrifice of routability, no overflow
exhibits in Streak. Therefore, this comparison with manual
designs proves the effectiveness of our tool to handle signal
groups with synergistic routing styles.

To evaluate the algorithm scalability, we generate another
large multipin benchmark based on Industry2, which offers
the largest size among all two-pin testcases. During the gen-
eration, besides the existing two-pin connections, we insert
some pseudo pins for the randomly selected groups so that the
complicated routing styles can be obtained. Furthermore, the
pseudo bits bundled in groups are also introduced to increase

1158 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 6, JUNE 2019

TABLE II
PERFORMANCE COMPARISONS OF POST OPTIMIZATION ON 10 nm INDUSTRIAL BENCHMARKS

(a) (b)

Fig. 13. Performance comparison on algorithm scalability. (a) Two-pin
benchmarks. (b) Multipin benchmarks.

the potential conflicts. By conforming to the nature of sig-
nal routing, the pins of those generated bits are located in
proximity. Then the scalability comparison in terms of total
pins is provided in Fig. 13, where Fig. 13(a) shows the results
of two-pin benchmarks, i.e., Industry1–Industry4, and
Fig. 13(b) shows the results of multipin benchmarks. The
number of pins in the largest benchmark is given as the
rightmost point in Fig. 13(b). For two-pin benchmarks, we
observe that primal-dual provides a better scalability in com-
parison to ILP, especially with a larger scale. Meanwhile,
the runtime of primal-dual increases in a small amplitude.
Comparatively, a worse scalability is seen for both ILP and
primal-dual in Fig. 13(b). It is understandable because mul-
tipin connections lead to more complicated routing styles
compared to two-pin connections, and the conflicts from
various signal groups are also aggravated. Still, primal-dual
exhibits a better scalability than ILP, as expected, which ver-
ifies the effectiveness of primal-dual for both two-pin and
multipin benchmarks. To improve the scalability of ILP, we
may adopt varying sizes of G-Cells iteratively to solve the
problem in a divide-and-conquer manner, as discussed in
Section VI.

B. Effectiveness of Post Optimization

To prove the effectiveness of the post optimization, the
results with and without this integration are listed in Table II.
Besides the columns illustrated above, we compare another
metric, i.e., “Vio(dst),” to evaluate the number of signal groups
with the source-to-sink distance violation. To find an appro-
priate threshold value for each benchmark, here we set it
to 50% of the maximum initial source-to-sink distance. The
source-to-sink distance is the path length from the driver to the

(a) (b)

Fig. 14. Performance comparison of bottom-up clustering. (a) Impact on
routability. (b) Impact on average regularity.

corresponding sink. In this setting, a few groups are marked as
violated ones which exceed this given threshold and required
to be adjusted through the refinement.

To demonstrate the effectiveness explicitly, we apply this
post optimization to the solutions obtained from ILP and
primal-dual, respectively. The number of violations before
the post-optimization are listed in column 2 for ILP and
column 8 for primal-dual. Both methods are with the same
violation number, which indicates that primal-dual is able
to achieve the similar results as ILP. Meanwhile, the other
columns provide the results of violations, routability, wire-
length, average regularity, and runtime for both methods after
the post optimization. As shown in Table II, around 67%
of violating groups can be fixed by introducing the extra
detours, which verifies that the refinement stage has an effi-
cient control of matching source-to-sink distances. Meanwhile,
we observe that the routability values increase for both ILP
and primal-dual, because the combination of layer prediction
and clustering promotes more opportunities for signal bits to
accomplish their routing. And the previous gap between ILP
and primal-dual is also shrunk, which further validates its effi-
ciency. Additionally, this post stage contributes to a slight
degradation of wire-lengths compared with the initial results.
Since the detours are induced to alleviate the violations dur-
ing the post refinement phase, this increase of wire-length
is expected and acceptable. Besides, the very similar wire-
lengths are seen from ILP and primal-dual, and the regularity
ratio becomes slightly lower for both methods. In essence,
handling every bit as an object will lead to a worse regular-
ity ratio; however, the bottom-up clustering methodology still
takes topology variance into careful consideration and our post
optimization targets at complementary routing for the residual
groups without distorting the global planning, so the regu-
larity ratio is in well control. Therefore, according to the

LIU et al.: SYNERGISTIC TOPOLOGY GENERATION AND ROUTE SYNTHESIS FOR ON-CHIP PERFORMANCE-CRITICAL SIGNAL GROUPS 1159

(a) (b)

Fig. 15. Performance comparison of post refinement. (a) Impact on violations.
(b) Impact on wire-length.

results, a higher routability and a slightly lower regularity ratio
can be achieved due to the combination of layer prediction
and bottom-up clustering, and the distance violations can be
reduced greatly through the post refinement. After the post
optimization, we still reach the similar performance of ILP
and primal-dual, which implies the routing consequence from
the global view is respected sufficiently.

Besides, we perform two experiments by excluding the
bottom-up clustering and the refinement stage to prove the
validity in Figs. 14 and 15. Fig. 14(a) shows that the routabil-
ity can be improved by around 0.3%, consistent with the
objective of the clustering strategy. Meanwhile, although we
search for the solution with the consideration of regularity in
Algorithm 3, it still pays a slight penalty of regularity ratio, as
shown in Fig. 14(b). Considering that more routing styles are
enabled to enhance the routability, as illustrated in Fig. 7, a
relatively lower regularity ratio is accepted. In addition, since
the refinement stage targets to reduce the wire-length devia-
tion, we list the number of existing violations and wire-length
in Fig. 15. From Fig. 15(a), the number of violations can
be controlled efficiently through the proposed refinement, but
it suffers from the wire-length penalty in Fig. 15(b), caused
by the twisting overheads for distance matching. Because
we only allow the necessary detours, the total overhead is
negligible.

VI. CONCLUSION

In this paper, we have proposed a set of algorithms to gen-
erate synergistic topologies for on-chip signal groups. At first
signal bits with distinctive connections are identified and then
combined as routing objects with equivalent topologies. A
mathematical formulation targets at wire-length and routability
optimization while controlling the topology differences, fol-
lowed by a fast flow to match a close quality with manual
design and ILP results. To improve the routability of signal
groups, a post-optimization stage allocates appropriate routes
for each bit with the control of regularity. A post-routing
refinement strategy then decreases the source-to-sink distance
deviation of signal bits. The results show that our synthesis
tool is able to provide efficient routing solutions with full
legality and reasonable congestion map. In our future work,
we plan to improve the potential scalability for large bench-
marks, through a hierarchical and iterative method to divide
the routing problem and solve them separately as subproblems.
Meanwhile, we plan to take pin accessibility into consideration
for more detailed exploration on signal routing.

ACKNOWLEDGMENT

The authors would like to thank Y. Xu and Y.-Y. Mo from
Oracle for helpful comments and discussions.

REFERENCES

[1] G. Persky and L. V. Tran, “Topological routing of multi-bit data buses,”
in Proc. ACM/IEEE Design Autom. Conf. (DAC), Albuquerque, NM,
USA, 1984, pp. 679–682.

[2] J. H. Y. Law and E. F. Y. Young, “Multi-bend bus driven floorplanning,”
in Proc. ACM Int. Symp. Phys. Design (ISPD), San Francisco, CA, USA,
2005, pp. 113–120.

[3] F. Mo and R. K. Brayton, “A simultaneous bus orientation and bused
pin flipping algorithm,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided
Design (ICCAD), San Jose, CA, USA, 2007, pp. 386–389.

[4] S. Pasricha, N. Dutt, E. Bozorgzadeh, and M. Ben-Romdhane,
“Floorplan-aware automated synthesis of bus-based communication
architectures,” in Proc. ACM/IEEE Design Autom. Conf. (DAC),
Anaheim, CA, USA, 2005, pp. 565–570.

[5] H. Xiang, X. Tang, and M. D. F. Wong, “Bus-driven floorplanning,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 23, no. 11,
pp. 1522–1530, Nov. 2004.

[6] T. Ma and E. F. Y. Young, “TCG-based multi-bend bus driven floor-
planning,” in Proc. IEEE/ACM Asia South Pac. Design Autom. Conf.
(ASPDAC), Seoul, South Korea, 2008, pp. 192–197.

[7] S. Pasricha, N. D. Dutt, E. Bozorgzadeh, and M. Ben-Romdhane,
“FABSYN: Floorplan-aware bus architecture synthesis,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 14, no. 3, pp. 241–253,
Mar. 2006.

[8] O. He, S. Dong, J. Bian, S. Goto, and C.-K. Cheng, “Bus via reduction
based on floorplan revising,” in Proc. ACM Great Lakes Symp. VLSI
(GLSVLSI), 2010, pp. 9–14.

[9] H. Xiang, L. Deng, L.-D. Huang, and M. D. F. Wong, “OPC-friendly bus
driven floorplanning,” in Proc. IEEE Int. Symp. Qual. Electron. Design
(ISQED), San Jose, CA, USA, 2007, pp. 847–852.

[10] P.-H. Wu and T.-Y. Ho, “Bus-driven floorplanning with bus pin assign-
ment and deviation minimization,” Integr. VLSI J., vol. 45, no. 4,
pp. 405–426, 2012.

[11] D. H. Kim and S. K. Lim, “Bus-aware microarchitectural floorplanning,”
in Proc. IEEE/ACM Asia South Pac. Design Autom. Conf. (ASPDAC),
Seoul, South Korea, 2008, pp. 204–208.

[12] T. Yan and M. D. F. Wong, “Untangling twisted nets for bus routing,” in
Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), San Jose,
CA, USA, 2007, pp. 396–400.

[13] J.-T. Yan, “Efficient layer assignment of bus-oriented nets in high-speed
PCB designs,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 35, no. 8, pp. 1332–1344, Aug. 2016.

[14] P.-C. Wu, Q. Ma, and M. D. F. Wong, “An ILP-based automatic bus
planner for dense PCBs,” in Proc. IEEE/ACM Asia South Pac. Design
Autom. Conf. (ASPDAC), Yokohama, Japan, 2013, pp. 181–186.

[15] C. Chu and Y.-C. Wong, “FLUTE: Fast lookup table based rectilin-
ear Steiner minimal tree algorithm for VLSI design,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 27, no. 1, pp. 70–83,
Jan. 2008.

[16] A. B. Kahng and G. Robins, “A new class of iterative Steiner tree heuris-
tics with good performance,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 11, no. 7, pp. 893–902, Jul. 1992.

[17] Y. Yang et al., “Layout decomposition co-optimization for hybrid E-
beam and multiple patterning lithography,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 35, no. 9, pp. 1532–1545, Sep. 2016.

[18] B. Yu, D. Liu, S. Chowdhury, and D. Z. Pan, “TILA: Timing-driven
incremental layer assignment,” in Proc. IEEE/ACM Int. Conf. Comput.-
Aided Design (ICCAD), Austin, TX, USA, 2015, pp. 110–117.

[19] D. Liu, B. Yu, S. Chowdhury, and D. Z. Pan, “TILA-S: Timing-driven
incremental layer assignment avoiding slew violations,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 37, no. 1, pp. 231–244,
Jan. 2017.

[20] D. Liu, B. Yu, S. Chowdhury, and D. Z. Pan, “Incremental layer assign-
ment for critical path timing,” in Proc. ACM/IEEE Design Autom. Conf.
(DAC), Austin, TX, USA, 2016, pp. 1–6.

[21] Gurobi Optimizer Reference Manual, Gurobi Optim. Inc., Houston, TX,
USA, 2016. [Online]. Available: http://www.gurobi.com

[22] (2012). Synopsys IC Compiler. [Online]. Available:
http://www.synopsys.com

1160 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 6, JUNE 2019

Derong Liu received the B.S. degree in microelec-
tronics from Fudan University, Shanghai, China, in
2011. She is currently pursuing the Ph.D. degree
with the Department of Electrical and Computer
Engineering, University of Texas at Austin, Austin,
TX, USA, under the supervision of Prof. D. Z. Pan.

Her current research interests include physical
design and design automation for logic synthesis.

Bei Yu (S’11–M’14) received the Ph.D. degree
from the Department of Electrical and Computer
Engineering, University of Texas at Austin, Austin,
TX, USA, in 2014.

He is currently an Assistant Professor with the
Department of Computer Science and Engineering,
Chinese University of Hong Kong, Hong Kong.

Dr. Yu was a recipient of the four Best Paper
Awards at International Symposium on Physical
Design in 2017, the SPIE Advanced Lithography
Conference in 2016, the International Conference

on Computer Aided Design in 2013, and the Asia and South Pacific Design
Automation Conference in 2012, plus three additional Best Paper Award nom-
inations at DAC/ICCAD/ASPDAC, and four ICCAD/ISPD contest awards.
He has served in the editorial boards of Integration, VLSI Journal, and IET
Cyber-Physical Systems: Theory & Applications.

Vinicius Livramento received the M.Sc. and
Ph.D. degrees in computer science from the Federal
University of Santa Catarina, Florianópolis, Brazil,
in 2013 and 2016.

He was a visiting Ph.D. student with the
University of Texas at Austin, Austin, TX, USA, in
2016. He is currently a Software Design Engineer
with ASML, Veldhoven, The Netherlands. His cur-
rent research interests include timing and power
optimization during physical design.

Dr. Livramento was a recipient of the First Place
Award in the ISPD 2013 and in the ICCAD 2015 Contests.

Salim Chowdhury (M’86) received the
Ph.D. degree from the University of Southern
California, Los Angeles, CA, USA, in 1986.

He taught at the University of Iowa, Iowa City,
IA, USA, for some years, where he obtained
multiple research grants from National Science
Foundation. He had been researching with semi-
conductor industries since then, with Motorola,
Chicago, IL, USA, Sun Microsystem, Santa Clara,
CA, USA, and until recently with Oracle America,
Redwood City, CA, USA.

Dr. Chowdhury was a recipient of the best paper award from DAC and
holds many patents and publications.

Duo Ding received the Ph.D. degree with the
University of Texas at Austin, Austin, TX, USA.

He is a Senior Staff Engineer with Samsung
Austin Research Center, Austin, TX, USA, with a
focus on EDA and machine learning/deep learning.
He holds a number of publications and international
awards in the above areas.

Huy Vo received the B.S. and M.S. degrees from
the University of California at Berkeley, Berkeley,
CA, USA.

He is a Professional Software Engineer with sev-
eral years of industry experience. He has previously
researched with other researchers in the design and
implementation of HDL and microelectronic CAD
tools. His current research interests include cloud
computing and large scale data processing.

Akshay Sharma received the bachelor’s degree in
electronics and communication engineering with the
Delhi College of Engineering, New Delhi, India, in
1999, and the Ph.D. degree in electrical engineering
from the University of Washington (UW), Seattle,
WA, USA, in 2005.

He has researched on the architecture and imple-
mentation of CAD algorithms that enable FPGA,
high-speed processor, SRAM, and mixed-signal
physical design during his Ph.D. studies. He also
served a brief stint as an Engineering Lecturer with

UW in the from 2009 to 2010. His current research interests include devel-
opment of EDA algorithms, embedded systems, and software development
methodology.

Dr. Sharma was a recipient of UW Electrical Engineering’s Oustanding
Research Assistant Award in 2005.

David Z. Pan (S’97–M’00–SM’06–F’14) received
the B.S. degree from Peking University, Beijing,
China, and the M.S. and Ph.D. degrees from
the University of California at Los Angeles, Los
Angeles, CA, USA.

He is currently the Engineering Foundation
Professor with the University of Texas at Austin,
Austin, TX, USA. He has published over 280 refer-
eed technical papers, and holds eight U.S. patents.
He has graduated over 20 Ph.D. students, who are
currently holding key academic and industry posi-

tions. His current research interests include cross-layer nanometer IC design
for manufacturability, reliability, security, physical design, analog design
automation, and CAD for emerging technologies.

Prof. Pan was a recipient of a number of awards for his research contri-
butions, including the SRC 2013 Technical Excellence Award, the DAC Top
ten Author in Fifth Decade, the ASP-DAC Frequently Cited Author Award,
and the 14 best paper awards. He has served as a Senior Associate Editor for
ACM Transactions on Design Automation of Electronic Systems, an associate
editor for a number of other journals. He has served in the executive and
program committees of many major conferences, including ASPDAC 2017
Program Chair and ICCAD 2018 Program Chair. He is a fellow of SPIE.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

