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Abstract—Detailed routing is an important stage in very large
scale integrated physical design. Due to the extreme scaling of
transistor feature size and the complicated design rules, ensuring
routing completion without design rule checking (DRC) violations
becomes more and more difficult. Studies have shown that the
low routing quality partly results from nonoptimal net-ordering
nature of traditional sequential methods. The concurrent routing
strategy is always based on an NP-hard model, thus is at a disad-
vantage in runtime. In this paper, we present a novel concurrent
detailed routing algorithm that routes all nets simultaneously.
Based on the multicommodity flow model, detailed routing prob-
lem with complex design rule constraints is formulated as an
integer linear programming. Some model simplification heuristics
and efficient model solving algorithms are proposed to improve
the runtime. Experimental results show that, the proposed algo-
rithms can reduce the DRC violations by 80%, meanwhile can
reduce wirelength and via count by 5% and 8% compared with
an industry tool. In addition, the proposed algorithm is general
that it can be adopted as an incremental detailed router to refine
a routing solution, so the number of DRC violations that industry
tool cannot fix are further reduced by 27%.

Index Terms—Design rules, detailed routing, integer linear
programing, multicommodity flow (MCF).

I. INTRODUCTION

ROUTING is a very important and the most time-
consuming stage in modern very large scale integrated

(VLSI) circuits physical design. The top-level design may
contain millions of nets in a typical hierarchical design. It
generally takes days for EDA tools to finish routing, close
timing, and fix design rule checking (DRC) violations on a
powerful computing server with multithreading accelerations.
However, due to the NP-hard nature of the routing problem,
industry tools sometimes hardly guarantee total completion of
the DRC-clean connections while satisfying the timing con-
straints, thus designers have to spend much more time on
engineering change order changes to meet both timing and
DRC closures.

To effectively reduce the complexity of routing problem,
industry tools use divide-and-conquer mechanism, where a
global routing (e.g., [1]), combined with or followed by a
track assignment (e.g., [2]), is used to obtain a coarse solu-
tion (tile-to-tile paths) on a global routing graph for all nets
optimizing some particular objective functions. After global
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routing and track assignment, routing segments are assigned
into different routing tracks, then a detailed routing is to fur-
ther connect net terminals satisfying all physical constraints
and timing requirements.

Submicron technologies generally use multilayer routing,
where metal wires are manufactured in six to twelve routing
layers [3]. Each routing layer has a preferred routing direction
and adjacent layers are connected by vias. A layout is par-
titioned into many subregions after global routing and track
assignment. Detailed routing works on the 3-D routing space
inside each subregion to connect all the nets. The primary task
for a detailed router is to make sure there are no layout ver-
sus schematic (LVS) errors, while satisfying all the complex
design rules. The secondary task for the detailed router is to
optimize circuit performance, without detouring timing critical
nets while preserving the nondefault spacing requirements for
delay.

In modern VLSI physical design, routing faces severe chal-
lenges. As the prediction of Moore’s law, the number of
transistors per die grows exponentially in the last years.
The scale of detailed routing becomes larger and larger. As
the decreasing of feature size, more and more design rules
are introduced to guarantee performance, manufacture, and
yield [4]. Furthermore, the layout structure is more com-
plicated because of the hierarchy level and complex design
modules. The explosion of problem scale and design rule num-
ber make detailed routing more difficult. Assigning routing
resource for every net reasonably becomes more and more
important.

A. Related Works

Routing algorithms can be classified into sequential and
concurrent approaches. On one hand, sequential approach
routes all the nets one-by-one in a prefixed order, thus is fast
but may suffer from net-ordering problem which has great
impact on routing quality. On the other hand, with a global
view, concurrent approach routes all nets simultaneously, but
has a disadvantage in runtime which limits the problem scale.

Most of previous works are designed on a sequential man-
ner in both grid-based and gridless models. For grid-based
detailed routing model, detailed router finds legal routing path
on the given routing grids. Lee’s algorithm [5] is the most
widely used grid-based algorithm to search for a shortest path
for two terminals. Lee’s algorithm consists of two phases of
path search followed by trace back. In the first phase, breath-
first-search strategy is applied to find a shortest path between
source vertex and target vertex in manner of wave propaga-
tion. After a shortest path has been found, the second phase
of trace back works to find the optimal routing solution based
on waves. Line-search algorithm [6] is developed to speedup
Lee’s algorithm. Differing from Lee’s algorithm, line-search
algorithm performs a depth-first-search approach to find a
routing path using line segments. Another efficient detailed
routing algorithm, proposed by Hart [7], is called A*-search.
Compared with Lee’s algorithm, A*-search is smarter because
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Fig. 1. Influence of net ordering on routability. (a) Industry tool result.
(b) Our result. White rectangle is DRC marker; blue geometry is wire/pin on
metal1; red and green geometry is wire on metal2 and metal3, respectively.

it selects vertex with minimum cost to propagate. The cost of
a vertex is calculated by a function f (v) = g(v)+ h(v), where
g(v) is the path cost from source vertex to vertex v, while h(v)
is predicted cost from vertex v to target vertex. Some grid-
less detailed routers are proposed (e.g., [8] and [9]). In recent
years, Zhang and Chu [10] proposed RegularRoute for detailed
routing. Later, Zhang and Chu [11] proposed GDRouter in
which FastRoute [12] and RegularRoute [10] are interleaved.
Gester et al. [13] presented a detailed router using two efficient
data structures of shape grid and fast grid. Ahrens et al. [14]
proposed a new general multilabel shortest path algorithm,
which is used to compute design rule clean paths or nontriv-
ially colored paths in situations where a standard shortest path
algorithm does not find good solutions.

To remedy the deficiencies, sequential routing often applies
a heuristic net ordering and conducts a rip-up and reroute pro-
cess to further refine the solution. Here, are some common
net-ordering schemes: 1) the ascending order of pin num-
ber; 2) the ascending order of bounding-box area; and 3) the
descending order of DRC number. In the rip-up and reroute
process, the net order may change due to current DRC viola-
tion count and historical penalties. The routing engine works
on a single net and other nets are fixed as routing obstacles
when searching for the new path for current net. Even though
different ordering strategies and several iterations of rip-up
and reroute are employed, it has been found both in indus-
try and academia that the worse routing solution partly arises
from nonoptimal net-ordering nature of traditional sequential
methods.

However, the aforementioned heuristic net-ordering strate-
gies may fail to achieve valid routing solution. The routability
issue becomes more severe in practical routing problems, due
to increasingly problem scale and complex design rules. As
shown in Fig. 1(a), the routing result is generated by a com-
mercial EDA tool, Encounter v10.10 [15]. After several opti-
mization iterations, there are still three DRC violations that can
not be removed. In Fig. 1(b), a concurrent routing result with-
out any DRC violations is generated by considering routing
nets in the region simultaneously. We can observe that sequen-
tial strategy is difficult to effectively search for a DRC-clean
solution, while concurrent strategy can effectively resolve the
net-ordering problem. Therefore, an sequential router may
have to expand the routing region thus involving more nets to
the rip-up and reroute iterations or negotiation-based strategy.

Thanks to the ability of resolving net-ordering issue, many
VLSI design problems have been modeled and solved in a
concurrent manner, such as global routing [16], escape rout-
ing [17], and layer assignment [18], [19]. Multicommodity
flow (MCF) problem is a network flow problem with mul-
tiple flow demands between different source and sink nodes.

Even though there are some similarities between detailed rout-
ing and global routing problems, the concurrent global routing
models [20]–[22] could not be directly applied to detailed rout-
ing problems. First, the routing solutions are limited because
the solution space for each net in global routing is combined
by some steiner trees, which is not suitable for detailed rout-
ing. Second, no complexed design rules such as spacing are
considered in global routing models since they are mostly con-
gestion driven. Thus there will be many DRC violations if
global routing models are applied to solve detailed routing
problem. Jia et al. [23] propose the first concurrent detailed
router based on the MCF method considering complex design
rules. But it is very time-consuming and many DRC violations
still remain unresolved. Although Han et al. [24] propose a
concurrent detailed router considering double patterning issue,
the proposed router is not applicable to general detailed routing
problem (will be detailed explained in Section IV-B).

B. Our Contributions

In this paper, a novel concurrent detailed routing algo-
rithm based on MCF method is proposed to route all the nets
simultaneously. Some effective heuristic strategies are also car-
ried out to overcome the shortcoming in runtime. The main
contributions of this paper are listed as follows.

1) A concurrent detailed router, MCFRoute, is proposed
based on MCF model. MCFRoute can generate paths
for all nets in each routing region simultaneously while
satisfying given constraints. As a result, it overcomes the
net-ordering problem and can get an optimal grid-based
solution in each routing region.1

2) Besides fixing LVS errors, our detailed router supports
some complex spacing rules. Some other design rules,
like minarea rules are also considered in our routing flow
in post-routing stage. Our router is proven to be effective
in supporting 28 nm above technology nodes.

3) Several strategies are proposed to optimize the MCF
model in order to reduce the runtime. An equivalent
transformation is carried out to convert the detailed rout-
ing model from integer nonlinear programming formu-
lation to integer linear programming (ILP) formulation.
A heuristic strategy is proposed for speedup by reduc-
ing the scale of ILP problem by removing redundant
constraints.

4) We also propose a solving algorithm to reduce the run-
time. The solving algorithm starts with a prerouting
stage in which a good start point is generated for ILP
problem based on track assignment results. Then the ILP
problem is relaxed into an LP problem and solved by
an LP solver.

5) A multithreaded framework is implemented for the MCF
routing engine and it can get close to linear speedup
ratio on the multicore computing server. And the MCF
routing engine can be embedded easily to a maze-based
detailed router to do a post-routing DRC cleanup.

6) Experimental results show that compared with the state-
of-the-art industry tool, MCFRoute could reduce the
DRC violation count and improve the routing quality.
Moreover, it can also be used as an incremental router
to fix some hard DRC violations which the industry tool
cannot fix.

The remainder of this paper is organized as follows.
Section II provides preliminaries and problem formulation.

1The MCF model requires all wires and vias are placed on routing grids.
For gridless cell pins, it is connected through on-grid pin-access-virtual-vias.
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Fig. 2. Detailed routing graph.

Section III describes the overview flow of the proposed algo-
rithms. Section IV gives the basic MCF model formulation.
Section V discusses how some complex design rules are added
to the basic model. Section VI describes several strategies to
simplify MCF model. Section VII discusses how we solve
MCF model in details. Section VIII lists experimental results,
followed by conclusion in Section IX.

II. PROBLEM FORMULATION

A. Preliminaries

Due to the large scale, the layout of modern chip is divided
into many small routing regions after track assignment. A net
in netlist is generally divided into many subnets located at dif-
ferent small regions (hereafter, we will refer to net in netlist as
logic net and subnet in small routing region as net). The inter-
section point of segment and the boundary of a small routing
region is usually named as crosspoint. Both the terminals of
logic net which we refer to as pins below, and crosspoints in
a small routing region are the components of the net.

Based on MCF theory, detailed routing problem is modeled
as a path finding problem on a 3-D routing graph which is
named as G = (V, E). Here, V = {v1, v2, . . . , vn} denotes a
set of n vertices of graph G, and E = {e1, e2, . . . , em} denotes
a set of m edges of graph G. Vertices of graph G on each
layer are the intersection points of routing grids on current
layer with grids projected from neighbor routing layers. Then
routing grids are divided as edges of graph G by vertices. In
MCF model, graph G is defined as a directed graph, which
means there are two edges between adjacent vertices vj1 and
vj2 ; one is from vj1 to vj2 , while the other one is from vj2 to
vj1 . We regard these two edges as brother edges. Fig. 2 shows
a simple routing graph with two routing layers, 66 directed
edges and 18 vertices.

On detailed routing graph, each vertex vj is a terminal point
of a set of edges Evj which contains no more than 12 elements
as shown in Fig. 2. Each set Evj could be divided into two
subsets, labeled as Evj,out and Evj,in with the same scale. All
the edges in Evj,out start from vj and are named as out-edges
of vj, while all the edges in Evj,in end at vj and are named as
in-edges of vj. In Fig. 2, vertex v has five in-edges that are
marked with a pink color and five out-edges with black color.
From the assumption given above we can reach the following
conclusion:

|V| =
L∑

l=1

RlCl

|E| = 2×
(

L∑

l=1

(2RlCl − Rl − Cl)+
L−1∑

l=1

RlCl

)
.

Here, L is the total number of routing layer; Rl and Cl is
the row count and column count of layer l, respectively.

Fig. 3. Overall flow of MCFRoute.

B. Problem Definition

Generally, detailed routing is executed after global rout-
ing and track assignment in a subregion. With the guidance
of global routing and track assignment results, detailed rout-
ing could access the exactly crosspoint position with layer
information. In our implementation, each global routing cell
(GRC) is a routing region. We define route constraints
as follows.

Definition 1 (Route Constraints): A clean detailed routing
result should obey the following three constraints: 1) all com-
ponents of each net are connected by one path; 2) there are
no intersection segments or points between any two paths or
between path and routing blockage; and 3) there are no design
rule violations.

Based on above definitions we achieve the following defi-
nition of detailed routing.

Problem 1 (Detailed Routing): Given the following infor-
mation: 1) cross point information; 2) pin and routing blockage
information; and 3) routing region, i.e., GRC, the detailed
routing problem searches for connections for all nets N =
{n1, n2, . . . , nK} to minimize total routing cost, meanwhile
route constraints are satisfied.

III. OVERALL FLOW

The overall flow of the proposed detailed router is illus-
trated in Fig. 3. The proposed detailed router uses the results
of global router and track assignment as inputs. Due to the
large scale of VLSI circuits, the first step is dividing the
whole routing region into many subregions. In our experi-
ments, the partition is based on GRC. For each subregion, we
first formulate the detailed routing problem into an ILP prob-
lem by three steps: 1) basic model formulation (Section IV);
2) design rule formulation (Section V); and 3) model simpli-
fication (Section VI). Then solve the ILP problem by a solver
with efficient solving algorithm (Section VII). Then 0-1 solu-
tion will be translated into detailed routing solution. However,
the ILP problem solving may fail because of the following
two reasons.

1) There are no DRC-clean solution for the detailed routing
problem.

2) The solver is terminated because it does not get a
solution in the given time.

Under the second circumstance, maze routing will be exe-
cuted in this region trying to find a DRC-clean solution even
though it may still fail. A search and repair stage based on
maze routing is implemented to handle the leaving unsuccess-
ful detailed routing problem by adjusting the routing region.
After concurrent routing, there may be some difficult regions
that concurrent router can not find routing solution in given
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TABLE I
NOTIONS OF MCF MODEL

time. These regions will be routed in search and repair stage
by maze routing using rip-up and reroute strategy. In the first
routing stage, all nets must be connected together even though
there are some violations. Then the search and repair stage will
try to remove the leaving DRC violation by changing the cen-
ter coordinate of routing region and expanding the region area.
Three net-ordering strategies are applied in search and repair
stage: 1) ascending order of net component count; 2) ascend-
ing order of net bounding box area; and 3) descending order
of DRC count. The routing region grows larger as the itera-
tion number increases. Maze routing algorithm with rip-up and
reroute strategy is also used to finish the routing task in new
routing region. The output is a final detailed routing result.

IV. MULTICOMMODITY FLOW MODEL

In this section, we will introduce our MCFRoute which is
designed to solve detailed routing problem. Inspired by [16],
the basic model described in this section is capable of find-
ing routing solution without opens and shorts based on MCF
theory.

A. Special Case

For the ease to discussion, our basic MCF model considers
a special case first with the following two assumptions.

Assumption 1: Each component only covers one vertex.
Assumption 2: Each net only has two components.
Naturally, each net in N is treated as a commodity with

command of unit flow in MCF model. For each net, one com-
ponent is treated as source and the other one is treated as
target and the unit flow is shipped from source to target. Some
basic notions related to MCFRoute are given in Table I. We
use these variables to model detailed routing problem through
MCF theory.

Detailed routing requires that each edge of routing graph is
occupied by one object at most, so edge capacity should be 1
if it is not occupied by routing blockage; otherwise, is 0.

Edge cost can be any positive real number and the cost val-
ues are different with different edge types. All edges of routing
graph G fall into two categories, namely, via-edge and wire-
edge. Via-edge connects two vertices on different layers and
wire-edge connects two adjacent vertices on the same layer.
Considering the preferred direction of routing layer, wire-edge
is further divided into prefer-edge and nonprefer-edge based
on edge direction.

The value of d(k, vj) is determined by vertex type. If vertex
vj is occupied by a component of net nk and the component
is treated as the source, then d(k, vj) = 1. If vertex vj is a
component of net nk while the component is treated as the
target, then d(k, vj) = −1. Otherwise, d(k, vj) = 0. It is note-
worthy that the assignment of source and target will not bring
any effects to the result because of the symmetry of routing

Fig. 4. Short example: two nets with two components (V1 − V2;V3 − V4).

graph. In the experiments, the first component read in from
database is assigned as source and the other one is assigned
as target.

f (k, ei) is the decision variable with value range of 0 and 1.
It indicates whether an edge ei belongs to net nk; i.e., f (k, ei)
equals to 1 if edge ei is occupied by net nk and equals to
zero otherwise. All the constraints and objective function are
formulated by these variables.

Based on the formulation of detailed routing problem in
Section II, our MCF based detailed routing algorithm is
introduced as follows.

First, we give connectivity constraints on all vertices for
each net based on flow conservation theory to satisfy Route
Constraints (1). Flow conservation theory requires that the dif-
ference of total flow of vertex vj that net nk stream out and
stream in must be equal to the flow command of vertex vj
that net nk demands, i.e., d(k, vj). The connectivity constraint
based on flow conservation theory is formulated as (1). The
first item and second item in (1) indicate the total flow of
vertex vj that net nk stream out and stream in, respectively

∑

e∈Evj,out

f (k, e)−
∑

e∈Evj,in

f (k, e) = d
(
k, vj

)
. (1)

Then, edge capacity constraint and vertex capacity con-
straint are introduced to satisfy Route Constraints (2) which
can guarantee the routing solution given by MCF model with-
out short violations. The capacity of each routing edge is
at most one in detailed routing problem and the flow each
net demands is also one. So (2) can ensure edge capacity
constraint

K∑

k=1

( f (k, ei)+ f (k, ēi)) ≤ min{u(ei), u(ēi)} (2)

where ei and ēi are brother edges.
Even though edge capacity constraint is constructed, routing

solution with short violations still exists in the solution space
of MCF model. Fig. 4 is a simple example. Red net (Net 1)
goes through vertex v5 using two vertical direction edges, at
the same time, blue net (Net 2) goes through the same vertex
using two horizontal direction edges. All edges are only used
once, but there is a short violation at vertex v5. To avoid this
kind of violations, vertex capacity constraints as (3) are added
to MCF model

K∑

k=1

∑

ei∈Evj

f (k, ei) ≤ 2. (3)

Combining (1)–(3), the following conclusions can be
obtained.

Lemma 1:
∑

ei∈Evj
f (k, ei) = 2 or 0, ∀nk ∈ N.

Lemma 2:
∑K

k=1
∑

ei∈Evj
f (k, ei) = 2 or 0.

The conclusions could be explained as that each vertex is
either unused or used by a pair edges.
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Fig. 5. Pinaccess and super vertex.

The total cost of detailed routing problem can be
calculated by

Cost =
K∑

k=1

∑

e∈E

(f (k, e) · c(e)). (4)

With different edge cost assignments, we can achieve differ-
ent routing goals. In our model, prefer-edges are encouraged
to be used by assigning smaller cost, and assigning larger
cost to nonprefer-edges and via edges in order to minimize
nonprefer-edge count and via count.

So far, our basic MCF model of detailed routing problem is
completed. Connectivity constraints ensure there are no open
nets, and capacity constraints eliminate the solutions with short
violations. All the solutions in solution space of basic MCF
model are reasonable if only open and short design rules are
considered. The best routing result with minimal routing cost
is selected by the objective function.

With the formal description of constraints and objective
above, the detailed routing problem can be formulated as the
following ILP formula:

min.

K∑

k=1

∑

e∈E

(f (k, e) · c(e)) (5a)

s.t.
∑

e∈Evj,out

f (k, e)−
∑

e∈Evj,in

f (k, e) = d
(
k, vj

)
,

∀vj ∈ V, ∀nk ∈ N (5b)
K∑

k=1

f (k, ei) ≤ u(ei) ∀ei ∈ E (5c)

K∑

k=1

∑

e∈Evj

f (k, e) ≤ 2 ∀vj ∈ V (5d)

f (k, ei) ∈ {0, 1} ∀ei ∈ E, ∀nk ∈ N. (5e)

B. General Case

Now we need to consider the general cases without
Assumptions 1 and 2.

1) Super Node Method: It is common that several vertices
are covered by the same component, especially if the com-
ponent is a pin of net. Furthermore, in order to handle the
complexity caused by irregular pins, pinaccesses are intro-
duced in our model to guide the access point of pins. As
Fig. 5 illustrates, component A (blue polygon) is a pin and
locates at metal1, pinaccesses of this pin are created on metal2
with determined via rotation. During path finding, when the
path hits pinaccess, a via with determined rotation is created
automatically. Here, via rotation means via enclosure exten-
sion directions on two metal layers. On each routing layer,
via enclosure can be in either horizontal or vertical direction,
so there are four rotations for a via. By default, via enclosure
direction is the same as the preferred direction of routing layer
in this paper except for pinaccess.

Fig. 6. Routing example from [24]. (a) Routing solution illustrated in [24].
(b) Routing solution which is feasible for [24] but is illegal.

Fig. 5 describes a detailed routing example on 3-D routing
graph. Component A is a pin which covers four vertices and
has four pinaccesses while component B is a crosspoint on
boundary that covers one vertex. Without loss of generality,
component A is regarded as source and component B is target.
Based on MCF theory, one commodity flow must outflow from
any one vertex which is covered by Component A or it is
pinaccess, and inflow to the vertex that Component B covers.

A strategy of super vertex is proposed to make our basic
model capable of handling this general case. First we make
some extension to routing graph. Two virtual vertices SVcomA
and SVcomB are added to the routing graph that are regarded
as the super source vertex and the super target vertex, respec-
tively. Super source vertex and super target vertex are denoted
by green circle and triangle in Fig. 5, respectively. These
two super vertex are connected with corresponding graph
vertices through super edges denoted by green arrow line.
With the extensional routing graph, we generalize the basic
model. Assuming that VcomA denotes the set of vertices rel-
evant to component A and SEcomA denotes the set of super
edges relevant to super vertex SVcomA . Each super edge
e ∈ SEcomA introduces a binary variable g(e) to basic MCF
model. Combining with connectivity constraints, the constraint
shown in (6) ensures that the stream outflow from one and only
one vertex in SVcomA ∑

e∈SEcomA

g(e) = 1. (6)

2) Component Count Aware Routing Strategy: In a detailed
routing problem, not all the nets are 2-component. The model
constructed above is only capable to route 2-component nets.
A component count aware routing strategy is proposed in this
section to handle multicomponent nets.

Recently, [24] proposes a concurrent detailed routing for-
mulation that could handle multicomponent net. But the
formulation presented in the third section of [24] can not
be applied to our problem because edge capacity constraints
are not enough to avoid short violations. Fig. 6(a) shows a
two-net example and the corresponding routing solution cited
from [24]. Fig. 6(b) shows another routing solution which is
also feasible even optimal for the ILP formulation in [24].
But a short violation is carried out on vertex V4. That is,
even though the formulation in [24] is able to connect all nets
together, the routing solution may not be DRC-clean.

Furthermore, the formulation considering multicomponent
nets makes the ILP problem very difficult to solve, because of
the following two reasons. First, the decision variable can be
any integer which makes it to be a general ILP problem, which
is with larger solution space compared with a 0-1 ILP problem.
Second, the elements of constraint matrix contain other integers
except for−1, 0, and 1, which makes the problem more complex
to solve. Table II is a comparison of two formulations. One is
the formulation in [24]. The other one is the formulation in
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TABLE II
COMPARISON OF DIFFERENT FORMULATIONS

Fig. 7. Survey results on component distribution. (a) Industrial benchmarks.
(b) Academic benchmarks.

Section IV, and 3-pin nets are decomposed into three subnets
using steiner point. The first column (“name”) is testcase name.
The second column (“#Net”) is total net count and the value in
brackets is 3-component net count. The results are compared in
variable count (“#Var.”), constraint count (“#Constr.”) and run-
time(“Time”) in seconds. Columns 3–5 are the results of [24],
and columns 6–8 are the results of our formulation. Both for-
mulations are solved by GUROBI [25] on the same machine
and terminated until optimal solution of each formulation is
found. Case0 is the example shown in Fig. 6. The formulation
in [24] takes 0.04 s to get a solution as shown in Fig. 6(b), while
our formulation only takes less than 0.01 s to get the optimal
solution as shown in Fig. 6(a). Cases 1–4 are four examples
on a routing graph with nine horizontal routing tracks and 18
vertical routing tracks. From the formulation in [24] we can
find that indicator ek

i,j which indicates whether arc ai,j is used
in the routing of net nk is calculated by two constraints. Those
indicators will introduce lots of constraints to ILP formulation
and make the ILP problem much more difficult to solve. And
the experimental results also show that our formulation has less
constraints and spends less time to get more reasonable solution.

Except for the above analysis and the experiments, we
made a survey about components count distribution with
different scale of routing window in several academic and
industry VLSI circuits. The statistical results in Fig. 7 show
that nets with two components account for about 88% of
total nets and nets with three components are about 10%.
Nets with more than three components (hereafter, referred to
as multicomponent nets) only account for 2%.

Guided by experiments and statistics, 3-component net is
decomposed into three subnets in our router to accommodate
the ILP model in Section IV-A. But it is unreasonable if only
the steiner point is selected as the decomposition point. Three
examples of failure or poor result are listed here.

1) The steiner point locates at a vertex which is occupied
by the pin geometry of another net. The routing fails
because of the short violation.

2) The steiner point locates at a vertex which is occupied
by the pin geometry of the same net. Actually, all the
vertices covered by this pin geometry can be served as
decomposition point.

3) The fixed position of steiner point may lead to detour
of other nets.

The main reason of these failure or poor result is the unique-
ness and fixity of decomposition point. Furthermore, we find

Algorithm 1 Decomposition Point Selection
Require: Routing graph.
Require: Components position.

1: Find steiner point;
2: Check the geometries around steiner point;
3: If the steiner point locates at the pin geometry of another

net, choose the upper layer point as the steiner point and
the adjacent vertices of new steiner point as decomposition
point candidates;

4: If the steiner point locates at the pin geometry of the same
net, choose all the point on the geometry and all the pin
access of the pin as decomposition point candidates;

5: Otherwise, choose the adjacent vertices of steiner point as
decomposition point candidates;

that it spends too much time to find optimal routing solution
for these routing cases. So we try to provide several decom-
position candidates to MCFRoute as shown in Algorithm 1.
Decomposition candidates are selected based on the steiner
point and the geometries around it. After the decomposition
candidates are determined, a super node associated with them
will be added to the model.

It is worth to note that even though the number of
multicomponent net is small, it does not mean that they are not
important. Actually, most of these nets are critical. However,
the steiner point of multicomponent net is difficult to find. It is
not impractical to decompose them into 2-component subnets.
In our routing flow, multicomponent nets are not considered by
basic MCF model. They are routed first by multisource mul-
tisink maze routing, then other nets are routed by MCFRoute
using remainder routing resource. Even though this strategy
can not guarantee global optimal routing in routing region, a
valid solution without DRC violations can be found in less
time. Assigning routing priority to multicomponent net which
may be critical is also reasonable.

V. COMPLEX DESIGN RULE MODELING

In deep submicron technology nodes, there are many other
complex design rules besides the LVS checking. The routing
paths generated by the detailed router have to pass the DRC as
well. These design rules need to be modeled correctly and effi-
ciently in the basic MCF model. In this section, we enumerate
some of these design rules’ modeling in MCF model.

A. Spacing Rule

There are different types of spacing rules in typical
45/28 nm technology nodes, including metal spacing, end-of-
line (EOL) spacing, cut to metal spacing, cut to cut spacing,
etc. Most of them can be modeled in the MCF problem using
similar method.

To describe spacing rule constraints, we define two disjunc-
tion variables ϕ(k, vj) and η(k, vj) as (7) and (8), respectively,
for all nk ∈ N and vj ∈ V

ϕ
(
k, vj

) =
{

1, if ∃ei ∈ Evj and f (k, ei) = 1
0, otherwise (7)

η
(
k, vj

) =
{

1, if ∃ei ∈ Eη
vj and f (k, ei) = 1

0, otherwise.
(8)

Here, Eη
vj denotes a set of via edges of vertex vj. ϕ(k, vj)

indicates whether net nk occupies vertex vj. If net nk occupies
vertex vj, ϕ(k, vj) = 1, otherwise, ϕ(k, vj) = 0. similarly,
η(k, vj) indicates whether net nk occupies the via edge of
vertex vj.
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Fig. 8. Four cases of �(vj1, vj2). The x, y and z on the ruler are αm + γm,
αm + β + γm, αm + 2β + γm, respectively.

For two vertices vj1 ∈ V and vj2 ∈ V on the same metal
plane, let (x1, y1, z) and (x2, y2, z) be the coordinate of vj1 and
vj2. The distance of them is defined as

�
(
vj1, vj2

) = max(|x1 − x2|, |y1 − y2|).
1) Metal Spacing Rule: Basic spacing rule specifies the

minimum distance allowed between two geometries of differ-
ent nets on metal layer [26].

On metal layer, there are two type geometries of metal wire
and via enclosure. Let αm, β, and γm be the value of metal
wire width, via enclosure length and metal spacing specified
in the technology file, respectively. Given any one vertex pair
(vj1, vj2) ∈ (V × V) (j1 �= j2) on the same layer, �(vj1, vj2)
can be classified as following four cases.

Case 1 (No Violation): If the distance of vj1 and vj2 satisfies

αm + 2β + γm ≤ �
(
vj1, vj2

)
.

vj1 and vj2 can be occupied by either geometry type and no
spacing violation will emerge, as shown in Fig. 8(a). So we
do not need to design any constraints for these vertex pair.

Case 2 (Enclosure-to-Enclosure Violation): If the distance
of vj1 and vj2 satisfies

αm + β + γm ≤ �
(
vj1, vj2

)
< αm + 2β + γm

vj1 and vj2 cannot be occupied by two vias at the same time,
otherwise, there will be a spacing violation, as shown in
Fig. 8(b). So constraint (9) should be added to MCF model to
prohibit this routing solution

η
(
k1, vj1

)+ η
(
k2, vj2

) ≤ 1, ∀nk1 , nk2 ∈ N, k1 �= k2. (9)

Case 3 (Wire-to-Enclosure Violation): When the distance of
vj1 and vj2 satisfies

αm + γm ≤ �
(
vj1, vj2

)
< αm + β + γm

if vj1 and vj2 are used at the same time, the type of both geome-
tries should be metal wire as Fig. 8(c) shows. Constraints (11)
and (10) need to be introduced to MCF model

ϕ
(
k1, vj1

)+ η
(
k2, vj2

) ≤ 1, ∀nk1 , nk2 ∈ N, k1 �= k2 (10)

η
(
k1, vj1

)+ ϕ
(
k2, vj2

) ≤ 1, ∀nk1 , nk2 ∈ N, k1 �= k2. (11)

Case 4 (Wire-to-Wire Violation): When the distance of vj1
and vj2 only satisfies

�
(
vj1, vj2

)
< αm + γm

even if these two vertices are occupied by two metal wire
of different nets, there will be a short violation as shown in
Fig. 8(d). In this case, MCF model disallow vj1 and vj2 to be
used by different net simultaneously with constraint

ϕ
(
k1, vj1

)+ ϕ
(
k2, vj2

) ≤ 1, ∀nk1 , nk2 ∈ N.k1 �= k2. (12)

2) EOL Spacing Rule: The EOL spacing rule ensures that
optical proximity correction (OPC) can be performed without
interference between the OPC shapes added at the EOLs [26].
The line-end of metal wires (EOL-wires) generally require
larger spacing to separate themselves from the neighbor wires.
If the line-end is within some distance to via cut, it becomes
an EOL-via and has another spacing requirement. The spacing
requirements for EOL-wires and EOL-vias are modeled in our
MCF problem as well. Given a pair of vertices vj1 and vj2,
similar to metal spacing rule, designing EOL spacing also need
to check which case vj1 and vj2 falls into based on �(vj1, vj2),
αm, β, and γeol, here γeol is the EOL spacing defined in the
technology file. Then relevant constraint(s) are introduce to
MCF model.

3) Cut-to-Cut Spacing Rule: Cut spacing rule specifies the
minimum spacing allowed between different via cuts [26].
Let αc and γc be the cut width and cut spacing value in
technology file, respectively. If the distance of the given ver-
tex pair (vj1, vj2) makes the following inequality to be true,
constraint (9) will be added to MCF model:

�
(
vj1, vj2

)
< αc + γc.

4) Other Spacing Rules: As the decreasing of feature size,
more and more spacing design rules are designed to guarantee
chip performance, manufacture, and yield. For example, width
length dependent spacing rule, contact spacing rule for specific
shape and same net spacing rule are very common in 45/28 nm
technologies. In this paper, these conditional spacing rules are
not supported. If there are conditional spacing rule violations
in MCFRoute results, they will be processed in search and
repair stage by MazeRouting.

B. Minarea Rule

Minarea is another important design rule, which specifies
the minimum metal area required for polygons on the routing
layer [26]. To satisfy this rule, the routing path segment on
each layer needs to be longer than some thresholds. Modeling
this rule in the MCF problem directly will generate too many
constraints which makes the runtime unacceptable. As a result,
we handle this rule separately in a post-processing stage. Since
the wire width on each routing layer is fixed, the Minarea rule
is converted into the minimum length rule in this paper.

After MCF model decides the routing paths for all nets, the
router creates the layout (wires and vias) on each layer based
on the result net by net, during which it checks whether the
length of polygon on each layer is larger than the minimal
length requirement. If not, the router will extend that poly-
gon to meet the minimum length requirement. However, we
observe that the sequential manner of layout generation intro-
duces some DRC violations. For instance, Fig. 9 shows two
routing paths which are stack vias [see Fig. 9(a)]. In Fig. 9(b),
layout of via B is first generated and the polygon is extended
to meet the minimum length. However, when layout of via
A is generated, a spacing violation is generated even if with-
out polygon extension. In order to eliminate the blindness of
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Fig. 9. Two-pass strategy for layout generation. (a) Stack via layout.
(b) Layout with DRC violation. (c)–(d) Layout generated by two-pass strategy
after the first pass and second pass.

polygon extension, we propose a two-pass strategy for lay-
out generation: in the first pass, layout is generated net by
net without polygon extension no matter it meets minimum
length requirement or not as Fig. 9(c) shows. In the second
pass, the routing engine processes the Minarea violation net by
net. Since the utilization of routing resource around the poly-
gon is much more clear when processing Minarea violation,
it is conducive to reduce DRC violation. Fig. 9(d) shows the
layout generated by our two-pass strategy. Based on the exper-
iments on ISPD 2014 benchmarks, 93.2% Minarea violations
could be resolved by the proposed two-pass strategy.

VI. MCF MODEL SIMPLIFICATION

A. Linearize MCF Model

The spacing constraints in Section V-A introduce many
logic expressions which make the basic model very complex
and nonlinear. Several methods are introduced here to optimize
those constraints with better attributes and the same results by
equivalent transformation.

Theorem 1: Constraint (12) is equivalent to constraint

K∑

k=1

⎛

⎜⎝
∑

ei∈E′vj1

f (k, ei)+
∑

ei∈E′vj2

f (k, ei)

⎞

⎟⎠ ≤ 2 (13)

where
E′vj1
= Evj1\

{(
vj1, vj2

)
,
(
vj2, vj1

)}

E′vj2
= Evj2\

{(
vj1, vj2

)
,
(
vj2, vj1

)}
.

The proof is provided in Appendix A.
Theorem 2: Constraints (10) and (11) are equivalent to

constraints (14) and (15), respectively

K∑

k=1

⎛

⎜⎝
∑

ei∈Eη
vj1

f (k, ei)+
∑

ei∈E′vj2

f (k, ei)

⎞

⎟⎠ ≤ 2 (14)

K∑

k=1

⎛

⎜⎝
∑

ei∈E′vj1

f (k, ei)+
∑

ei∈Eη
vj2

f (k, ei)

⎞

⎟⎠ ≤ 2. (15)

Theorem 3: Constraint (9) is equivalent to constraint

K∑

k=1

⎛

⎜⎝
∑

ei∈Eη
vj1

f (k, ei)+
∑

ei∈Eη
vj2

f (k, ei)

⎞

⎟⎠ ≤ 2. (16)

The proofs of Theorems 2 and 3 are similar to Theorem 1
thus are omitted here.

Compared with old formulation, new spacing con-
straints (13)–(16) have two advantages.

1) It is linear. Different from old formulation, new con-
straints have linear expressions rather than logical
expressions.

2) It is concise. To describe the spacing rule requirement
between two vertices, new method uses less constraints
than old method. Old method need to construct a spac-
ing constraint between any two nets. So there are
K(K − 1)/2 constraints totally. But new method only
need one constraint.

B. Reduce the Scale of MCF Model

The complexity of the ILP problem depends heavily on the
total count of variable, constraint and nonzero in the model.
Reducing the scale of MCF model can make the problem
easier to solve.

First, we have the following theorem.
Theorem 4: Capacity constraint for brother edges ei and ēi

could be removed from MCF model if u(ei) = 1 and u(ēi) = 1.
The proof is provided in Appendix B.
Second, we restrict the routing layers that a net can use. For

a two-component net, assuming that two components locates at
layer z1 and layer z2 (z1 ≤ z2), respectively. The final routing
resource this net can use is from layer zmin(=max{z1−�, 0})
to layer zmax(=min{z2+�, L}). This restriction makes a trade-
off between routing quality and runtime. Larger � means
better quality and worse runtime while smaller � means worse
quality and better runtime. In our experiment, if zmax ≤ 2, �
is 2; otherwise � is 1.

C. Constraints Relaxation

In a highly congested design, detailed router will search
and repair DRC violations in routing regions with different
size and center point by many iterations. It must create a
unbroken path for each net even if there are some DRC
violations in initial stage. This indicates that some solutions
outside MCF model solution space arising from violating
capacity and spacing rule constraints are also acceptable. In
our model, penalty method is utilized to relax capacity and
spacing constraints. In our experiments, one penalty variable
which must be positive integer is added to every capacity
and spacing constraints, and all penalty variables multiplied
with large penalty factor are added to the objective function.
Taking vertex capacity constraint for example, constraint (3) is
substituted by

K∑

k=1

∑

ei∈Evj

f (k, ei)− o(v) ≤ 2 (17)

and o(v) · p(v) is added to objective function (4). Here, p(v)
is a large penalty factor. This relaxation makes routing solu-
tion with short violations such as Fig. 4 acceptable by setting
o(v) = 2 but the objective value will be very large. By this
way, all the problems have feasible solution and DRC-clean
solution is preferred.

VII. SOLVING MCF MODEL

Given MCF model for the detailed routing problem, an
ILP/LP solver GUROBI [25] is used to solve MCF problem.
Many efforts are done to reduce the runtime. A solving algo-
rithm is proposed based on the input data and MCF model
characters.

A. Prerouting Based on Track Assignment Results

In this section, a prerouting stage based on track assignment
results is proposed to reduce the runtime. The results of this
stage could provide a good start point for ILP problem.



JIA et al.: MCF-BASED DETAILED ROUTER WITH EFFICIENT ACCELERATION TECHNIQUES 225

A start point of an ILP/LP problem has an effect on the
iteration/search time. The good start point often does help the
ILP/LP solver to reduce the number of iterations to optimality.
The closer the start point is to the optimal point in theory, the
less time the solver spends.

In routing system, global router, track assignment engine,
and detailed router are closely linked and maintain consistency.
The former step tries its best to provide well routing guidance
for the later step. So the track assignment results is the best
guiding information we can get before detailed routing.

The prerouting stage aims to make full use of the informa-
tion provided by track assignment. After capacity constraints
and spacing constraints are relaxed in Section VI-C, a feasi-
ble solution for ILP problem is that all components of every
net are connected together. In this stage, all segments of each
net generated in track assignment stage are connected through
wire stretch and via creation. Horizontal (vertical) segments on
routing layer and vertical (horizontal) segments on neighbor
routing layer(s) belonging to the same net will be stretched to
have intersection and then vias are created on the intersection
point. When there are no open nets, the routing solution is
translated into 0-1 solution based on the routing graph which
is served as the start point of ILP problem. Experimental
results in Section VIII-C show that this strategy can reduce
the runtime by 5% averagely.

B. LP Relaxation

As described in Section I-A, global routing has been mod-
eled and solved in a concurrent manner in several works.
Generally, the routing problem is formulated as an ILP prob-
lem based on MCF method, and solved by an ILP solver or
some heuristic algorithms. The high time complexity greatly
limits the feasible problem size because of the NP-complete
attribution of ILP problem. There are two popular strategies to
reduce the time complexity in global routing problem. The first
one is dividing the routing region into subregions to reduce
the problem size such that the routing problem can be han-
dled subregion by subregion. The second one is relaxing the
ILP problem into LP problem, then the fractional solution is
transformed to integer solutions through rounding such as ran-
domized rounding [27]. This strategy can greatly reduce the
runtime because LP problems can be optimally solved in poly-
nomial time. However, it should be noted that the conventional
randomized rounding is not practice in detailed routing prob-
lem, because detailed routing algorithm requires exactly layout
solution. If a fractional solution is transformed into 1, a short
violation may be introduced; and if it is transformed into 0,
an open violation may be introduced.

Inspired by the speedup approach in concurrent global rout-
ing algorithms, we try to relax the ILP problem into an LP
problem. Rather than utilizing randomized rounding strategy,
we can directly obtain 0-1 integer solutions by solving LP
problem.

In general, for multicommodity network flow problems with
more than two commodities -nets in our case- the solution of
the LP problem is not necessarily that of the corresponding
ILP problem because its constraint matrix is not totally uni-
modular [28], [29]. However, some works (e.g., [30] and [31])
have reported that in practice most of the linear program
relaxation of the MCF problem often provides integer optimal
solutions. The work of [30] explains that 0-1 MCF problem
almost always yields a binary solution from relaxed LP for-
mulation. Furthermore, each entry in the constraint matrix of
our formulation is 0, +1, or −1 which is the requirement
of totally unimodular matrix. This characteristic may improve

Algorithm 2 ILP Problem Solving Algorithm
1: pre_routing();
2: solveLP() → result_lp;
3: if result_lp has no fractional solution and DRC clean then
4: solutionTranslation();
5: else if result_lp has DRC violations then
6: rip-up and reroute in search and repair stage;
7: else
8: initial ILP problem by result_lp;
9: solveILP() → result_ilp;

10: if result_ilp has no DRC violation then
11: solutionTranslation();
12: else if Solver is terminated by time limitation then
13: MazeRouter();
14: else
15: rip-up and reroute in search and repair stage;
16: end if
17: end if

Fig. 10. Objective value gap between LP formulation and ILP formulation.

the success probability. Experimental results show that about
94.3% routing regions can yield a binary solution by solving
an LP problem. Even if some routing regions fail to get binary
solution, the fractional solution still provides useful informa-
tion to ILP solver in our solving algorithm. First, a binary
solution is produced based on the fractional solution using a
rounding method, which is served as the start point of ILP
problem. Second, the LP problem provides a lower bound of
ILP problem. Fig. 10 shows objective value gap between LP
formulation and ILP formulation of six routing cases derived
from the benchmark of “chip1” in Table III. In many routing
cases, we find that it takes much runtime to prove a feasi-
ble solution is optimal. Based on the LP objective value, a
reasonably terminate condition could be made. In our experi-
ments, the ILP solver is terminated if the gap between current
objective value and LP objective value is less than 5%. This
approach may lead to nonoptimal solution, but it can further
reduce the runtime. Combined with track assignment guid-
ance (TRG) strategy, the detailed solving algorithm is shown
as Algorithm 2.

First, the start vector of ILP problem is generated based
on TR results (line 1). Then, the ILP problem is relaxed
into an LP problem by substituting [0, 1] boundary constraint
for {0, 1} boundary constraint and solved by an LP solver
(line 2). If an optimal 0-1 solution without DRC violations is
achieved by LP solver, it will be translated to routing solu-
tion (lines 3 and 4). If the optimal solution is not DRC-clean
(it can be detected by the optimum value), the routing prob-
lem will be rip-up and reroute in search and repair stage
(lines 5 and 6). If the optimal solution has fractional value, it
will be treated as the new start value of ILP problem. We will
solve the ILP problem (lines 7–9). If the ILP solver could get
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Algorithm 3 Task Allocation Algorithm of Four-Stage
Strategy
Require: Routing region set regions and its scale(M rows and

N columns);
Require: routing stage: S;
Ensure: routing task queue: taskS

1: for row← 1; row ≤ M; row← row+ 2 do
2: if Row = 1 && S ≥ 2 then
3: row← 2;
4: end if
5: for col← 1; col ≤ N; col← col+ 2 do
6: if col = 1 && S%2 = 1 then
7: col← 2;
8: end if
9: taskS.pushback(regions[row][col]);

10: end for
11: end for

an optimal 0-1 solution, routing solution is generated based
on it (lines 10 and 11). If the ILP solver does not find a DRC-
clean solution in given time, this routing problem is rip-up
and rerouted by a MazeRouter in the same region (lines 12
and 13). Otherwise, the problem will be rip-up and reroute in
search and repair stage (lines 14 and 15).

C. Multithread Strategy

As multicore or many-core architecture has become the
mainstream of CPU design, the development of EDA algo-
rithms on multicore platform can boost performance and
quality in solving EDA problems [32]. Multithread is a com-
mon and effective speedup strategy that has been implemented
on some physical design problems, such as placement [33] and
routing [34], [35]. Most of them are net-based or partition-
based, but they may be hard to achieve high speed-up ratio.
For instance, the multithread algorithm in [34] could only
achieve 2.71× speedup on a quad-core machine, while the
work in [35] can have 7.1× speedup on a eight-core machine.
The main reason of the low speed-up ratio is that runtime
is wasted in task conflict judgment and task waiting. In this
paper, even though the detailed routing is executed on each
subregion independently, the utilizing of routing resource near
region boundary is influenced by the adjacent regions. To uti-
lize the independence of subregions, a multithread strategy
based on MapReduce [36] is developed. In order to decrease
the boundary influence on routing quality, a four-stage rout-
ing strategy is proposed. Algorithm 3 shows the details of task
allocation algorithm of four-stage strategy. The input of this
algorithm is routing region set with its scale and routing stage,
while the output is routing task queue of this routing stage. All
the routing regions are partitioned into four task queues based
on their row parity and column parity as Fig. 11 shows. This
strategy could guarantee that two adjacent subregions will not
be solved at the same routing stage. In each routing stage, any
two routing tasks are absolutely independent. Comparing the
CPU time and real time, we can observe that the multithread
strategy we implemented achieves a near-linear speedup ratio.

VIII. EXPERIMENTAL RESULTS

The MCF based detailed router, MCFRoute, is implemented
with C++ language on Linux server with 2.4 GHz Intel Xeon
CPU and 24 GB memory. The proposed router could handle
some complex design rules, so the DRC violation count is a
main index to evaluate routing quality. As far as we know,
there are few academic works reporting the DRC violation

Fig. 11. Illustration of four-stage strategy.

count. In order to show the effectiveness of the proposed
algorithm, we compare it with Cadence router, Encounter,2

on 45 nm technology benchmarks. GUROBI is used as the
LP/ILP solver. The runtimes of MCFRoute and Encounter
are measured by second with eight threads and single thread,
respectively.

A. Benchmark Information

Our experiments are executed on two series benchmarks.
The first one is five industrial benchmarks and the second
one is six academic benchmarks derived from ISPD 2005
contest [37] and ISPD 2014 contest [38]. ISPD 2005 bench-
marks are transformed from bookshelf format to LEF/DEF
format by a publicly available conversion tool.3 All bench-
marks are mapped to a library with 45 nm design rules.
Using the APIs from OpenAccess (OA) system, we convert the
LEF/DEF inputs to an OA database. Both routers work on and
exchange data through the OA database. Table III shows the
detailed information of our benchmarks. The first five bench-
marks are derived from industrial design. The following four
benchmarks are derived from [37], the last nine benchmarks
are derived from [38]. In Table III, the second column (name)
is the name of each benchmark. The third column (#Net) is
the net count. The fourth column (“Size”) denotes the GRC
size, i.e., the subproblem count. Both the height and width
of each GRC is equal to the height of standard cell. It gives
the scale of every benchmarks. The fifth column (“#Layer”)
shows the routing layer count.

B. Effectiveness of Model Simplification

In Section VI-B, two optimization methods are proposed to
optimize our MCF model. We take some experiments to make
a comparison between original model and optimized model
on total count of variable (#Var.), constraint (#Constr.), and
nonzero (“#Non-zero”) within several regions of different size.
In Table IV, the first column lists the region size by vertical
track count and horizontal track count. The second column is
the net count in each region. The following six columns show
number (×105) of variable, constraint and nonzero in original

2Routing command is “routeDesign” with parameter
“setNanoRouteMode-drouteAutoStop false.”

3PlaceUtil: developed by University of Michigan.



JIA et al.: MCF-BASED DETAILED ROUTER WITH EFFICIENT ACCELERATION TECHNIQUES 227

TABLE III
BENCHMARK INFORMATION

TABLE IV
EFFECTIVENESS OF MODEL SIMPLIFICATION

model and optimized model, respectively. Experimental results
in Table IV show that three metrics are reduced by 31%, 30%,
and 33%, respectively. The reduction of MCF model scale
could make the model easier to solve and save some runtime.

C. Effectiveness of ILP Problem Solving Algorithm

The experimental results in this section show the effec-
tiveness of the proposed ILP problem solving algorithm in
Section VII. Figs. 12 and 13 show the runtime comparison of
MCFRoute without and with the proposed acceleration tech-
niques on industrial and ISPD 2005 benchmarks, respectively.
The results are divided into three patterns: the first one is “pure
ILP” that solves the ILP model by ILP solver (lines 9–16 in
Algorithm 2). The second one is “LP + ILP” that solves the
model by LP solver first; if LP solver fails, solves it by ILP
solver based on LP solution (lines 2–17 in Algorithm 2). The
third one is “TRG” that executes a prerouting step based on
track assignments results to provide start point for LP model
first before LP + ILP flow (Algorithm 2). Note that detailed
routing results are demonstrated in Section VIII-D. The exact
runtimes are also labeled in the figures. From Fig. 12, we
can observe that compared with pure ILP, LP + ILP flow can
reduce the runtime by 29.4%. Besides, compared with LP +
ILP flow, the one with prerouting stage (TRG) can further
reduce the runtime by 4.8%. From Fig. 13, we can see that
compared with pure ILP, LP + ILP flow can reduce the run-
time by 21%. In addition, compared with LP + ILP flow,
the one with prerouting stage (TRG) can further reduce the
runtime by 6%. In summary, the results can demonstrate the
effectiveness of our proposed solve flow in runtime reduction.

Fig. 14 demonstrates the speedup ratio of the proposed
multithread algorithm on the basis of TRG solve flow. The
horizontal ordinate represents the thread count and the vertical
ordinate represents the speedup ratio which is calculated by

Fig. 12. Runtime improvement on industrial benchmarks.

Fig. 13. Runtime improvement on academical benchmarks.

Fig. 14. Speedup ratio of multithread algorithm.

(CPU Time/Elapsed Time).4 The experimental results show
that the multithread algorithm can get a closed to linear
speedup ratio.

D. Improvement of Routing Results

Besides the ILP problem solving algorithm, we also pro-
pose three effective strategies to improve the routing quality
and reduce the runtime in this paper. In this section, compar-
isons are made among Encounter v10.10,5 the work in [23]
and the proposed MCFRoute adopting the TRG solving flow.
The comparison results could demonstrate the effectiveness of
decomposition point selection algorithm, two-pass layout gen-
eration strategy and four-stage task allocation algorithm. In
the experiments, we try to let Encounter run longer until the
improvement is negligible and the runtime is measured in sec-
ond with one thread. The comparison is made on four aspects:
1) wirelength (WireLen); 2) via count (#Via, ×103); 3) DRC
violation count (#Vio.); and 4) runtime (Runtime) as shown

4“Elapsed time” means the amount of time that passes from the beginning
of routing to its end.

5Note that there are newer version of Encounter and other industrial detailed
routers that may conduct better performance, but v10.10 is the most updated
academic version we can access to. It is by no means that our proposed
detailed router to beat all state-of-the-art industrial detailed routers.
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TABLE V
COMPARISON ON INDUSTRIAL BENCHMARKS

TABLE VI
COMPARISON BETWEEN ENCOUNTER AND MCFROUTE ON ISPD 2014 BENCHMARKS

TABLE VII
COMPARISON BETWEEN ENCOUNTER AND MCFROUTE ON ISPD 2005 BENCHMARKS

in Tables V–VII. The wirelength is measured in millimeter,
and runtime is measured in second with eight threads. The
first column shows chip name. Columns 2–5, columns 6–9,
and columns 10–13 show the wirelength, via count, violation
count, and runtime of Encounter v10.10, the work in [23] and
this paper, respectively.

Table V shows the effectiveness of the proposed MCFRoute
in industrial benchmarks. For these complex industrial bench-
marks, the proposed algorithm can achieve a desirable results.
Compared with [23], the wirelength, via count, DRC vio-
lation count and runtime in this paper are reduced by 2%,
5%, 67%, and 53%, respectively. The reduction of wirelength
and via count is benefited from decomposition point selection
algorithm. All of the three strategies lead to the reduction of
DRC violation count and runtime. Compared with Encounter,
MCFRoute can reduce the DRC violations by 80%. At the
same time, the wirelength and via count are also reduce by
5% and 8%, respectively. The effective multithread strategy
make the runtime only 0.8× of Encounter.

The effectiveness of MCFRoute in ISPD 2014 benchmarks
is demonstrated in Table VI. ISPD 2014 benchmarks are sim-
ilar to industrial designs and could be used to do detailed
routing task directly.6 Experimental results show that the pro-
posed MCFRoute could reduce the wirelength, via count, DRC
violation count and runtime by 3.87%, 0.17%, 55.32%, and
67.7%, respectively, compared with the work in [23]. Table VI
also shows that MCFRoute could reduce the wirelength, via
count, DRC violation count by 0.83%, 0.41%, and 16.78%,
respectively, compared with Encounter v10.10. And the run-
time is 1.89× of Encounter. As reported in Encounter, the

6MCFRoute does not support off-grid vias, so we restrict the off-grid via
generation of Encounter by “setNanoRouteMode -drouteOnGridOnly via.”

Fig. 15. Scalability of MCFRoute: relation between runtime and net count.

density of these designs are up to 0.83 (except for edit_dist_1
and edit_dist_2), it indicates that MCFRoute is capable to
handle high density design routing task.

The routing results comparison on four ISPD 2005 bench-
marks are shown in Table VII. Experimental results show that
not only can our algorithms get a routing result without DRC
violations but also reduce wirelength and via count by 2.2%
and 4.6%, respectively. Compared with our preliminary ver-
sion [23], the runtime could be reduced by 22%. However,
we also observe that the runtime is a great disadvantage when
dealing with larger scale benchmarks.

Fig. 15 demonstrates the relation between runtime and net
count based on ISPD 2014 benchmarks. The routing window
is a GRC with 10 × 10 grids. Fig. 15 shows that if the net
count in routing region is greater than 27, the runtime increase
exponentially as the increase of net count.

E. Utilized as Incremental Routing Tool

We have mentioned that in traditional sequential methods,
such as MazeRoute, A*-search algorithm generally results
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TABLE VIII
RESULTS OF INCREMENTAL DETAILED ROUTER

in low quality routing results because of their nonoptimal
net-order nature. However, they are usually faster than con-
current method. To take both advantage of sequential method
in runtime and advantage of concurrent method in quality, the
proposed algorithm is implemented as an incremental detailed
router. A detailed router of sequential method routes the nets
first, then MCFRoute executes incrementally to refine the solu-
tion with DRC violations adopts the TRG solve flow. When
working as an incremental router, MCFRoute selects the rout-
ing region automatically and ripups part of local nets close to
DRC violation in the region, then routes these nets simulta-
neously. If the DRC has not been fixed, routing region will
be expanded. The number of nets to be ripped up depended
on the number of DRC violation count in each routing region.
Averagely, 6–20 nets are ripped up. In this experiment, routing
results of Encounter v10.10 are fed as input of MCFRoute.
As Table VIII shows, the experiments are executed on five
industry benchmarks and two ISPD 2014 benchmarks that
Encounter could not obtain DRC-clean solutions. Column 1
is the name of each benchmark, columns 2 lists the total
DRC violation count of Encounter, while columns 3 lists the
total DRC violation count after the refinement by MCFRoute.
The last column is the runtime of MCFRoute for refinement.
Experimental results show that the number of DRC viola-
tions is reduced by 27% after the refinement of MCFRoute.
The runtime is also acceptable. Fig. 1 is an example from
“matrix_mult_wt.” It is obviously that MCFRoute is capable
of handling some difficult detailed routing problems which can
not be solved by sequential strategy.

IX. CONCLUSION

Based on MCF method, we present a novel concurrent
detailed routing algorithm which takes complex design rules
into account in this paper. Since all nets are routed simulta-
neously by the proposed router, net-ordering problem which
directly affects the routing quality in traditional rip-up and
reroute methods no longer arises. More reasonable resource
assignment improves the routing quality. Several useful strat-
egy are introduced to optimize MCF model. And a effective
ILP problem solve flow is proposed to reduce the runtime.
Experimental results show the effectiveness and potential of
the proposed algorithm. In the future, we will carry on our
research on the following aspects. First, runtime is still the
major issue of this paper, and in the future we plan to study
other methodologies to achieve further speed-up. Second, we
will try to consider more complex design rules in our model.
Thirdly, relax the fixed steiner point(s) by rectilinear steiner
minimal tree is also a desirable research point. Furthermore,
we plan to incorporate more objective into the proposed
model such as timing, double via insertion and design for
manufacture.

APPENDIX A
PROOF OF THEOREM 1

Let F(k) = ∑
ei∈E′vj1

f (k, ei) and F′(k) =
∑

ei∈E′vj2
f (k, ei). (12) ⇒ (13): if routing solution satisfies

constraint (12), there are three valid cases.
Case 1: Neither of two vertices are occupied, i.e.,

ϕ(k, vj1) = 0 and ϕ(k, vj2) = 0 ∀nk ∈ N, which mean
F(k) = 0 and F′(k) = 0, so (13) is true.

Case 2: Either vj1 or vj2 is occupied. Without loss of gener-
ality, we suppose vj1 is occupied by net nk′ , i.e., ϕ(k′, vj1) = 1
and ∀nk ∈ N, k �= k′, ϕ(k, vj1) = 0, ϕ(k, vj2) = 0. In this case,∑K

k=1,k �=k′ (F(k)+ F′(k)) + F′(k′) = 0 and F(k′) = 2, (13) is
also true.

Case 3: vj1, vj2, and edge (vj1, vj2) are occupied by
the same net, i.e., ∃k′, ϕ(k′, vj1) = 1, ϕ(k′, vj2) = 1, and
∀nk ∈ N, k �= k′, ϕ(k, vj1) = 0, ϕ(k, vj2) = 0. In this
case,

∑K
k=1,k �=k′ (F(k)+ F′(k)) = 0, and F(k′) + F′(k′)+

2f (k′, (vj1, vj2)) = 4. As f (k′, (vj1, vj2)) = 1, (13) is still
true. (12) ⇐ (13): if constraint (13) is satisfied, the values
of
∑K

k=1 F(k) and
∑K

k=1 F′(k) fall into four cases.
1)

∑K
k=1 F(k) = 0 and

∑K
k=1 F′(k) = 0. In this case, both

vertex vj1 and vj2 are unused. Constraint (12) is correct
obviously.

2) One and only one of the left item in constraint (13) is 1.
Based on the connectivity constraint, there is no routing
solution belonging to this situation.

3) Either
∑K

k=1 F(k) or
∑K

k=1 F(k) takes the value of 2.
Without loss of generality, we suppose

∑K
k=1 F(k) = 2

and
∑K

k=1 F(k) = 0. Based on Lemma 2, edge
(vj1, vj2) is unused. It can be concluded that ∃nk′ ∈
N, F(nk′) = 2, ∀nk ∈ N, k �= k′, F(nk) = 0
and ∀nk ∈ N, F′(nk) = 0. The conclusion means that
varphi(k′, vj1) = 1 and ϕ(k2, vj2) = 0. So constraint (12)
is correct.

4) Both
∑K

k=1 F(k) and
∑K

k=1 F′(k) take the value of 1.
Based on Lemma 2, edge (vj1, vj2) is used, and vj1 and
vj2 is occupied by the same net and only by this net. So
constraint (12) is correct.

APPENDIX B
PROOF OF THEOREM 4

Given two adjacent vertices vj1 and vj2, let e1 be edge
(vj1, vj2) and ē1 be edge (vj2, vj1). Both u(e1) and u(ē1) are 1.
Without losing its generality, assuming that there is unit flow
of commodity nk	 streaming from vj1 to vj2 by edge e1.

1) No Short: Connectivity constraint (1) on vertex vj2
ensures that the commodity will stream out from one
edge in Evj2,out. Vertex capacity constraint (3) on vertex
vj2 ensures that other commodity can not go through
vertex vj2. So if we do not add capacity constraint for
edge e1 and ē1, there will not be any shorts.

2) No Detour: The only remaining problem we need to pay
attention to is whether commodity nk	 makes a circle,
i.e., this commodity streams out from vj2 by edge ē1.
Absolutely, this problem will not occur. As the solution
has a detour, the objective function (4) will reject it and
select a better one.
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