
HAPE: Hardware-Aware LLM Pruning For Efficient

On-Device Inference Optimization

WENQIAN ZHAO, The Chinese University of Hong Kong, Hong Kong, Hong Kong

LANCHENG ZOU, The Chinese University of Hong Kong, Hong Kong, Hong Kong

ZIXIAO WANG, Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong,

Hong Kong

XUFENG YAO, Computer Science and Engineering, CUHK, Hong Kong, Hong Kong

BEI YU, The Chinese University of Hong Kong Department of Computer Science and Engineering, Hong

Kong, Hong Kong

Over the past few years, large language models (LLMs) have demonstrated remarkable performance and ver-

satility across a variety of complex tasks. However, their deployment has been challenged by their substantial

model size and computational requirements. Pruning is a effective approach to make the model parameters

sparse, thereby acquire inference acceleration. While not everyone requires training or fine-tuning large mod-

els, the diverse range of applications necessitates the deployment of LLMs on different devices. Model pruning

and compression have emerged as areas of deep research interest to address these challenges. In consideration

of versatility and practicality, we have designed a hardware-aware pruning process for general-purpose hard-

ware/edge devices to enable efficient deployment and inference of LLMs. Instead of considering sparse ratio

alone, we are motivated to design a pruning framework that incorporates genuine inference speed-up sensitiv-

ity from each pruning structure. Moreover, our framework breaks the layer-by-layer pruning setting and fuse

several layers into one pruning stage to allow cross-layer optimization. Apart from that, we hold pragmatism

by conducting compilation optimization during pruning. This step is critical because most sparsity patterns

barely show distinct speed acceleration with corresponding dataflow and memory optimization. Our process

operates within a post-training framework, obviating the need for additional training and thereby reducing

resource requirements, while ensuring diverse inference speed and accuracy requirements on hardware.

CCS Concepts: • Computing methodologies→ Natural language processing; • Computer systems orga-

nization→ Embedded hardware; • General and reference→ Performance;

Additional Key Words and Phrases: LLM compression, Hardware-Aware Compression, On-device inference

optimization

This work is partially supported by The Research Grants Council of Hong Kong SAR (No. RFS2425-4S02 and No.

CUHK14210723).
Authors’ Contact Information: Wenqian Zhao, The Chinese University of Hong Kong, Hong Kong, Hong Kong; e-mail:

wqzhao@cse.cuhk.edu.hk; Lancheng Zou, The Chinese University of Hong Kong, Hong Kong, Hong Kong; e-mail:

lanchengzou@gmail.com; Zixiao Wang, Computer Science and Engineering, The Chinese University of Hong Kong, Hong

Kong, None, Hong Kong; e-mail: zxwang22@cse.cuhk.edu.hk; Xufeng Yao, Computer Science and Engineering, CUHK,

Hong Kong, Hong Kong; e-mail: yxf12fdu@gmail.com; Bei Yu (corresponding author), The Chinese University of Hong

Kong Department of Computer Science and Engineering, Hong Kong, Hong Kong; e-mail: byu@cse.cuhk.edu.hk.

This work is licensed under a Creative Commons Attribution 4.0 International
License.

© 2025 Copyright held by the owner/author(s).

ACM 1084-4309/2025/07-ART61

https://doi.org/10.1145/3744244

ACM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 4, Article 61. Publication date: July 2025.

https://orcid.org/0000-0001-9501-9254
https://orcid.org/0009-0004-6820-7064
https://orcid.org/0009-0000-8179-0996
https://orcid.org/0000-0002-7994-6290
https://orcid.org/0000-0001-6406-4810
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3744244
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3744244&domain=pdf&date_stamp=2025-07-09

61:2 W. Zhao et al.

ACM Reference Format:

Wenqian Zhao, Lancheng Zou, Zixiao Wang, Xufeng Yao, and Bei Yu. 2025. HAPE: Hardware-Aware LLM

Pruning For Efficient On-Device Inference Optimization. ACM Trans. Des. Autom. Electron. Syst. 30, 4, Arti-

cle 61 (July 2025), 18 pages. https://doi.org/10.1145/3744244

1 Introduction

Over the past few years, large language models (LLMs) [1, 2] have demonstrated remarkable
performance and versatility across a variety of complex tasks. However, their deployment has
been challenged by their enormous model size and computational requirements. This has led to
an increasing focus on model pruning and compression research, to bridge the gap between the
potential of LLMs and the practical challenges associated with their deployment.

Model pruning, a technique that simplifies the model parameters to achieve inference accel-
eration, has shown promise in model compression. Structured pruning, which eliminates entire
neurons or filters, offers better hardware efficiency but often at the cost of model performance.
Balancing these tradeoffs is a critical area of research. Apart from that, conventional pruning al-
gorithms usually require fine-tuning the model, which shows better performance but is barely
practical for LLM. The training/tuning stage of LLM is extremely expensive in terms of dataset,
computation power, hardware and time cost.

To conquer this challenge, we propose a post-training LLM pruning framework: HAPE, which
is hardware-aware, specifically designed for general-purpose hardware and user-end devices. The
overall design flow of HAPE is in Figure 1. In order to avoid the extremely expensive tuning cost,
we redesign the pruning strategy that does not require fine-tuning on the original LLM model.
Our implementation requires one single CPU device (or any platform) and only a few hours’ time
budget for a real deployment scenario.

We hold the key insight that the model pruning process should not be decoupled from the
backend-level implementation. We integrate structure pruning with on-device optimization at
each pruning stage, as visualized in Figure 1. To compensate for the performance drop from reg-
ular sparsity pattern limitation, We assign dynamic sparsity ratios within the transformer block
and gather all pruning candidates within each block as global optimization space. This approach
enhances the efficiency of the pruning process and mitigates some of the limitations associated
with structured pruning. We dig deeper at this step by fusing inter-dependent neurons for the
chained effect: During the forward stage, the output of consecutive zeros remains zeros. We recur-
sively fuse the neurons to simplify the connection and impart dependency information into the
importance estimation.

Another potential problem is hardware information missing in the pruning metrics. Traditional
post-training approaches focus on achieving high sparse ratios regarding accuracy loss. However,
a higher sparsity ratio does not guarantee faster inference. Some sparsity patterns do fit computa-
tion flow on certain hardware. Our framework considers the genuine inference speed-up sensitiv-
ity from each pruning structure and accuracy loss. This unique perspective enables us to design
a pruning framework more attuned to the performance requirements of different hardware plat-
forms in real scenarios.

In addition, our approach pragmatically incorporates on-device sparse compilation optimization
during the pruning process to fit the target hardware device. In each transformer block, most
calculations, such as multi-head attention, MLP layers, and projection layers, are batched matrix
multiplication. Given pruned sparse matrices (usually large), we analyze the necessity to optimize
the sparse computation flow with computation graph extraction, operator fusion, and dataflow
optimization (loop reordering, tiling et al.) to generate high-performance sparse kernels for real

ACM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 4, Article 61. Publication date: July 2025.

https://doi.org/10.1145/3744244

HAPE: Hardware-Aware LLM Pruning For Efficient On-Device Inference Optimization 61:3

Fig. 1. HAPE post-training pruning flow. In comparison with conventional layer-wise pruning flow, HAPE

do not require LLM tuning and is hardware-aware at each step.

speed-up on the device. This step is crucial, as most sparsity patterns do not yield significant
speed acceleration without corresponding memory and dataflow optimization. By integrating this
optimization into the pruning process, we ensure that the resulting models are not only smaller
and faster but also more compatible with the hardware platforms. The contributions of this article
are listed as follows:

— A hardware-aware LLM pruning framework, realizing structure pruning on single CPU (or
other hardware) with no costly fine-tuning during pruning.

— We integrate genuine latency sensitivity into pruning importance instead of bare sparsity
ratio alone.

— We apply dynamic sparsity ratios with each transformer block to reach optimal performance
under different pruning ratios.

— We brought on-device sparse dataflow compilation into the progressive pruning to reach
extreme latency-accuracy optimality.

The rest of this article is organized as follows. Section 2 is the background for LLM model com-
pression and resource-driven pruning and optimization. Section 3 comprises our complete work-
flow and description of each component. Section 4 is our corresponding experiment, followed by
conclusion in Section 5.

2 Preliminaries

2.1 Challenges of LLM Application

Increased along with the impressive performance of language models nowadays, the size of current
LLMs challenges the development and deployment of hardware. In the earlier period, where Bert
series [3] with model size ranging from 29 million to 334 million is regarded as “large” language
model. On the other hand, the latest open-sourced Meta’s Llama-3 has already reached 70 billion
parameters, and X.AI’s Grok-1 even comprises 314 billion parameters. Let alone pre-training, as
we are only concerned about inference or light fine-tuning for application. The bulkiness of the
current mainstream Language model brings obstacles with overhead of loading and storing. The
storage itself is a huge cost not only for main memory or High Bandwidth Memory (HBM) on
GPU, but also for the hard-disk to keep copies of each model when being stored or loaded for each

ACM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 4, Article 61. Publication date: July 2025.

61:4 W. Zhao et al.

down-stream task. In addition, it also requires practical experience to keep individual LLM models
to load and offload memory if necessary, which is rather inefficient for bandwidth limit.

As for the computation challenge, the mainstream LLMs are Transformer-based [4] decoder
architecture, of which the inference process is auto-regressive generation with token-by-token
fashion. As the sequence length increases, the computation cost increases quadratically. Within
each transformer block relies the key attention operation where each sequence is encoded as key
K, query Q and value V vectors. All these vectors Q,K,V have size of n × dim_hidden where
dim_hidden denotes embedding dimension, which is 4096 for LLama family model. The attention
operation is

Attention(Q,K,V) = Softmax

(
QK�
√
n

)
V, (1)

where the computation of each matrix multiplication scales with complexity O(n×n). As we know,
the current Llama already supports 8K context length here, leading the operation cost grows gi-
gantically with it. While KV Cache has been proposed to store the existing K,V vectors, avoid-
ing repetitive computation of these large matrix multiplications for each new generated token,
the scale itself is still computation intensive. Although some approaches such as vLLM [5] with
PagedAttention or FLashAttention [6] are employed to partition each sequence’s KV cache into
fixed-size blocks and recompute the blocks without loading very large matrices. Such balancing
and compute and memory does not thoroughly solve the problem.

2.2 Compression of LLM

Language models [1, 2] have gained a broad reputation for incredible performance and massive
deployment cost, thereby necessitating a reduction in parameter size and latency. Previous studies
aimed at compressing language models usually include: network pruning [7, 8], knowledge distil-
lation [9, 10], quantization [11, 12], and other methodologies, such as recent appearing dynamic
token reduction [13] or early exit [14].

Those approaches to compress the computation of LLM can be categorized into two kinds:
(1) Compression of each element-wise operation, for example, quantization. (2) Compression of
model parameter scale, such as distillation or pruning, resulting with less parameters and multipli-
cation required. As a matter of fact, quantization is a popular area as well for deep learning deploy-
ment, which reduces the FP32 operation into FP16 or lower INT8 or INT4, which are well supported
by conventional hardwares for their calculation simplicity. One of the primary challenges in LLM
quantization is the systematic numeric outliers with large magnitude in a few specific channels of
activations when scaling up LLM size [15].

On the contrary, pruning serves as a complementary technique to quantization, focusing on the
post-training phase by removing specific portions of a model’s weights without compromising its
performance. It is crucial to differentiate between structured and unstructured pruning approaches.
Structured pruning involves replacing dense segments of a model with smaller yet still dense com-
ponents. In contrast, unstructured pruning results in weights of value zero, which have no impact
on the network’s behavior and can theoretically be eliminated. Structural pruning, characterized
by the removal of an entire filter from the neural network, renders structured sparsity pattern of
LLM model. Several techniques exist for structure removal, including l1-dependent pruning [16],
first-order importance estimation [17], Hessian-based estimation [7].

2.3 Hardware/Resource-Constrained Pruning

As the sizes of models continue to expand, there is an explosive demand for efficient compression of
LLMs, which is independent of the original training data. Concerning efficient compression, studies

ACM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 4, Article 61. Publication date: July 2025.

HAPE: Hardware-Aware LLM Pruning For Efficient On-Device Inference Optimization 61:5

such as [18] optimize pruning with a linear least squares problem formulation. Research such as [8,
19] have put forth the layer-wise pruning strategies. Given the constraint of the training data’s
accessibility and training cost, data-free pruning techniques have been developed, introducing
several strategies to prune the model with neurons’ similarity evaluation. Moreover, methods have
been proposed distillation-based methods without relying on the model’s training data. However,
these methods can be excessively time-consuming as they involve synthesizing samples by back-
propagating the pre-trained language models.

As a matter of fact, both pruning granularity and backend itself contribute to the final speed-up
or accuracy optimization. In general, unstructured pruning [20, 21] with element-wise zero-out
values can achieve extreme compression ratio, but its irregular data format requires specific en-
coding and decoding and may not easily achieve significant acceleration on general devices or
even common domain specific accelerators [22]. Structured pruning [23, 24], on the other hand,
possesses filter-wise sparsity which ends up still with dense weight matrices but may sacrifice pre-
cision with thorough channel/layer elimination. Even as some new approaches such as N:M [25],
1 × N [26] pruning in the middle of these granularities are proposed, it is not guaranteed to solve
the problem. For example, that N:M pattern can only achieve significant acceleration on specific
GPUs with NVIDIA Tensor Cores [27]. Still, it is not easy to achieve both extreme speed-up and
accuracy, and the adaptation to general processor devices such as CPU are more challenging.

3 Framework

The section is the illustration of the main framework of HAPE. Firstly, we introduce our algorithm-
level cross-layer pruning strategy with neuron fusion technique in Section 3.1. Secondly, we re-
design the importance assignment in LLM structure pruning with on-device latency sensitivity for
practicality in Section 3.2. Thirdly, we discuss the necessity of joint compilation flow in pruning
for sparse LLM model in Section 3.3. Last but not least, we wrap the complete HAPE pruning flow
in Section 3.4.

3.1 Cross-Layer Pruning with Grouping

In our framework, we carefully select the sparse granularity. Firstly, we abandon the conventional
layer-by-layer pruning paradigm and compose a series of consecutive layers together as a pruning
block. Our reconstruction pruning takes a transformer block as a pruning group, given that the
mainstream model architecture of current LLM is a stack of transformer blocks. Let us take Llama-
2-7B [2] as an example, which is composed of 32 transformer blocks, as shown in Table 1. Among all
the layers listed, we will apply pruning operations on all the linear layers and multi-head attention
layers. The reason is twofold: (1) They are the dominating layers, costing most model parameters
and computation; (2) They are in general matrix multiplication form, which is friendly for sparse
optimization. As shown in Figure 2, we will take all prunable layers within a transformer block and
extract all pruning units as a composition of candidates. For linear layers, each unit is a neuron
whose parameters represent a column in the linear transformation matrix. For attention layers,
each unit is an attention head.

We group all the pruning candidates together and rank them in descending order according
to their estimated importance regarding on-device speed and accuracy sensitivity (described in
Section 3.2). Given a series of all layers in the model: L = {l1, l2, . . . , ln} with an expected pruning
ratio α ∈ [0, 1), a classical way is to prune each layer li at a time. Conventional approaches rank
these candidates within each layer and conduct the ranking in descending order and, cutting off the
tails in one layer li at a time, as visualized in the upper part of Figure 2. The resulting sparse model
is Lprune = {l ′1, l ′2, . . . , l ′n} where each pruned layer ‖l ′i ‖0 ≤ α ‖li ‖0 has fixed sparse ratio threshold.

ACM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 4, Article 61. Publication date: July 2025.

61:6 W. Zhao et al.

Table 1. Details of All Layers within a Transformer Block

Name Layer Type Dimension Prune

Q,K,V projection Linear 4096 × 4096 �
O projection Linear 4096 × 4096 �
Multi-head attention Matrix Mul. 32 heads �
SoftMax Softmax 4096/32 ×
MLP gate/up Linear 11008 × 4096 �
MLP down Linear 4096 × 11008 �
SwiGLU Activation 4096 ×
Input/Post LayerNorm Normalize 4096 ×

The dimension is from Llama-2-7B [2] model.

Fig. 2. Cross-layer pruning within transformer block.

Although the layer-by-layer style strikes a balance for each layer to be compressed to a fixed
sparse ratio, our grouping strategy leaves more flexibility by allowing each layer to be pruned
less or more. At the same time, we avoid tackling all layers in the model as a whole group. The
post-training structure pruning requires the ranking of neurons to be pruned. Such aggressive
step may over-prune some layers and jeopardize performance by cutting critical connections. Our
approach takes the original model L into a series of blocks {B1,B2, . . . ,Bm}. In our practice, the
block number is 32, which is the number of transformer blocks in the Llama-7B [2] decoder model.
Instead of fixing a sparsity ratio, we assign dynamic sparsity ratio α1,α2, . . . ,αk for each layer
in the block. As long as the overall sparsity ratio of a block is below the required mode sparsity
threshold α , such flexibility allows each layer to be pruned to a different ratio. The formulation of
this problem is shown in Equation (2).

ACM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 4, Article 61. Publication date: July 2025.

HAPE: Hardware-Aware LLM Pruning For Efficient On-Device Inference Optimization 61:7

Fig. 3. Visualization of latency importance.

Lprune = {B1,B2, . . . ,Bm}, where Bi = {l1, l2, . . . , lk },

s.t. For each Bi ∈ Lprune,

∑
lj ∈Bi

α j ‖lj ‖0∑
lj ∈Bi

‖lj ‖0
≤ α ,

{α1,α2, . . . ,αk } → sparsity ratio of l1, l2, . . . , lk ∈ Bi .

(2)

Within each block, the pruning unit/candidates are assigned an importance score (Section 3.2),
which is an indicator of their influence on the latency/accuracy performance of the model.

Neuron Fusion. During the group ranking stage, we also need to consider connection dependency.
Given two consecutive unitsWi andWj within the same block B, it is meaningless to keepWj while
pruning Wi if Wj is dependent on Wi . We fuse them into one compound unit W new

i and prune
neither or both of them at the same time. Here, the dependency simply denotes that: (1) all input
connections ofWj are from the output ofWi or (2) all output connections ofWj are input ofWi .

The neuron fusion technique is shown as

W new
i ← Fuse(Wi ,Wj) for Wi ,Wj ∈ B,

if In(Wj) ⊆ Out(Wi) or Out(Wj) ⊆ In(Wi).
(3)

The insight of this dependency is that once a previous neuron is pruned, the corresponding out-
put is zeros. If all input connections of the next neuron is a subset of the pruned, we might as well
prune the next neuron and vice versa. The output of multiplication of zero is zero, and such fusion
can enhance the inference efficiency by reducing unnecessary computation on zeros from vacant
layers. This step is rather efficient when we apply computation graph and dataflow optimization
for sparse pattern in Section 3.3. The dependency fusion calibrates on the input/output dimension,
which corresponds to the following joint sparse compilation step: fusion of the two consecutive
sparse operations into one kernel at the computation graph slimming. Only in this way can we
witness a significant speed-up from sparse inference.

Pruning Scope. We restrict neuron fusion to within individual transformer blocks for two pri-
mary reasons. First, this limitation helps manage the computational complexity of the algorithm.
Expanding the search space to include all dimensions across all layers in the network would cre-
ate a significantly larger pool for comparison and selection, making the optimization process more
challenging. Since our method relies on ranking rather than an exhaustive exploration of the de-
sign space, and given the varying information density across transformer blocks, identifying a

ACM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 4, Article 61. Publication date: July 2025.

61:8 W. Zhao et al.

globally optimal solution becomes unreliable. Additionally, evaluating all potential combinations
would demand an impractical amount of computational time.

Second, conducting pruning within each transformer block promotes a balanced pruning ra-
tio across the network. This ensures that the hardware resource demands during inference are
distributed more evenly among the blocks, minimizing the likelihood of excessive pressure on
specific parts of the inference platform.

3.2 Hardware Aware Importance Estimation

Given limited data and no training cost, prioritizing the neurons to be pruned is required before
pruning. Unlike the mainstream structure pruning approaches that only consider accuracy sensi-
tivity and sparsity ratio, we need to consider the real improvement brought by pruning: How much
faster is the model if we prune out this channel? To tackle this problem, our work introduces hard-
ware latency sensitivity with an on-board pseudo-gradient to re-evaluate the importance of each
pruning candidate. The importance assignment in our framework includes both accuracy loss im-
portance and latency importance.

For the latency importance Ilat , we consider how much genuine speed-up is accomplished when
pruning out the ith structure Wi in a group G = {Wi }Mi=1, where M is the number of candidates
or structure. We chose the metric expected pseudo-gradient E(∇Wi

T), where T is the average per-
token latency of the original model on the device. Such gradient denotes the affection on inference
latency fromWi :

IlatWi
= E(∇Wi

T) = E
(

d

dWi

T

)
≈ 1

N

N∑
i=1

d

dWi

T (xi),

≈ 1

N

N∑
i=1

1

dWi

(TWi
(xi) −TW̃i

(xi)),

∝ 1

N

N∑
i=1

(TWi
(xi) −TW̃i

(xi)),

(4)

where N is the size of sample set S = {xi ,yi }Ni=1 and TWi
,T

W̃i
denotes the inference latency be-

fore/after pruning out Wi . As visualized in Figure 3, we collect the on-board inference latency
difference by pruning out some channel within each group/layer and use that as estimation as
latency importance IT . One thing to notice is that, within each linear/attention layer l , all the
neurons/heads structure {Wi |Wi ∈ l} are homogeneous in terms of speed, thereby do not neces-
sarily need repetitive experiments on latency collection. Only linear O(L) time complexity latency
evaluation is needed where L denotes the number of layers. On the other hand, the accuracy impor-
tance Iacc is estimated with the loss deviation |ΔL| on the sample set S, which indicates how much
more loss the pruning of each structure will cause. The objective is to determine which structure
Wi shows the least affection on the model output result. Equation (5) shows the formulation of
importance IaccWi

on each component.

IaccWi
= |ΔL(S)| =

���LWi
(S) − L

W̃i
(S)

��� ,
≈
����ΔW T

i ∇Wi
L(S) + 1

2
ΔW T

i ∇2
Wi

L(S)ΔWi

���� ,
=

���W T
i

∂L�(S)
∂Wi︸��������︷︷��������︸
�0

+
1

2
W �i HWi

Wi︸���������︷︷���������︸
expensive

���.
(5)

ACM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 4, Article 61. Publication date: July 2025.

HAPE: Hardware-Aware LLM Pruning For Efficient On-Device Inference Optimization 61:9

The second line of Equation (5) was derived by second-order Taylor expansion with the latter
terms ignored. We replace ΔWi with Wi because ΔWi = Wi . Here, the only deviation is the re-
moval of Wi . HWi

is the Hessian matrix, which denotes the second-order derivative as accuracy
dependency. The computation complexity of Hessian is O(‖Wi ‖2), which is much more expensive
than first term. Some assume that the second term is a diagonal matrix and use diagonal value as
accuracy importance [28]. In their scenarios, the first-order derivative is usually unusable because
they assume the original model is well pre-trained and the first-order derivative for all structures
Wi are 0. On the other hand, some propose to avoid using Hessian Matrix for its computation cost
is high [29] by claiming the first-order gradient is not zero under different tuning/test dataset. In
our case, our sample set S is deliberately sampled from another calibration dataset instead of the
original training set, so this ∂L�/∂Wi � 0. In this way, we can follow [29] to utilize the first-order
derivative information by directly using the gradient information from back-propagation as accu-
racy information. We can also avoid the effort of deriving following higher-order derivative, which
is rather expensive. Therefore, our accuracy importance is more efficient.

Our hardware-aware importance I assigned to each structure Wi is designed to estimate both
accuracy and latency regarding both objectives:

IWi
= β1IlatWi

+ β2IaccWi
, (6)

therefore, is composed of both accuracy importance and latency importance, where β1 and β2 are
weights for each objective. For the selection of β1 and β2, it’s important to emphasize that accuracy
is prioritized over latency, which is intuitive. For instance, if we set β1 = 1 and β2 = 0, the score
IWi
= IlatW i , meaning only the most computation-intensive components would be pruned, leading

to severe accuracy collapse. Conversely, setting β1 = 0 and β2 = 1 makes IWi
= IaccW i , resulting in

traditional Taylor/gradient-based pruning with guaranteed accuracy but potentially suboptimal
latency. In our experiments, we avoid sacrificing significant accuracy for latency improvement,
especially when critical components are pruned. Thus, we set β1 = 0.05 and β2 = 0.95. Additionally,
since the value ranges of IlatW i and IaccW i differ, we normalize them to the same range (0,1) before
combining into one score.

3.3 Joint On-device Sparse Compilation Flow

Sparsification is not the final stage of our objective. We need to guarantee the on-device perfor-
mance satisfies the latency/accuracy requirement on the local devices. We propose joint sparse
compilation at the local platform along with the HAPE pruning strategy for utter performance op-
timization at deployment. We apply a full-stack compilation flow into our pruning flow, including:
(1) computation graph tracing; (2) graph lowering and operation fusion; (3) sparse kernel dataflow
optimization.

Original pruning objectives simplify the problem and ignore the hardware detailed implementa-
tion of each sparse operation. However, such a step is rather critical. A different dataflow/loop-level
implementation for the same operation, even with the same sparse pattern, can perform signifi-
cantly various inference latency. As we have analyzed in Table 1, the majority of computation
layers within each transformer block are general matrix multiplication (large scale). Figure 4 is a
visual example of hardware dataflow schemes and data layout influence: For a single sparse general
matrix multiplication, the Inner-product scheme requires reading the first matrix by row and the
second matrix by column, where the best encoding scheme for two input matrices is compressed

sparse row (CSR) and compressed sparse column (CSC). The encoding scheme determines the
data layout on memory, where a consistent visit on continuous words on memory can reduce the
cache-miss rate and increase memory read/write efficiency. A negative example is that the inner-
product scheme reads the first matrix by row while the data layout on memory is column-based.

ACM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 4, Article 61. Publication date: July 2025.

61:10 W. Zhao et al.

Fig. 4. Visualization of joint compilation pruning. The upper part is an overview of all stages of post-pruning

sparse compilation flow. The lower part is a visual demonstration of pruned candidates with different

dataflow.

In this case, each element-wise read will jump to a different column and cause a cache miss, which
will result in a very slow multiplication. On the other hand, the Outer-product scheme reads the
first matrix by column and the second matrix by row. Our HAPE flow is aware of this low-level
feature with post-compilation feedback.

Apart from that, pruning should also consider the hardware memory and computation con-
straint, which is another deterministic factor on latency. We also use the sparse matrix multipli-
cation example in Figure 4, where the “red” flow denotes inner-product and “green” flow denotes
outer-product, the “purple” is the row-based product (in between). Assuming the input matrices
are A,B with size d1 × d2 and d2 × d3. If we focus on computation cost, the outer-product is much
more efficient because it only read A and B for once. The inner-product instead read each row of
A for d3 times and each column of B for d1 times, resulting in repetitive computation. However, on
the other hand, the outer-product requires large memory size/bandwidth for it to update the en-
tire output at each round. Transforming such as loop-tiling is required to handle large matrix tile
by tile for less computation cost and less burden on large-scale “reduce” and less memory/cache
pressure. On-device optimization on these kernel-level parameters such as tile size or loop order,
can help balance the hardware resources with optimized sparse kernel.

Another critical factor in the HAPE flow to explore the pruned inference potential is graph-level
optimization. As shown in the upper part in Figure 4, when the computation graph is traced, we
can fuse the consecutive sparse operations based on predefined rules so that multiple operations
are merged into single kernels such that unnecessary data read/write between layers can be saved.
Such operator fusion holds two advantages: (1) The computation flow is simplified, and redundant
calculation is saved. (2) Cross-layer internal data can skip being saved and loaded during the exe-
cution of different layers. Moreover, this step aligns with the inter-dependent neuron-fusion step
in Section 3.1, where inter-dependent neurons with consecutive order can be fused into a single
unit and pruned as a single unit.

ACM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 4, Article 61. Publication date: July 2025.

HAPE: Hardware-Aware LLM Pruning For Efficient On-Device Inference Optimization 61:11

ALGORITHM 1: Complete HAPE Pruning Flow

1: Input: sample set S, initial sparsity ratio α0, target latency Ψlat , accuracy threshold Φacc , pre-trained LLM

M, sparsity ratio gap λ;

2: t ← 0, α0 ← 0.2;

3: Ilat , Iacc ← M.forward(S); //On-device. � Equation (4)

4: M← Dependency Fusion(M);
5: IWi

← for allWi ∈ M; � Equation (6)

6: Msparse ← Cross-layer Prune(M,α0);
7: Computation graph G ← Trace(Msparse)
8: Optimized Sparse Kernels K← Compile(G) // On-device.
9: Latency T0, accuracy P0 ← K.forward(S)

10: if T0 ≤ Ψlat and P0 ≥ Φacc then

11: Return K; // Deploy successfully. Finish.
12: end if

13: while Pt ≥ Φacc do // Need further pruning.
14: t ← t + 1,αt ← αt−1 ∗ 2;

15: Msparse ← Cross-layer Prune(M,αt));
16: G ← Trace(Msparse);
17: K← Compile(G); // On-device.
18: Tt , Pt ← K.forward(S);
19: if Tt ≤ Ψlat then

20: while αt − αt−1 ≥ λ; do // Mitigate over-pruning.
21: t ← t + 1;

22: αt ← binary_search(αt−1,αt−2);
23: K← Compile(Trace(Prune(M,αt)));

24: end while

25: Return K; // Deploy successfully. Finish.
26: end if

27: end while

28: Report: Infeasible latency/accuracy requirement on given hardware
platform.

3.4 Complete HAPE Progressive Pruning Flow

Our complete pruning flow with joint on-device compilation is illustrated in Algorithm 1. In a
real deployment scenario, given a local hardware platform and deployment inference latency re-
quirement Ψlat , we start with on-device inference with one batch of N calibration data to derive the
accuracy sensitivity and latency importance. In practice, we only use 10 calibration samples for this
step. Once we achieve the block-wise grouping and ranking, we start with an initial sparsity ratio.
Just in case if the latency requirement is not met meanwhile accuracy is still beyond threshold Φacc ,
we can progressively increase the sparsity ratio to fit the deployment requirement. At each round,
we increase the sparsity ratio ×2. To avoid the over-excessive pruning, once the target latency Ψlat

is met at round t , we apply a binary search between αt and αt−1 to mitigate the increasing step size.
Within each step, we evaluate the on-device accuracy and compile the pruned sparse model with
all graph-level optimization and operation-level dataflow optimization to retrieve the genuine per-
formance feedback. Given this progressive pruning flow, we can fully explore the sparse inference
capability on certain devices. Even if the model cannot fulfill the latency/accuracy target, we can
report the Pereto-optimal performance boundary with fully-optimized inference time for different
sparsity ratios.

ACM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 4, Article 61. Publication date: July 2025.

61:12 W. Zhao et al.

Fig. 5. Pruning time cost comparison with conventional transformer compression flow [9], whose down-

tasking requires fine-tuning on original LLM model.

4 Experimental Results

4.1 Implementation Details

We utilize half-precision Llama-2-7B-hf [2] from META’s official huggingface repository as
the benchmark LLM model. The CPUdevice for deployment is Intel(R) Xeon(R) Silver 4210R
CPU@2.40GHz. The GPU device for deployment as comparison is Nvidia H800 with 80 GB HBM
size. The pruning algorithm was implemented in PyTorch, including model forward/backward and
Autograd to collect the gradient of each pruning unit for importance estimation. We use TorchDy-
namo and Triton [30] for computation graph tracing and sparse kernel implementation, as well as
the optimization on the hardware device. For the sample set to collect importance, we use sample
size N = 10 with each item as a randomly generated sequence with a length of 128. For fair com-
parison, we prune the Llama-2-7B-hf [2] from the 4-th decoder block to the 30-th decoder block,
which is exactly the same setting as LLM-pruner.

Dataset and Evaluation. Our pruning stage does not require a training set. For evaluation, we
follow the same setting as Llama [2] to perform zero-shot task classification on seven common
sense reasoning datasets to test the model performance on accuracy (%): BoolQ [31], PIQA [32],
HellaSwag [33], WinoGrande [34], ARC-easy [35], ARC-challenge [35], and OpenbookQA [36].
We implement evaluation code using the same lm-evaluation-harness library [37], which is com-
monly used for language model performance evaluation. To evaluate the down-tasking ability, we
use the same dataset as LLM-Pruner: zero-shot perplexity (PPL) analysis on WikiText2 [38] and
PTB [39]. These two benchmarks use perplexity (PPL) as metrics. Higher perplexity (PPL) denotes
worse accuracy performance.

4.2 Pruning Efficiency

Figure 5 is the pruning time comparison with the conventional method TinyBert [9], which fine-
tunes the original model parameters for following compression and down-tasking by distillation.
However, due to the gigantic size of current LLM models, it costs more than 3.5 days to tune Llama-
2-7B [2] on 4 GPUs. In comparison, our pruning strategy only requires 1.6 hours on a single CPU
device. The pruning stage only takes 10 sample inputs with a sequence length of 128. Even if we
apply the same LoRA-based recovering stage in LLM to repair the accuracy drop from post-training
pruning, the overall time consumption is only 5.4 hours, which is still 94% faster than TinyBert [9].

In addition to time cost removal, HAPE does not require a large server cluster or a consider-
able amount of data. We prune the model simply on a CPU device Intel(R) Xeon(R) Silver 4210R
CPU@2.40GHz. Such an advantage significantly reduce the difficulty of the down-tasking and
deployment of LLM in real scenarios.

4.3 Performance Analysis

Model Accuracy. First, we compare with the state-of-the-art LLM-Pruner [29] on the common
Llama benchmark [2]: zero-shot task classification evaluation. We evaluate the same seven

ACM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 4, Article 61. Publication date: July 2025.

HAPE: Hardware-Aware LLM Pruning For Efficient On-Device Inference Optimization 61:13

Table 2. Performance Comparison on Accuracy (%) and Inference Latency (s) at Different Sparsity Ratio on

Llama-2 (7B) on CPU Device

Pruning Ratio Method granularity BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg. Acc. Avg. time

Ratio = 0.0% Original 71.10 78.35 56.70 67.01 69.28 39.85 31.80 59.15 66.8

ratio = 20%
LLM-Pruner [29] Layer-wise 55.60 61.32 30.26 51.54 39.18 20.56 18.80 39.61 51.4

HAPE Transformer 53.49 76.77 51.18 64.48 66.54 37.20 28.20 53.98 42.4

ratio = 40%
LLM-Pruner [29] Layer-wise 58.72 64.58 35.95 52.01 43.90 23.12 19.40 42.52 42.6

HAPE Transformer 51.83 75.73 48.26 60.62 57.91 31.57 27.00 50.41 36.4

ratio = 60%
LLM-Pruner [29] Layer-wise 40.34 54.57 27.24 50.83 30.51 20.14 15.20 34.11 33.4

HAPE Transformer 59.08 69.04 38.19 52.01 47.69 25.77 22.00 44.82 30.0

Table 3. Performance Comparison on Accuracy (%) and Inference Latency (s) at Different Sparsity Ratio on

Llama-3.1 (8B) on GPU Device

Pruning Ratio Method granularity BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg. Acc. Avg. time

Ratio = 0.0% Original 83.21 82.54 79.80 75.14 83.08 56.23 46.40 72.34 0.1894

ratio = 20%
LLM-Pruner [29] Layer-wise 76.73 76.66 69.64 67.56 72.90 44.03 40.00 63.93 0.3448

HAPE Transformer 76.54 79.11 75.38 68.98 77.23 48.55 44.20 67.14 0.2196

ratio = 40%
LLM-Pruner [29] Layer-wise 64.34 66.70 47.91 56.04 56.57 30.20 30.00 50.25 0.3410

HAPE Transformer 63.24 75.84 61.53 58.80 64.52 37.12 35.40 56.64 0.3018

ratio = 60%
LLM-Pruner [29] Layer-wise 61.01 58.43 30.55 50.28 34.97 22.78 25.40 40.49 0.3426

HAPE Transformer 47.80 70.84 50.38 57.22 55.05 30.89 30.80 49.00 0.16334

benchmark datasets as Llama [2]. We list the performance under different sparsity ratios: 20%,
40%, and 60% to show that our strategy has a solid performance advantage. In Table 2, our
HAPE pruning strategy applies dynamic ratios within each transformer block and a fixed overall
pruning ratio for each block. In contrast, we set the baseline method’s pruning granularity at each
layer to show the performance improvement from the flexible pruning ratio assignment. At this
evaluation stage, we add the same LoRA-based 2-epoch recovery tuning on the pruned model as
LLM-Pruner [29] described for fair comparison. Table 2 has shown our pruning strategy performs
16%, 19% and 36% better performance at three ratios. Interestingly, we notice the performance of
a 60% pruning ratio on BoolQ surpasses that of a 40% pruning ratio. Such inconsistency is due
to the dataset itself as we notice inconsistency in Table 3 such that our model shows accuracy
degradation. We use the lm-evaluation-harness library [37] for evaluation, which is the public
evaluation benchmark to make sure the evaluation process is solid and consistent.

In order to prove the advantage of our method, we also evaluate the performance on Llama-3.1
(8B) on Nvidia H800 GPU. The result is shown in Table 3. The result shows that HAPE can also
achieve better performance on Llama-3.1 (8B) on Nvidia H800 GPU. The performance improvement
is 5%, 12%, and 21% at three ratios. We also set an ablative study on the down-tasking ability with
dynamic ratio assignment within transformer block in Figure 6. We prune the model from 15% all
the way to 60% and notice that the dynamic ratios can reduce the perplexity by over 102 times. It is
shown that HAPE holds better down-tasking ability as the pruning ratio increases with dynamic
ratio, avoiding exponentially increased PPL.

Inference Latency. We also compare the inference latency. HAPE’s on-device sparse compilation
helps optimize inference speed. We conduct speed evaluation on sparsity ratio: 20%, 40% and 60%
as well. In order to emulate the transformer inference on natural language query with a series of
tokens, we start with a sequence with a length of 128 tokens and collect the time for predicting the
next token for fair comparison. We skip the first ten inferences to avoid cold-start influence, and
conduct 50 inferences five times, and calculate the average time in Table 2. We achieve 21.2%, 17.1%,
and 11.3% faster inference with during-pruning sparse compilation optimization on the device.
However, if we look at the inference speed in Table 3 vertically, the inference speed trend varies

ACM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 4, Article 61. Publication date: July 2025.

61:14 W. Zhao et al.

Fig. 6. Evaluation on down-tasking ability with/without cross-layer dynamic ratio. Benchmark WikiText2

and PTB with metric of logarithmic perplexity (PPL) with base 10.

Fig. 7. Optimal frontiers Visualization. HAPE shows both superior accuracy and speed.

from the CPU device. The inference speed on Nvidia H800 GPU does not necessarily increase
with increased pruning ratio. This is because the GPU has a different architecture and memory
hierarchy. More importantly, the sparsity pattern instead of the sparsity ratio is the dominating
factor after compilation into sparse kernels. We can tell the same result in both Table 3 (on Llama-
3.1-8B) and Figure 8 (on Llama-2-7b).

Optimal Pareto Frontier. Last but not least, we evaluate the complete progressive pruning flow
of HAPE and compare it with the complete flow of LLM-Pruner and plot the optimal frontier re-
garding on-device accuracy and inference speed in Figure 7. At this stage, we conduct pruning
from all reasonable sparsity ratios ranging from 15% to 60%. As an example, we plot PPL on Wiki-
text2 and speed on next-token prediction time with sequence length 128. In Figure 7, the lower
curve connecting “red” dots is the optimal Pareto frontier of HAPE, depicting the best accuracy-
speed performance tradeoff that HAPE can reach. The upper curve connecting blue dots is the
optimal Pareto frontier of the baseline LLM-Pruner. The “pink” area bounded by the two curves
symbolizes our performance superiority. Apart from that, the two curves have no cross, indicating
that we dominate the superiority at all pruning ratios.

Hardware Applicability. We also evaluate the hardware applicability of HAPE on a range of
hardware backends. We conduct the same optimal frontier evaluation on Nvidia H800 GPU in
Figure 8. The evaluation is conducted on the same Llama-2-7B model with the same sequence
length of 128. The result shows that HAPE can also achieve the same performance superiority on
Nvidia H800 GPU with 80 GB HBM memory. The optimal frontier is similar to the CPU device,

ACM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 4, Article 61. Publication date: July 2025.

HAPE: Hardware-Aware LLM Pruning For Efficient On-Device Inference Optimization 61:15

Fig. 8. Hardware applicability: Optimal frontier visualization of nvidia H800 GPU.

Table 4. Performance Analysis of Model Parameter Numeric Influence on Llama-2 (7B)

and Llama-3 (8B), their Different Embedding Part is Unchanged in Pruning Process

Ratio Model B.Q PIQA H.S. W.G. A.-e A.-c OBQA

0%
Llama-2 (7B) 71.10 78.35 56.70 67.01 69.28 39.85 31.80

Llama-3 (8B) 83.00 80.63 61.36 74.66 83.29 55.72 35.80

20%
Llama-2 (7B) 53.49 76.77 51.18 64.48 66.54 37.20 28.20

Llama-3 (8B) 76.67 77.53 53.13 68.19 71.51 41.04 28.20

40%
Llama-2 (7B) 51.83 75.73 48.26 60.62 57.91 31.57 27.00

Llama-3 (8B) 71.83 76.50 50.88 65.59 67.34 36.35 28.20

60%
Llama-2 (7B) 59.08 69.04 38.19 52.01 47.69 25.77 22.00

Llama-3 (8B) 61.19 71.65 42.33 60.06 58.21 29.01 24.80

which indicates that HAPE is hardware-agnostic and can be applied to a wide range of hardware
backends. Interestingly, the optimal frontier on Nvidia H800 GPU is different from the CPU device,
whose inference speed does not necessarily increase with increased pruning ratio. This is because
the GPU has a different architecture and memory hierarchy compared to the CPU device. The
optimal frontier on Nvidia H800 GPU shows that the inference speed can be improved by 10%
with a 60% pruning ratio, which is different from the CPU device. This indicates that HAPE can
achieve different performance superiority on different hardware backends.

Model Parameters Influence. We also validate the influence of the numerical difference of model
parameters. We conduct same pruning process on LLama-3-8B [40] and evaluate the model per-
formance before and after the same LORA-tuning. The core idea comes from the fact that Llama-
2-7B [2] and Llama-3-8B [40] share nearly similar architecture: both with 32 transformer layers
the same hidden dimension of 4,096. A trial difference is the projection dimension goes to 14,336
from 11,008, which is not the dominating factor. The main difference is the vocabulary size, which
results in embedding dimension of 128,256 for Llama-3 and 32,000 for Llama-2, however, this em-
bedding stage is invariant in our framework and will not adjust during pruning, therefore, the
pruning candidates are similar. From Table 4 we discover that Llama-3-8B performs somewhat
better than Llama-2-7B under same pruning ratio: 20%, 40%, 60% with10.17% ↑, 12.4% ↑, 10.67% ↑
improvement from model parameters influence after LORA-tuning.

On the other hand, we evaluate the zero-shot performance without LORA-tuning. The direct
performance on WikiText2 and PTB shows that Llama-3-8B shows much higher robustness as
pruning ratio increases. Figure 9 indicates that as the pruning ratio increases from 0% to 60%,

ACM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 4, Article 61. Publication date: July 2025.

61:16 W. Zhao et al.

Fig. 9. Comparison of robustness to pruning. Under original model or 20% pruning, Llama-3-8B may not per-

form better than Llama-2-7B. As pruning ratio increases, Llama-3-8B shows robustness with less perplexity

increase.

Llama-2-7B gives perplexity from 12.18 to 166.86 on WikiText2 and 48.37 to 347.7 on PTB. On the
other hand, Llama-3-8B gives 14.14 on WikiText2, which is even worse than Llama-2-7B, however,
reaches a much lower 59.86 at 60% pruning ratio, and the same trend for PTB. Therefore, We can
tell the model parameter numeric also matters to the pruning robustness.

5 Conclusion

We hold the key insight that LLM model pruning shall not be decoupled from hardware backend
information when being deployed. Therefore, we propose HAPE: a hardware-aware LLM prun-
ing strategy for efficient LLM compression and deployment on general-purpose hardware. This
framework is a post-training pruning flow that involves backend information and on-device opti-
mization at each stage. We avoid the time-consuming and expensive fine-tuning on the original
LLM model. As a matter of fact, we successfully conducted the pruning process with a single CPU
device and a tiny time budget. Not only did we accumulate on-device latency sensitivity for im-
portance assignment, but we also brought in on-device compilation to retrieve genuine inference
feedback during pruning. We also apply dynamic pruning ratios within each transformer block for
flexibility. We accomplish the optimality in both performance and efficiency with our on-device
hardware-aware optimization.

References

[1] Luciano Floridi and Massimo Chiriatti. 2020. GPT-3: Its nature, scope, limits, and consequences. Minds and Machines

30, 1 (2020), 681–694.

[2] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,

Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen,

Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami,

Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian

Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana

Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, An-

drew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan

Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan,

Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,

Sergey Edunov, and Thomas Scialom. 2023. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint

arXiv:2307.09288.

[3] Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. 2019. Bert: Pre-training of deep bidirectional

transformers for language understanding. In Proceedings of the Annual Conference of the North American Chapter of

the Association for Computational Linguistics (NAACL’19).

ACM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 4, Article 61. Publication date: July 2025.

HAPE: Hardware-Aware LLM Pruning For Efficient On-Device Inference Optimization 61:17

[4] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia

Polosukhin. 2017. Attention is all you need. Annual Conference on Neural Information Processing Systems 30, 1 (2017),

5998–6008.

[5] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. Gonzalez, Hao

Zhang, and Ion Stoica. 2023. Efficient memory management for large language model serving with PagedAttention.

In Proceedings of the ACM Symposium on Operating Systems Principles (SOSP’23).

[6] Tri Dao. 2023. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv preprint

arXiv:2307.08691. 2023.

[7] Eldar Kurtic, Daniel Campos, Tuan Nguyen, Elias Frantar, Mark Kurtz, Benjamin Fineran, Michael Goin, and Dan

Alistarh. 2022. The optimal BERT surgeon: Scalable and accurate second-order pruning for large language models. In

Findings of the Association for Computational Linguistics: EMNLP. 4163–4181.

[8] Wenqian Zhao, Qi Sun, Yang Bai, Wenbo Li, Haisheng Zheng, Bei Yu, and Martin DF Wong. 2021. A high-performance

accelerator for super-resolution processing on embedded GPU. In Proceedings of the IEEE/ACM International Confer-

ence on Computer-Aided Design (ICCAD’21). IEEE, 1–9.

[9] Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu. 2020. TinyBERT: Dis-

tilling BERT for natural language understanding. In Findings of the Association for Computational Linguistics: EMNLP.

4163–4174.

[10] Xufeng Yao, Fanbin Lu, Yuechen Zhang, Xinyun Zhang, Wenqian Zhao, and Bei Yu. 2024. Progressively knowledge

distillation via re-parameterizing diffusion reverse process. In Proceedings of the AAAI Conference on Artificial Intelli-

gence (AAAI’24).

[11] Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jin Jin, Xin Jiang, Qun Liu, Michael Lyu, and Irwin King. 2021. Binary-

BERT: Pushing the limit of BERT quantization. In Proceedings of the Annual Meeting of the Association for Computa-

tional Linguistics (ACL’21). 4334–4348.

[12] Zehua Pei, Xufeng Yao, Wenqian Zhao, and Bei Yu. 2023. Quantization via distillation and contrastive learning. IEEE

Transactions on Neural Networks and Learning Systems 35, 1 (2023), 17164–17176.

[13] Deming Ye, Yankai Lin, Yufei Huang, and Maosong Sun. 2021. TR-BERT: Dynamic token reduction for accelerat-

ing BERT inference. In Proceedings of the Annual Meeting of the Association for Computational Linguistics (ACL’21).

5798–5809.

[14] Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and Jimmy Lin. 2020. DeeBERT: Dynamic early exiting for accelerat-

ing BERT inference. In Proceedings of the Annual Meeting of the Association for Computational Linguistics (ACL’20).

2246–2251.

[15] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. 2022. Llm. int8 (): 8-bit matrix multiplication for

transformers at scale. CoRR abs/2208.07339. 2022.

[16] Song Han, Jeff Pool, John Tran, and William Dally. 2015. Learning both weights and connections for efficient neural

network. Annual Conference on Neural Information Processing Systems 28, 1 (2015), 1135–1143.

[17] Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, and Qun Liu. 2020. Dynabert: Dynamic bert with adaptive

width and depth. Annual Conference on Neural Information Processing Systems 33, 1 (2020), 9782–9793.

[18] Woosuk Kwon, Sehoon Kim, Michael W. Mahoney, Joseph Hassoun, Kurt Keutzer, and Amir Gholami. 2022. A fast

post-training pruning framework for transformers. Annual Conference on Neural Information Processing Systems 35, 1

(2022), 24101–24116.

[19] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. 2022. Gptq: Accurate post-training quantization for

generative pre-trained transformers. arXiv preprint arXiv:2210.17323.

[20] Se Jung Kwon, Dongsoo Lee, Byeongwook Kim, Parichay Kapoor, Baeseong Park, and Gu-Yeon Wei. 2020. Structured

compression by weight encryption for unstructured pruning and quantization. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR’20). 1909–1918.

[21] Xizi Chen, Jingyang Zhu, Jingbo Jiang, and Chi-Ying Tsui. 2020. Tight compression: Compressing CNN model tightly

through unstructured pruning and simulated annealing based permutation. In Proceedings of the ACM/IEEE Design

Automation Conference (DAC’20). IEEE, 1–6.

[22] Tianyang Yu, Bi Wu, Ke Chen, Chenggang Yan, and Weiqiang Liu. 2022. Data stream oriented fine-grained sparse

CNN accelerator with efficient unstructured pruning strategy. In Proceedings of the ACM Great Lakes Symposium on

VLSI (GLSVLSI’22). 243–248.

[23] Mingbao Lin, Rongrong Ji, Yuxin Zhang, Baochang Zhang, Yongjian Wu, and Yonghong Tian. 2020. Channel pruning

via automatic structure search. arXiv preprint arXiv:2001.08565.

[24] Zi Wang, Chengcheng Li, and Xiangyang Wang. 2021. Convolutional neural network pruning with structural re-

dundancy reduction. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’21).

14913–14922.

ACM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 4, Article 61. Publication date: July 2025.

61:18 W. Zhao et al.

[25] Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie Zhang, Kun Yuan, Wenxiu Sun, and Hongsheng Li. 2021.

Learning n: m fine-grained structured sparse neural networks from scratch. arXiv preprint arXiv:2102.04010.

[26] Mingbao Lin, Yuxin Zhang, Yuchao Li, Bohong Chen, Fei Chao, Mengdi Wang, Shen Li, Yonghong Tian, and Rongrong

Ji. 2022. 1xn pattern for pruning convolutional neural networks. IEEE Transactions on Pattern Analysis and Machine

Intelligence 45, 4 (2022), 3999–4008.

[27] Yuezhou Hu, Kang Zhao, Weiyu Huang, Jianfei Chen, and Jun Zhu. 2024. Accelerating transformer pre-training with

2: 4 sparsity. arXiv preprint arXiv:2404.01847.

[28] Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort. 2020. Up or down?

Adaptive rounding for post-training quantization. In Proceedings of the International Conference on Machine Learning.

PMLR, 7197–7206.

[29] Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023. Llm-pruner: On the structural pruning of large language models.

Advances in Neural Information Processing Systems 36 (2023), 21702–21720.

[30] Philippe Tillet, Hsiang-Tsung Kung, and David Cox. 2019. Triton: An intermediate language and compiler for tiled

neural network computations. In Proceedings of the 3rd ACM SIGPLAN International Workshop on Machine Learning

and Programming Languages. 10–19.

[31] Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina Toutanova. 2019.

BoolQ: Exploring the surprising difficulty of natural yes/no questions. In Proceedings of the 2019 Conference of the

North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1

(Long and Short Papers). 2924–2936.

[32] Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. 2020. Piqa: Reasoning about physical commonsense in

natural language. In Proceedings of the AAAI Conference on Artificial Intelligence. 7432–7439.

[33] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. 2019. HellaSwag: Can a machine really finish

your sentence?. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. 4791–4800.

[34] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. 2020. WinoGrande: An adversarial winograd

schema challenge at scale. In Proceedings of the AAAI Conference on Artificial Intelligence. 8732–8740.

[35] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind Tafjord. 2018.

Think you have solved question answering? try arc, the ai2 reasoning challenge. arXiv preprint arXiv:1803.05457.

[36] Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. 2018. Can a suit of armor conduct electricity? A

new dataset for open book question answering. In Proceedings of the 2018 Conference on Empirical Methods in Natural

Language Processing. 2381–2391.

[37] Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence Golding, Jeffrey Hsu,

Kyle McDonell, Niklas Muennighoff, et al. 2021. A Framework for Few-shot Language Model Evaluation. (Sept. 2021).

DOI:http://dx.doi.org/10.5281/zenodo.5371628

[38] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. 2022. Pointer sentinel mixture models. In Pro-

ceedings of the International Conference on Learning Representations.

[39] Mitch Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. 1993. Building a large annotated corpus of English:

The Penn Treebank. Computational Linguistics 19, 2 (1993), 313–330.

[40] Meta. 2024. Meta Llama 3. (2024). Retrieved April 5, 2024 from https://github.com/meta-llama/llama3

Received 8 July 2024; revised 18 February 2025; accepted 9 April 2025

ACM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 4, Article 61. Publication date: July 2025.

http://dx.doi.org/10.5281/zenodo.5371628
https://github.com/meta-llama/llama3

	1 Introduction
	2 Preliminaries
	2.1 Challenges of LLM Application
	2.2 Compression of LLM
	2.3 Hardware/Resource-Constrained Pruning

	3 Framework
	3.1 Cross-Layer Pruning with Grouping
	3.2 Hardware Aware Importance Estimation
	3.3 Joint On-device Sparse Compilation Flow
	3.4 Complete HAPE Progressive Pruning Flow

	4 Experimental Results
	4.1 Implementation Details
	4.2 Pruning Efficiency
	4.3 Performance Analysis

	5 Conclusion
	References

