
1574 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 8, AUGUST 2018

Layout Synthesis for Topological Quantum Circuits
With 1-D and 2-D Architectures

Yibo Lin , Student Member, IEEE, Bei Yu, Member, IEEE, Meng Li , Student Member, IEEE,
and David Z. Pan, Fellow, IEEE

Abstract—Quantum computing has raised great interests for
its potential to achieve an asymptotic speedup on specific prob-
lems. Current quantum devices suffer from noise which needs
robust and scalable error-correcting schemes. Topological quan-
tum error correction (TQEC) is among the most promising
error-correcting techniques with exponential suppression of error
with linear increase of space-time complexity. In this paper, we
present the first work to explore space-time optimization between
1-D and 2-D architectures for TQEC circuits. We prove the
NP-hardness of the qubit routing problem in the layout syn-
thesis and propose an efficient algorithm to optimize space-time
volumes for both 1-D and 2-D qubit architectures with promising
experimental results.

Index Terms—Layout synthesis, quantum computing, topolog-
ical quantum error correction (TQEC).

I. INTRODUCTION

QUANTUM computing is able to achieve asymptotic
speedup on specific classes of problems, including data

search [1] and cryptosystems [2]. Currently, quantum devices
are not large enough to solve difficult problems in real world,
where scalability is one of the critical issues. IBM has released
its general quantum computer based on superconducting qubits
via cloud, where users are granted with an access to a five-
qubit quantum processor [3]. It is reported that the processor
suffers from significant noise in the output results [4], indi-
cating the urgent needs of fault-tolerant circuit design for
scalability.

A topological cluster state is a kind of scheme for quan-
tum computing with error correction using specific underlying
structures tiled in a 3-D lattice [5]. Quantum error-correcting
codes based on topological cluster states are capable of exe-
cuting scalable quantum computation, with the probability of
failure below 1% (threshold), which is considered as the state

Manuscript received May 5, 2017; revised July 27, 2017; accepted
September 20, 2017. Date of publication October 6, 2017; date of current ver-
sion July 17, 2018. This work was supported in part by the Chinese University
of Hong Kong Direct Grant for Research, and in part by the University
Graduate Continuing Fellowship from the University of Texas at Austin.
This paper was recommended by Associate Editor L. Behjat. (Corresponding
author: Yibo Lin.)

Y. Lin, M. Li, and D. Z. Pan are with the Department of Electrical and
Computer Engineering, University of Texas at Austin, Austin, TX 78741 USA
(e-mail: yibolin@utexas.edu).

B. Yu is with the Department of Computer Science and Engineering,
Chinese University of Hong Kong, Hong Kong.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2017.2760511

of the art in current technology [6]. Although there exist some
other codes enabling the threshold as high as 3%, they suffer
from high qubit overhead and long-range interactions between
qubits, leading to impracticality of implementation [7]. The
topological quantum error correction (TQEC) scheme is based
on the Raussendorf code [8], which is a kind of error-corrected
quantum circuits that operate on information encoded into
topological cluster states. It enables exponential suppression
of error with linear increase of space-time volume using only
interactions between neighboring qubits. Here, space volume
means the amount of resources used for quantum comput-
ing, such as number of qubits, and time volume denotes the
required number of operation steps. The logical abstraction
of TQEC utilizes topological cluster states, where a lattice
of physical qubits are entangled into a large graph state for
storage and operations of logical qubits.

To implement a quantum algorithm with TQEC circuits, it is
necessary to go through several steps in the design flow, such
as circuit implementation, decomposition, synthesis, mapping
and technology mapping [7]. Circuit implementation maps a
quantum algorithm to a quantum circuit by decomposing the
algorithm into a specific set of quantum gates, proper initial-
izations, and measurements. This is analogous to the logic
synthesis in classical computing, where logic operations are
replaced with primitive logic gates like inverters and AND
gates with some input bits initialized to zeros or ones and
the output results are measured. Then the circuits can be syn-
thesized to generate the geometric description for technology
related mapping in later steps like the physical design stage in
digital circuits. Despite the similarity to classical circuits, due
to different computing schemes and design architectures, var-
ious existing approaches for classical computing fail to work
in the quantum case.

Previous works include circuit decomposition with differ-
ent objectives, e.g., minimizing total number of qubits, the
depth of quantum circuits, and different constraints from
hardwares [9]–[16]. Paler et al. [17] proposed a compact rep-
resentation of geometric description and the first automatic
synthesis of geometric description from a circuit netlist, which
we refer to as layout synthesis. Then they further propose
a tool that incorporates decomposition of quantum circuits
and synthesis of geometric description for 1-D arrangement of
qubits, where all the qubits are placed along a 1-D line, align-
ing next to each other [6], as shown in Fig. 1(a). However, their
approaches focus on generating feasible geometric descrip-
tions without considering the optimization of space-time

0278-0070 c© 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-0977-2774
https://orcid.org/0000-0002-7212-2264

LIN et al.: LAYOUT SYNTHESIS FOR TOPOLOGICAL QUANTUM CIRCUITS WITH 1-D AND 2-D ARCHITECTURES 1575

(a) (b)

Fig. 1. Examples of (a) 1-D and (b) 2-D implementations of quantum circuits,
where qubits are arranged in 1-D line or 2-D space [25]. Squares labeled with
“G” represent quantum gates.

volumes, which may result in inefficiency in completing all
operations of the circuits, such as large latency. Yamashita [18]
solved 1-D qubit and gate ordering problem by searching for
maximum cliques in a graph model. Fowler and Devitt [19]
identified some rules for topological conversion to simplify
the geometric description with manual efforts. The geometric
description of TQEC circuits can be easily mapped to physical
hardware in polynomial time [20].

Although there are plenty of previous works on logic-level
optimization of quantum operations, qubit placement and rout-
ing for linear nearest neighbor architectures [21]–[30], they
assume the availability of SWAP gates for long-range interac-
tions between qubits which is different from TQEC-related
physical geometry. SWAP gates are used to bring qubits
originally far away from each other into physically adjacent
locations such that other functional gates involving both qubits
can be applied. For example, in Fig. 1(a), we can insert an
SWAP gate to swap q2 and q3 after gate G1 such that the
gate G2 involving q1 and q3 can be implemented in linear
nearest neighboring architectures. These works have proposed
approaches to minimize SWAP gates in quantum circuits for
not only 1-D qubit arrangement, but also 2-D structure, where
qubits are placed in a 2-D grids, as shown in Fig. 1(b).

In this paper, we focus on the layout synthesis of TQEC
circuits for general multiple-layer (1-D and 2-D) arrangement
of qubits with space-time volume optimization, where qubits
can be placed either in a 2-D space or a 1-D line from input
configurations. Our major contributions are summarized as
follows.

1) We propose the first systematic study on automatic
layout synthesis of TQEC circuits with 1-D and 2-D
architectures.

2) We prove the NP-hardness of the qubit routing problem.
3) We design an effective way to generate routing solu-

tions for a single net utilizing the unique structure of
the multiple-layer architecture and further propose an
efficient qubit routing algorithm for the entire circuit.

4) We demonstrate the effectiveness of our algorithm in
space-time volume optimization in the experimental
results.

The rest of the this paper is organized as follows. Section II
introduces basic concepts in TQEC and the problem formu-
lation. Section III describes the algorithms for qubit rout-
ing to minimize space-time volumes in geometries. Then
the algorithms are validated by experimental results in
Sections IV and V concludes this paper.

Fig. 2. Quantum state and different bases (|0〉 and |1〉 for Z-basis and |+〉
and |−〉 for X-basis).

II. PRELIMINARIES

In this section, we will briefly introduce basic concepts
in quantum computing and components in TQEC circuits
followed by the problem formulation.

A. Qubits, Initialization, Measurement, and Gates

In quantum computing, information is passed by quantum
bits (qubits) which can represent 0, 1, or superpositions of
both [30]. The quantum state to hold the information is a
unit vector usually represented with bra-ket notation shown
in Fig. 2

|ψ〉 = α|0〉 + β|1〉 (1)

where |0〉 and |1〉 are orthonormal basis vectors. The prob-
ability of |0〉 is |α|2, the probability of |1〉 is |β|2 and
|α|2 + |β|2 = 1. The qubit state can be represented in dif-
ferent bases. Fig. 2 shows two kinds of bases. Z-basis uses
|0〉 and |1〉 as the basis vectors, and X-basis uses |+〉 and |−〉
as the basis vectors. The above quantum state can be written
in X-basis as follows:

|ψ〉 = α + β√
2
|+〉 + α − β√

2
|−〉. (2)

To perform computation on qubits, initialization, and measure-
ment on the state of qubits are necessary like that in classical
computing for classical bits. Initialization and measurement
have to be performed with specific basis, e.g., Z-basis or
X-basis. Initialization usually adopts the same mechanism as
measurement because quantum states collapse to the measur-
ing basis when measurement is performed [31]. For example,
measurement on Z-basis can initialize the qubit to |0〉 state
and measurement on X-basis can initialize the qubit to |+〉.

The computation is then realized by quantum operations
which perform transformations of quantum states of qubits,
e.g., rotation of vector |ψ〉 in Fig. 2, where quantum gates
are necessary to implement quantum operations for computa-
tion. It might be difficult to implement any quantum operation
as a single quantum gate, while it is possible to come up
with a finite set of primitive quantum gates that can real-
ize any quantum operation by using them as building blocks,
which is usually referred to as a universal set of gates, like
the logic gates in classical digital circuits. The TQEC circuits
use the universal set of gates {CNOT,V,P,T} as the prim-
itive gates to implement complicated operations [6], where
the primitive gates V,P, and T are used for single qubit rota-
tion and CNOT gate involves operations for multiple qubits.

1576 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 8, AUGUST 2018

(a) (b) (c) (d) (e) (f)

Fig. 3. Geometric components for measurement and initialization qubits.
White cuboids denote primal defects and brown cubuids denote dual defects.
(a) and (e) Z-basis measurement and |0〉 initialization. (b) and (d) X-basis
measurement and |+〉 initialization. (c) State injection for |A〉 or |Y〉 initial-
ization. (f) Generalized pin representation for primal defects, where the red
cube generalizes the operation of initialization or measurement [6].

CNOT gate usually contains one control qubit and one tar-
get qubit and its functionality can be briefly explained as the
control qubit determines whether or not to apply NOT oper-
ation on the target qubit, though the mathematics behind are
more complicated. If we view the quantum state of a qubit as
a vector, then the V,P,T gates rotate the vector in the space
with various angles. These rotation gates can be implemented
by teleportation-based schemes with CNOT gates and ancilla
qubits initialized to |A〉 and |Y〉 [6]

|A〉 = 1√
2

(
|0〉 + ei π4 |1〉

)
(3a)

|Y〉 = 1√
2
(|0〉 + i|1〉) (3b)

where |A〉 and |Y〉 are orthonormal basis vectors like |0〉 and
|1〉 in Z-basis. Therefore, TQEC circuits consist of CNOT
gates and proper initialization and measurement of qubits.

B. Primal and Dual Defects

The quantum information in TQEC is encoded into topo-
logical cluster states which have a lattice structure, where the
vertices are physical qubits. The removal of specific vertices
from the lattice abstracts the state, where the results of removal
are defined as defects [6]. The defects are generally repre-
sented by cuboids to describe the removal of vertices inside.
TQEC circuits introduce a parallel pair of defects to repre-
sent a logical qubit. The propagation of defects behaves as
the propagation of quantum states.

Fig. 3 shows the components for initialization and mea-
surement in TQEC circuits [6]. We define the white cuboids
as primal defects and brown cuboids as dual defects.
Detailed description and explanation for the representation
of primal and dual defects can be found in the previous
work [6], [8], [31]. The major difference between primal and
dual defects lies in the basis (Z-basis and X-basis) used for
initialization and measurement. We only need to know the
functionality of the defects and how TQEC circuits are com-
posed with defects for layout synthesis. As aforementioned,
a measurement on Z-basis initializes the qubit to |0〉 state
and a measurement on X-basis initializes the qubit to |+〉.
If the ends of two primal defects are joined like Fig. 3(a),
Z-basis measurement is performed, while joining the ends of
two dual defects means X-basis measurement as shown in
Fig. 3(d). If the ends of two parallel defects are left open like
Fig. 3(b) and (e), X-basis measurement is performed for primal

(a) (b)

(c) (d)

Fig. 4. (a) CNOT gate with q1 as control qubit and q2 as target qubit.
(b) Primal-primal implementation of CNOT gate, where dual defects (brown)
braid around primal defects (white) and red cubes represent inputs and out-
puts [8]. (c) Multiple-target CNOT gate with q1 as control qubit and q2 and
q3 as target qubits. (d) Geometric description of the multiple-target CNOT
gate.

defects and Z-basis measurement is performed for dual qubits.
State injection, where two pyramid-shaped defects join one lat-
tice vertex is adopted for the initialization of |A〉 and |Y〉 for
ancilla shown as in Fig. 3(c). Since we focus on the generation
of geometric description, the qubit initialization and measure-
ment of inputs and outputs are abstracted to pins [red cube in
Fig. 3(f)], which serve as placeholders for proper initialization
and measurement on specific bases.

Fig. 4(b) implements a primal-primal CNOT gate [6], [8],
meaning that qubits q1 and q2 are encoded to primal defects
at both input and output. The ancilla dual defects braid around
primal defects to form a single-target CNOT gate. Here, we
use braiding to describe a path going through the face of a cir-
cle like a knot. For example, there are three braidings between
primal and dual defects in Fig. 4(b). Be aware that Z-basis
measurement is performed to the primal defects for ci and
Z-basis initialization is performed to the primal defects for co.
This implementation is adopted to synthesize CNOT gates in
TQEC circuits. The CNOT gate can also support more than
one target, i.e., multiple-target CNOT gate with one control
and multiple targets in Fig. 4(d).

C. Problem Formulation

With different configurations of qubit positions and geome-
try, the space-time volumes of TQEC circuits vary. Fig. 5 gives
the geometries of the same TQEC circuit with both 1-D and
2-D qubit arrangements. Please recall the 1-D and 2-D archi-
tectures in Fig. 1. In Fig. 5(a), one CNOT gate connects qubits
q1 and q3 and the other connects qubits q2 and q4. The two
CNOT gates have the same logic level because their control
and target signals are independent, which means two logic
operations can be performed simultaneously. The width (w)
and height (h)-axes in Fig. 5(b) denote the space dimensions,
while the depth (d) axis represents the temporal/time dimen-
sion. Fig. 5(b) implements two CNOT gates using depth of
2 and Fig. 5(c) implements them with depth of 1 by stack-
ing gates in parallel along h-axis. With similar space volumes
of Fig. 5(b) and (c), two arrangements end up with different
time volumes, as one can share depth steps between gates of

LIN et al.: LAYOUT SYNTHESIS FOR TOPOLOGICAL QUANTUM CIRCUITS WITH 1-D AND 2-D ARCHITECTURES 1577

(a) (b)

(c)

Fig. 5. Example of (a) circuit consisting of two CNOT gates with (b) 1-D
(single-layer) qubit arrangement with depth of 2 and (c) 2-D (two-layer) qubit
arrangement with depth of 1. Axis d denotes the depth axis. Axis w and h
are axes for space volumes.

Fig. 6. Example of Toffoli gate implemented by a sequence of CNOT, T ,
T†, P, and H gates [32]. Its TQEC implementation, where T , T†, P, and H
gates are implemented using teleportations can been seen in [6, Fig. 20].

the same logic levels. The space dimensions are usually con-
strained by the settings of quantum devices. In this paper, we
assume the height for qubit arrangement is given as the num-
ber of layers such that qubits can be arranged according to the
space dimensions and geometric descriptions can be generated
according to the circuit netlist.

Problem 1 (Layout Synthesis for TQEC Circuits): Given a
TQEC circuit netlist and configuration of space dimensions,
e.g., width and height, and qubit arrangement, we generate
geometric descriptions in qubit routing with minimum depth
(time volume).

Width can be derived from given height and number
of qubits with compact arrangement. Since all single-qubit
rotation gates and Toffoli gates in TQEC circuits can be
decomposed to CNOT gates and ancillas in the preprocess-
ing stage [6], we assume there are only CNOT gates in the
circuits when describing the algorithms for simplicity. Fig. 6
shows the decomposition of Toffoli gate, whose geometry can
be found in Fig. 20 of [6]. The decomposition stage has also
considered to leave placeholders of distillation circuits for ini-
tialization for ancillas, we do not consider the synthesis of
distillation boxes in this paper.

III. LAYOUT SYNTHESIS ALGORITHMS

In this section, we explain the framework to generate geo-
metric descriptions, which consists of two phases, i.e., qubit
placement and routing. Qubits are placed to grids accord-
ing to space dimensions, while the geometric descriptions
are generated according to the qubit arrangement and circuit
netlist.

(a)

(d) (e) (f) (g)

(b) (c)

Fig. 7. (a) Example of a CNOT gate with two targets and (b) its implementa-
tion with one depth step and qubits placed in 2-D space and (c) corresponding
3-D stick diagram and (d) its front view and (e) its back view. Corresponding
stick diagram: (f) front face and (g) back face.

A. Stick Diagram Representations

Before introducing details on qubit placement and rout-
ing, we introduce simplified stick diagram representations for
routing of a net from the geometric descriptions shown in
Figs. 3 and 5. The stick diagram representation has equivalent
3-D and 2-D versions. Since in our qubit architecture logical
qubits propagate in pairs of primal defects, we only need to
determine the routing of dual defects and the braiding with
qubits for construction of CNOT gates. In the first step, a 3-D
routing grid system is introduced with two grids in depth axis,
shown as Fig. 7(c), where grids are available for dual defects.
The primal defects for a qubit appear in the centers of ver-
tically neighboring squares. Both primal and dual defects are
simplified from cuboids to lines. For multiple nets at different
depth steps, we can cascade multiple grid systems together
along the depth axis, as shown in Fig. 9(b).

A 3-D stick diagram of single depth step can be divided into
two faces: 1) front face and 2) back face. Fig. 7(d) and (e)
give a front view and back view of Fig. 7(c). A 2-D stick
diagram is derived from further simplification of each pair of
primal qubits in the front and back view to a circle, shown in
Fig. 7(f) and (g). Each circle is labeled with its corresponding
qubit in the stick diagram for the front face. We mark the
qubits of control signals of nets to light green and target signals
are marked black. The routing segments are also divided into
routing in front face and routing in back face, where the cross
marks denote the segments connecting two faces. For routing
of a net, we draw both front and back faces with only qubits in
the net and selected routing segments. In other words, qubits
not in the net are usually not explicitly drawn for brevity. In
qubit placement, we only draw the front face of a single grid
system to show the positions of all qubits.

B. Qubit Placement

Previous work on TQEC assumes 1-D arrangement of
qubits [6], [17]–[20] shown as Fig. 8(a). We try to enable
2-D arrangement of qubits with a multiple-layer architecture,
shown as Fig. 8(b) with an example of two layers. We allow

1578 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 8, AUGUST 2018

(a) (b)

Fig. 8. (a) Example of single-layer qubit arrangement like that in Fig. 5(b)
(view from left). (b) Two-layer qubit arrangement like that in Fig. 5(c).

one horizontal track for routing between neighboring layers,
like the horizontal gridlines at height 0, 2, and 4 in Fig. 7(f);
as a result, qubits have to be placed in odd-height grids (index
starts from zero). The architecture is flexible and we can
always insert more routing tracks between neighboring layers
for more routing resources.

To tackle Problem 1, both qubit placement and routing are
important issues. The quality of placement may impact the
minimum total depth achieved from routing. In other words,
qubit placement can be optimized to reduce total depth after
routing. Various previous work for qubit placement focuses on
minimizing the SWAP gates in linear nearest neighbor archi-
tectures [21]–[27]. Insertion of each SWAP gate is assumed to
have a constant overhead to the space-time volumes, so opti-
mizing the SWAP gates helps reduce the resource consumption
and total depth. In TQEC, the long-range interaction between
two qubits can be achieved by directly routing a CNOT
gate properly to the corresponding qubits instead of inserting
SWAP gates. However, previous approaches for placement in
linear nearest neighbor architectures may be adapted to mini-
mize the objective here, which is left for future work. In this
paper, we take the positions of qubits in the grid system from
input.

C. Qubit Routing

In this section, we explain two different routing strategies
for qubits, i.e., a mixed integer linear programming (MILP)
scheme and an approximation approach by generating candi-
date routing solutions. Since nets of different logic levels are
independent in terms of routing resources, the routing process
can be conducted at each individual logic level. For conve-
nience, the nets in qubit routing always belong to one logic
level if not specially mentioned in this section.

Considering the structure of CNOT gate in Fig. 7, the dual
defects actually form a circle that covers all qubits in the net.
We denote front path as a path in the front face, back path as
a path in the back face. We also use the word cover to indicate
a path visits a qubit and occupies the gridline, where the qubit
locates. Following [6] one CNOT gate is implemented in one
depth step. To simplify the problem, we assume the routing
circle of a net consists of a front path, a back path, and two
segments connecting the front and back faces. To reduce the
solution space, we add an additional constraint for braiding
at target qubits that the target qubits are only covered by the
front path, as shown in Fig. 7(f).

Problem 2 (Qubit Routing): Given a net set N, where each
net has a single control qubit and one or more target qubits,
together with a 3-D rectilinear grid system G, where qubits are

(a)

(c) (d) (e) (f)

(b)

Fig. 9. (a) Example of a CNOT gate with two logic levels and (b) 3-D
stick diagram of its corresponding routing solution in two depth steps. Stick
diagram at depth step 0: (c) front face and (d) back face. Stick diagram at
depth step 1: (e) front face and (f) back face.

only located in the center of odd-height horizontal gridlines,
generate dual defects for all the nets on G (in other words,
route all the nets) with minimum depth step, while subjecting
to following constraints.

1) Segments of dual defects run on grids.
2) Dual defects form a circle for each net after visiting each

grid at most once, which can be split into a front path
and a back path.

3) The circle has to visit the control qubit in both faces;
e.g., in Fig. 7(f) and (g), q1 is covered in both faces.

4) The circle has to cover the grids of the target qubits in
the front face, while in the back face, they must not be
covered, like q2 and q3 in Fig. 7(f) and (g).

5) Circles of different nets must be vertex-disjoint.
Theorem 1: Qubit routing in Problem 2 is NP-hard.
The proof is shown in the Appendix.
1) Route Multiple Nets by MILP: A trivial solution to route

nets can be constructed by routing one net at one depth step,
with |N| depth steps in total, which is the maximum depth.
However, we can merge some nets into one depth step if their
routing solutions do not have any conflict (resource sharing).
The example in Fig. 5(c) routes two nets in one depth step.
Hence, the objective is to minimize the depth required to route
all nets, i.e., minimize the latency.

Some notations are explained in Table I. For a graph G,
we use G− v to represent the subgraph after G excludes ver-
tex v, i.e., (V(G)\{v}, {uw|uw ∈ E(G) and u,w ∈ V(G)\{v}}).
We use G − H to represent the subgraph after G excludes
its subgraph H, i.e., (V(G)\V(H), {uw|uw ∈ E(G) and u,w ∈
V(G)\V(H)}).

We split the formulation into different parts for easier
explanation. The objective is to minimize the depth steps D
required

min D. (4)

LIN et al.: LAYOUT SYNTHESIS FOR TOPOLOGICAL QUANTUM CIRCUITS WITH 1-D AND 2-D ARCHITECTURES 1579

TABLE I
NOTATIONS USED IN LAYOUT SYNTHESIS

Now, we explain the constraints. For a net n, |N| binary vari-
ables bn,d, are introduced to represent in which depth step it
is routed. For brevity in the following discussion, the range of
depth d always satisfy 1 ≤ d ≤ |N| if not specially mentioned.
The number of depth steps required is equal to the maximum
depth step selected among all nets, so we can compute the
final depth D with (5a). The constraint in (5b) ensures only
one depth step is selected

|N|∑
d=1

d · bn,d ≤ D,∀n ∈ N (5a)

|N|∑
d=1

bn,d = 1,∀n ∈ N. (5b)

We introduce the concept of degree of vertex v as the num-
ber of selected gridlines connecting to vertex v in the grid
system. The binary variable bn,d

v is introduced to represent the
degree of vertex v in the grid system at depth step d for net n.
The binary variable bn,d

e denotes whether edge e at depth step
d is selected by net n in its routing solution. As the routing
for a net is a circle, the degree of any vertex on the path is 2,
while the degree of any other vertex is 0

∑
e∈E(v)

bn,d
e = 2bn,d

v ,∀v ∈ V, n ∈ N. (6)

Although (6) ensures the selected gridlines always form
cycles, it fails to guarantee that only a single cycle is formed
for one net, since the constraint will also be satisfied for
multiple disjoint cycles. Thus, the challenge comes from the
exclusion of solutions with multiple disjoint cycles formed
for one net. Considering a solution contains multiple disjoint
cycles for one net, if we remove any vertex from the solu-
tion, the rest selected gridlines still contain at least one cycle.
Therefore, if we are able to ensure that after removing an arbi-
trary vertex, the rest selected gridlines do not form any cycle,
but a tree structure instead, it is possible to guarantee a single
cycle for one net.

We employ the difference of the maximum average degree
between a cycle and a tree to forbid multiple disjoint
cycles. The average degree of a graph Gn is defined as
ad(Gn) = [2|E(Gn)|/|VGn|], and the maximum average degree
is defined as

mad(G) = max
H⊆Gn

ad(H) (7)

where H is any subgraph of Gn. Intuitively, maximum aver-
age degree denotes the densest part of the graph and it is no
smaller than the average degree of any subgraph of Gn. It is
observed that the maximum average degree of a tree is exactly
its average degree [2(|V(Gn)| − 1)/|V(Gn)|], while any cycle
results in the average degree of a graph no smaller than 2 [33].
If we remove an arbitrary vertex v∗ that has to be covered by
the circle, then the remained path must not form any cycle.

The maximum average degree is computed by forcing each
selected edge to send a flow of 2 to its vertices and each ver-
tex only receives non-negative flow [33]. Specifically in this
problem, supposing a graph Gn ⊆ G with edge set E(Gn) and
vertex set V(Gn) is selected as the routing solution for net n,
its |E(Gn)| edges will send flow of 2|E(Gn)| to |V(Gn)| ver-
tices. Note that any vertex v ∈ V(G−Gn) will not receive any
flow since all the edges connect to v send zero flow. Then at
least one of the |V(Gn)| vertices receive a flow no smaller
than [2|E(Gn)|/|V(Gn)|], which implies that the maximum
average degree can be obtained by minimizing the maximum
flow received by any vertex. If Gn contains cycles, even the
minimum value of the maximum flow received by a vertex
is no smaller than 2. We can ensure acyclic nature of Gn

by constraining the amount of flow received by any vertex
is smaller than 2. In linear programming, it is hard to con-
strain an equation to be “smaller than (<)” a value, because
only “smaller than or equal to (≤)” is allowed. The afore-
mentioned maximum average degree of a tree is smaller than
or equal to [2(|V(Gn)| − 1)/|V(Gn)|] ≤ 2 − [2/|V(G)|] as
|V(Gn)| ≤ |V(G)|. Thus, we can constrain the flow of each
vertex to be smaller than or equal to the upper bound as
shown in (8b), with two continuous non-negative variables xn,d

e,u
and xn,d

e,v introduced for edge e at depth d of net n, denoting
the flows sent to vertices u and v, respectively. Equation (8a)
ensures each selected edge sends a flow of 2. Equation (8c)
restricts each vertex only receives non-negative flow from
edges

xn,d
e,u + xn,d

e,v = 2bn,d
e ,∀e ∈ E(G− v∗), n ∈ N (8a)

∑
e∈E(v)

xn,d
e,v ≤ 2− 2

|V(G)| ,∀v ∈ V(G− v∗), n ∈ N (8b)

xn,d
e,u , xn,d

e,v ≥ 0,∀e ∈ E(G− v∗), n ∈ N. (8c)

Any vertex of the edges containing the control qubit of the
net can serve as v∗ since the path has to visit it.

Free of conflict between any solution of different nets is
ensured by (9a). Equation (9b) makes sure the path goes
through the control qubit of the net and (9c) guarantees that
path braids with target qubits. Qubits not in the net are
avoided by∑

n∈N

bn,d
v = 1,∀v ∈ V (9a)

bn,d
ef
= bn,d

eb
= bn,d,∀ef , eb ∈ E(S(n)), n ∈ N (9b)

bn,d
ef
= bn,d, bn,d

eb
= 0,∀ef , eb ∈ E(T(n)), n ∈ N (9c)

bn,d
e = 0,∀e ∈ (E(Q)\E(S(n))\E(T(n))), n ∈ N. (9d)

To sum up, (4)–(6), (8), and (9) compose the full MILP for-
mulation, where bn,d

e , bn,d
v , and bn,d are binary variables while

1580 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 8, AUGUST 2018

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 10. (a) Example of net, where control qubit is marked by green dots
and target qubits are marked by black dots and (b) a guideline for generating
routing solution and (c) generated front face and (d) back face. Four possible
guidelines for a net are shown in (e)–(h).

xn,d
e,u and xn,d

e,v are continuous. We can see that the MILP formu-
lation is very expensive because its number of binary variables
is related to the number of nets as well as the total edges and
vertices in the grid system. Supposing that the total numbers
of edges and vertices in the system are linear to total amount
of qubits, the number of binary variables is in the order of
|N|2|Q| due to the existence of bn,d

e and bn,d
v , which is not

affordable for large circuits.
2) Candidate Routing Solution Generation for Single Net:

Although qubit routing for multiple nets is difficult, it is possi-
ble to generate feasible routing solutions with specific patterns
for any net due to the unique structure of multiple-layer archi-
tecture. Since the qubits only appear at odd-height grids,
a zig-zag line can be generated by covering all the even height
grids such that all qubits in the net is one grid away from the
line, as shown in Fig. 10(a) and (b). The zig-zag line is the
guideline for generating a feasible solution.

The process of generating the routing in front face is illus-
trated in Fig. 10(b) and (c), which can be summarized as
follows.

1) Given a guideline, mark all the grids covered by the
guideline to 1 (selected) and others to 0 (not selected).

2) Detect the positions of qubits in the net and mark
the squares above qubits, shown as blue squares in
Fig. 10(b).

3) For each square, flip the selection of its four grids and
it yields the routing for front face, shown as Fig. 10(c).

The routing in the back face can be generated in a similar
way by only flipping the square of the control qubit in the
net. Two ending points of the guideline, which are shown as
cross marks in Fig. 10(c) and (d), connect the front and back
face to form the closed path.

According to different directions, there are four different
guidelines for a net, shown as Fig. 10(e)–(h), which can gen-
erate four different routing solutions with the procedure (slight
variation) mentioned above. However, the guidelines may not
be compact enough to generate compact routing solutions. The
example in Fig. 10(c) occupies a 3 × 5 grid box with many
redundant segments. The compactness of a routing solution is
determined by that of the provided guideline. Therefore, it is
necessary to compress the guideline for generating compact
routing solutions. Here, we propose several ways to optimize
a guideline.

1) Generating the guidelines within the minimum grid
box that covers all the qubits results in more compact
solutions, shown as the dashed box in Fig. 11(a).

(a) (b) (c) (d)

Fig. 11. Example of optimization for guidelines: (a) extract minimum bound-
ing box that covers all qubits in the net (vertically extend by one grid for
different candidates), (b) shift vertical segments to remove redundant hori-
zontal segments, and (c) shorten dangling ending segments. (d) Example of
generated routing in front face from the guideline in (b).

Fig. 12. Example of conflict graph for candidate routing solution assignment.
The vertices within each gray circle form a clique and the connections are
not drawn for brevity.

2) Each vertical segment can be shifted by checking the
positions of qubits below and above it to remove unnec-
essary horizontal segments in the middle, shown as
Fig. 11(b).

3) In the top and bottom of each guideline, it is possible
to shorten dangling segments by checking the positions
of qubits below or above it, shown as Fig. 11(c).

These optimization techniques only need to locally check the
positions of qubits. Fig. 11(d) shows an example for the rout-
ing in front face generated from the optimized guideline, which
is more compact that in Fig. 10(c).

3) Candidate Routing Solution Assignment: With four can-
didate solutions for each net from Section III-C2, we need
to select one solution for each net such that all the nets are
routed in minimum total depth.

Problem 3 (Routing Solution Assignment): Given a net set
N and four candidate routing solutions for each net in a
logic level, assign one candidate solution and depth step
to each net such that no routing solutions share the same
resources (no conflict) and the total depth in this logic level
is minimized.

Fig. 12 gives an example of assignment problem of two
nets, which needs at most two depth steps. Since four can-
didate solutions are generated for each net in Section III-C2,
each net corresponds to 4 × 2 = 8 numbered vertices in the
graph, where number within each vertex denotes the candi-
date solution. All the vertices for a net is encompassed by
a gray circle and its subgraph forms a clique because only
one of them can be selected. The first row of vertices denote
the net is routed in depth 1, while the second row of ver-
tices denote the net is routed in depth 2. An edge is inserted
between two vertices when the corresponding routing solution
cannot be both selected due to conflicts. Vertices of different
depth between different nets are not connected since they do
not cause any conflict. We need to select one vertex for each

LIN et al.: LAYOUT SYNTHESIS FOR TOPOLOGICAL QUANTUM CIRCUITS WITH 1-D AND 2-D ARCHITECTURES 1581

TABLE II
COMPARISON OF DIFFERENT CONFIGURATIONS AND ALGORITHMS

net without any conflict while minimize the maximum depth
of selected vertices.

With the graph model in Fig. 12, Problem 3 can be formu-
lated into a variation of maximum weighted independent set
(MWIS) problem, where each vertex is weighted by the nega-
tive value of its depth. Any independent set is able to derive a
legal routing solution for nets. Unlike classic MWIS problem
that maximizes the total weight, the objective here is to find an
independent set to maximize the minimum weight of vertices
in the set.

While MWIS problem is well-known NP-hard, we solve it
with a fast heuristic approach that tries to assign routing solu-
tion to the net with maximum degree in the conflict graph first
in each iteration. The details are shown in Algorithm 1. We
first construct a net conflict graph in line 3, where vertices
correspond to nets and two nets are connected if any of their
candidate solutions have conflicts. At the beginning of each
iteration, we search for the net with maximum degree that
has not been processed yet. All candidate solutions of the net
are traversed to compute costs by checking the conflicts with
candidate solutions of other nets in lines 6–14. Any candidate
solution that has conflict with processed nets is assigned to
infinity cost. Otherwise, the cost function in line 12 ensures
that candidate solution with smaller depth and fewer conflicts
with unprocessed nets have higher priority to be selected.
Then the solution with minimum cost is assigned to the net in
line 15. In the worst case, the algorithm will route each net at
each individual depth step resulting in an overall depth of |N|.

IV. EXPERIMENTAL RESULTS

Our algorithm was implemented in C++ and tested on an
eight-core 3.40 GHz Linux server with 32 GB RAM. We
experiment on two sets of benchmarks, RevLib [34] and syn-
thetic benchmarks. The Toffoli gates in RevLib benchmarks
are decomposed to single-target CNOT gates and ancillas
by [6]. In Tables II and III, the number of qubits is denoted by

Algorithm 1 Candidate Qubit Routing Solution Assignment
Require: A set of nets N and candidate routing solutions.
Ensure: Assign one candidate solution to each net with minimized

maximum depth.
1: Define M as a large number;
2: Define c as a candidate solution;
3: Construct net conflict graph;
4: while there are unprocessed nets do
5: Find unprocessed net n with maximum degree;
6: for each candidate solution c of net n do
7: if c has conflict with any processed net then
8: c.cost←∞;
9: else

10: nc ← number of conflicts with candidate
11: solutions of other unprocessed nets;
12: c.cost← c.depth ·M + nc;
13: end if
14: end for
15: Assign candidate solution with minimum cost to net n;
16: end while

“|Q|,” the number of nets (CNOT gates) is denoted by “|N|,”
and the maximum number of pins (including control and tar-
gets) for multiple-target CNOT gates is shown as “MT.” The
RevLib benchmarks contain circuits with |Q| from 131 to 3753
and |N| from 168 to 4938 and only single-target CNOT gates
are used. Qubits are placed according to the order of input
netlists. The synthetic benchmarks are generated with various
number of qubits |Q| from 10 to 1000, number of nets |N| from
10 to 10 411, and multiple-target CNOT gates with MT from
2 to 10, shown in the first three columns Table II. Given num-
ber of qubits, number of CNOT gates, and maximum number
of pins for multiple-target CNOT gates as input, we randomly
select the pins for a CNOT gate every time until all the qubits
are covered by at least one CNOT gate. Gurobi [35] is used
as the ILP solver.

The framework supports arbitrary configuration of layers
for the TQEC system. Tables II and III show the results of
final depth (“D”) and runtime (“T”) for a single layer and

1582 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 8, AUGUST 2018

TABLE III
COMPARISON OF DIFFERENT CONFIGURATIONS AND ALGORITHMS ON REVLIB BENCHMARKS [34]

four layers. The MILP-based qubit routing in Section III-C1
is shown as “MILP” and the algorithm based on candidate
routing solution assignment in Section III-C3 is denoted as
“CRSA.” We set the maximum runtime of MILP to 10 000 s
and “NA” indicates that the program fails to finish within given
time.

In Table II, MILP only returns solutions for some small
benchmarks with only ten qubits, while the runtime is not
scalable enough to solve all benchmarks. Among those bench-
marks, CRSA gives a similar depth in much more reasonable
time. Without depth optimization, each net uses one depth
step and thus the overall depth is the same as the number of
nets |N|, which we use as the baseline for comparison of over-
all depth. From the column |N| and column D under CRSA,
the baseline ends up to be 2.26 times of the overall depth for
1-D architecture and 2.09 times of that for 2-D architecture
with four layers. Table III shows the results for RevLib bench-
marks. CRSA achieves 1.76 times smaller depth for both 1-D
and 2-D architectures with efficient generation of layout. It can
also be observed that small benchmarks with fewer than 100
qubits generally have limited benefits from depth optimization,
while for the rest, more than 50% reduction of overall depth
from the number of nets |N| for synthetic benchmarks and 30%
reduction for RevLib benchmarks are possible. As aforemen-
tioned, the depth measures the time volume of TQEC circuits
and smaller depth contributes to smaller latency to the system.
The results demonstrate that the proposed approach is able
to achieve significantly smaller latency without introducing
additional resources like space volumes.

We also observe that the 2-D CRSA has on average smaller
runtime than 1-D CRSA. The major difference in runtime
comes from the conflict graph construction of Algorithm 1.
The reason lies in the grid-based check for conflicts of any
pair of candidate routing solutions, where early exit is pos-
sible once a conflict is detected. For example, in benchmark
b14, the conflict graph for 2-D architecture ends up with more
entries than 1-D in the experiment, which means early exit
happens more often in 2-D than that in 1-D. In addition, 2-D
arrangement uses fewer grids than 1-D with similar overall
area of grids, e.g., 30% fewer grid vertices and 20% fewer
gridlines in this benchmark, which is also a reason for smaller
runtime.

V. CONCLUSION

We propose a framework on multiple-layer layout synthesis of
TQEC circuits by enabling 1-D and 2-D arrangement of qubits.
We prove the NP-hardness of the qubit routing problem and
propose an efficient algorithm to optimize space-time volumes.
For TQEC circuits further exploration of qubit placement, auto-
matic exploration of best number of layers for various designs,
and automatic geometric simplification are included in the
future work. It is also valuable to explore the opportunity of
layout optimization for reliability issues of TQEC circuits,
such as error chain and qubit defects. With the rapid advance-
ment in quantum computing, there are lots of emerging layout
challenges. Error correction scheme like lattice surgery [36]
removes the need of braiding by splitting and merging planar
code surfaces; architecture like Multi-SIMD [37] scheme cre-
ates a circuit with distributed regions connected by teleportation
networks, while each region only consists of small number of
qubits. These new schemes raise different constraints to the
layout, remaining to be explored. The layout optimization aims
at creating efficient and reliable implementation of quantum
circuits for high performance computing.

APPENDIX

PROOF OF THEOREM 1

To find the minimum depth step in Problem 2, we need to
answer the decision problem: given an integer d(1 ≤ d ≤ |N|),
can the nets in Problem 2 be routed with total depth d. While
the answer to d = |N| is always true, it is nontrivial to solve
for the special case of d = 1, i.e., in one depth step. It turns out
the decision problem for single depth step is already difficult
even for 2-pin nets only. We define the decision problem of
qubit routing in single depth step for 2-pin nets as follows.

Problem 4 (Single-Depth Qubit Routing Decision): Given
a net set N with 2-pin nets only (one control qubit as source
and one target qubit as sink for each net) and one depth step
of 3-D grid system G, where qubits are only located in the
centers of odd-height horizontal gridlines, can the nets be
routed such that:

1) routing segments run along gridlines only;
2) routing for each net forms a circle that consists of a

front path and a back path;

LIN et al.: LAYOUT SYNTHESIS FOR TOPOLOGICAL QUANTUM CIRCUITS WITH 1-D AND 2-D ARCHITECTURES 1583

3) the front path covers both source and sink;
4) the back path covers only the source, not the sink;
5) the routing circles of different nets must be vertex-

disjoint.
Lemma 1: If the single-depth qubit routing decision

problem (Problem 4) is NP-complete, then the qubit routing
problem (Problem 2) is NP-hard.

Proof: Suppose that Problem 2 is polynomially solvable.
For any instance of Problem 4, we can construct an instance
of Problem 2. If the minimum depth to Problem 2 is larger
than 1, the answer to the decision problem is no; otherwise, it
is yes. It follows that Problem 4 can be solved in polynomial
time, which is a contradiction to the assumption. Therefore,
Problem 2 is at least as hard as NP-complete. Considering that
Problem 2 is not in the set of NP (not a decision problem), it
is NP-hard.

The NP-completeness of similar routing problem has been
proved for 2-pin nets by reduction from 3-satisfiability (3-SAT)
problem [38]. Our problem on single-depth qubit routing deci-
sion has following major differences from previous problem.

1) The pins are located in the centers of odd-height hori-
zontal gridlines rather than arbitrary vertices on grids.

2) To cover a pin, a path has to occupy the full gridline
which contains the pin.

3) The routing of a net has to be a circle rather than a path.
Due to the differences, it is difficult to apply previous conclu-
sion to our problem, while we can still follow the procedure
of the previous proof by reduction from 3-SAT.

Previous work first proves the NP-completeness of a vari-
ation of routing problem with obstacles and then derive the
conclusion for the original routing problem [38]. We follow
this procedure as well. Let an obstacle be a rectangular domain
on grids, as shown in Fig. 19(a). For technical reasons, we first
prove the NP-completeness of an obstacle routing, which is a
variation of Problem 4 with obstacles that cannot be used for
routing. Then we derive that the original obstacle-free routing
in Problem 4 is also NP-complete.

Problem 5 (Single-Depth Qubit Routing Decision With
Obstacles): Given a net set N with 2-pin nets only (one source
and one sink) and M obstacles on a 3-D grid system G with
one depth step, where qubits are only located in the centers
of odd-height horizontal gridlines, can the nets be routed such
that:

1) routing segments run along gridlines only;
2) routing for each net forms a circle that consists of a

front path and a back path;
3) the front path covers both source and sink;
4) the back path covers only the source, not the sink;
5) the routing circles of different nets must be vertex-

disjoint.
Lemma 2: The single-depth qubit routing decision with

obstacles problem (Problem 5) is NP-complete.
Proof: The proof is conducted by polynomial transforma-

tion from a 3-SAT instance to an obstacle routing instance.
Given a 3-SAT instance I, let {x1, x2, . . . , xn} denote n vari-
ables, {x1, x̄1, . . . , xn, x̄n} denote 2n literals, respectively. Let
set C = {c1, c2, . . . , cm} denote m clauses with 3 literals per
clause. We can reduce I to an obstacle routing instance I′ with
O(nm) nets on a rectangular grid of area O(nm).

Fig. 13. Gadget to represent truth or false assignment of a variable. Example
of (a) front path and (b) back path. The green rectangles denote obstacles.
The source pin is marked light green and sink pin is marked black. The front
path and back path are connected through their ending points.

Fig. 14. Some symbols of gadgets. (a) Horizontal and (b) vertical pipe
(zo = xi). (c) Horizontal and (d) vertical inverter (zo = z̄i). (e) Junction
(zo1 = zo2 = xi). (f) Crossover (zo1 = xi1, zo2 = xi2). (g) Clause plaza,
where there is feasible routing solutions iff the clause has truth assignment.

To construct instance I′, it is necessary to have a gadget to
represent truth and false assignment of a variable, shown as
Fig. 13. The green rectangles denote obstacles and xi and yi

denote the source and sink in a net. There are two available
horizontal channels for routing, bottom and top. If the front
path of the routing circle from xi to yi goes through top chan-
nel like the solid line in Fig. 13(a), we identify this case as
false assignment, i.e., the corresponding variable xi in 3-SAT
is assigned to 0; if the front path of the routing circle goes
through the bottom channel, it is regarded as truth assign-
ment. This gadget can be implemented in vertical direction by
utilizing vertical channels as well.

Note that although the back path of the routing circle also
has the option to go through the top or bottom channel, shown
as Fig. 13(b), it does not influence the Boolean assignment.
In other words, only the front path determines the Boolean
assignment. In the construction, we only show the front paths
to represent routing solutions for brevity. We will explain later
on how to derive the back paths from the front paths.

We define several gadgets to help construct the routing
instance I′. A pipe propagates the assignment, whose sym-
bols are shown as Fig. 14(a) and (b), where the output zo is
equal to the input xi. An inverter flips the assignment, whose
symbols are shown as Fig. 14(c) and (d), where the output
zo is equal to x̄i. A junction takes one input and copies to its
two output ports, whose symbol is shown as Fig. 14(e), where
both outputs zo1 and zo2 are equal to xi. A crossover copies
its left input assignment to right and top input assignment to
bottom, whose symbol is shown as Fig. 14(f), where zo1 = xi1
and zo2 = xi2. A clause plaza takes three literal assignments as
input and exists a feasible routing solution if only if any of the
literals has truth assignment; i.e., the clause has truth assign-
ment. In addition, due to the alternate grid height for pins

1584 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 8, AUGUST 2018

Fig. 15. Outline of the routing problem composed with gadgets.

Fig. 16. Pipes with two cases of input: horizontal pipe (a) xi = 0, (b) xi = 1
and vertical pipe (c) xi = 0, (d) xi = 1.

Fig. 17. Inverters with two cases of input: horizontal inverter (a) xi = 0,
(b) xi = 1 and vertical inverter (c) xi = 0, (d) xi = 1. Sources are in light
green and sinks are in black, same for other figures in this section.

(sources and sinks) in the problem, connectors are introduced
to connect various gadgets vertically so that the assignments
to variables can propagate from top to bottom.

Fig. 15 gives an outline of the routing instance I′ consisting
of gadgets, where n columns are introduced for n variables
and m clause plazas are introduced for m clauses. We show
how to construct one clause with gadgets. The assignments
to variables propagate along columns and rows with pipes,
junctions, and crossovers. We can insert an inverter to create

Fig. 18. Junction with two cases of input: (a) xi = 0 and (b) xi = 1.
Additional inverter is required for output zo1 at the bottom.

Fig. 19. (a) Representation of an obstacle. (b) Corresponding net with front
path and (c) back path. The front path and back path are connected through
their ending points.

Fig. 20. (a) Horizontal and (b) vertical connection of gadgets. four additional
obstacles are required for vertical connection.

a literal for inversion of a variable (e.g., x̄i) shown as the
inverter next to the clause plaza in the figure. For each clause,
we need a clause plaza to take three corresponding literals as
input, shown as the right side of the figure, where the clause
x̄i ∨ xj ∨ xk is mapped. If only if any of x̄i, xj, xk is equal to 1,
the plaza has a feasible routing solution; otherwise, it cannot
be routed.

We will explain the implementation of gadgets later. There
are n columns and 3 m rows (one clause requires three rows)
for this construction. Thus, the amounts of gadgets are in an
order of O(nm). As each gadget will be implemented with
constant number of nets and grids, the full instance I′ requires
O(nm) nets and O(nm) grids, which is polynomial in problem
size.

LIN et al.: LAYOUT SYNTHESIS FOR TOPOLOGICAL QUANTUM CIRCUITS WITH 1-D AND 2-D ARCHITECTURES 1585

Fig. 21. Crossover with four cases of input: (xi1, xi2) = (a) 00, (b) 01, (c) 10, and (d) 11. Additional inverter is required for output zo1 at the bottom.

Given the outline of the construction, we now explain the
implementation of each gadget in details. The implementation
of gadgets only involve the obstacles shown in Fig. 19(a)
which will help transform back to obstacle-free routing later.

Pipe: Fig. 16 shows the implementation of horizontal and
vertical pipes. For each implementation, we enumerate all the
combinations of input patterns to verify its correctness. Since
a pipe only propagates the assignment, the routing path always
exits from the same channel as that of the input. It needs to
mention that the vertical pipes are designed with special ports
at top and bottom for alignment with other gadgets vertically,
which will be discussed together with connectors.

Inverter: Fig. 17 shows the implementation of horizontal
and vertical inverters. We take Fig. 17(a) as an example, where
the input xi = 0. Two additional pins x and z are introduced.
The input xi must connect to sink x and source z must connect
to output zo. When xi = 0, due to the existence of obstacles,
the routing path enters the gadget from the top channel and
block the way after connecting to pin x for pin z to exit from
the top channel which represents zo = 0. As a consequence,
the routing for pin z can only go through the bottom channel
to zo which represents zo = 1. The entire gadget behaves like
an inverter as it switches the routing channel. Other cases and
vertical inverters can be verified in a similar way.

Junction: Fig. 18 shows the implementation of a junction,
where three pins are introduced with three nets. Pin x has to
connect to input xi, pin z1 has to connect to output zo1 and
pin z2 has to connect to output zo2. Again we take the case
of xi = 0 shown in Fig. 18(a) as an example. The routing
between input xi and pin x separates pin z1 from the channel

of zo1 = 0, so the routing path of pin z1 has to exits from
the bottom right port, indicating zo1 = 1. At the same time,
the routing path of z2 is forced to go through the top right
port as zo2 = 0. The implementation in the figure will flip xi

at zo1, so an inverter is required at the bottom to ensure the
functionality of zo1 = zo2 = xi. The inverter is not drawn for
brevity.

Crossover: Fig. 21 shows the implementation of a crossover,
where four pins are introduced with four nets. Pin x1 must
connect to input xi1, pin s must connect to pin t, pin z1 must
connect to output zo1, and input xi2 must connect to output zo2.
We mark the routing path between pin s and t with different
color because it does not associate with any input and output.
We enumerate all the four possible input patterns to verify the
functionality of the gadget. Take the case (xi1, xi2) = 00 as an
example in Fig. 21(a). The routing paths of input xi2 to output
zo2 and pin s to t have to take the only two horizontal gridlines
below pin x1; otherwise, if they go anywhere above pin x1, it
is not possible to finish the connection between input xi1 and
x1. Input xi1 has to access pin x1 from the left of the obstacle
in the middle; otherwise, routing between pin z1 and output
zo1 cannot finish. After careful analysis, we are able to derive
that the routing paths have to exit from zo1 = 1 and zo2 = 0.
Other cases can be analyzed in the same way. One additional
inverter is required for zo1 at the bottom of the gadget.

Clause Plaza: Fig. 22 show the implementation of a clause
plaza, where seven pins are introduced with five nets. A clause
plaza only has three inputs without any output. These nets
include input xi to pin yi, input xj to pin yj, input xk to pin yk,
pin s to t, and pin u to v. In this gadget, we need to ensure

1586 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 8, AUGUST 2018

Fig. 22. Clause plaza with eight cases of input: (xi, xj, xk) = (a) 000, (b) 001,
(c) 010, (d) 011, (e) 100, (f) 101, (g) 110, and (h) 111. Additional inverter
is required for input xj at the bottom left. Additional inverter and pipes are
needed to lead xk from left side of the gadget to right. Sources are in light
green and sinks are in black.

infeasibility when xi = xj = xk = 0, shown as Fig. 22(a). In
this case, due to limited number of available vertical chan-
nels in the middle, it is not possible for pin s, t, u, v to finish
connection without using neighboring vertical gridlines which
are taken for routing of other nets. As a result, no feasible
routing solution can be found, which is used to indicate the
false assignment of the clause. For any other case with at least
one literal assigned to truth, it is not difficult to find a feasible
routing solution. Although the input ports for xk appear on
the right of the clause plaza, we can redirect them to left with
pipes and inverters.

Connector: Connectors are introduced to connect gadgets
vertically. For horizontal connection of gadgets, we need to
align the ports of two gadgets with one grid gap as shown in
Fig. 20(a), while for vertical connection, vertical ports need to
align and a connector is inserted between two gadgets, shown
as four additional obstacles in the middle of Fig. 20(b).

Although the back paths are not shown in the figures, we
can derive them from front paths for any gadget. In the figures
for gadgets, we design the routing of front paths in a way that
the back paths can be found as follows. The back path can
follow the routing of the front path except that at the sink of
each net, where the back path needs to avoid the sink and
connect to the ending point of the front path. Take Fig. 13 as
an example. The only difference between the front path and

back path lies in the segments near the sink yi. The back paths
of gadgets can be derived in the same way such that the entire
routing solution for each net in Figs. 16–18, 21, and 22 can
be filled.

With the construction in polynomial time and amount of
resources, we conclude that the obstacle routing instance I′ is
a consistent image of the 3-SAT instance I. The clauses C are
simultaneously satisfied if only if a feasible routing solution
for all clause plazas exists. Thus, 3-SAT polynomially trans-
forms to obstacle routing, which finishes the proof for obstacle
routing from the NP-completeness of 3-SAT.

With the proof of obstacle routing in Problem 5, we still
need to prove the obstacle-free routing in Problem 4. We will
show that an obstacle routing instance can be transformed to
an obstacle-free routing instance in polynomial time and vice
versa.

Lemma 3: The single-depth qubit routing decision with
obstacles problem (Problem 5) polynomially transforms to the
single-depth qubit routing decision problem (Problem 4).

Proof: Given an instance I of obstacle routing, we construct
an equivalent instance I′ of the routing in Problem 4. While all
the nets and pins remain the same, the obstacles are replaced
with local nets, shown in Fig. 19. Note that in the transfor-
mation from 3-SAT to obstacle routing, we only use obstacles
in Fig. 19(a). Due to the implementation of obstacles, they
cannot be placed in arbitrary positions, but we have already
considered that in the transformation from 3-SAT to obstacle
routing. By replacing these obstacles with local nets, we can
construct an instance I′ of Problem 4 in polynomial time.

Any solution to I can translate to the solution of I′ in poly-
nomial time by replacing the obstacles with local pairs of pins
shown in Fig. 19. Conversely, consider any solution to I′. We
assume direct connection of the locally adjacent pairs of pins.
If they do not connect in this way, we can adapt the routing to
this way, because it results in the minimum regions that these
pins block out and leave the remaining area free for other nets.
It means that these adjacent pairs of pins behave like obsta-
cles in instance I. Then the solution to I′ translates back into
a solution of I in polynomial time.

Lemma 4: The single-depth qubit routing decision problem
(Problem 4) is NP-complete.

Proof: Proof followed by combining Lemmas 2 and 3.
With Lemmas 1 and 4, we conclude the NP-hardness for

qubit routing in Theorem 1.

REFERENCES

[1] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” in Proc. STOC, Philadelphia, PA, USA, 1996, pp. 212–219.

[2] P. W. Shor, “Algorithms for quantum computation: Discrete logarithms
and factoring,” in Proc. FOCS, Santa Fe, NM, USA, 1994, pp. 124–134.

[3] The IBM Quantum Experience, Int. Bus. Mach.
Corporat., Armonk, NY, USA, 2016. [Online]. Available:
http://researchweb.watson.ibm.com/quantum/

[4] S. J. Devitt, “Performing quantum computing experiments in the cloud,”
Phys. Rev. A, vol. 94, no. 3, 2016, Art. no. 032329.

[5] A. G. Fowler and K. Goyal, “Topological cluster state quantum com-
puting,” Quantum Inf. Comput., vol. 9, nos. 9–10, pp. 721–738, 2009.

[6] A. Paler, S. J. Devitt, and A. G. Fowler, “Synthesis of arbitrary quan-
tum circuits to topological assembly,” Sci. Rep., vol. 6, Aug. 2016,
Art. no. 30600.

LIN et al.: LAYOUT SYNTHESIS FOR TOPOLOGICAL QUANTUM CIRCUITS WITH 1-D AND 2-D ARCHITECTURES 1587

[7] I. Polian and A. G. Fowler, “Design automation challenges for scalable
quantum architectures,” in Proc. DAC, San Francisco, CA, USA, 2015,
pp. 1–6.

[8] R. Raussendorf, J. Harrington, and K. Goyal, “Topological fault-
tolerance in cluster state quantum computation,” New J. Phys., vol. 9,
no. 6, p. 199, 2007.

[9] S. Beauregard, “Circuit for Shor’s algorithm using 2n+3 qubits,”
Quantum Inf. Comput., vol. 3, no. 2, pp. 175–185, 2003.

[10] D. Maslov, “Linear depth stabilizer and quantum Fourier transfor-
mation circuits with no auxiliary qubits in finite-neighbor quantum
architectures,” Phys. Rev. A, vol. 76, no. 5, 2007, Art. no. 052310.

[11] A. Broadbent and E. Kashefi, “Parallelizing quantum circuits,” Theor.
Comput. Sci., vol. 410, no. 26, pp. 2489–2510, 2009.

[12] M. Amy, D. Maslov, M. Mosca, and M. Roetteler, “A meet-in-the-
middle algorithm for fast synthesis of depth-optimal quantum circuits,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 32, no. 6,
pp. 818–830, Jun. 2013.

[13] N. Abdessaied, R. Wille, M. Soeken, and R. Drechsler, “Reducing the
depth of quantum circuits using additional circuit lines,” in Proc. Int.
Conf. Reversible Comput., Kolkata, India, 2013, pp. 221–233.

[14] T. G. Draper, S. A. Kutin, E. M. Rains, and K. M. Svore, “A logarithmic-
depth quantum carry-lookahead adder,” Quantum Inf. Comput., vol. 6,
no. 4, pp. 351–369, 2006.

[15] M. Saeedi, R. Wille, and R. Drechsler, “Synthesis of quantum circuits
for linear nearest neighbor architectures,” Quantum Inf. Process., vol. 10,
no. 3, pp. 355–377, 2011.

[16] N. Wiebe, A. Kapoor, and K. M. Svore, “Quantum nearest-neighbor
algorithms for machine learning,” Quantum Inf. Comput., vol. 15,
pp. 0318–0358, Mar. 2015.

[17] A. Paler, S. Devitt, K. Nemoto, and I. Polian, “Synthesis of topological
quantum circuits,” in Proc. NANOARCH, Amsterdam, The Netherlands,
2012, pp. 181–187.

[18] S. Yamashita, “An optimization problem for topological quantum com-
putation,” in Proc. ATS, Niigata, Japan, 2012, pp. 61–66.

[19] A. G. Fowler and S. J. Devitt, “A bridge to lower overhead quantum
computation,” arXiv preprint arXiv:1209.0510, 2012.

[20] A. Paler, S. J. Devitt, K. Nemoto, and I. Polian, “Mapping of topological
quantum circuits to physical hardware,” Sci. Rep., vol. 4, Apr. 2014,
Art. no. 4657.

[21] A. Chakrabarti, S. Sur-Kolay, and A. Chaudhury, “Linear nearest neigh-
bor synthesis of reversible circuits by graph partitioning,” arXiv preprint
arXiv:1112.0564, 2011.

[22] A. Shafaei, M. Saeedi, and M. Pedram, “Optimization of quantum cir-
cuits for interaction distance in linear nearest neighbor architectures,” in
Proc. DAC, Austin, TX, USA, 2013, pp. 1–6.

[23] R. Wille, A. Lye, and R. Drechsler, “Optimal SWAP gate insertion for
nearest neighbor quantum circuits,” in Proc. ASPDAC, Singapore, 2014,
pp. 489–494.

[24] A. Shafaei, M. Saeedi, and M. Pedram, “Qubit placement to min-
imize communication overhead in 2-D quantum architectures,” in
Proc. ASPDAC, Singapore, 2014, pp. 495–500.

[25] A. Lye, R. Wille, and R. Drechsler, “Determining the minimal number
of swap gates for multi-dimensional nearest neighbor quantum circuits,”
in Proc. ASPDAC, Tokyo, Japan, 2015, pp. 178–183.

[26] R. Wille et al., “Look-ahead schemes for nearest neighbor optimization
of 1-D and 2D quantum circuits,” in Proc. ASPDAC, 2016, pp. 292–297.

[27] M. Pedram and A. Shafaei, “Layout optimization for quantum circuits
with linear nearest neighbor architectures,” IEEE Circuits Syst. Mag.,
vol. 16, no. 2, pp. 62–74, May 2016.

[28] C.-C. Lin, S. Sur-Kolay, and N. K. Jha, “PAQCS: Physical design-aware
fault-tolerant quantum circuit synthesis,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 23, no. 7, pp. 1221–1234, Jul. 2015.

[29] N. Mohammadzadeh, “Physical design of quantum circuits in ion
trap technology—A survey,” Microelectron. J., vol. 55, pp. 116–133,
Sep. 2016.

[30] R. Wille, B. Li, U. Schlichtmann, and R. Drechsler, “From biochips to
quantum circuits: Computer-aided design for emerging technologies,” in
Proc. ICCAD, Austin, TX, USA, 2016, Art. no. 132.

[31] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, “Surface
codes: Towards practical large-scale quantum computation,” Phys. Rev.
A, vol. 86, no. 3, 2012, Art. no. 032324.

[32] M. A. Nielsen, I. Chuang, and L. K. Grover, “Quantum computation
and quantum information,” Amer. J. Phys., vol. 70, no. 5, pp. 558–559,
2002.

[33] N. Cohen, “Several graph problems and their linear program formula-
tions,” INRIA, Rocquencourt, France, Tech. Rep., Jul. 2010.

[34] RevLib. Accessed: Apr. 19, 2017. [Online]. Available: http://
www.revlib.org

[35] Gurobi Optimizer Reference Manual, Gurobi Optim. Inc., Houston, TX,
USA, 2014. [Online]. Available: http://www.gurobi.com

[36] C. Horsman, A. G. Fowler, S. Devitt, and R. Van Meter, “Surface code
quantum computing by lattice surgery,” New J. Phys., vol. 14, no. 12,
2012, Art. no. 123011.

[37] J. Heckey et al., “Compiler management of communication and par-
allelism for quantum computation,” in Proc. ACM SIGARCH Comput.
Archit. News, vol. 43. Istanbul, Turkey, 2015, pp. 445–456.

[38] M. R. Kramer and J. van Leeuwen, “Wire-routing is NP-complete,”
Dept. Comput. Sci., Univ. at Utrecht, Utrecht, The Netherlands, Tech.
Rep. RUU-CS-82-4, 1982.

Yibo Lin (S’17) received the B.S. degree in
microelectronics from Shanghai Jiaotong University,
Shanghai, China, in 2013. He is currently pursuing
the Ph.D. degree with the Department of Electrical
and Computer Engineering, University of Texas at
Austin, Austin, TX, USA.

Mr. Lin was a recipient of the Franco Cerrina
Memorial Best Student Paper Award at the SPIE
Advanced Lithography Conference 2016, and the
University Graduate Continuing Fellowship in 2017.

Bei Yu (S’11–M’14) received the Ph.D. degree
from the Department of Electrical and Computer
Engineering, University of Texas at Austin, Austin,
TX, USA, in 2014.

He is currently an Assistant Professor with the
Department of Computer Science and Engineering,
Chinese University of Hong Kong, Hong Kong.

Dr. Yu was a recipient of four best paper awards at
International Symposium on Physical Design 2017,
the SPIE Advanced Lithography Conference 2016,
the International Conference on Computer Aided

Design (ICCAD) 2013, the Asia and South Pacific Design Automation
Conference 2012, and plus three additional best paper Award nominations at
Design Automation Conference/International Conference on Computer Aided
Design/Asia and South Pacific Design Automation Conference, and three
ICCAD contest awards in 2012, 2013, and 2015. He has served in the Editorial
Boards of Integration, the Very Large Scale Integration Journal, and IET
Cyber-Physical Systems: Theory & Applications.

Meng Li (S’15) received the B.S. degree in micro-
electronics from Peking University, Beijing, China,
in 2013. He is currently pursuing the Ph.D. degree
in electrical and computer engineering with the
University of Texas (UT) at Austin, Austin, TX,
USA, under the supervision of Prof. D. Z. Pan.

His current research interests include hardware-
oriented security, reliability, power grid simulation
acceleration, and deep learning.

Mr. Li was a recipient of the Best Paper Award
in IEEE International Symposium on Hardware

Oriented Security and Trust 2017 and Graduate Fellowship from UT
Austin in 2013.

David Z. Pan (S’97–M’00–SM’06–F’14) received
the B.S. degree from Peking University, Beijing,
China, and the M.S. and Ph.D. degrees from
the University of California at Los Angeles, Los
Angeles, CA, USA.

He is currently the Engineering Foundation
Professor with the University of Texas at Austin,
Austin, TX, USA. He has published over 280 refer-
eed technical papers, and holds eight U.S. patents.
He has graduated over 20 Ph.D. students who are
currently holding key academic and industry posi-

tions. His current research interests include cross-layer nanometer IC design
for manufacturability, reliability, security, physical design, analog design
automation, and CAD for emerging technologies.

Prof. Pan was a recipient of the number of awards for his research contribu-
tions, including the SRC 2013 Technical Excellence Award, the DAC Top 10
Author in Fifth Decade, the ASP-DAC Frequently Cited Author Award, and
14 best paper awards. He has served as a Senior Associate Editor for ACM
Transactions on Design Automation of Electronic Systems, an associate editor
for a number of other journals. He has served in the executive and program
committees of many major conferences, including ASPDAC 2017 Program
Chair and ICCAD 2018 Program Chair. He is a fellow of SPIE.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

