
1942 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 5, MAY 2025

Sign-Off Timing Considerations via Concurrent
Routing Topology Optimization

Siting Liu , Ziyi Wang , Fangzhou Liu, Yibo Lin , Member, IEEE, Bei Yu , Senior Member, IEEE,
and Martin D. F. Wong , Fellow, IEEE

Abstract—Timing closure is considered across the circuit
design flow. Generally, the early stage timing optimization can
only focus on improving early timing metrics, e.g., rough timing
estimation using linear RC model or prerouting path length, since
obtaining sign-off performance needs a time-consuming routing
flow. However, there is no consistency guarantee between early
stage metrics and sign-off timing performance. Therefore, we
utilize the power of deep learning techniques to bridge the gap
between the early stage analysis and the sign-off analysis. A
well-designed deep learning framework guides the adjustment of
Steiner points to enable explicit early stage timing optimization.
Cooperating with deep Steiner point adjustment, we propose the
routing topology reconstruction to accelerate the convergence and
hold a reasonable routing topology. Further, we also introduce
Steiner point simplification as a post-processing technique to
avoid unnecessary routing constraints. This article demonstrates
the ability of the learning-assist framework to perform robust
and efficient timing optimization in the early stage with com-
prehensive and convincing experimental results on real-world
designs. With Steiner point adjustment alone, TSteinerPt, can
help the state-of-the-art open-source router to obtain 11.2%
and 7.1% improvement for the sign-off worst-negative slack
and total negative slack, respectively. Under the additional
joint optimization with routing topology reconstruction and
simplification, TSteinerRec can further save 25.9% optimization
duration with a better-sign-off performance.

Index Terms—Graph neural networks, steiner trees, timing.

I. INTRODUCTION

T IMING closure [1] is critical but challenging to meet
after the complete VLSI physical design due to the

explosive growth in transistors. Usually, the design stages
like placement and routing (PnR) are invoked iteratively to
subtly and tediously adjust the gate locations and metal wire
connections. It is considerably time-consuming to satisfy the
sign-off timing closure through numerous PnR iterations.

Received 5 April 2024; revised 30 July 2024 and 26 September 2024;
accepted 27 October 2024. Date of publication 27 November 2024; date
of current version 23 April 2025. This work was supported in part by the
Research Grants Council of Hong Kong, SAR, under Project CUHK14211824,
and in part by the MIND under Project MINDXZ202404. This article was
recommended by Associate Editor I. H. R. Jiang. (Corresponding author: Bei
Yu.)

Siting Liu, Ziyi Wang, Fangzhou Liu, and Bei Yu are with the Department
of Computer Science and Engineering, The Chinese University of Hong Kong,
Hong Kong, SAR (e-mail: byu@cse.cuhk.edu.hk).

Yibo Lin is with the School of Integrated Circuits, Peking University,
Beijing 100871, China.

Martin D. F. Wong is with the Computer Science Department, Hong Kong
Baptist University, Hong Kong, SAR.

Digital Object Identifier 10.1109/TCAD.2024.3506216

Researchers have explored timing considerations in the
early physical synthesis stages to address this timing closure
issue. Retiming [2] in the logic synthesis stage relo-
cates registers to reduce the cycle time while preserving
the circuit’s functionality. In the placement stage, the
net-weighting [3] and differentiable timing objective func-
tion [4] are proposed for timing-driven global placement.
The Lagrangian multipliers [5] help to optimize early timing
metrics in the detailed placement stage. However, only the
prerouting timing metrics, e.g., the Elmore model analysis on
the generated Steiner trees, are considered in these works,
which have a considerable gap to the accurate sign-off timing
metrics.

Further, early stage timing optimization studies have also
been pushed to the routing stage. Sign-off timing performance
is significantly affected by the routing strategies. Modern
routing frameworks always set wirelength as the first-order
optimization objective. Specifically, the most widely used
routers apply the Steiner minimum tree construction to split
the multipin nets into a set of two-pin nets to control
the routed wirelength. The generated Steiner trees limit the
routing topology during the following routing process and
somehow determine the post-route performance. To consider
timing performance in the routing topology generation stage,
researchers [6], [7] have set the path length minimization as
the optimization target with strategies like min-max resource
sharing [8] and [9] considers a novel Steiner shallow-light
tree algorithm for path length control. In the detailed rout-
ing stage, timing optimization was also considered during
track assignment via net weighting and detour [10], [11].
Besides optimizing metal wire connections, [12], [13] inte-
grated timing-driven consideration to the layer assignment
algorithms and benefited from the availability of different
metal layers. Various efforts have been applied to the early
physical synthesis stage to save the turnaround time under
the timing closure requirement. Notably, all the works above
are not directly targeted at the sign-off timing performance
but optimize the early timing metrics due to the high-
acquisition cost of sign-off timing evaluation. Therefore, the
physical synthesis engine urgently demands efficient sign-
off timing evaluation for a more accurate early stage timing
consideration.

Fortunately, recent progress in machine learning has per-
mitted fast and precise sign-off timing evaluation. For the first
time, Barboza et al. [14] proposed a two-stage framework
with carefully selected features (e.g., pin capacitance and net

1937-4151 c© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on April 24,2025 at 01:25:20 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2454-5561
https://orcid.org/0000-0002-1694-5047
https://orcid.org/0000-0002-0977-2774
https://orcid.org/0000-0001-6406-4810
https://orcid.org/0000-0001-8274-9688

LIU et al.: SIGN-OFF TIMING CONSIDERATIONS VIA CONCURRENT ROUTING TOPOLOGY OPTIMIZATION 1943

length) for sign-off net delay prediction in the prerouting stage.
PERT traversals [15] are then applied to obtain the global
timing metrics, i.e., endpoint slack. For further promotion,
He et al. [16] extracted more detailed timing-relative features
from a look-ahead RC network. Moreover, to directly evaluate
the global timing metrics, Guo et al. [17] developed an end-
to-end graph learning model inspired by static timing analysis
(STA). Reference [18] further adopts multimodal fusion to
consider the effect of complicated timing optimization tech-
niques successfully. Overall, these studies demonstrate the
feasibility of predicting sign-off time performance with a
deep learning framework and open new avenues for fast and
accurate early stage timing optimization.

This article focuses on explicit sign-off timing optimization
at the prerouting stage to accelerate the timing closure
process. As mentioned before, Steiner tree construction is
the routing topology generation step for the most widely
used routing frameworks to reduce the problem complexity.
In that case, we propose an efficient and effective deep
learning-assist optimization framework, TSteiner, to optimize
the routing topology for better-sign-off timing performance
via routing topology optimization. We provide two versions
of TSteiner in this work. Extended from the preliminary
version, TSteinerPt [19] with only learning-guided Steiner
point adjustment, TSteinerRec further adapts routing topology
reconstruction to accelerate the optimization convergence and
a post-optimization topology simplification technique to avoid
unnecessary topology constraints.

TSteiner framework exploits the power of graph learning to
build a precise sign-off timing evaluator that utilizes the rela-
tionship between the sign-off timing metrics and the routing
topology. On top of this learning-assist timing evaluator, we
build an adaptive optimization framework to iteratively adjust
the routing topology, including Steiner point positions and
the tree topology, in the early stage for better-sign-off timing
performance. Our proposed TSteiner framework is integrated
as the prerouting stage of a state-of-the-art (SOTA) open-
source design flow (Fig. 1) and evaluated the sign-off timing
performance on a set of open-source real-world designs from
the previous learning-based timing prediction work [17].

The major contributions of this article are listed as follows.
1) For the first time, we propose a concurrent early stage

timing optimization framework, TSteiner, based on a
customized graph learning framework to guide routing
topology optimization.

2) Extended from the preliminary work, TSteinerPt [19],
with learning-guided Steiner point adjustment alone,
TSteinerRec further includes routing topology recon-
struction during the optimization iterations to accelerate
convergence and a post-opt topology simplification tech-
nique.

3) The proposed TSteiner framework is fully automated
with an adaptive stepsize scheme and the auto-
convergence scheme, so there is no need to manually set
the stepsize and the number of optimization iterations
for designs.

4) We conduct comprehensive experiments on real-world
designs by integrating our TSteiner into the modern

Fig. 1. Physical design flow with TSteiner techniques marked as blue
blocks, including learning-guided Steiner point adjustment, routing topology
reconstruction, and routing topology simplification.

SOTA open-source routing flow. Compared to an
averaged 11.2% and 7.1% improvement for sign-off
worst and total negative slack (tns) bring by the
learning-guided Steiner point adjustment (TSteinerPt),
the TSteinerRec framework with additional reconstruc-
tion and simplification techniques can save 25.9%
optimization runtime and gain an average of 13.9% and
8.0% on the worst-negative slack (wns) and tns.

The remainder of this article is organized as follows.
Section II introduces timing closure, the background of Steiner
points, and the problem formulation. Section III presents algo-
rithm details of the proposed TSteiner framework. Section IV
presents and analyzes the experimental results of TSteiner.
Finally, Section V concludes this article.

II. PRELIMINARIES

A. Timing Closure

Ensuring the correct functionality of a circuit design flow
heavily relies on meeting the sign-off timing requirements,
which poses a critical challenge that needs to be addressed.

To analyze the timing, we extract timing paths from the
netlist. Each timing path consists of a startpoint and an
endpoint. The startpoint can either be a primary input (PI)
or the output pin of a register, while the endpoint can be a
primary output (PO) or the input pin of a register.

To achieve timing closure, the delay of each timing path
must satisfy specific constraints, such as being less than a
single clock cycle. A timing violation occurs when the slack,
denoted as se = re−ae, for a timing path endpoint e becomes
negative. Here, re represents the required time for e, and ae

denotes the arrival time of e.
To evaluate the timing performance, we use two significant

metrics here: 1) wns w(·) and 2) tns t(·). These metrics can
be calculated as follows:

w(·) = min
e

se

t(·) =
∑

e

{min{0, se}}. (1)

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on April 24,2025 at 01:25:20 UTC from IEEE Xplore. Restrictions apply.

1944 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 5, MAY 2025

Fig. 2. Relationship between Steiner tree and routing topology. The green
lines are the RSMT of the given net pins and the blue wires represent the
routing topology following the generated Steiner tree.

While timing awareness has been incorporated into various
stages of the physical design flow, previous academic endeav-
ors have primarily concentrated on enhancing early timing
metrics. These metrics typically involve evaluating linear RC
timing models and path lengths.

This has motivated us to seek a more explicit approach to
directly optimize the sign-off timing performance, specifically
the wns and tns metrics.

B. Routing Topology and Steiner Tree

Routing is typically divided into two stages: 1) global
routing and 2) detailed routing. In the global routing stage,
rough routing is performed on a coarse grid graph to provide
initial guidance for the subsequent detailed routing stage.
Detailed routing, on the other hand, operates on a fine grid
graph to establish connections between real metal wires while
minimizing design rule violations, following the guidance
provided by global routing.

The generation of a Steiner minimum tree plays a crucial
role in the overall routing process. This step decomposes
multipin nets into a set of two-pin nets, simplifying the
complexity of the routing problem. The rectilinear Steiner
minimum tree (RSMT) problem can be defined as follows,

Definition 1 (RSMT): Given a set of net pins P of n points,
the RSMT construction is to find a set S of additional Steiner
points such that the minimum spanning tree over {P ∪ S} has
minimum cost., e.g., the sum of the rectilinear, or Manhattan,
distances on all the connected edges.

As illustrated in Fig. 2, the modern Steiner minimum
tree is constructed on the Hannan grid graph [20] using
the given net pins, with the aim of minimizing the total
wirelength required to connect all the net pins. According to
the definition of Steiner trees in [20], we suppose a Steiner
tree of n nodes can only have at most (n–1) Steiner points
in this work. Recently, deep learning techniques are actively
used in the Steiner tree construction to efficiently solve the
RSMT problem [21], [22], [23]. Specifically, Liu et al. [22]
proposed a novel Steiner tree sequence encoding and then
applies reinforcement learning to efficiently generate a avail-
able RSMT solution with good wirelength. The generated
Steiner tree determines the routing topology, as it provides
the positions of Steiner points and the connections between
them. Consequently, the placement of Steiner points and
the connections in the Steiner tree significantly impact the
subsequent routing topology and can impose limitations on the
routing performance.

Fig. 3. Distribution of sign-off tns ratio of the updated solution with 10–50
times random Steiner point disturbance (within 5-grid region) to the original
one. The larger the ratio deviates from 1, the greater the impact is.

Techniques, such as the Steiner point adjustment, routing
topology reconstruction, and routing topology simplification,
are introduced in this work to optimize the routing topology.
These techniques aim to optimize the positions of the Steiner
points and the connections between two pins, with specific
objectives, such as improving sign-off timing performance.

C. Timing Optimization via Steiner Point Adjustment

In general, cells in a circuit design have strict geometric
constraints, such as nonoverlapping, as they represent physical
objects. On the other hand, Steiner points serve as auxiliary
points in the post-placement stage and do not have such strict
geometric constraints or predefined sizes.

Remarkably, our research has revealed that a random distur-
bance in the positions of Steiner points can exert a noteworthy
influence on the sign-off timing performance, as illustrated
in Fig. 3, where the random disturbance is applied to all the
Steiner points as same to the setting of our routing topology
optimization. However, it is important to note that the impact
of such random movement is considerably unstable, resulting
in only a minor average performance impact (with a ratio close
to 1.0).

These findings highlight the potential of utilizing Steiner
point adjustment for timing optimization and emphasize the
need for better guidance in determining their movement.
Previous studies have focused on Steiner tree-based early stage
timing optimization, considering longest path lengths as the
objective. However, the overall timing performance includes
the net delay and the cell delay, which influence each other in
a complex way

Therefore, there is a clear demand for more effective
algorithms that incorporate early stage timing-driven Steiner
point adjustment to achieve better-timing performance.

D. Graph Neural Networks

Graph neural networks (GNNs) have become an attractive
framework for mining graph data [24]. The most popular
GNNs follow an iterative message-passage scheme. Given a
graph G = 〈V,E〉, a hidden embedding h(k)

u corresponding
to each node u ∈ V is updated according to information
aggregated from u’s graph neighborhood N(u) during each
message-passing iteration in a GNN. The kth updating process
can be expressed as

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on April 24,2025 at 01:25:20 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: SIGN-OFF TIMING CONSIDERATIONS VIA CONCURRENT ROUTING TOPOLOGY OPTIMIZATION 1945

h(k+1)
u = UPDATE(k)

(
h(k)

u , AGGREGATE(k)
(

h(k)
v ∀v ∈ N(u)

))

= UPDATE(k)
(

h(k)
u , m(k)

N(u)

)
(2)

where UPDATE and AGGREGATE are differentiable func-
tions and mN(u) means the “message” aggregated from u’s
graph neighborhood N(u). With K iterations, we can define
node u’s embedding zu as

zu = hK
u ∀u ∈ V. (3)

GNNs based on the message-passing framework have shown
superior efficacy in learning graph structures. Recently, GNNs
have gained popularity in the electronic design automation
(EDA) community [25] because the circuits can be naturally
represented as graphs.

E. Problem Formulation

Definition 2 (Timing-Driven Routing Topology
Optimization): Given an initial Steiner tree set ST =
{T1, T2, . . . , Tn}, Ti = (Vi

c, Vi
s, Ei), where Vi

c is the set of
cell nodes, Vi

s is the set of Steiner nodes and Ei means the
edges connecting Vi

c and Vi
s of the ith Steiner tree, our task

is to refine the position (Xs, Ys) of Vs = {Vi
s, 1 ≤ i ≤ n} and

optimize the connections in Steiner trees in the prerouting
stage to obtain better-sign-off timing performance.

III. ALGORITHM

In this section, we will illustrate our solution, TSteiner,
for timing-driven routing topology optimization. The overall
flow is first mentioned to guide the following details on the
optimization gradient generation and the routing topology
optimization process.

A. TSteiner

Before diving into the details of the TSteiner framework, we
first illustrate the overall flow in Fig. 4. The TSteiner can be
split into three parts. First, given the initial (updated) Steiner
trees, a differentiable sign-off timing prediction engine gener-
ates the corresponding topology optimization gradients. Then,
TSteiner applies the topology optimization gradients to guide
Steiner point refinement with routing topology reconstruction.
Note that the optimization gradient generation and routing
topology optimization are executed iteratively and alternately
until the convergence is obtained. We applied the same sign-off
timing prediction engine to evaluate the convergence. After all
the optimization iterations, a routing topology simplification
strategy is proposed to remove the redundant Steiner points to
leave more optimization space for the subsequent stages.

B. Optimization Gradient Generation

The foundation of our gradient generation framework is
building the relationship between sign-off timing performance
and Steiner point positions. Specifically, we utilize the trending
GNN to construct an accurate sign-off timing evaluation model
with Steiner point position information as input. The gradients
for each Steiner point can then be generated automatically with

Fig. 4. Overall flow of TSteiner framework, including the optimization
gradient generation, the routing topology optimization, and the routing
topology simplification.

the model’s backward propagation procedure. Specifically, the
timing evaluation problem is formulated as follows,

Definition 3 (Sign-Off Timing Evaluation): Given a Steiner
tree solution ST , timing evaluation is to find an estimator T to
evaluate the sign-off timing metrics T(ST), i.e., arrival time at
each pin.

Unfortunately, all previous ML-driven prerouting timing
evaluators [14], [16], [17] did not consider Steiner points.
In this article, we design a customized model to integrate
Steiner trees into the SOTA prerouting timing prediction
framework [17].

Timing Evaluation Model Initialization: Unlike [17], which
builds the graph solely from netlist connections, we construct
an additional graph from the Steiner trees. The two graphs are
denoted as the netlist graph and Steiner graph, respectively,
as shown in Fig. 5. Precisely, the netlist graph reflects con-
nections between pins, which is heterogeneous with two edge
types: 1) cell edge and 2) net edge. Each cell edge links one
input pin of a cell with its output pin, while each net edge
connects a net’s drive pin to one of its sink pins. On the other
hand, the Steiner graph is node-heterogeneous with two types
of nodes, Steiner nodes and pin nodes, to distinguish Steiner

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on April 24,2025 at 01:25:20 UTC from IEEE Xplore. Restrictions apply.

1946 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 5, MAY 2025

Fig. 5. Overview of our proposed gradient generation flow driven by a customized timing evaluation model. The purple and green dots represent pin nodes,
while the blue triangle represents Steiner nodes. The forward inference starts from bidirectional propagation on the Steiner graph, followed by the propagation
on the netlist graph. Steiner graph broadcast and Steiner graph reduce are included in the bi-directional net propagation. Further, the blue lines depict the pin
embedding propagation on the netlist graph. The forward propagation is applied to obtain the pin arrival time evaluation, while the backward propagation is
used to collect the Steiner node gradients.

points from pins. As for edges, they are also heterogeneous,
with Steiner edges and net edges. Note that we level both the
Steiner graph and netlist graph according to the source-sink
relationship to facilitate the message-passing.

Timing Evaluation Model Inference: We propose a two-
stage message-passing scheme with the above two graphs
to fuse information from Steiner trees and netlists. The
scheme begins by aggregating information from the Steiner
graph, which can be divided into two steps: 1) broadcast and
2) reduce. In the broadcast step, information flows from each
net’s drive pin to sink pins along the Steiner edges, as denoted
by the purple lines in Fig. 5. During broadcasting, information
on the drive pin and associated Steiner points are aggregated
to each sink pin and fused to update the features of the sink
pins. Then, in the reduce step, the updated sink pins’ features
flow backward to the drive pin along the net edges to renew
the drive pin’s feature, as denoted by the green lines in Fig. 5.
The steps above are repeated until the Steiner tree information
is fully fused. In practice, we set three iterations.

After the message-passing on the Steiner graph, the Steiner
point position information, which we are interested in, has
been aggregated into the related pins’ features. The updated
pin features are then propagated on the netlist graph in topo-
logical order (denoted by the blue edges in Fig. 5) to generate
pin node embeddings, which can be used for predicting pin-
wise arrival time. Due to the page limitation, readers can
refer to the propagation model in [17] for details about input
features and the message-passing on the netlist graph.

Having the well-trained sign-off timing evaluator T, the
sign-off timing metrics (wns and tns) can be evaluated based
on the predicted endpoint arrival time, as introduced in (1).
Then, the timing penalty can be calculated using the following
equation:

P(T(ST)) = λww(T(ST))+ λtt(T(ST)) (4)

where w(T(ST)) and t(T(ST)) denote the evaluated wns and
tns. λw and λt are the weights for wns and tns, respectively.

Timing Penalty Smoothing: As the formal formulations of
wns and tns contain minimum or maximum operation, directly
applying the above penalty for backward propagation leads to
a cut-off in some timing paths. However, timing optimization
should consider all of the pins and paths globally. To overcome
the above drawback, we smooth the minimum and maximum
operations in the computation of wns and tns. To be more
specific, we replace the maximum operation with the Log-
Sum-Exp function LSE as follows:

LSE(x1, x2, . . . , xn) = γ log

(
n∑

i=1

exp
xi

γ

)
(5)

where γ is the parameter for the degree of smoothing, and
a larger γ indicates smoother results and lower accuracy.
Similarly, the minimum operation can be treated as the max-
imum operation of the inverse values. Finally, the smoothed
penalty function Pγ (T(ST)) can be expressed as

Pγ (T(ST)) = λwwγ (T(ST))+ λttγ (T(ST)) (6)

where wγ (·) and tγ (·) denote the smoothed version of
w(·) and t(·), respectively. With the smoothed penalty, the
timing optimization gradients w.r.t. Steiner points positions
(∇XsP,∇Ys P) can be computed automatically via backward
propagation, which is then used in our concurrent Steiner point
refinement flow as described in Algorithm 1. Since we only set
the feature of Steiner nodes’ positions as “gradient required,”
no gradient will be calculated for other features, e.g., pin node
positions.

C. Routing Topology Optimization

Having sign-off timing gradients ∇
X(t)

s
P w.r.t. the Steiner

points’ X coordinates X(t)
s in the tth optimization iteration, a

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on April 24,2025 at 01:25:20 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: SIGN-OFF TIMING CONSIDERATIONS VIA CONCURRENT ROUTING TOPOLOGY OPTIMIZATION 1947

concurrent Steiner point refinement algorithm will be applied
to update X(t)

s with the stochastic optimization algorithm
stochastic optimizer (SO) described as follows:

m(t)
x = (1− β1) · ∇X(t)

s
P

v(t)
x = (1− β2) ·

(
∇

X(t)
s

P
∇
X(t)

s
P
)

X′(t)s = X(t)
s − θ · m(t)

x√
v(t)

x + ε

(7)

where θ is the stepsize to optimize Steiner point positions; and
β1, β2, and ε are the hyperparameters. The update process for
Y(t)

s is similar to (7) and shares the same hyperparameters.
To boost the performance of our method on designs with

various scales, we propose an adaptive stepsize scheme that
automatically generates customized stepsize θ fitting every
design. Given the initial Steiner trees set ST , our adaptive
stepsize scheme Adaptive_Theta can be divided into three
steps.

1) Obtain the initial timing gradient (∇XsP,∇Ys P) w.r.t. the
given Steiner point positions (Xs, Ys).

2) Apply a small move

X′s = Xs + α∇XsP

Y ′s = Ys + α∇YsP (8)

where α is a hyperparameter to control the scale of θ .
3) Obtain the updated timing gradient (∇X′sP,∇Y ′s P).

The adaptive stepsize is then calculated as follows:

θ =
∣∣(Xs, Ys)−

(
X′s, Y ′s

)∣∣
2∣∣(∇XsP,∇Ys P

)− (∇X′sP,∇Y ′s P
)∣∣

2

. (9)

With the adaptive stepsize scheme, our concurrent Steiner
point refinement framework is described in Algorithm 1. The
algorithm begins by initializing variables and setting up the
optimizer (lines 1–5). Followed is the main part of the algo-
rithm that conducts refinement recursively until convergence.
In the tth iteration, the Steiner point positions are updated
using (7) to obtain the temporary Steiner trees S′(t)T (line 7).
S′(t)T will be stored if it achieves better-(evaluated) sign-off
timing performance (wns or tns). Elsewise, S(t)

T from the
previous iteration will be restored (line 13). The optimization
procedure stops when the sign-off timing metrics are fully
optimized (line 19) or it reaches the maximum optimization
iterations N (line 16).

D. Routing Topology Reconstruction

The Steiner point adjustment aims to optimize the Steiner
point positions based on learned information and previous
design data. While this adjustment can improve timing
performance, it is possible for the moved Steiner points
to deviate significantly from their original positions. This
deviation may result in wirelengths that are difficult to control
or manage effectively. In [19], we tried to set the same move
boundary for each Steiner point.

Having the optimized Steiner point positions, we pro-
pose routing topology reconstruction to save the unnecessary
detours as shown in Fig. 6. As described in Definition 1, the

Algorithm 1 Concurrent Steiner Point Refinement. The
Adaptive Step Size Scheme (Adaptive_Theta) and SO Are
Applied to Optimize the Steiner Point Positions Using (7)
Input: ST : initial Steiner trees; T: pretrained timing

prediction model; N: maximum optimization iterations; μ:
converge ratio.

1: init_wns ← w(T(ST)); best_wns ← w(T(ST));
2: init_tns ← t(T(ST)); best_tns ← t(T(ST));
3: θ ← Adaptive_Theta(ST);
4: t ← 0; S(0)

T ← ST ; X(0)
s ← Xs; Y(0)

s ← Ys;
5: Initialize the optimizer SO with θ ;
6: repeat
7: S′(t)T ← SO(S(t)

T , (∇
X(t)

s
P,∇

Y(t)
s

P));

8: wns ← w(T(S′(t)T)); tns ← t(T(S′(t)T));
9: if wns > best_wns or tns > best_tns then

10: best_wns ← wns; best_tns ← tns;
11: S(t+1)

T ← S′(t)T ;
12: else
13: S(t+1)

T ← S(t)
T ;

14: end if
15: t ← t + 1;
16: if t ≥ N then
17: break;
18: end if

19: until
init_wns− best_wns

init_wns
> μ or

init_tns− best_tns

init_tns
>

μ

20: return S(t)
T (Resulting Steiner Trees)

Fig. 6. Routing topology reconstruction with minimum spanning tree
generation. The original nodes and tree segments are colored green, while the
optimized ones are purple. The current root during the reconstruction process
is colored in red and the final routing topology is marked with a red dashed
circle.

Steiner minimum tree is to obtain the minimum spanning tree
to connect the point set, including both net pins and Steiner
points, under the minimum cost. Therefore, we adopt Prim’s
algorithm in TSteiner to rebuild the routing topology with

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on April 24,2025 at 01:25:20 UTC from IEEE Xplore. Restrictions apply.

1948 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 5, MAY 2025

Fig. 7. Routing topology simplification by removing redundant Steiner points
to alleviate unnecessary topology limitations. Here, s2 is removed since it
only connects two nodes in the given routing topology.

the source pin as the start root and control the signal paths
with optimized point positions. Note that the popular Steiner
tree construction algorithms are not applied since they will
generate more Steiner points and make the process more and
more complicated. The updated routing topology is reflected
on the Steiner graph in the previously introduced gradient
generation flow.

Our proposed optimization flow uses the routing topology
reconstruction in specific cycles to optimize our iterations, as
shown in Fig. 4. Further, the routing topology applied in the
subsequent routing stages also takes advantage of the routing
topology reconstruction.

E. Routing Topology Simplification

With the cooperation of routing topology optimization and
reconstruction, our TSteiner framework will output results
with optimal performance after convergence. It is worth noting
that our graph learning model only capture the position
information from Steiner point and calculate the distance based
on the Steiner graph connection information, which makes
our model treats the Steiner graph with a similar Manhattan
distance as similar timing performance. However, if the Steiner
point only connect to 2 pins, the subsequent routing process
will obey this unnecessary limitation and bring unnecessary
detours. In Fig. 6, it can be noticed that s2 no longer plays
the role of a Steiner point but only connects two nodes after
reconstruction. This causes s2 to be redundant and will limit
the routing performance. Therefore, we propose the routing
topology simplification as a post-processing technique.

As illustrated in Fig. 7, TSteiner will remove the redundant
Steiner points, like s2 here, and directly build a routing
topology edge between the two nodes they are connected
to. The idea of our routing topology simplification is direct
but very important for routing topology optimization with the
routing tree reconstruction technique to alleviate unnecessary
topology constraints. We also conducted an ablation study to
show the importance of routing topology simplification for an
optimization flow with reconstruction.

IV. EXPERIMENT RESULTS

A. Experiment Setting

Experiment Environment: We develop our concurrent
routing topology refinement framework with DGL [26],
Pytorch [27], and C++. The customized timing evaluation
model is trained and tested on a Linux machine with 16 Intel
Xeon Gold 6226R cores (2.90 GHz), 1 GeForce RTX 3090
Ti graphics card, and 24 GB of main memory. The input
features of Steiner graph and netlist graph described in Fig. 5

are extracted after the initial routing topology generation as
shown in Fig. 1. We obtain the pin arrival time (ground truth
labels) from Cadence Innovus’s reports1 after TritonRoute [28]
completes the detailed routing. Note that the cell delay is
around 50×–200× over the neighbor net delay under Skywater
130-nm process design kit (PDK). Cooperating with the bi-
directional net forward propagation, our TSteiner framework
would reduce the cell delay by optimizing the input transition
and output load with updated routing topologies. Further,
we verify the efficacy of the TSteinerRec framework over
the previous early stage timing optimization methods by
integrating before the modern SOTA routing flow to guide
the early stage timing-driven routing topology refinement.
Note that the integrated routing flow is running on the same
machine.

Experiment Flow: The initial routing topology solution is
generated by a widely used Steiner minimum tree construc-
tion algorithm, FLUTE [29], followed by the edge shifting
technique [30] for congestion alleviation. Then, the proposed
routing topology refinement framework is applied to optimize
the Steiner point positions and the routing topology. Having
the optimized routing topology, the modern SOTA open-
source routing flow, CUGR [31] as the global router and
TritonRoute [28] as the detailed router, is followed to generate
the final routing solution. Note that the maximum DR itera-
tions in TritonRoute here is fixed to 20 iterations. Both of them
are running with eight threads. Dr.CU [32] is not used here
since it cannot produce available detailed routing solutions
with too many design rule violations on our generated real-
world designs. In addition, we apply the industry-leading
commercial tool, Cadence Innovus, to complete the placement
stage and obtain sign-off timing analysis reports.2 All the
design flows are solution-deterministic.

Experiment Dataset: We prepare ten real-world open-source
designs for evaluation. All the designs are obtained from
OpenCores [33] and synthesized with the open-source 130-
nm PDK [34] as the same configuration to [17]. Note that
since some open-source designs in [17] can not be routed
successfully by the open-source routing flow, we use the ten
success designs as our evaluation benchmark here.

B. Sign-Off Timing Prediction Performance

The circuit benchmarks are split into training and testing
sets with the benchmark statistics listed in Table I. The training
and testing sets are determined by design scale in order to
make balance. Note that the separate strategy is only for the
graph learning model training and all the designs are applied to
evaluate our proposed routing topology refinement flow. The
timing evaluation model is trained on the training set with a
learning rate of 5e− 4.

Our sign-off timing evaluation model is employed to predict
the arrival time on each pin. Furthermore, we extract the
predicted arrival time on the endpoints to compute the required
timing metrics (wns and tns). Specifically, the R2 score is an

1report_cell_instance_timing [get_cells -hier
-hsc /].

2Use the Tcl command “timeDesign -postRoute” with OCV mode.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on April 24,2025 at 01:25:20 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: SIGN-OFF TIMING CONSIDERATIONS VIA CONCURRENT ROUTING TOPOLOGY OPTIMIZATION 1949

TABLE I
BENCHMARK STATISTICS. THE TEN BENCHMARKS ARE RANDOMLY

SPLIT INTO THE UPPER SIX BENCHMARKS FOR TRAINING AND THE

LOWER FOUR FOR TESTING. “# ENDPOINTS” REPRESENTS THE NUMBER

OF TIMING PATHS AND “CLOCK” MEANS THE CLOCK CYCLE (NS)

important metric to evaluate the coefficient of determination
in statistics (the closer to 1, the better), and the formal
formulation of R2 score with ground truth {g1, g2, . . . , gn} and
the predicted value {y1, y2, . . . , yn} is

ḡ = 1

n

n∑

i=1

gi, R2 = 1−
∑

i (gi − yi)
2

∑
i (gi − ḡ)2

. (10)

Our proposed timing evaluation model can accurately
predict sign-off timing metrics. Particularly, the R2 scores
of the arrival time prediction on all pins are 0.9959 in the
training cases and 0.9280 in the testing cases, indicating that
our timing evaluation framework well models the pin arrival
time. Since the calculations of wns and tns are based on the
endpoints’ arrival time, we also list the R2 scores for endpoint-
only prediction. The results show that the proposed evaluation
model consistently performs well on the endpoints.

C. Sign-Off Timing Optimization Performance

In this article, TSteinerRec includes the full three
stages, optimization gradient generation, routing topology
optimization with reconstruction and simplification, while
the TSteinerPt [19] only concludes the optimization gradient
generation and the routing topology optimization without
reconstruction. Here, TSteinerRec utilizes the same evaluation
model to TSteinerPt without further training. We also set
SALT [9] as targeting at the minimal path length to compare
our TSteinerRec to the traditional early stage timing consider-
ation in routing topology generation.

Within both concurrent routing topology optimization flows,
TSteinerPt [19] and TSteinerRec, we initialize λw as −200.0
and λt as −2.0. To smooth the penalty function described in
Section III-B, we set γ as 10.0. α in adaptive stepsize generation
is set to 5.0, and the converge rate μ in the concurrent Steiner
point refinement stage is set to 0.1. Starting from the fifth
iteration, we increase λw and λt by 1% in each following iteration
since the Steiner points may have already been optimized
enough with five iterations. The routing topology reconstruction
is called by every five optimization iterations in TSteinerRec to

save the reconstruction runtime. Lastly, For each design, we
constrain the largest moving distance according to the width
and length of the global routing grid graph. All the reported
metrics are obtained from Cadence Innovus.

With the above setting, Table II shows the detailed sign-off
timing metrics comparison on the wns, tns, and the number
of violated timing paths(#vios). As illustrated in Table II,
directly considering path length as the early timing met-
ric to optimization, as introduced in SALT [9], majorly
optimize the wns but is hard to optimize the global tns.
jpeg_encoder’s routing guides generated by the CUGR
global router with SALT [9] conflicts the track assign-
ment requirement in TritonRoute, resulting in unavailable
routing solution. Therefore, we remove jpeg_encoder
from the column “w/ SALT.” On the other hand, concluded
from Table II, with an early stage timing optimization strategy,
either TSteinerPt [19] or our TSteinerRec, before the modern
routing flow indeed helps to improve the sign-off timing
performance on both the local wns and the global tns.

In detail, on the one hand, TSteinerPt can obtain an averaged
11.2%, 7.1%, and 3.3% improvement on the wns, tns, and
the number of violated timing paths, respectively, with 32%
runtime overhead. On the other hand, the TSteinerRec with
additional routing topology reconstruction and simplification
techniques can further extend the optimization improvements
on wns and tns to 13.9% and 8% with only 14.3% runtime
overhead. At the same time, since the absolute values of the
worst and tns largely depend on the set clock frequency, we
focus on the comparison of wns here, because it can represent
the maximum frequency allowed for each design. We can see
from Table II, TSteinerRec can optimize the wns up to 58.1%
while TSteinerPt [19] can only bring up to 45.8% benefit. Also,
we separate the designs in Table II and give the averaged
performance for the training and testing designs, respectively.
The results show that whether on the model training set or the
test set, the optimization performance is good enough.

Further, we statistic the slack distributions in different
stages to show the necessity of adapting sign-off timing
performance to guide the early stage optimization. We pick
des3 and jpeg_encoder as the examples in Fig. 8(a)
and (b), respectively. To begin with, the pre-CTS slack
distribution has a huge gap to the post-Route one as shown
in the purple and blue distributions. Then, by comparing the
post-Route slack distribution with or without our proposed
TSteinerRec optimization stage, we can find that our learning-
guided routing topology refinement can not only optimize
the wns, but also optimize the whole distribution closer
to 0.0.

The above performance analysis demonstrates that our
TSteinerRec with full routing topology optimization flow is
better than simply refining the Steiner point positions in [19].
Also, the early stage timing optimization is crucial for the
sign-off timing performance.

D. Runtime Analysis

To better understand the overhead of running time and
whether the early stage optimization can benefit the subsequent
running process, we list the runtime breakdown in Table III.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on April 24,2025 at 01:25:20 UTC from IEEE Xplore. Restrictions apply.

1950 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 5, MAY 2025

TABLE II
SIGN-OFF TIMING METRICS COMPARISON BY INTEGRATING DIFFERENT EARLY STAGE TIMING OPTIMIZATION STRATEGIES INTO THE MODERN

OPEN-SOURCE ROUTING FLOW. HERE, WNS, TNS, AND #VIOS REPRESENT THE WORST-NEGATIVE SLACK, THE TOTAL NEGATIVE SLACK, AND THE

NUMBER OF TIMING VIOLATED PATHS

(a)

(b)

Fig. 8. Slack Distribution Comparison Among Different Settings, Including Pre-CTS, Post-Route Without Our TSteinerRec Optimization Stage, and Post-
Route With TSteinerRec. Here, We Select Two Different Designs des3 and jpeg_encoder and Only Statistic the Negative Slack. “Count” Means the
Number of Endpoints Within Each Slack Range. (a) des3. (b) jpeg_encoder.

In Table III, opt represents the early stage timing optimization
part, while global and detailed are separate global and detailed
routing flows. As illustrated in Table III, the utilization of early
stage optimization can save the running time of the detailed
routing stage by 6.6% and 8.6% on average. It points to the
fact that early stage timing optimization can further reduce
design rule violations since it reduces routing detours and
optimizes the use of routing resources. The running time of
the global routing stage increases slightly since the update of
Steiner point and routing topology with optimization results
is included. It is also worth noting that the running time of
routing topology optimization can be largely saved by 25.9%
by adding the routing topology reconstruction technique. The
reason for the acceleration is that the routing topology recon-
struction helps the convergence of the optimization iterations
and the routing topology simplification technique works to

Fig. 9. Optimization runtime scalability comparison over the increasing
number of cells.

remove unnecessary routing topology constraints. We further
illustrate the runtime trend with the increasing cell numbers
in Fig. 9. Compared to TSteinerPt, TSteinerRec is more robust

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on April 24,2025 at 01:25:20 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: SIGN-OFF TIMING CONSIDERATIONS VIA CONCURRENT ROUTING TOPOLOGY OPTIMIZATION 1951

TABLE III
RUNTIME BREAKDOWN OF DIFFERENT EXPERIMENTAL FRAMEWORKS, PURE MODERN ROUTING FLOW, THE MODERN ROUTING FLOW WITH

TSTEINERPT [19], AND THE MODERN ROUTING FLOW WITH TSTEINERREC. THE RUNTIME OF THE ROUTING TOPOLOGY OPTIMIZATION FRAMEWORK

(OPT), GLOBAL ROUTING (GLOBAL), DETAILED ROUTING (DETAILED), AND TOTAL RUNTIME (TOTAL) ARE LISTED BELOW

TABLE IV
DETAILED ROUTING SOLUTION PERFORMANCE COMPARISON, INCLUDING ROUTED WIRELENGTH(WL), THE NUMBER OF METAL VIAS(#VIAS),

AND THE NUMBER OF DESIGN RULE VIOLATIONS(#DRV). NOTE THAT THE WIRELENGTH METRIC IS IN μM

in terms of running time with the increasing number of
cells.

E. Routing Solution Quality

Besides the timing performance, we also care about the
routing solution quality on wirelength, the number of metal
vias, and the number of design rule violations, even though
these metrics are not directly included in our proposed routing
topology framework. The design rule checking results are
also reported by Cadence Innovus. As listed in Table IV, our
proposed early stage routing topology optimization framework
can obtain comparable routing solution quality. Further, the
listed results demonstrate that the routing topology recon-
struction and simplification techniques can better control the
routing quality compared to TSteinerPt [19].

F. Necessity of Routing Topology Simplification

As mentioned before, routing topology simplification is
really important to the optimization flow with routing topology
reconstruction. Note that our proposed simplification technique
is not used in TSteinerPt [19] since it does not change
the routing topology structure but just updates the Steiner

point positions. As illustrated in Fig. 10, The sign-off timing
performance is out of control by removing the simplification
but just keeping the routing reconstruction due to the impact
of redundant Steiner points. The simplification here is only
called for once for the post-processing but plays a crucial role
in controlling the overall performance.

G. Steiner Point Adjustment

Since the graph learning model in TSteinerRec is worked
as a closed box to provide optimization guidance, we statistic
the Steiner point adjustment distance and plot the distribution
in Fig. 11. As shown in Fig. 11, most Steiner points are moved
within a 5-grid distance. Specifically, several designs, APU,
chacha, cic_decimator, usb_cdc_core, and des,
have more than 50% Steiner points not moved. This may
inspired us that recognizing the most critical 20% Steiner
points to optimize is important for early stage optimization.

V. CONCLUSION

This article highlights the significant impact of rout-
ing topology on sign-off timing performance. We introduce

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on April 24,2025 at 01:25:20 UTC from IEEE Xplore. Restrictions apply.

1952 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 5, MAY 2025

(a) (b) (c)

Fig. 10. Ablation study to show the necessity of routing topology simplification. Three comparisons on the averaged wns, tns, and the number of violated
timing paths are elaborated. We set the original performance without any early stage optimization as 1.0 for reference and list the sign-off timing performance
ratio. Note that “w/ Adjust” means TSteinerPt while “w/ Adjust+Rec+Simp” is TSteinerRec. (a) wns. (b) tns. (c) # Violated paths.

Fig. 11. Steiner point adjustment distance distributions.

TSteiner, a concurrent routing topology optimization frame-
work designed to improve sign-off timing performance
during the early physical synthesis stage. We utilize a cus-
tomized graph learning model to bridge the gap between
the early physical synthesis solution and the sign-off stage.
This model guides the concurrent adjustment of Steiner
points using stochastic optimization. We also introduce
two connection-related techniques, routing topology recon-
struction, and simplification, to accelerate the convergence
and prevent unnecessary topology constraints in subsequent
stages. As shown in the comprehensive experimental results,
adjusting Steiner points alone (TSteinerPt) improves wns
by 11.2% and tns by 7.1%, with an acceptable runtime
overhead. Additionally, incorporating routing topology recon-
struction and simplification techniques (TSteinerRec) can not
only reduce TSteiner duration by 25.9% but also achieve
better-sign-off timing performance. Our findings advocate for
considering sign-off timing performance during early stage
routing topology generation, including adjusting Steiner points
and edges. By adopting our concurrent routing topology
optimization framework, designers can improve sign-off tim-
ing performance and ensure effective physical synthesis. An
advanced technology may bring new challenges to the future
early stage timing optimization works. Further, the learning-
guided optimization flow can also be extended to support more
objectives and features, e.g., skew, congestion, routing detour

and the pin accessibility, since the deep learning technique is
useful to differentiate these hard-to-formulate objectives.

REFERENCES

[1] A. B. Kahng, “New game, new goal posts: A recent history of timing
closure,” in Proc. 52nd Annu. Design Autom. Conf., 2015, pp. 1–6.

[2] C. Chu, E. F. Young, D. K. Tong, and S. Dechu, “Retiming with
interconnect and gate delay,” in Proc. IEEE/ACM Int. Conf. Comput.-
Aided Design (ICCAD), 2003, pp. 221–226.

[3] P. Liao, S. Liu, Z. Chen, W. Lv, Y. Lin, and B. Yu, “DREAMPlace
4.0: Timing-driven global placement with momentum-based net weight-
ing,” in Proc. IEEE/ACM Design, Autom. Test Europe (DATE), 2022,
pp. 939–944.

[4] Z. Guo and Y. Lin, “Differentiable-timing-driven global place-
ment,” in Proc. 59th ACM/IEEE Design Autom. Conf. (DAC), 2022,
pp. 1315–1320.

[5] P. Liao, D. Guo, Z. Guo, S. Liu, Y. Lin, and B. Yu, “DREAMPlace
4.0: Timing-driven placement with momentum-based net weighting
and Lagrangian-based refinement,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 42, no. 10, pp. 3374–3387, Oct. 2023.

[6] C. J. Alpert, A. B. Kahng, C. Sze, and Q. Wang, “Timing-driven Steiner
trees are (practically) free,” in Proc. ACM/IEEE Design Autom. Conf.
(DAC), 2006, pp. 389–392.

[7] C. J. Alpert et al., “Prim-Dijkstra revisited: Achieving superior timing-
driven routing trees,” in Proc. ACM Int. Symp. Phys. Design (ISPD),
2018, pp. 10–17.

[8] S. Held, D. Müller, D. Rotter, R. Scheifele, V. Traub, and J. Vygen,
“Global routing with timing constraints,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 37, no. 2, pp. 406–419, Feb. 2018.

[9] G. Chen and E. F. Young, “SALT: Provably good routing topology by a
novel Steiner shallow-light tree algorithm,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 39, no. 6, pp. 1217–1230, Jun. 2020.

[10] D. Wu, J. Hu, M. Zhao, and R. Mahapatra, “Timing driven track routing
considering coupling capacitance,” in Proc. IEEE/ACM Asia South Pac.
Design Autom. Conf. (ASPDAC), 2005, pp. 1156–1159.

[11] X. Gao and L. Macchiarlo, “Track routing optimizing timing and yield,”
in Proc. IEEE/ACM Asia South Pac. Design Autom. Conf. (ASPDAC),
2011, pp. 627–632.

[12] Y. Wei, Z. Li, C. Sze, S. Hu, C. J. Alpert, and S. S. Sapatnekar,
“CATALYST: Planning layer directives for effective design closure,”
in Proc. IEEE/ACM Design, Autom. Test Europe (DATE), 2013,
pp. 1873–1878.

[13] D. Liu, B. Yu, S. Chowdhury, and D. Z. Pan, “TILA-S: Timing-driven
incremental layer assignment avoiding slew violations,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 37, no. 1, pp. 231–244,
Jan. 2018.

[14] E. C. Barboza, N. Shukla, Y. Chen, and J. Hu, “Machine learning-
based pre-routing timing prediction with reduced pessimism,” in Proc.
ACM/IEEE Design Autom. Conf. (DAC), 2019, pp. 1–6.

[15] H. Chang and S. S. Sapatnekar, “Statistical timing analysis con-
sidering spatial correlations using a single PERT-like traversal,” in
Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), 2003,
pp. 621–625.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on April 24,2025 at 01:25:20 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: SIGN-OFF TIMING CONSIDERATIONS VIA CONCURRENT ROUTING TOPOLOGY OPTIMIZATION 1953

[16] X. He, Z. Fu, Y. Wang, C. Liu, and Y. Guo, “Accurate timing prediction
at placement stage with look-ahead RC network,” in Proc. ACM/IEEE
Design Autom. Conf. (DAC), 2022, pp. 1213–1218.

[17] Z. Guo, M. Liu, J. Gu, S. Zhang, D. Z. Pan, and Y. Lin, “A timing engine
inspired graph neural network model for pre-routing slack prediction,”
in Proc. ACM/IEEE Design Autom. Conf. (DAC), 2022, pp. 1207–1212.

[18] Z. Wang, S. Liu, Y. Pu, S. Chen, T.-Y. Ho, and B. Yu, “Restructure-
tolerant timing prediction via multimodal fusion,” in Proc. ACM/IEEE
Design Autom. Conf. (DAC), 2023, pp. 1–6.

[19] S. Liu, Z. Wang, F. Liu, Y. Lin, B. Yu, and M. Wong, “Concurrent sign-
off timing optimization via deep Steiner points refinement,” in Proc.
ACM/IEEE Design Autom. Conf. (DAC), 2023, pp. 1–6.

[20] M. Hanan, “On Steiner’s problem with rectilinear distance,” SIAM J.
Appl. Math., vol. 14, no. 2, pp. 255–265, 1966.

[21] P.-Y. Chen et al., “A reinforcement learning agent for obstacle-avoiding
rectilinear Steiner tree construction,” in Proc. ACM Int. Symp. Physical
Design (ISPD), 2022, pp. 107–115.

[22] J. Liu, G. Chen, and E. F. Young, “REST: Constructing rectilinear Steiner
minimum tree via reinforcement learning,” in Proc. ACM/IEEE Design
Autom. Conf. (DAC), 2021, pp. 1135–1140.

[23] A. B. Kahng, R. R. Nerem, Y. Wang, and C.-Y. Yang, “NN-Steiner: A
mixed neural-algorithmic approach for the rectilinear Steiner minimum
tree problem,” in Proc. AAAI Conf. Artif. Intell., 2024, pp. 13022–13030.

[24] W. L. Hamilton, “Graph representation learning,” in Synthesis Lectures
on Artificial Intelligence and Machine Learning, vol. 14, San Rafael,
CA, USA: Morgan Claypool Publ., 2020, pp. 1–159.

[25] Z. Wang et al., “Functionality matters in netlist representation learning,”
in Proc. ACM/IEEE Design Autom. Conf. (DAC), 2022, pp. 61–66.

[26] M. Wang et al., “Deep graph library: A graph-centric, highly-performant
package for graph neural networks,” 2019, arXiv:1909.01315.

[27] A. Paszke et al., “Automatic differentiation in PyTorch,” in Proc. 31st
Conf. Neural Inf. Process. Syst., 2017, pp. 1–4.

[28] A. B. Kahng, L. Wang, and B. Xu, “TritonRoute: The open-source
detailed router,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 40, no. 3, pp. 547–559, Mar. 2021.

[29] C. Chu and Y.-C. Wong, “FLUTE: Fast lookup table based rectilinear
Steiner minimal tree algorithm for VLSI design,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 27, no. 1, pp. 70–83, Jan. 2008.

[30] M. Pan and C. Chu, “FastRoute: A step to integrate global routing
into placement,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design
(ICCAD), 2006, pp. 464–471.

[31] J. Liu, C.-W. Pui, F. Wang, and E. F. Y. Young, “CUGR: Detailed-
routability-driven 3-D global routing with probabilistic resource model,”
in Proc. ACM/IEEE Design Autom. Conf., 2020, pp. 1–6.

[32] H. Li, G. Chen, B. Jiang, J. Chen, and E. F. Young, “Dr. CU 2.0: A
scalable detailed routing framework with correct-by-construction design
rule satisfaction,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design
(ICCAD), 2019, pp. 1–7.

[33] “OpenCores.” 1993. [Online]. Available: https://opencores.org
[34] “SkyWater open source PDK.” 2020. [Online]. Available: https://github.

com/google/skywater-pdk

Siting Liu received the B.S. degree in computer sci-
ence and technology from the Huazhong University
of Science and Technology, Wuhan, China, in 2020.
She is currently pursuing the Ph.D. degree with the
Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Hong Kong,
in 2024.

Her research interests include physical synthesis,
machine learning application, and GPU acceleration
in VLSI CAD algorithms.

Dr. Liu is a recipient of the Best Paper Award
from DATE 2022 and the Best Paper Award Nomination from DATE 2021.

Ziyi Wang received the B.S. degree from the
Department of Computer Science and Technology,
Fudan University, Shanghai, China, in 2021. He
is currently pursuing the Ph.D. degree with the
Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Hong Kong.

His research interests include graph learning
applications in electronic design automation and
logic synthesis.

Fangzhou Liu received the B.E. degree in electronic
science and engineering from Nanjing University,
Nanjing, China, in 2023. She is currently pursuing
the Ph.D. degree with The Chinese University of
Hong Kong, Hong Kong, supervised by Prof. Bei
Yu.

Her research focuses on applying machine
learning techniques to EDA and logic synthesis
optimization.

Yibo Lin (Member, IEEE) received the B.S.
degree in microelectronics from Shanghai Jiaotong
University, Shanghai, China, in 2013, and the Ph.D.
degree in electrical and computer engineering from
The University of Texas at Austin, Austin, TX, USA,
in 2018, advised by Prof. David Z. Pan.

He worked as a Postdoctoral Researcher with
the University of Texas at Austin from 2018 to
2019. He currently is an Assistant Professor with
the School of Integrated Circuits, Peking University,
Beijing, China. His research interests include phys-

ical design, machine learning applications, and heterogeneous computing in
VLSI CAD.

Dr. Lin is a recipient of the Best Paper Awards at Premier EDA/CAD jour-
nals/conferences like IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN

OF INTEGRATED CIRCUITS AND SYSTEMS, DAC, DATE, and ISPD.

Bei Yu (Senior Member, IEEE) received the
Ph.D. degree from The University of Texas at
Austin, Austin, TX, USA, in 2014.

He is currently an Associate Professor with the
Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Hong Kong.

Prof. Yu received 11 Best Paper Awards from
ICCAD 2024 and 2021 and 2013, IEEE TSM 2022,
DATE 2022, ASPDAC 2021 and 2012, ICTAI 2019,
Integration, the VLSI Journal in 2018, ISPD 2017,
SPIE Advanced Lithography Conference 2016, six

ICCAD/ISPD Contest Awards, IEEE CEDA Ernest S. Kuh Early Career
Award in 2021, DAC Under-40 Innovator Award in 2024, and Hong Kong
RGC Research Fellowship Scheme Award in 2024. He has served as a TPC
Chair for ACM/IEEE Workshop on Machine Learning for CAD, and in many
journal editorial boards and conference committees.

Martin D. F. Wong (Fellow, IEEE) received the
B.Sc. degree in mathematics from the University
of Toronto, Toronto, ON, Canada, in 1979, and the
M.S. degree in mathematics and the Ph.D. degree
in CS from the University of Illinois at Urbana-
Champaign (UIUC), Champaign, IL, USA, in 1981
and 1987, respectively.

He was a Bruton Centennial Professor of CS with
The University of Texas at Austin, Austin, TX, USA,
and the Edward C. Jordan Professor of ECE with
UIUC. From August 2012 to December 2018, he

was the Executive Associate Dean of the College of Engineering, UIUC. From
January 2019 to August 2023, he was the Dean of Engineering and the Choh-
Ming Li Professor of Computer Science and Engineering with The Chinese
University of Hong Kong, Hong Kong. Since August 2023, he has been with
Hong Kong Baptist University (HKBU), Hong Kong, as the Provost and a
Chair Professor of Computer Science. He has published around 500 papers
and graduated over 50 Ph.D. students in EDA. His main research interest is
in electronic design automation.

Prof. Wong is a Fellow of ACM.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on April 24,2025 at 01:25:20 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

