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A B S T R A C T

In multiple electron beam lithography (MEBL), a layout is split into stripes and the layout patterns are cut by
stripe boundaries, then all the stripes are printed in parallel. If a via pattern or a vertical long wire is overlapping
with a stitch, it may suffer from poor printing quality due to the so called stitch error; then the circuit
performance may be degraded. In this paper, we propose a comprehensive study on the stitch aware detailed
placement to simultaneously minimize the stitch error and optimize traditional objectives, e.g., wirelength and
density. Experimental results show that our algorithms are very effective on modified ICCAD 2014 benchmarks
that zero stitch error is guaranteed while the scaled half-perimeter wirelength is very comparable to a state-of-
the-art detailed placer. In addition, our technique is very generic that it is applicable to many other placement
targets, such as local congestion optimization, which is also demonstrated in the experimental results.

1. Introductions

Due to the capability of accurate pattern generation, e-beam
lithography (EBL) is a promising candidate for next generation
lithography technologies for sub-14 nm nodes, along with other
techniques such as extreme ultra violet (EUV) and directed self-
assembly (DSA) [1–3]. However, low throughput is still the bottleneck
of an EBL system. Recently, an extended EBL technique, multiple e-
beam lithography (MEBL), is proposed to improve manufacturing
throughput using parallel beam printing [4]. MEBL system utilizes
thousands of parallel beams to write multiple layout patterns simulta-
neously. Industry has already explored different MEBL implementa-
tions and has demonstrated promising performance in terms of both
lithography accuracy and throughput [5,6].

In MEBL manufacturing process, a layout is split into stripes, and
the boundary between two touching stripes is defined as a stitch line.
Each stripe has width of 50∼200 µm, and different stripes are printed
simultaneously through different electron beams. Although the parallel
writing scheme can dramatically improve the system throughput, it
also introduces serious printability issues. That is, each stitch can
introduce so called stitch error, in an area with width around 15 nm
[5]. If a pattern is overlapping with a stitch, it may suffer from poor
printing quality due to the stitch error. Therefore, if not carefully
designed, due to the shape distortion, an MEBL system may confront
yield issue or even functional error.

We observe very significant shape distortions on via patterns and

long vertical wires. Fig. 1 shows two SEM images of shape distortion on
via layer and metal layer, respectively. In Fig. 1(a) we can see that all
vias are very regular inside the beam stripes. However, at the stripe
boundaries, the vias suffer from obvious distortions and irregular
shrinking. In Fig. 1(b) we can see that the vertical wires are malformed
in the stitch regions. Similar observations were also reported by Fang
et al. [7] that the vertical wires are more susceptible to stitch errors
than the horizontal wires.

There are several methods to minimize the impacts of stitch errors
from lithography perspective, e.g., avoiding dividing a critical pattern
into adjacent sub-fields [8], using different field sizes [9], or reducing
the field size [10]. Recently, Fang et al. [7] considered the stitch error
during detailed routing stage. However, detailed routing is a very late
stage in physical design flow, thus there may exist some stitch errors
difficult to be removed. For instance, stitch errors from vias dropped on
pins of a standard cell cannot be optimized during routing stage. There
are various detailed placement algorithms to address other emerging
issues in advanced technology nodes, such as multiple patterning
lithography [11–13], N10 design rules [14], multiple-row height cells
[15–17], etc., which are summarized in [18].

In this work we propose a comprehensive study to consider the
stitch error removal in detailed placement. We can directly optimize
the positions of both vias and intra-cell vertical wires. In addition, we
consider local congestion, thus a router (e.g. [7]) has more routing
options to effectively remove stitch errors in higher metal layers. Fig. 2
shows a placement example with three gates, where the density of
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vertical metal1 segments varies from cell to cell. Some cells are more
susceptible to stitch errors as they have vertical wire segments
distributed at every site, while other cells have more space to avoid
stitch errors. The comparison between Fig. 2(a) and Fig. 2(b) shows
that it is possible to smartly avoid stitch errors with small cell
movement.

To the best of our knowledge, this is the first work taking stitch
errors into consideration in placement stage. Our contributions are
summarized as follows.

• We propose a comprehensive detailed placement study to simulta-
neously minimize the stitch error and optimize traditional objec-
tives, e.g., wirelength and density.

• We develop a swap-based detailed placement engine with an optimal
stitch aware single row placement.

• We present an nM( ) pruning technique to speed-up the single row
problem, where n and M are number of cells in a row and maximum
displacement respectively.

• Our pruning technique is very generic that it is applicable to
conventional placement and other applications. We show that the
pruning technique is also adjustable for local congestion optimiza-
tion.

The rest of this paper is as follows. Section 2 introduces the stitch
constraints and the problem formulation. Section 3 explains the
optimization algorithms in detail. Section 4 lists the experimental
results, followed by conclusion in Section 5.

2. Preliminaries and problem formulation

In an MEBL system, stitch lines repeat periodically with equal
intervals. If a standard cell is not carefully placed and overlaps with one
stitch line, it may suffer from stitch error. In this work we consider
three kinds of possible stitch errors, as follows. (1) Stitch over via: if
a via is cut by a stitch line, it can lead to potential disconnection. (2)
Vertical routing: a vertical routing segment suffers more from stitch

lines than horizontal lines. (3) Short polygon: short horizontal
routing segment with vias may also result in problem.

To accurately capture a stitch error, we partition each cell into sites
with width equal to the poly pitch. Since some intra-cell segments or
vias are very susceptible to stitches, we note those sites covered by
these segments/vias as dangerous sites. For example, Fig. 3 shows the
dangerous sites of cell BUF_X8. Note that for simplicity, here only
intra-cell segments are illustrated. A stitch error happens if one
dangerous site overlaps with an MEBL system stitch line.

This work adopts scaled half-perimeter wirelength (sHPWL) from
ICCAD 2013 placement contest, defined as follows.

sHPWL HPWL α P= × (1 + × ),ABU (1)

where α is set to 1, and HPWL denotes half-perimeter wirelength.
PABU represents ABU penalty to evaluate the placement congestion.
Please refer to [19] for more details regarding the PABU calculation.

Problem 1 (Stitch Aware Detailed Placement). Given an initial
detailed placement with the information of dangerous sites for each
standard cell, we seek a legal placement to minimize the stitch errors
and the sHPWL, simultaneously.

After solving Problem 1, we further perform a local congestion
refinement step to improve local routability and pin access without
introducing any additional stitch error and demonstrate the flexibility
of the proposed algorithm.

Problem 2 (Stitch Aware Local Congestion Refinement). Given a
detailed placement solution without stitch errors, refine local
congestion while minimizing displacement without introducing any
stitch error.

It should be noted that Problem 2 aims at smoothing congested
regions, as shown in Fig. 4 where cells are shown with dangerous sites
and pins are as cross marks. The region in Fig. 4(a) is very congested
due to large number of pins in the region. We can insert whitespaces to
relieve congestion in Fig. 4(b) while it is necessary to avoid stitch errors
at the same time. It is suitable to solve it by minimization of a
maximum cost, which helps relieve congestion without large perturba-

Fig. 1. SEM images of stitch error for (a) via layer and (b) metal layer vertical wires.

Fig. 2. An example of (a) stitch errors in placement and (b) e-beam friendly placement.
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tion to the layout. Further details will be discussed in Section 3.3.

3. Detailed placement algorithms

In this section we describe the details of our placement algorithms.
As shown in Fig. 5, our framework mainly consists of two stages. In the
first stage, single row based approach is applied to optimize wirelength
and stitch errors optimally. If all stitch errors are removed successfully
by this stage, we directly output placement solutions. Otherwise, in the
second stage, cell swapping and movement are introduced to improve
both wirelength and congestion. Note that the stitch error is considered
through the whole flow.

3.1. Single row placement

As a powerful approach in detailed placement, single row based
placement is widely studied in both conventional placement [20–22]
and lithography aware application, such as triple patterning lithogra-
phy (TPL) compliance [23–26,13]. If there are fixed macros in the

layout, conventional single row algorithms (e.g. Abacus [22]) divide a
row into several sub-rows. However, this strategy is not suitable for
MEBL application, as the stitch lines are soft constraints rather than
hard constraints. In TPL compliance, the main challenge lies in the
distance between abutting cells, while the stitch errors in MEBL are not
related to neighboring cells. In addition, in the single row algorithm
proposed by [23], a graph based approach is applied to find optimal
solution in mnK( ). Here m is the site number in the row, n is the cell
number, and K is the number of pre-coloring solutions for each cell.
Usually m is a very large number, thus this algorithm may suffer from
runtime for large size circuits.

In this paper we adapt a dynamic programming based algorithm
[27] to solve single row detailed placement. Different from other
techniques (e.g. [22]), it can naturally handle both hard constraints
(fixed macros) and soft constraints (stitch errors). Each cell is
associated with a movable range, which is usually a finite site
candidates. The dynamic programming scheme is able to achieve
optimal solution for combined cost functions, such as movement,
wirelength and stitch errors. Note that comparing with [27], we
significantly improve the runtime complexity while still maintaining
the optimality.

For convenience, Table 1 lists some definitions used in the single
row placement. The algorithms are described with the concept of
displacement values of a cell. For example, if cell ci is originally at
position p0i and it is then moved to position p1i, its displacement value
is p p−i i

1 0. We also describe positions with displacement values of a
cell; e.g., the position with displacement value −1 of cell ci denotes the
position p − 1i

0 . The algorithm for single row placement is explained
with a graph in Fig. 6. All candidate displacement values of a cell is
listed as a column of nodes. There is an edge between two nodes if they
can reach their displacement values without overlap. For example, the
maximum displacement for cell ci isM, so the displacement range for ci
is from M− to M, the value of which is marked in the node. Each edge
also contains a cost according to Eq. (2). Two additional nodes, s and t,
are inserted to the graph. The problem is stated as finding the path with
lowest cost from node s to node t, which can be solved with dynamic
programming.

The cost p( )i i function in the experiments is as follows,

cost p τ WL p ϕ MOV p ν SP p( ) = · ( ) + · ( ) + · ( ),i i i i i (2a)

⎧⎨⎩SP p( ) = 0, no stitch,
large number, generate a stitch error,i

(2b)

where WL denotes wirelength cost, MOV denotes movement, and SP
denotes stitch error penalty. SP is set to a very large number when a
stitch error is generated, e.g., half-perimeter of the layout. In our
experiments, τ, ϕ, and ν are set to 10, 1, and 1. In legalization step, we
simply set τ and ν to zero.

Given an ordered sequence of cells S, to calculate wirelength cost
for cell ci, we need to fix the positions for all other cells. The wirelength

Fig. 3. An example of cell BUF_X8, where dangerous sites are labeled as red. (For
interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 4. Example of local cells and pins and (a) local congested region and (b) congestion
improved by inserting whitespaces.

Fig. 5. Overall flow of our stitch aware detailed placement.

Table 1
Notations used in single row placement.

M Maximum displacement for a cell.

pi
0 Initial position of Cell ci.

pi The position of Cell ci, p M p p M− ≤ ≤ +i i i
0 0 .

Li Ordered set of positions for cell i pi Land ∈ i

p*l Final position of Cell i after optimization

α p( )i i solution of c1 to ci in which ci is placed at pi.

t p( )i i The cost of best placement solution from c1 to ci in which ci is placed
at pi.

γ p( )i i The position of ci−1 in the optimal solution of c1 to ci−1 in which ci is at
pi.

r p( )i i Whether the solution corresponding to t p( )i i is inferior or not.

cost p( )i i The cost of ci when it is placed to pi.

wi Width of Cell ci.
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cost is determined by the bounding boxes of nets. But if cell ci has
connection to any cell in S, the wirelength cost for cell ci cannot be
determined since cells in S are not fixed. To handle this, we introduce
the wirelength model in [28] which ensures the wirelength cost for cell
ci is independent to other cells in S, while the optimality of the
solutions are maintained. If cell ci is connecting to any cell cj in the left
of cell ci in the same placement row, we regard the position of cj as the
left boundary of the row when computing the wirelength cost for ci.
Similarly, if cell ci is connecting to any cell cj in the right of cell ci in the
same placement row, we regard the position of cj as the right boundary
of the row. This model is widely used in ordered single row placement,
which turns out to be equivalent to HPWL [29,28].

We can see that function cost p( )i i is quite flexible, since we can
include movement, wirelength and stitch errors. For hard constraints
like fixed macros, we only need to set its maximum displacement M to
zero. For soft constraints like stitch lines, additional cost is applied if a
cell has overlap with them.

Lemma 1. Algorithm shown in Fig. 6 is optimal for cost function in
Eq. (2).

The proof is similar to that in [27], and is omitted here for brevity.
The basic idea is that the optimal placement solution can be found
through a shortest path from s to t, and all the positions of cells can be
derived from the displacement values of corresponding nodes. Since
the constructed graph is a directed acyclic graph, the shortest path can
be calculated using topological traversal in nM( )2 steps, where n is the
cell number in the row, and M is the maximum displacement for each
cell.

3.2. An nM( ) pruning algorithm
The runtime complexity of the above single row placement is

nM( )2 . When M is very large, the runtime becomes unacceptable.
Here we propose a set of pruning techniques to achieve further
speedup, while still keeping the optimality. In addition, we can
theoretically prove that the runtime complexity can be improved from

nM( )2 to nM( ).

Algorithm 1. Single row placement with pruning

Require: A set of ordered cells c1 to cn of a row.
Ensure: All the cells in the set are placed subjecting to optimal

objective function.
1: L p M p M i to n← [ − , + ], ∀ = 1i i i

0 0 ;

2: t p cost p( ) ← ( )1 1 1 1 , p L∈1 1;
3: t p( ) ← ∞i i , i to n← 2 , p L∈i i;

4: for each ci, i to n← 2 do
5: N p M← −i−1

0 ;

6: for each p L∈i i do

7: for each p L∈i i−1 −1 where p N≥i−1 do

8: cost t p cost p← ( ) + ( )i i i i−1 −1 ;

9: if cost t p< ( )i i then

10: t p cost( ) ←i i ;

11: γ p p( ) ←i i i−1;

12: N p← i−1;

13: else
14: break;
15: end if
16: end for
17: end for
18: Check inferior solutions and remove them from Li;
19: end for
20: cost ← ∞min ;
21: for p p M p M∈ [ − , + ]n n n

0 0 do

22: if t p cost( ) <n n min then

23: cost t p← ( )min n n ;

24: p p* ←n n;

25: end if
26: end for
27: for i n← down to 2 do
28: p γ p* ← ( )i i i−1 ;

29: end for

The details of our nM( ) implementation are shown in Algorithm 1.
The main difference between the problems in [23,27] and our problem
lies in the cost function. That is, the cost functions for a cell in the
former problems depend on other cells, such as the distance or coloring
cost between two abutting cells, while the cost defined in Eq. (2) is only
related to the cell itself; i.e., it is independent to any other cell. Due to
the independence in the cost function, we can minimize the total cost
with nM( ) time complexity. Our speedup technique is generic that it
can also be applied into conventional detailed placement and legaliza-
tion with an objective like wirelength or movement.

Lemma 2. Comparing two solutions α p( )i i and α q( )i i , if t p t q( ) ≥ ( )i i i i
and p q≥i i, then α p( )i i is inferior to α q( )i i .

Proof. Suppose cell ci has two candidate positions pi and qi, where
p q≥i i and t p t q( ) ≥ ( )i i i i . Now consider any candidate position pi+1 for
cell ci+1. If cell ci can be placed at pi without overlapping with cell ci+1,
then qi is also a legal position for cell ci. We can always move cell ci
from pi to qi for better cost, because the total cost at cell ci+1 is the
minimum value of t p cost p( ) + ( )i i i i+1 +1 . Therefore, solution α q( )i i is
better than α p( )i i .□.

Lemma 2 corresponds to line 18 in Algorithm 1 where all inferior
solutions are checked and skipped in the for loop. It implies that
t p t q( ) < ( )i i i i when p q>i i. Since the inferior solutions are removed
from the set Li, we can assume there is no inferior solution in the
follow-up analysis.

If pi−1 introduces overlaps between cell ci−1 and ci, the cost is
assigned to infinity. After skipping all inferior solutions, one should
also note that in line 9, the condition cost t p< ( )i i is always satisfied
when no overlapping occurs. The reason lies in that t p( )i i−1 −1 is
decreasing w.r.t pi−1 according to Lemma 2 and cost p( )i i does not
change in the for loop from line 7–16. So the else condition in line 13
only happens when pi−1 results in overlaps, and we can break the loop
under such a condition.

Lemma 3. Let p*
i−1 be the optimal position of cell ci−1 when cell ci is

placed at pi, and q*
i−1 be the optimal position of cell ci−1 when cell ci is

placed at qi. If q p≥i i, then q p* ≥ *
i i−1 −1.

Proof. For a legal position pi of cell ci, to minimize t p( )i i , we need to
find the smallest t p( )i i−1 −1 for all possible pi−1, because cost p( )i i has
been determined by pi. Let Pi−1 be the set of all legal values of pi−1 and

Fig. 6. Single row placement algorithm.
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Qi−1 denote all possible values of qi−1. Suppose p*
i−1 is the best position

for cell ci−1 when ci is placed at pi and q*
i−1 is the best position for cell

ci−1 when ci is placed at qi. Pi−1 and Qi−1 should share the same left
boundary l. Let Pi

r
−1 be the right boundary of set Pi−1 and Qi

r
−1 be the

right boundary of set Qi−1. Pi
r
−1 is no larger than Qi

r
−1, as q p≥i i. In other

words, we have P Q⊆i i−1 −1. The relationship can be rewritten as,

P p l p P p Q

q l q Q q P Q

= { | ≤ ≤ , ∈ Z},

= { | ≤ ≤ , ∈ Z}, ≤ .
i i i i

r
i i

i i i
r

i i
r

i
r

−1 −1 −1 −1 −1 −1

−1 −1 −1 −1 −1 −1

If q*
i−1 lies in the range between l and Pi

r
−1, it must be equal to p*

i−1;
otherwise, it is equal to some value between Pi

r
−1 and Qi

r
−1. Hence,

q p* ≥ *
i i−1 −1.□

Lemma 3 corresponds to lines 5, 7 and 12 in Algorithm 1. After
computing the optimal solution for cell ci at position p q=i , We can
start pi−1 from N (line 7 of Algorithm 1) instead of p M−i−1

0 to find an
optimal solution for a value p q>i . In line 7 and 12, for easier
explanation, we use N as a position, but in implementation we can
store the index of position in Li−1 to N such that the set Li−1 is accessed
in constant time.

The above analysis guarantees the optimality of Algorithm 1.
Compared with previous M( )2 algorithms in [27,23], Algorithm 1
changes the complexity of the local search (from line 5 to line 18) to

M( ). Line 18 also takes M( ) time to check all inferior solutions and
remove them. The runtime complexity of Algorithm 1 is nM( ).

Now we explain why the complexity of the local search (from line 5
to line 18) is M( ) in Algorithm 1 with Fig. 6. The nature of the local
search is to compute the best cost of cell c1 to ci for each position of cell
ci. Let N p( )i i denote the N value in line 7 to line 16 for position pi of cell
ci; in other words, N N p= ( )i i when we enter line 7. We also assume
there is no inferior solution for the computation of complexity for the
worst case (inferior solutions are skipped anyway). Then the algorithm
only repeats the part of lines 8–15 by N p N p( + 1) − ( ) + 1i i i i times for
position pi of cell ci due to the update of N and early exit in line 14.
Consider all the positions of cell ci from p M−i

0 to p M+i
0 . It is

necessary to repeat the part of lines 8–15 by

∑ N p N p N p M N p M M

M M M

( + 1) − ( ) + 1 = ( + + 1) − ( − ) + 2

+ 1, =2 + 2 + 1, = ( ) times,

p p M

p M

i i i i i i i i
= −

+
0 0

i i

i

0

0

(3)

where we introduce N p M p M( − ) = −i i i
0 0 and N p M p M( + + 1) = +i i i

0 0 for
boundary conditions.

3.3. Flexibility of pruning techniques

In this section, we solve Problem 2 with an extension to the single
row algorithm with pruning technique. It should be noted that our
pruning algorithm is flexible to any cost function cost p( )i i as long as it
only depends on pi itself. That is, it can be applied to speed-up the

conventional single row detailed placement problems [20–22].
Furthermore, the cost function can also be extended from summa-

tion to maximization in line 8 of Algorithm 1. The application comes
from the minimization of maximum displacement of cells when
optimizing local congestion, where the cost function of each cell is
adjusted from Eq. (2) to the following,

cost p p ϕ MOV p ν SP p τ GAP p p( , ) = · ( ) + · ( ) + · ( , ),i i i i i i i−1 −1 (4a)

GAP p p UB p p size( , ) = max(0, − ( − − )),i i i i i−1 −1 −1 (4b)

where GAP p p( , )i i−1 is the spacing cost between two neighboring cells
and UB is a user-defined upper bound for the spacing cost. The spacing
cost can be more complicated such as that in [27] as long as the cost is
non-increasing with the increase of spacing, while we use a simple
version for illustration. We switch the symbol of cost function from
cost p( )i i to cost p p( , )i i i−1 because the cost in Eq. (4) depends on
positions of both cell ci−1 and ci.

In Algorithm 1, line 8 is adjusted to,

cost t p cost p p← max( ( ), ( , )).i i i i i−1 −1 −1 (5)

It should be noted that enabling minimization of the maximum cost
ensures small spacing and displacement cost of the worst case, which
facilitates to solve Problem 2.

With the extension of cost function, it is not hard to see that Lemma
2 still holds, which means we can still prune inferior solutions in lines
18, but the correctness of early exit in line 14 needs to be explained.
Due to the pruning of inferior solutions, t p( )i i−1 −1 is decreasing, while
cost p p( , )i i i−1 is non-decreasing (increasing) w.r.t pi−1. The maximiza-
tion operation between a decreasing function and a non-decreasing
function results in the fact that, given p*

i−1 as the best position, in the
region of p p≤ *i i−1 −1, t p cost p pmax ( ( ), ( , ))i i i i i−1 −1 −1 is non-increasing,
while in the region of p p≥ *i i−1 −1, the cost is non-decreasing, shown as
Fig. 7. Therefore, it does not affect the results when exit early in line 14
because p*

i−1 has been found.
Lemma 3 needs additional proof under the new cost function. Let

p*
i−1 be the best solution for t p( )i i . Then for any p p< *i i−1 −1,

t p cost p p t p t p cost p pmax( ( ), ( , )) = ( ) > max( ( * ), ( * , )),i i i i i i i i i i i i−1 −1 −1 −1 −1 −1 −1 −1 (6)

where the equality comes from the discussion in Fig. 7. For any q p>i i
and p p< *i i−1 −1, we have following inequalities,

t p cost p q t p t p cost p p t pmax( ( ), ( , )) ≥ ( ) > max( ( * ), ( * , )) = ( ),i i i i i i i i i i i i i i−1 −1 −1 −1 −1 −1 −1 −1

(7)

which indicates that current solution of pi−1 and qi is inferior to α p( )i i
with p*

i−1 and qi. Therefore, we can directly start from p*
i−1 when

searching for the best solution of t q( )i i . Although the condition of
overlap is not mentioned, it can be integrated to the spacing cost, which
still leads to non-decreasing cost function w.r.t pi−1. Hence the proof
holds for the new cost function with maximization operation and
spacing cost.

Fig. 7. Examples of maximization operation between a decreasing and a non-decreasing functions.
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3.4. Stitch aware global swap

In this step, the main objective is to optimize regions that contain
cells involved in stitch errors. After the optimization of single row
placement, most stitch errors have been resolved. The remaining ones
usually appear in highly congested placement bins. Therefore, we only
try to move cells in such bins to alleviate the congestion and meanwhile
reduce wirelength.

Due to the congestion of these regions, it is difficult to resolve them
with local perturbation such as reordering or sliding window. Thus
global swap [28,30] is adopted where cells are allowed to move
anywhere within the displacement constraints. Generalized swap not
only enables swapping with cells but also white spaces, which
integrates both swapping and moving strategies. The basic procedure
for cell swap is iteratively repeating the following three steps: (1) Select
a source cell to swap; (2) Identify optimal region for source cell; (3)
Find the best cell or white space to swap with the source cell in the
optimal region.

In our implementation, we set the score function for swap as
follows,

score c c sHPWL λ P μ P( , ) = Δ − · − · ,i j ds ov (8)

where sHPWLΔ indicates sHPWL improvement, Pds indicates the
penalty for density increase of dangerous sites, and Pov is overlap
penalty. Suppose cell ci is in bin Bi and cell cj belongs to bin Bj. The
area of both bins is Ab. We define the density of dangerous sites as the
number of dangerous sites over total amount of available sites in a bin.
If a bin has overlap with any stitch line, we account only 70% of its total
sites as available. Let Dds(i) denote the density of dangerous sites in
bin Bi before swap and D i′ ( )ds denote the density of dangerous sites in
bin Bi after swap. Then we can define Pds with the following equation:

P D i D j D i D j A= max(0, | ′ ( ) − ′ ( )| − | ( ) − ( )|)· .ds ds ds ds ds b (9)

The overlap penalty is the area difference between the source cell and
target cell or white space. If the target white space is larger than the
source cell, overlap penalty is zero. To achieve an equivalent numeric
scale to wirelength cost, Pds and Pov are divided by site half-perimeter
in the implementation. In this way, all the costs have the same unit as
distance. λ and μ are set to 100. Only swapping attempt with best
positive scores is accepted.

The scoring scheme proposed in Eq. (8) aims for balancing the
density of cells and dangerous sites while improving wirelength.
Although the penalty from ABU density is able to handle global density
distribution, local control is necessary to avoid extremely dense
regions. Furthermore, it is easier for a congested region with very
few dangerous sites to find a stitch-error-free solution than that with a
lot of dangerous sites. Thus we introduce Pds as the additional penalty
for such kind of regions. Since row-based legalization engine is applied,
the height of bins for Pds is set to row height.

Overlap penalty is introduced to control the efforts during legaliza-
tion. High legalization efforts will incur large displacement for some
cells and thereby large wirelength degradation. Hence, after every 5000
swaps, legalization algorithm will be performed to remove overlaps.
Legalization algorithm is based on single-row placement (Section 3.1)
with minimum movement as an objective.

We observe that the runtime for global swap is highly related to the
complexity of score function. Considering that wirelength is included in
the calculation, it will be very slow to query the bounding box of large
nets. Thus we develop a data structure in which pins of a net are stored
as an ordered sequence according to pin positions. Cells in a row is kept
in a linked-list [30] for fast cell swap and movement.

Usually a cell is connected to limited number of nets, thus its degree
can be treated as constant. Using the data structures above, it only
takes constant time to query the bounding box and e(log ) to update
cell position in a net with e pins. Since score calculation happens much
more frequent than actual cell swap or movement, faster score

calculation helps to reduce overall runtime. Let k be the number of
swapping candidates for a cell ci, we can achieve k( ) time complexity
for score calculation and e(log )max for cell position update if a swap or
movement is accepted, where emax is the maximum e of nets
connected to cell ci.

4. Experimental results

Our algorithms were implemented in C++ and tested on a 3.40 GHz
Linux machine with 32 GB memory. Since traditional academic
placement benchmark suites has no intra-cell wire information, we
integrated the NanGate 15 nm standard cell library [31] into ICCAD
2014 placement benchmarks [19]. ICCAD 2014 placement contest
defines two maximum displacement values for each benchmark, and
we choose the smaller ones for less perturbation to the original
placements. We applied a state-of-the-art detailed placer, RippleDp
[32], to generate the initial placement solutions. We scaled the bin
dimensions for ABU density analysis from the ICCAD 2014 bench-
marks, so most generated test cases match to the number of bins in the
original ones. We pre-computed dangerous sites for all standard cells
in the library, which was served as input to our placer. We set the stripe
width of each single beam to 50 µm.

The metrics of the new benchmarks are shown in Table 2, where
columns “#cells” and “#nets” list the total cell number and net number,
respectively. Besides, columns “#blk”, “dt” and “Disp.” represent the
blockage (fixed macro) number, the target density, and the maximum
displacement in um. Target density dt is necessary for computing ABU
penalty. Column “Util.” denotes the area utilizations of benchmarks.
Note that test cases mgc_edit_dist, mgc_matrix_mult and net-
card contain mixed-sized cells.

Table 3 lists the performance of our placer at different optimization
stages. The initial placement solutions (column “Init.”) are generated
by a traditional detailed placer, RippleDp [32], which aims at mini-
mizing wirelength. As the state-of-the-art detailed placer, RippleDp can
produce very high quality placement solutions in terms of both HPWL
and sHPWL. Here we set displacement constraint to be a very large
number so that RippleDp can produce converged results. Column “SR”
stands for single row placement, while column “Full Flow” denotes
the whole flow combining global swap and single row placement. To
evaluate the effectiveness of our algorithms, following metrics are
introduced. HPWL stands for half perimeter wirelength which is used
as a metric for wirelength. ST# represents the number of cells that
contains stitch errors. It is measured by how many dangerous sites are
covered by the beam boundaries. Placement solutions with high
congestion are not desired, so we introduce sHPWL as discussed in
Section 2. When measuring Runtime, which is the CPU run time in
seconds, single thread is applied for consistency of results.

From Table 3 we can see that, with certain displacement con-
straints, the proposed single row placement can achieve very good
efficacy in stitch error cancellation. That is, 99.9% of the initial stitch
errors are removed. Meanwhile, an average of 0.19% HPWL improve-
ment and slight sHPWL increase are observed. However, for some
corner cases, such as leon2 and netcard, the single row placement is
not powerful enough due to the movement constraints from blockages

Table 2
Benchmarks for Stitch Aware Placement.

Design #cells #nets #blk Util. dt Disp.

vga_lcd 165 K 165 K 0 68.94% 70% 10
b19 219 K 219 K 0 44.85% 70% 20
leon3mp 649 K 649 K 0 72.02% 75% 30
leon2 794 K 795 K 0 84.19% 90% 40
mgc_edit_dist (med) 131 K 133 K 13 67.26% 70% 30
mgc_matrix_mult (mmm) 155 K 159 K 16 59.31% 65% 30
netcard 959 K 961 K 12 66.29% 70% 50
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or congestions. Therefore, global swap is introduced as a follow-up
optimization step, and the corresponding results are shown in the last
column. We can see that swapping cells between rows improves
congestion in dense regions and optimize wirelength. By applying
global swap together with single row algorithm, we are able to achieve
zero stitch errors for all test cases. As only small number of bins are
considered for global swap, the runtime overhead can be neglected.
Small changes in HPWL and sHPWL also indicate that the algorithm
produces little perturbation to initial placement.

It should be noted that the runtime of single row placement in
Table 3 for case netcard is very close to that of leon2, while the
former has much larger cell number. The reason lies in those blockages
in netcard. That is, the runtime of single row placement is not only
related to the number of cells, but also the amount of maximum
displacement. Blockages have zero maximum displacement. So during

the propagation of candidate solutions in the dynamic programming
process, many infeasible solutions are automatically pruned. Therefore,
the solution space has been significantly reduced and as a consequence,
the best solution is found in shorter time.

Fig. 8 compares the runtime difference for variant amounts of cells
in a row between whether applying pruning techniques or not. The data
is directly collected from benchmarks in Table 2 and the runtime values
of rows with the same number of cells are averaged. We can see the
runtime grows linearly with the problem size and the difference in the
slopes shows that pruning techniques effectively drop runtime. We
compare the solutions from whether the pruning techniques are
enabled or not and average the runtime in Fig. 8. On average, the

nM( ) pruning technique can provide around 30×speedup without any
loss of optimality.

We also evaluate the of local congestion optimization discussed in
Problem 2 of Section 3.3 as a post refinement step. Table 4 gives the
result comparison between the full flow in [33] and that with our
congestion refinement. Since the objective of the refinement is to
increase the gap between pairs of cells while minimizing maximum
displacement, we introduce a metric called “pair spacing ratio (PSR)”
for each pair of horizontally neighboring cells to evaluate the perfor-
mance,

c c
size size

p size p
PSR( , ) =

+
+ −

,i j
i j

j j i (10)

where sizei and sizej denote the width of cell ci (left) and cj (right),
respectively. The lower left corners of cells ci and cj are denoted by pi
and pj, respectively. In other words, PSR c c( , )i j is defined as the total
width of two cells divided by their total spanning width including the
spacing between them. The overall PSR cost is evaluated with the
average PSR of all horizontally neighboring cell pairs. From the table,

Table 3
Result comparison among different approaches.

Design Init. SR Full Flow [33]

HPWL sHPWL ST ΔHPWL ΔsHPWL ST Runtime ΔHPWL ΔsHPWL ST Runtime

(×106) (×106) # (%) (%) # (s) (%) (%) # (s)

vga_lcd 1.42 1.87 1266 −0.28 +0.36 0 7.70 −0.28 +0.36 0 7.74
b19 0.97 1.14 1435 −0.25 −0.00 0 10.54 −0.25 −0.00 0 10.74
leon3mp 5.34 6.84 6474 −0.32 −0.14 0 33.36 −0.32 −0.14 0 33.59
leon2 13.09 14.49 8172 −0.09 +0.12 1 42.24 −0.10 +0.11 0 49.90
med 1.52 1.88 864 −0.14 +0.18 0 6.05 −0.14 +0.18 0 6.11
mmm 0.91 1.13 1117 −0.17 −0.13 0 7.22 −0.17 −0.13 0 7.28
netcard 14.57 20.19 7789 −0.11 +0.06 21 44.68 −0.10 +0.08 0 50.02

avg. 5.40 6.79 3873 −0.19 +0.06 3 21.68 −0.19 +0.07 0 23.62
ratio – – 1 – – 0.001 1.00 – – 0 1.09

Fig. 8. Comparison on algorithm scalability.

Table 4
Result comparison for congestion refinement.

Design [33] [33] + Congestion Refinement

ΔHPWL ΔsHPWL ST Runtime PSR ΔHPWL ΔsHPWL ST Runtime PSR
(%) (%) # (s) (%) (%) (%) # (s) (%)

vga_lcd −0.28 +0.36 0 7.74 93.71 +0.81 −1.25 0 8.23 89.84
b19 −0.25 −0.00 0 10.74 88.99 +2.27 −0.56 0 11.37 84.46
leon3mp −0.32 −0.14 0 33.59 93.83 +0.88 −0.62 0 36.00 90.78
leon2 −0.10 +0.11 0 49.90 97.12 +0.22 +0.24 0 52.81 95.75
med −0.14 +0.18 0 6.11 89.21 +0.66 −2.82 0 6.42 84.67
mmm −0.17 −0.13 0 7.28 89.03 +1.83 −1.43 0 7.72 83.68
netcard −0.10 +0.08 0 50.02 96.44 +0.37 −0.75 0 52.94 94.04

avg. −0.19 +0.07 0 23.62 92.62 +1.01 −1.03 0 25.07 89.03
ratio – – 0 1.09 1.00 – – 0 1.16 0.96
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we can see that the congestion refinement is not only effective in
removing local congestion, but also smoothing the density, because
both PSR and sHPWL are improved by 4% and 1.1% compared with
the flow in [33], while no stitch errors occur. Although there is
degradation in HPWL, better density and local congestion are more
important for routability and final routed wirelength, considering the
improvement in sHPWL. In the refinement, we set the maximum
displacement M to 10 to avoid large perturbation to the layout, which
also speeds up the algorithm. As a consequence, there is only 7%
runtime overhead. The weight for spacing cost is set to 10 in the
experiment and UB is set to the width of smaller cells in the cell pairs.

5. Conclusion

This work develops the first placement framework considering e-
beam stitch errors during detailed placement stage. A linear-time
single row placement algorithm is proposed with highly-adaptable
objective functions. Experimental results show its effectiveness in stitch
cancellation while maintaining wirelength and congestion. With the
collaboration of stitch aware post-placement optimization such as [7],
better manufactorability can be achieved. In addition, our high
performance pruning technique can be naturally embedded into
existing physical design flow with different metrics (e.g., wirelength,
routability, or congestion).
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