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Delay-Driven Rectilinear Steiner Tree Construction
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Abstract—Timing-driven routing is crucial in complex circuit
design. Existing shallow-light Steiner tree construction methods
balance between wire length (WL) and source-sink path length
(PL) but lack in delay. Conversely, previous delay-driven methods
prioritize delay but result in longer WL and PL, making them
suboptimal. In this article, we show that simultaneously reducing
the WL and PL can effectively reduce the delay. Furthermore, we
investigate how delay changes during the reduction of PL. Guided
by the theoretical findings, we develop a rectilinear shallow-
light Steiner tree construction algorithm designed to reduce delay
meanwhile maintaining a bounded WL. Furthermore, a delay-
driven edge shifting algorithm is proposed to fine tune the tree’s
topology, further reducing delay. We show that our proposed
edge shifting algorithm can return a local Pareto optimal solution
when repeatedly applied. Experimental results show that our
algorithm achieves the lowest total delay compared to previous
methods while maintaining competitive WL. Moreover, for nets
with pins that have timing information, our algorithm can
generate the most suitable Steiner Tree based on the timing
information. In addition, extended experiments highlight the
positive impact of constructing rectilinear Steiner trees with
minimized total delay. Our codes will be available at https://
github.com/Whx97/Delay-driven-Steiner-Tree.

Index Terms—Elmore delay, rectilinear Steiner tree, timing
optimization.

I. INTRODUCTION

W ITH the scaling of VLSI technology, interconnection
delay has emerged as a critical concern in the

design of complex and high-performance circuits [5], [18].
Consequently, there has been a significant focus on timing-
driven routing, aiming to minimize the average or maximum
source-sink delay within given signal nets [9], [32]. With
the growing importance of rectilinear Steiner trees in VLSI
routing [27], developing delay-driven rectilinear Steiner trees
becomes crucial, as it significantly supports the objective of
timing-driven routing by strategically minimizing delays.
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The Elmore delay in an RC tree [21], [29], [31] is com-
putationally efficient for approximating signal delay. Its
reliability in predicting physical (SPICE-computed) delay
has been demonstrated in supporting investigations in [8]
(i.e., near-optimal Elmore delay implies near-optimal SPICE
delay). Given the advantages, the objective of this article
is to commence a delay-driven process for constructing a
rectilinear Steiner tree by simultaneously considering wire
length (WL), source-sink path length (PL), and Elmore
delay.

Earlier work implicitly equated an optimal routing
tree (ORT) with the rectilinear Steiner minimum tree
(RSMT) [19], [27]. However, it has been recognized that
one cannot simply use the RSMT for timing-driven rout-
ing [2], [15], [16], since routing using the RSMT typically
results in longer source-sink PL, which may increase the delay.
Moreover, it is not feasible for each sink to use a shortest path
tree that satisfies the optimal source-sink PL for routing, since
such an approach might lead to an increase in WL, thereby
exacerbating the delay. Therefore, constructing routing trees
with balanced WL and PL becomes a crucial technique for
timing-driven routing.

A theoretical resolution is the construction of shallow-light
Steiner tree, i.e., short Steiner tree with bounded source-sink
PL [4], [20], [24], [25]. This approach typically starts from
a preconstructed short Steiner tree and utilizes a parameter
ε ≥ 1 to generate a new tree, in which the PL from the source
to each sink in the tree is at most ε times the source-sink
Manhattan distance. Prim–Dijkstra (PD) algorithm [3] gener-
ates a spanning tree effectively, meanwhile balances both WL
and PL by combining the classical Prim [28] and Dijkstra [17]
algorithms. Thanks to its simplicity and efficiency, PD has
gained popularity in the field of semiconductor design and
electronic design automation for over two decades, and was
further improved in [2] to alleviate the problem of suboptimal
tradeoff between WL and PL that may be encountered.

Recently, a provably good routing topology of shallow-
light Steiner tree was developed in SALT [11], which offers
an excellent tradeoff between both WL and PL, compared
to other state-of-the-art shallow-light Steiner tree construction
methods. However, although SALT obtains a good tradeoff
between WL and PL, it performs less satisfactorily on delay.
This observation is supported by the results presented in [11],
where KRY [25] produces a Steiner tree with lower delay
despite not achieving a balance between WL and PL as optimal
as SALT does.

Another category of research focuses on minimizing delay
directly when generating a spanning tree. Cong et al. [14]
and Cohoon and Randall [13] are the first to propose
performance-oriented routing techniques utilizing a linear
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Fig. 1. Comparison of different constructions for a 21-pin net: (a) ERT [7]
with WL = 756770, Avg. PL = 78393, and Avg. normalized Elmore delay
of 1.199; (b) SERT [7] with WL = 424270, Avg. PL = 72542, and Avg.
normalized Elmore delay of 0.986; (c) SALT [11] with WL = 342180, Avg.
PL = 71858, and Avg. normalized Elmore delay of 0.951; and (d) a tree
with the best delay, WL = 348650, Avg. PL = 71858, and Avg. normalized
Elmore delay of 0.877.

delay model. Although the linear delay model offers conve-
nience in terms of calculation, it was widely recognized that
it may not accurately capture the delay behavior of modern
integrated circuits [10]. Boese et al. [7] developed a heuristic
routing algorithm that minimizes delay based on Elmore delay.
This algorithm comes in two variants: 1) Steiner point-based
Elmore delay routing (SERT) and 2) non-Steiner point-based
Elmore delay routing (ERT). However, the delay performance
of these methods can be further optimized, since they greedily
insert edges to a tree, which may also lead to longer WL and
source-sink PL.

Fig. 1 gives an example of topologies obtained by different
constructions and various metrics of these topologies. From
the figure, it is apparent that methods directly minimizing
Elmore delay [Fig. 1(a) and (b)] cannot obtain optimal delay,
because they produce longer WLs. The shallow-light method
[Fig. 1(c)] balances WL and source-sink PL well, but does not
perform as well in terms of delay. Fig. 1(d) shows the best
delay result, although the WL is slightly longer than that of
Fig. 1(c).

Building upon the aforementioned observations and routing
methodologies, we propose a heuristic algorithm designed for
the construction of a rectilinear Steiner tree with the primary
objective of minimizing the Elmore delay while maintaining
competitive WL. The main contributions of this work are
summarized as follows.

1) We investigate the impact of WL variations resulting
from PL optimization on delay and propose a novel
delay-driven tree construction process. This includes the
shallow-light tree construction and delay-driven refine-
ment to reduce delay while controlling WL.

2) Applying our theoretical findings on the optimal PL
optimization method for delay, the proposed shallow-
light algorithm employs edge replacement to actively
optimize PL, aiming to minimize delay without exces-
sively increasing WL. We prove that our algorithm can
output a tree with bounded WL.

TABLE I
NOTATIONS

3) To improve the limited delay performance of the
proposed shallow-light algorithm due to not considering
capacitance, the proposed delay-driven refinement mod-
ifies the tree’s topology locally. This approach optimizes
the distribution of load capacitance and achieves a local
Pareto optimal solution, when repeatedly applied.

4) Experimental results show that, our algorithm achieves
an improvement of average delay by 5.87% and a
reduction of WL by 20.23% on 48K high-fanout nets,
compared to the previous method with the lowest delay.
Moreover, our algorithm offers flexibility in balancing
WL and delay priorities through adjustable parameters
and search spaces.

The remainder of this article is organized as follows.
Section II introduces the Elmore delay model and gives the
problem formulation. Moreover, several key findings related to
delay reduction are presented. Section III gives our proposed
approach for delay-driven rectilinear Steiner tree construction.
Experimental results and analysis are presented in Section IV.
Finally, Section V concludes this work.

II. ELMORE DELAY MODEL, DELAY-DRIVEN RSMT
PROBLEM, AND DELAY REDUCTION THEOREMS

This section analyzes the Elmore delay model and gives
the delay-driven RSMT problem formulation. Moreover, we
provide several key findings related to Elmore delay reduction.
All notations used in this article are listed in Table I.

A. Elmore Delay Model

The Elmore delay model [21] is used to approximate the
distributed RC delay, it is defined as follows. Given a routing
tree T rooted at the source no, the Elmore delay dT(ni) at sink
ni is

dT(ni) = rdCno +
∑

ev∈path(n0,ni)

rev

(cev

2
+ Cv

)

= rdCno +
∑

ev∈path(n0,ni)

rev

cev

2
+

∑

ev∈path(n0,ni)

revCv (1)

where rev = R0w(ev), cev = C0w(ev), and R0 and C0 are the
unit length wire resistance and capacitance, respectively.

A closer look at the final equality in (1) reveals the following
facts.
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1) The first term rdCno can be minimized when length(T) is
minimum. Therefore, when rd is large enough, an ORT
is an RSMT [16].

2) The second term implies that dT(ni) has a quadratic rela-
tionship to the length of the path path(n0, ni). Therefore,
an ORT tends to be a shortest path tree when minimizing
this term only [16].

3) The cumulative sum of the third term implies that, of
all the nodes on the path(n0, ni), the subtree capacitance
(Cv ∀v ∈ path(n0, ni)) of these nodes should be as small
as possible for minimizing the delay. This implies that
the number of Steiner points on the path(n0, ni) should
be minimized.

The above observations suggest that, the Elmore delay
model is a relatively complex objective function for minimiz-
ing delay since it involves optimizing WL, source-sink PL,
and the distribution of Steiner points. In the next section, we
define the research problems of this work.

B. Problem Definition

In view of the facts stated in Section II-A, and the fact that
minimizing the delay directly may introduce suboptimal delays
(see Fig. 1), we propose to address the following problem to
construct a topology with minimal Elmore delay.

Problem 1 [Minimum Elmore Delay Rectilinear Steiner
Tree Problem (MD-RST)]:

Input: A signal net V = {n0, n1, . . . , nk}, where n0 is the
source with a position p0 and resistance rd, V\{n0} is the set
of sinks ni with associated position pi and capacitance ci. Unit
length wire resistance R0 and capacitance C0.

Output: A directed rectilinear Steiner tree T rooted at n0
with minimal f (T) = (f1(T), f2(T)) ∈ R

2, where f1(T) =
length(T) and f2(T) = ∑

ni∈V\{n0} dT(ni). Since this work
focuses on the delay-driven rectilinear Steiner tree construc-
tion, we focus mainly on minimizing f2(T).

Problem 1 primarily aims at optimizing the overall source-
sink delay. However, this approach can sometimes fall short
because timing-driven routing must also consider the timing
criticality of individual pins. In timing-driven optimization
tasks, the goal is to minimize the latest actual arrival time (or
maximize the earliest required arrival time) for each pin [6].
To achieve this, pins with higher timing criticality should
be prioritized to ensure shorter delays. Hence, we pose the
following problem.

Problem 2 [Critical-Sink Rectilinear Steiner Tree Problem
(CS-RST)]:

Input: A signal net V = {n0, n1, . . . , nk}, where n0 is the
source with a position p0 and resistance rd, V\{n0} is the
set of sinks with each sink having an associated position pi,
capacitance ci and timing slack sni . Unit length wire resistance
R0 and capacitance C0.

Output: A directed rectilinear Steiner tree T rooted at n0
with minimal f (T) = (f1(T), f2(T)) ∈ R

2, where f1(T) =
length(T), and

f2(T) =
∑

n∈V\{n0}
max (0, dT(n)− sn). (2)

This work focuses on the delay-driven rectilinear Steiner
tree construction, with the primary goal of minimizing f2(T).
For the objective function f2(T) in (2), we offer the following
explanation. Consider a sink v experiencing a timing violation,
indicated by a negative slack sv. Since the delay dT(v)
is always positive, dT(v) − sv > 0 holds. Therefore, to
minimize f2(T), the delay dT(v) should be reduced as much as
possible, ideally approaching zero. Furthermore, if there are
two timing violation sinks v1 and v2, where sv1 is significantly
less than sv2 , indicating a more severe violation at v1, the
algorithm should prioritize minimizing the delay dT(v1). This
prioritization ensures that the sink with the most negative slack
receives the highest priority in the delay optimization process.

In fact, the MD-RST problem represents a generic form
applicable to various scenarios. On the other hand, the CS-
RST problem becomes more significant when specific timing
information related to a design is available. Next, we prove
the hardness result of the two problems.

Theorem 1: Both MD-RST and CS-RST problems are NP-
hard.

Proof:
1) Minimizing the term length(T) is NP-hard, as it corre-

sponds to the RSMT problem [22]. On the other hand,
the problem of minimizing the term

∑
n∈V\{n0} dT(n) has

also been proven NP-hard [30]. Hence, the MD-RST
problem is NP-hard.

2) Consider the case that the timing slack of all sinks in a
net V = {n0, n1, . . . , nk} is 0, i.e., sn = 0, n ∈ V\{n0}.
Then, the objective function of the CS-RST problem
becomes

f (T) =
⎛

⎝length(T),
∑

n∈V\{n0}
max (0, dT(n))

⎞

⎠.

Since the delay dT(n) > 0 naturally holds, minimizing∑
n∈V\{n0}max (0, dT(n)) and

∑
n∈V\{n0} dT(n) are equivalent.

Thus, the CS-RST problem can be reduced to the MD-RST
problem. So the MD-RST problem is NP-hard.

Given that the MD-RST and CS-RST problems are NP-hard
and identifying Pareto optimal solutions is challenging, this
work focuses on discovering local Pareto optimal solutions.
To this end, we provide the following definitions.

Definition 1 (Edge Shifting): Edge shifting refers to the
operation in a tree, for which a given node n is disconnected
from its current parent node and reconnected to a created new
node n′ on the bounding box of a given edge e = (m, m′).
Then, disconnect (m, m′) and connect (m, n′) and (n′, m′).

Definition 2 (Pareto Dominance): For two trees T1 and T2,
if fi(T1) ≤ fi(T2) for all i = 1, 2 and fi(T1) < fi(T2) holds
for at least one i ∈ {1, 2}, then we say that the tree T1 Pareto
dominates the tree T2.

Definition 3 (Local Pareto Optimum): A tree T is local
Pareto optimal, if it is not dominated by any other trees
constructed from T by edge shifting.

In the next section, we show several theoretical results
regarding delay reduction when using the Elmore delay model.
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(a) (b)

Fig. 2. (a) Initial tree T . (b) Optimized tree T ′. There are several nodes on
the dotted lines, and there are subtrees rooted at these nodes.

C. Theoretical Results on Delay Reduction

For mathematical simplicity, we normalize the unit wire
resistance and the unit wire capacitance so that they are
both equal to one. In the following proofs of theorems, Ca,
path(no, a), and pl(a) are all defined under the initial Steiner
tree T , unless otherwise stated.

Previous literature [15], [16] has suggested that WL and
PL should be balanced to optimize the delay of a rectilinear
Steiner tree. However, these studies did not explicitly identify
the combined effect of WL and PL on the delay. Moreover,
shallow-light tree algorithms [11], [25] mainly focus on mini-
mizing the WL with the desired source-sink PL. Nonetheless,
existing shallow-light tree algorithms exhibit either good WL
but less satisfaction on delay [11] or good delay but long
WL [25] in the experiments.

In fact, during reducing the source-sink PL in a Steiner tree,
the WL of the tree may increase or decrease. This change
in WL, in turn, may significantly impact the total delay.
Therefore, it is important to investigate how variation in WL,
resulting from the optimization of PL, influences the total
delay. For example, Fig. 2(a) gives an RSMT T , and a node
a in T , where pl(a) > dist(n0, a). In the initial tree T , the
parent of node a is q. In the optimized tree T ′ [see Fig. 2(b)],
the edge (q, a) is disconnected, and then a is reconnected to
another node x on the path(n0, a) to optimize the PL from n0
to a.

For Fig. 2, we give the following notations. Suppose
there are nodes l1, . . . , lL on path(n0, x), and nodes
m1, . . . , mM on path(x, q). For convenience, we further
define l1, l2, . . . , lL to also represent the lengths of the
edges (n0, l1), (l1, l2), . . . , (lL−1, lL) and define similarly for
m1, . . . , mM . Suppose there are l′1, . . . , l′L, m′1, . . . , m′M, q′,
and a′ sinks in the optimized subtrees T ′(l1), . . . ,
T ′(lL), T ′(m1), . . . , T ′(mM), T ′(q), and T ′(a), respectively.

In the subsequent discussion, we elucidate how variation in
WL, resulting from the optimization of PL, influences the total
delay. We have the following lemma.

Lemma 1: Let �WL = dist(a, x)− (pl(a)− pl(q)) and �dv

denote the amount of change in WL and delay that results
from reducing the PL from n0 to node a, respectively. We
have

�da = (rd + pl(x))�WL+ dist(a, x)

(
dist(a, x)

2
+ Ca

)

−dT(x→ a) (3)

�dlj =
(
rd + l1 + · · · + lj

)
�WL, lj ∈ path(n0, x) (4)

�dmj = (rd + pl(x))�WL− (
pl(mj)− pl(x)

)

((pl(a)− pl(q))+ Ca), mj ∈ path(x, q) (5)

(a) (b)

Fig. 3. (a) Initial tree T . (b) Optimized tree T ′. There are several nodes on
the dotted lines, and others are subtrees rooted at these nodes.

�dq = (rd + pl(x))�WL− (pl(q)− pl(x))

((pl(a)− pl(q))+ Ca). (6)

Moreover, if
∑

lj∈path(n0,x)

l′j�dlj +
∑

mj∈path(x,q)

m′j�dmj + q′�dq + a′�da

< 0

then reducing the PL from n0 to node a leads to a lower total
delay.

Proof: The proof is provided in Supplementary Material due
to limited space.

Next, by applying Lemma 1 we show that, reducing the PL
of a Steiner tree can reduce the total delay of the tree, if the
WL is reduced or kept unchanged.

Theorem 2: When reducing the source-sink PL reduces or
keeps unchanged the WL of a Steiner tree, the total delay will
be reduced.

Proof: See Appendix A.
Moreover, given a node a in a tree, we show that the delay

from n0 to a can be optimized by shifting the load capacitance
on the path(n0, a). This insight will inspire us to optimize the
critical delay by using an appropriate edge shifting strategy.

Fig. 3(a) gives a structure of RSMT T , in which a node a
in T will be optimized for the delay. s1 and s2 are nodes on
path(n0, a). Suppose there is an edge (m, m′) within subtree
T(s2) that is not located on the path(s2, a). This edge is
designated for disconnection. Subsequently, the node m′ will
be reconnected to subtree T(s1). Specifically, node m′ will be
reconnected to an edge (k, k′), which is a part of T(s1) but
not on path(s1, a). In the optimized tree T ′ [Fig. 3(b)], m′ is
reconnected to node r, which is a created new node on the
bounding box of the edge (k, k′). Then, disconnect (k, k′) and
connect (k, r) and (r, k′).

In the subsequent discussion, we will show that when
(dist(m, m′) + dist(k, k′)) ≥ (dist(r, m′) + dist(k, r) +
dist(r, k′)), i.e., length(T) ≥ length(T ′), the delay from n0 to
a can be reduced.

Theorem 3: Consider the structure shown in Fig. 3(a). After
performing edge shifting on the node m′, if dist(m, m′) +
dist(k, k′) ≥ dist(r, m′)+dist(k, r) +dist(r, k′), then the delay
from n0 to a can be reduced.

Proof: See Appendix B.
Furthermore, given a node a in a tree, we show how the total

delay of the tree changes when the parent of node a is reset
to an existing node or a newly created node on path(n0, a) to
reduce the PL from the source n0 to a.
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Theorem 4: Suppose b is a node on the path(n0, a) such that
pl(b) + dist(a, b) = dist(n0, a), and dist(a, b) is minimized.
When reducing the PL between n0 and node a along the
path(n0, b), the optimal total delay can be achieved when the
parent node of a is b or n0.

Proof: See Appendix C.
Lemma 1 shows that, reducing source-sink PL is still pos-

sible to achieve lower delay, even if it leads to an increase in
WL. This finding helps explain why KRY [25] achieves lower
delay compared to SALT [11], despite with potentially longer
WL. Theorem 3 shows that it is necessary to locally refine a
tree for further optimizing delay. Furthermore, Theorem 4 will
inspire us to optimize the delay by determining an appropriate
strategy to reduce the PL.

III. DELAY-DRIVEN RECTILINEAR STEINER TREE

CONSTRUCTION

The challenge addressed in this work focuses on two objec-
tives: 1) minimizing WL and 2) delay, with a predominant
emphasis on delay minimization. In addition, optimizing the
delay involves also optimizing implicitly the WL, therefore,
we propose the following optimization process. Our approach
begins with an RSMT with minimized WL. Subsequently,
iterative edge replacement is utilized to shorten the source-
sink PL and improve delay, guided by the theoretical insights
detailed in Section II-C. Finally, we apply local edge shifting
to refine the tree and enhance delay reduction.

A. Constructing Rectilinear Shallow-Light Steiner Tree
Based on Edge Replacement

As mentioned earlier, existing shallow-light tree algorithms
exhibit either good WL but less satisfaction on delay [11], or
good delay but long WL [25] in the experiments. To address
this issue, we propose a new shallow-light tree algorithm that
constructs a rectilinear shallow-light Steiner tree to reduce
delay while limiting the increase in WL. This approach is
based on the theoretical findings of Theorem 4.

The conventional shallow-light tree constructions focus on
bounding the shallowness and lightness to optimize the tree
cost (e.g., delay) [25]. Lightness η of a tree T of a net
indicates that the WL of the tree T is at most η times the
WL of its minimum spanning tree (MST), i.e., length(T) ≤
η · length(MST). A tree has shallowness ε if the PL from the
source to each sink in the tree T is at most ε times the source-
sink Manhattan distance, i.e., max{[(pl(vi))/(dist(n0, vi))]|vi ∈
V\{n0}} ≤ ε.

Algorithm 1 gives the pseudocode of the rectilinear shallow-
light Steiner tree based on the edge replacement (RSLT-ER)
algorithm. Essentially, the basic RSLT-ER algorithm starts
with a rectilinear Steiner minimal tree by using the heuristic
FLUTE algorithm [12] (line 2), and continues iteratively
searching for the edge replacements that result in a tree with
a desired shallowness ε.

First, RSLT-ER identifies some breakpoints on the RSMT
(line 3), based on performing a depth-first search (Function
DFS on line 8) on the RSMT. As the DFS progresses, if a
node v violates the shallowness constraint, it is identified as

Algorithm 1: RSLT-ER
Input: Nodes V on Manhattan plane, root n0, parameter

ε ≥ 1;
Output: Rectilinear shallow-light Steiner tree with

shallowness ε.
1 Initialize (Breakpoints B← ∅, d[v] = 0 ∀v ∈ V);
2 TM ← rectilinear Steiner minimal tree using FLUTE;
3 B← perform DFS(n0, TM) to find all breakpoints;
4 for n ∈ B do
5 mM ← closest node to b on path(n0, b), where b is a

node on the path(n0, n) such that pl(b)+
dist(b, n) = dist(n0, n), and dist(n, b) is minimized;

6 Find the best removed edge (r1, r2) on the
path(mM, n);

7 Add edge (mM , n), remove edge (r1, r2);

8 Function DFS(v, T):
9 if d[v] > ε · dist(n0, v) then

10 B← B ∪ {v};
11 d[v]← dist(n0, v);

12 foreach child u of v in T do
13 d[u]← d[v]+ dist(u, v);
14 DFS(u, T);

15 Return B;

16 End Function

a breakpoint (lines 9 and 10). Subsequently, its estimated PL
d[v] is relaxed to dist(n0, v) to adjust the estimated PLs of its
child nodes.

The next step is to determine the reconnected node on the
path(n0, n) for a given breakpoint n. According to Theorem 4,
the best candidate for reconnection is either node b (b is a node
on the path(n0, a) such that pl(b) + dist(a, b) = dist(n0, a),
and dist(a, b) is minimized) or source node n0. However, we
have chosen to reconnect at node mM , which is the closest
node to b on path(n0, b) (see Fig. 10). This decision is based
on three key considerations as follows.

1) Avoiding Additional Steiner Points: By selecting mM ,
we avoid introducing a new Steiner point, which could
increase the load capacitance on other paths and poten-
tially lead to a higher total delay in the subsequent steps.

2) Minimal Delay Difference: If b is the optimal reconnec-
tion point, the delay difference will be minimal due to
the close proximity of mM to b.

3) Controlling WL: If n0 is the optimal node, connecting
to either mM or b will result in a similar delay, while
also preventing a significant increase in WL that would
occur if we connect directly to n0.

Moreover, this approach allows us to maintain a balance
between delay minimization and WL control without the need
for additional calculations to identify the absolute best node
for reconnection.

Finally, we find the best-removed edge on path(mM, n),
because the added edge (mM, n) will lead to a cycle in the tree.
We traverse each edge of path(mM, n) to find an edge e′ such
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Fig. 4. “�WL” in the left axis represents the amounts of increase in
normalized WL before and after executing RSLT-ER algorithm, at different
values of parameter ε. The right axis represents normalized delay at different
values of parameter ε.

that the following conditions are satisfied: 1) after removing
e′ and adding (mM, n), it does not result in node n̂ (n̂ ∈ V\B)

violating the shallowness constraint and 2) w(e′) is maximized
(line 6).

Since the relaxation step (line 11 in Algorithm 1) underes-
timates the PLs of the child nodes, lines 3–7 of Algorithm 1
need to be executed multiple times until there are no break-
points. Next, we demonstrate that the RSLT-ER algorithm
returns a tree with bounded WL.

Theorem 5: Consider an initial tree T and the parameter
ε. If ε = 1, then the RSLT-ER algorithm returns a tree T ′
with length(T ′) ≤ ∑

ni∈V\{n0} dist(n0, ni); if ε > 1, then the
RSLT-ER algorithm returns a tree T ′ with length(T ′) < (1 +
(2/[ε − 1]))length(T).

Proof: The proof is provided in Supplementary Material due
to limited space.

Specifically, we use 1294K nets from the ICCAD Contest
benchmarks [26] for experiments, and use the FLUTE [12]
algorithm as a reference. Fig. 4 presents the relationship
between the amount of increase in normalized WL and normal-
ized delay before and after executing our RSLT-ER algorithm,
at different values of parameter ε. It shows the extent of
delay reduction by our RSLT-ER algorithm, highlighting the
algorithm’s effectiveness in optimizing delay. Also, the figure
indicates that the WL is increased by at most a factor of 0.524
than FLUTE.

B. Delay-Driven Edge Shifting

Shallow-light algorithms (e.g., RSLT-ER, SALT [11], and
KRY [25]) mainly focus on the tradeoff between WL and
source-sink PL while disregarding the load capacitance on the
pins and the capacitance on the edges. However, Theorem 3
shows that it is necessary to locally refine a tree for optimizing
delay. Hence, in this section, we introduce delay-driven edge
shifting (DDES), which aims to consider the load capacitance
on pins and the capacitance on the edges, and refine the tree
through edge shifting to further reduce delay.

Algorithm 2 gives the pseudocode of the proposed DDES.
It is specifically designed to address the MD-RST problem.
With minor modifications, this algorithm can also be adapted

Algorithm 2: DDES
Input: Tree T(V, E);
Output: Refined tree T ′.

1 Compute slack(T(vi)) for vi ∈ V;
2 Query candidate edges for V by R-tree;
3 for ni ∈ V do
4 foreach candidate edge (vj, v′j) do
5 Continue if vj ∈ T(vi);
6 v′′j ← closest node to vi within the bounding box

of edge (vj, v′j);
7 Candidate nodes CN ← {vj, v′j, v′′j };
8 Find node c ∈ CN such that the following

conditions are satisfied: 1) the total delay is
reduced the most; 2) the obtained total delay is
lower than the total delay of the previous step;
and 3) satisfies
�pl = pl(c)+ dist(c, vi)− pl(vi) ≤ slack(T(vi));

9 if c �= {} then
10 Disconnect (vi, v′i), connect (c, vi), (c, vj) and

(v′j, c);
11 Update slack(T(u)) for u ∈ T(vi);

(a) (b)

Fig. 5. (a) R-tree query by a diamond-shaped box, edge (v′j, vj) is a candidate
edge of edge (v′i, vi). (b) Edge shifting.

to solve the CS-RST problem, which will be discussed imme-
diately following the description of the algorithm. First, we
reduce the search space by applying shallowness constraints to
reduce the runtime. In order to efficiently check whether edge
shifting causes nodes to violate the shallowness constraint,
we precompute the slack slack(vi) of each node vi and
slack(T(vi)) of the subtree T(vi) (line 1)

slack(vi) = ε · dist(n0, vi)− pl(vi) (7)

slack(T(vi)) = min
t∈T(vi)

slack(t). (8)

Equation (7) calculates the remaining amount of PL that the
node can add while adhering to the shallowness constraint. To
ensure pl(t) ≤ ε · dist(n0, t) (∀t ∈ T(vi)) holds, (8) calculates
the maximum remaining PL that can be added from n0 to vi. In
this way, if a target node vi increases its PL by �pl resulting
from a potential edge shifting, then the legality of the edge
shifting means �pl ≤ slack(T(vi)).

Then, we identify candidate edges for ∀vi ∈ V by
R-tree [23] (line 2). In [11], R-tree is used to find suitable edge
substitutions to further minimize the WL while ensuring the
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(a) (b)

(c) (d) (e)

Fig. 6. (a) Before DDES, vi is the target node, v′i is vi’s parent node, and
(vj, v′j) is a candidate edge. (b) v′′j is the closest node to ni within the bounding
box of edge (vj, v′j) and the red dotted lines are candidate edges to be added.
(c)–(e) After DDES, edge (vi, v′i) is shifted to the candidate edge.

PL remains unchanged. This idea can be adapted to construct
a delay-driven tree by not only focusing on WL but also taking
delay into account. Specifically, R-tree stores the bounding box
of every edge of a tree. Subsequently, each edge is processed
through a diamond-shaped query box to identify its candidate
edges. An edge (v′j, vj) becomes a candidate of the edge
(v′i, vi) if (v′j, vj)’s bounding box intersects with the diamond-
shaped query box of (v′i, vi) [see Fig. 5(a)]. Among all the
candidate edges of a node vi, we find the optimal edge shifting
scheme from three different candidate edges (red dotted lines
in Fig. 6(b) and lines 6–8 in Algorithm 2). Note that, a legal
candidate edge (v′j, vj) cannot be in T(vi) (line 5), otherwise
it will make the tree disconnected.

To guarantee the final effectiveness of the DDES,
Algorithm 2 should be run twice in different modes. The
first run computes the delay improvement based on the
input topology T , while the second run processes the edge
shifting in descending order of improvement and takes
the edge shifting that is still legal and reduces the total
delay.

Next, we outline the application of the DDES algorithm to
address the CS-RST problem. To adapt the DDES algorithm
for addressing the CS-RST problem, it is sufficient to modify
line 8 in Algorithm 2 to align with the objectives specific to
CS-RST. That is, modifying the delay object D(T ′) as

D
(
T ′

) =
∑

ni∈V\{n0}
sni<0

dist(n0, ni)
−s2

ni

dT ′(ni)
.

To reduce the delay without increasing the WL, we propose
DDES-S, which is a variant of the DDES algorithm. In DDES-
S, only v′′j (i.e., CN ← {v′′j }) is considered to be the candidate
node in line 7 of Algorithm 2, compared with the DDES
algorithm. Next, we provide the local Pareto optimality proof
of the DDES-S algorithm.

Theorem 6: Consider an initial tree T , repeatedly applying
the DDES-S algorithm returns a tree T ′ which is a local Pareto
optimal solution.

Proof: See Appendix D.

TABLE II
NET STATISTICS OF BENCHMARK DESIGNS

IV. EXPERIMENTAL RESULTS

This section presents experimental results to demonstrate
the effectiveness of our proposed algorithm. The experimental
setup is detailed in Section IV-A. Performance comparisons
of our algorithm with others in solving the MD-RST and
CS-RST problems are provided in Sections IV-B and IV-F,
respectively. Section IV-C verifies the effectiveness of our
proposed DDES algorithm. Section IV-D demonstrates the
effectiveness of our proposed algorithmic flow. Section IV-E
discusses our algorithm’s ability to balance WL and Elmore
delay. Finally, experiments on real netlists are presented in
Section IV-G.

A. Experimental Setup

We use C++ programming language to implement the
algorithms given in Section III. Experiments are performed
on a Linux server with the Intel Xeon Platinum 8380 CPU
in single-threaded mode. Benchmarks of the ICCAD 2015
Contest [26] are used for a comprehensive evaluation and
comparison. Given that finding an optimal solution with
optimal WL and PL is straightforward for nets with only
two or three pins, our experiments primarily concentrate on
nets with pins greater than three. Approximately 1294K total
nets are divided into four groups (i.e., small, medium, large,
and huge) according to the number of pins. The statistical
information is presented in Table II.

B. Superior Performance on the MD-RST Problem

Our algorithmic flow performs the RSLT-ER algo-
rithm (Algorithm 1) first and then the DDES algorithm
(Algorithm 2), denoted as RSLT-ER+DDES. To see the delay
improvement of the constructed rectilinear Steiner tree by
our algorithm, we compare it with the RSLT-ER, DDES-S,
SALT [11], KRY [25], ERT [7], SERT [7], SALT-1 [11],
FLUTE [12], and SALT [11]+DDES. SALT-1 is obtained by
setting shallowness as 1 in SALT. We further construct the
RSLT-ER+DDES-S and SALT [11]+DDES-S for experimen-
tal comparison.

Table III lists the average results of the normal-
ized WL (WL), maximum normalized PL (max_PL),
maximum normalized delay (max_Delay), and average nor-
malized delay (avg_Delay), of respective algorithms on the
four groups of nets. The normalization for WL is by
[(length(T))/(length(FLUTE))], while the normalization for
PL is by [(pl(ni))/(dist(n0, ni))]. The normalization for delay
is by [(dT(ni))/(maxni∈V\{n0} lb(ni))], where lb(ni) is the
lower bound of delay from [30]. For SALT, KRY, RSLT-ER,
SALT+DDES, SALT+DDES-S, RSLT-ER+DDES, and RSLT-
ER+DDES-S, we report the results with the lowest average
delay for 13 values of ε from 1 to 5.32488 (mainly by the
geometric sequence 0.05× 1.5n, n = 0, 1, . . . , 11).
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TABLE III
AVERAGE RESULTS. FOR MAXIMUM AND AVERAGE DELAY, WE MARK THE TOP THREE IN RED, GREEN, AND BROWN, RESPECTIVELY

Comparing the results in Table III, we can see that our
RSLT-ER+DDES always obtains the lowest delay than the
other algorithms. Furthermore, we have the observations as
follows.

1) Compared with shallow-light tree construction algo-
rithms SALT and KRY, on average our RSLT-ER+DDES
algorithm achieves an improvement of average delay by
25.88% over SALT, and that by 9.16% over KRY.

2) Compared with delay-driven tree construction algo-
rithms ERT and SERT, on average our RSLT-ER+DDES
algorithm achieves an improvement of average delay by
4.13% over ERT, and that by 27.18% over SERT.

3) Compared with the two algorithms (KRY and ERT)
with delays smaller than other existing algorithms, our
RSLT-ER+DDES achieves lower delay while utilizing
a reduced WL. Specifically, it reduces the WL by an
average of 16.72% over KRY and 20.59% over ERT.

4) For all algorithms, the maximum PL is minimal (close
to 1.0) when the delay is low, which suggests that
constructing a shallow-light tree from a small ε value is
highly effective in achieving a topology with minimal
delay.

5) When examining columns 3–9 of Table III, we observe
two distinct features: FLUTE has the shortest WL but
tends to have the largest delay, while ERT has the lowest
delay but tends to have the longest WL. These features
indicate that focusing on minimizing WL or delay sep-
arately is inadequate for delay-driven rectilinear Steiner
tree construction, hence it is preferable to consider the
two factors simultaneously.

Fig. 7 illustrates how different values of ε impact the
performance of RSLT-ER+DDES, RSLT-ER+DDES-S, RSLT-
ER, and SALT. As ε increases, we observe a gradual
reduction in WL with the cost of increased delay. In par-
ticular, RSLT-ER+DDES consistently has the best delay
performance but tends to have a longer WL. In contrast, SALT
achieves the shortest WL, yet with a larger delay. Hence,
RSLT-ER+DDES-S offers a tradeoff between WL and delay,
thereby presenting moderate performance on the two metrics.

We further compare in Table IV the runtimes of
SALT [11], ERT [7], SERT [7], our RSLT-ER+DDES-S, and
RSLT-ER+DDES. RSLT-ER+DDES spends 5.56×, 4.55×,

Fig. 7. Comparison of average normalized WL and average normalized delay
at different values of parameter ε.

TABLE IV
AVERAGE RUNTIME (10−2 S) ON EACH GROUP OF BENCHMARKS

0.85×, and 1.49× the runtimes of SALT, ERT, SERT, and
RSLT-ER+DDES-S, respectively. The runtime of our algo-
rithm increases notably on large and huge nets, primarily due
to the expanded search space of the DDES algorithm.

C. Effectiveness of Delay-Driven Edge Shifting

To see the effectiveness of our DDES algorithm, we com-
pare our RSLT-ER with RSLT-ER+DDES, and compare SALT
with SALT+DDES. The results in Table III show that, the
DDES algorithm has a very significant effect in reducing
the average Elmore delays, ranging from 10.7% to 29.8%.
Particularly on the huge nets, RSLT-ER+DDES improves the
average delay by 29.8% over RSLT-ER, and SALT+DDES
improves the average delay by 28.1% over SALT.

When comparing SALT+DDES and RSLT-ER+DDES, the
latter achieves lower delay but exhibits a longer WL. This is
because the RSLT-ER algorithm does not introduce additional
Steiner points during the construction of the shallow-light
Steiner tree, and hence it leads to longer WL than SALT.
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TABLE V
AVERAGE RESULTS OF 1294K NETS AT ε = 1. “RT” DENOTES THE

AVERAGE RUNTIME (10−4 S)

However, by reducing the number of Steiner points, we
can lessen the probability of multiple computational load
capacitance occurring on the source-sink path, leading to
improved signal propagation and reduced delay. This char-
acteristic explains why the optimal topology for minimizing
delay tends to resemble a “star” topology when rd decreases.
The same results can also be observed from the comparison
of SALT+DDES-S and RSLT-ER+DDES-S.

D. Robustness of the Algorithm Under Nonuniform Pin
Capacitance Distribution

In this section, we verify the validity of the proposed flow
when the distribution of the capacitance values on all sinks is
not uniform. Benchmarks of the ICCAD 2015 Contest [26] are
used for a comprehensive evaluation and comparison. For the
benchmarks, each sink within a net is reassigned a capacitance
value that ranges from 0 to e-15. We then replace the initial
tree of the default RSLT-ER algorithm (line 2 in Algorithm 1)
with a delay-driven tree. For simplicity, the modified RSLT-
ER algorithm with initial trees generated by SERT [7] and
ERT [7] are referred to as “SERT-SLT” and “ERT-SLT,”
respectively. We compare these modified algorithms with
the default RSLT-ER algorithm. The experimental results are
presented in Table V.

From Table V, we can see that our default algorithmic flow,
RSLT-ER+DDES, maintains excellent delay performance even
when the load capacitance values of the pins are uneven. From
Table V, we also have the following observations.

1) Compared to ERT-SLT+DDES, RSLT-ER+DDES
achieves similar delay performance with shorter WL and
much-reduced runtime. The differences of max_Delay
and avg_delay are 0.022 and 0.007, respectively.

2) Compared to SERT-SLT+DDES, RSLT-ER+DDES
presents better delay performance, similar WL, and
much-reduced runtime. Specifically, the reductions
in max_Delay and avg_delay are 0.017 and 0.014,
respectively.

3) Compared to the previous delay-driven algorithms,
SERT and ERT, RSLT-ER+DDES achieve better
delay performance and shorter WL than ERT.
Moreover, RSLT-ER+DDES has significantly better
delay performance than SERT, but with a longer WL.

The experimental results in Table V highlight the effec-
tiveness of our default flow. Hence, although the RSLT-ER
algorithm initially ignores the load capacitance on the pins,
the subsequent DDES algorithm DDES takes into account
the load capacitance on the pins, allowing us to strike a
balance between WL and delay performance through these two
complementary steps.

E. Flexibility in Balancing Wire Length and Delay

In this section, we show the flexibility of our RSLT-
ER+DDES and RSLT-ER+DDES-S algorithms in balancing
WL and delay. For different algorithms on each group of nets,
Fig. 8 depicts the tradeoff curves for the maximum normalized
delay and normalized WL to varying values of ε. From the
figure, we have the following observations.

1) When delay is the most important metric and WL is less
concerned, then our RSLT-ER+DDES is a better option
than other algorithms because it achieves the lowest
delay.

2) When WL and delay are equally considered, then our
RSLT-ER+DAES-S is a better option than other algo-
rithms since it can reach a smaller delay while ensuring
the WL be not too long. In particular, when ε =
1.3797, it can obtain a lower delay than SALT while
maintaining a similar WL to SALT. When ε = 1.075, it
can achieve a similar delay and a significant reduction
in WL, compared to KRY.

F. Superior Performance on the CS-RST Problem

In this section, we present the superior performance of the
RSLT-ER+DDES algorithm in solving the CS-RST problem.
Benchmarks of the ICCAD 2015 Contest [26] are used for
a comprehensive evaluation and comparison. For the bench-
marks, each sink within a net is assigned a slack value that
ranges from −4 to 0.

We compare RSLT-ER+DDES with RSLT-ER+DDES-S,
SALT [11], SERT-C [7], and ERT-C [7]. Furthermore, we
develop an algorithm called critical bound delay (CBD),
inspired by the definition of the lower bound of delay in [30,
Definition 8]. CBD constructs a RSMT connecting the driver
pin to pins with 0 slacks, then directly connects pins with
negative slacks to the driver pin. The overall results are given
in Table VI.

Since the CS-RST problem requires the algorithm to return
a tree such that pins with higher timing criticality are prior to
have smaller delays, we give the following metric to evaluate
the performance of various algorithms:

∑

ni∈V\{n0}
max

(
0,

dT(ni)

lb(ni)
− sni

)

where lb(ni) is calculated by the lower bound of delay in [30].
The smaller the value of the metric, the better an algorithm
solves the CS-RST problem.

From Table VI, we can draw the following conclusion.
Compared to RSLT-ER+DDES-S, SALT [11], SERT-C [7],
ERT-C [7], and CBD, on average RSLT-ER+DDES achieves
significant improvements on metric (1.06×, 1.30×, 1.29×,
1.49×, and 1.31×, respectively). This indicates that RSLT-
ER+DDES achieves the best delay allocation by constructing
Steiner trees tailored to the sinks’ slack information. In
addition, RSLT-ER+DDES uses 1.20×, 1.79×, 1.39×, 0.89×,
and 0.59× the WL of RSLT-ER+DDES-S, SALT, ERT-C,
SERT-C, and CBD, respectively.

To more clearly illustrate the performance of various algo-
rithms, we select a 21-pin net from superblue1 [26]. The
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(a) (b) (c) (d)

Fig. 8. WL and maximum delay tradeoff on: (a) small nets, (b) medium nets, (c) large nets, and (d) huge nets. Each point in the subfigures represents a
result at a specific value of ε, decreasing from the left to right.

TABLE VI
AVERAGE “METRIC” AND “WL” RESULTS

TABLE VII
SLACK AND DELAY VALUES AT ε = 1. RESULTS IN BOLD BLACK HAVE THE SMALLEST SOURCE-SINK DELAY

detailed slack information, along with normalized source-sink
delay and metric values, are presented in Table VII. In the
table, the “delay” is normalized by [(dT(ni))/(lb(ni))], where
lb(ni) is calculated by the lower bound of delay in [30].
The Steiner trees generated by various algorithms are shown
in Fig. 9. As RSLT-ER+DDES and RSLT-ER+DDES-S yield
identical results, only the results of RSLT-ER+DDES are
presented.

From Table VII, we have the following observations.
1) For all sinks with negative slacks, the Steiner tree gen-

erated by RSLT-ER+DDES minimizes the source-sink
delay for these nodes, compared to RSLT-ER+DDES-S,
SALT [11], SERT-C [7], ERT-C [7], and CBD. This
indicates that RSLT-ER+DDES is able to generate more
suitable Steiner trees based on timing information.

2) For the 14 sinks with positive slacks, the Steiner tree
generated by RSLT-ER+DDES produces comparable
source-sink delays, with 12 nodes achieving the mini-
mum source-sink delays.

3) Compared to SALT [11], SERT-C [7], ERT-C [7], and
CBD, RSLT-ER+DDES achieves significant improve-
ments on metric (1.07×, 1.25×, 1.77×, and 1.50×,
respectively).

G. Effectiveness of Constructing Topology With
Minimal Delay

In the previous sections, we have seen that our RSLT-
ER+DDES algorithm shows excellent delay performance on a
single net. In this section, we analyze the topology generated
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(a) (b) (c) (d) (e)

Fig. 9. Topologies of a 21-pin net obtained by: (a) RSLT-ER+DDES, (b) SALT [11], (c) SERT-C [7], (d) ERT-C [7], and (e) CBD. The WLs of the topologies
are 414 010, 342 180, 332 510, 735 300, and 729 400, respectively. Sinks with negative slacks are labeled in red.

TABLE VIII
NET STATISTICAL INFORMATION OF EACH DESIGN

by RSLT-ER+DDES on real netlists. We select ten real circuits
as benchmarks and map them onto the advanced SkyWater [1]
technology nodes. The statistical information of the designs is
given in Table VIII. The placement results are obtained using
an open-source tool. There is no timing information on each
design. Table IX lists each worst negative slack (WNS), total
negative slack (TNS), total WL, and runtime of the designs,
for which the routing topologies are generated by FLUTE and
RSLT-ER+DDES, respectively.

In Table IX, the column labeled by “�” presents the
deviation between the TNS obtained by RSLT-ER+DDES and
the TNS obtained by FLUTE. The column labeled by “÷”
gives the ratio of the results obtained by RSLT-ER+DDES to
the results obtained by FLUTE. Compared to FLUTE, on the
ten designs, TNS is reduced by an average of 833.154 ns,
with 51.4% decrease in WNS. In addition, the total WL and
runtime are increased by 3.5% and 86.1%. The experimental
results demonstrate the positive effect of constructing a routing
topology with minimized Elmore delay.

V. CONCLUSION

This article has shown the significance of simultaneously
optimizing WL and PL in minimizing the Elmore delay, and
has investigated how delay changes during PL optimization.
Guided by the theoretical findings, this article began with a
RSMT and iteratively used edge replacement to optimize PL
while controlling WL increase. Subsequently, the Steiner tree
was refined locally using edge shifting to further optimize
delay. Experimental results demonstrate that the proposed
algorithm achieves the lowest delay while maintaining com-
petitive WL. Moreover, it is highlighted that the proposed
algorithm has the flexibility to balance WL and delay when
constructing a rectilinear Steiner tree. In the future, we plan to
extend this work to timing-driven VLSI routing. In addition,

we propose to divide large nets into several smaller nets using
some clustering approach, to reduce the runtime for large nets.

APPENDIX A
PROOF OF THEOREM 2

Proof: (See Fig. 2) Reducing or keeping unchanged the WL
of a Steiner tree implies that �WL = dist(a, x) − (pl(a) −
pl(q)) ≤ 0. Substituting �WL into (3)–(6) in Lemma 1 can
get as follows.

1) For (3), we have (rd + pl(x))�WL ≤ 0. Moreover,
dT(x→ a) = pl(a)([(pl(a))/2]+Ca)+K, where K ≥ 0
is a constant related to the Steiner tree. Further, since
pl(a) ≥ dist(a), we have dist(a, x)([(dist(a, x))/2] +
Ca)− dT(x→ a) ≤ 0. So, �da ≤ 0.

2) For (4), it is clear that �dlj ≤ 0, lj ∈ path(n0, x).
3) For (5), since pl(mj)− pl(x) > 0, and pl(q)− pl(a) > 0,

we have �dmj < 0, mj ∈ path(x, q).
4) For (6), since pl(q)− pl(x) > 0, and pl(a)− pl(q) > 0,

we have �dq < 0.
Hence, by Lemma 1, Theorem 2 holds.

APPENDIX B
PROOF OF THEOREM 3

Proof: (See Fig. 3) Without loss of generality, suppose
there are nodes l1, . . . , lL on path(s1, s2). For convenience, we
also use l1, l2, . . . , lL to represent the lengths of the edges
(s1, l1), (l1, l2), . . . , (lL−1, lL). Next, we analyze the delays
under different trees.

In tree T [Fig. 3(a)], the delay from s1 to s2 is

dT(s1 → s2) = l1

(
l1
2
+ Cl1

)
+ l2

(
l2
2
+ Cl2

)
+ · · ·

+ dist(lL, s2)

(
dist(lL, s2)

2
+ Cs2

)
.

In tree T ′ [Fig. 3(b)], the delay from s1 to s2 is

dT ′(s1 → s2) = l1

(
l1
2
+ C′l1

)
+ l2

(
l2
2
+ C′l2

)
+ · · ·

+ dist(lL, s2)

(
dist(lL, s2)

2
+ C′s2

)

where C′n = Cn− dist(m, m′)−Cm′ , n ∈ {l1, . . . , lL, s2}. Since

dist
(
m, m′

)+ dist
(
k, k′

) ≥ dist
(
r, m′

)+ dist(k, r)

+ dist
(
r, k′

)
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TABLE IX
WNS (NS), TNS (NS), TOTAL WL (UM), AND RUNTIME (S) UNDER DIFFERENT TOPOLOGIES

(a) (b)

Fig. 10. (a) Initial tree T . (b) Optimized tree T ′.

we have dT(n0 → s1) ≥ dT ′(n0 → s1). Moreover, the path
from s2 to a is identical in both trees T and T ′, so we have
dT(s2 → a) = dT ′(s2 → a). Hence, we get

dT(n0 → a)− dT ′(n0 → a)

= dT(n0 → s1)+ dT(s1 → s2)+ dT(s2 → a)

− (dT ′(n0 → s1)+ dT ′(s1 → s2)+ dT ′(s2 → a))

≥ (
dist(m, m′)+ Cm′

)
d(s1,s2) > 0

where d(s1,s2) = l1 + · · · + lL + dist(lL, s2), and Theorem 3
holds.

APPENDIX C
PROOF OF THEOREM 4

Proof: (See Fig. 10) Consider a as the node to be optimized.
In the initial tree T , the parent node of a is q. In the optimized
tree T ′, the parent of a is reassigned to x, which is a node on
path(n0, b). (c, d) is the edge on path(n0, a) to be removed.

Let Ma = dist(n0, a). As shown in Fig. 10, suppose there
are nodes l1, . . . , lL on path(n0, x) and nodes m1, . . . , mM

on path(x, b). Moreover, suppose there are nodes h1, . . . , hH

on path(b, c) and nodes f1, . . . , fF on path(d, q). For conve-
nience, we further define a, b, c, d, q, and x to represent the
respective PLs from n0 to these nodes in T . Additionally,
we define l1, l2, . . . , lL to represent the lengths of edges
(n0, l1), (l1, l2), . . . , (lL−1, lL) and define similarly for mj, hj,
and fj.

We show that the delay function is concave in terms of
0 ≤ x ≤ b. Consider the contribution made by replacing the
edge (c, d) with the edge (a, x) to Elmore delay at various
sinks nj ∈ T ′.

Let �WL = length(T ′)− length(T) = (Ma−x)−(d−c), C′a
denote the total capacitance of subtree T ′(a). First, we need
to point out that the elements in the set {C′n|n ∈ path(m1, a)}
are independent of x, and dT(n → s) = dT ′(n → s) (n ∈

path(n0, a), s ∈ T ′(n)∩T(n)) are also independent of x. Next,
we analyze the delay of each edge in turn:

1) For dT ′(n0 → x)

dT ′(n0 → x) = rdC′n0
+ l1

(
l1
2
+ Cl1 +�WL

)
+ · · ·

+d(x, lL)

(
d(x, ll)

2
+ ClL +�WL− d(x,lL) − C̃lL

)

where d(x,lL) = x − (l1 + · · · + lL), C′no
= Cno +�WL,

and C̃lL = ClL−Cm1−dist(lL, m1). The coefficient of x2

in dT ′(n0 → x) is −(3/2). Consequently, dT ′(n0 → x)
is concave in x.

2) For dT ′(x→ a)

dT ′(x→ a) = (Ma − x)

(
Ma − x

2
+ C′a

)
.

The coefficient of x2 in dT ′(x → a) is (1/2).
Consequently, dT ′(n0 → a) = dT ′(n0 → x)+dT ′(x→ a)

has a negative coefficient for x2.
3) For dT ′(n0 → lj)

dT ′
(
n0 → lj

) = rdC′n0
+ l1

(
l1
2
+ Cl1 +�WL

)
+ · · ·

+lj

(
lj
2
+ Clj +�WL

)
∀lj ∈ path(n0, x).

dT ′(n0 → lj) is linear (and thus concave) in terms of x.
4) Similarly, we have

dT ′ (a→ q) = (a− q)

(
a− q

2
+ C′q

)
(9)

dT ′
(
q→ fj

) = d(q,fF)

(
d(q,fF)

2
+ C′fF

)
+ fF

(
fF
2
+ C′fF−1

)

+ · · · + fj

(
fj
2
+ C′fj−1

)
∀fj ∈ path(d, q) (10)

dT ′ (q→ d) = dT ′ (q→ f1)+ f1

(
f1
2
+ C′d

)
(11)

dT ′
(
b→ hj

) = h1

(
h1

2
+ C′h1

)
+ · · ·

+hj

(
hj

2
+ C′hj

)
∀hj ∈ path(b, c) (12)

dT ′ (b→ c) = dT ′ (b→ hH)+ d(c,hH )

(
d(c,hH )

2
+ C′c

)
(13)

where d(q,fF) = dist(q, fF) and d(c,hH) = dist(c, hH);
(9)–(13) are all constants independent of x.
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5) Moreover

dT ′
(
x→ mj

) = m1

(m1

2
+ C′m1

)
+ · · ·

+mj

(mj

2
+ C′mj

)
∀mj ∈ path(x, b) (14)

dT ′ (x→ b) = dT ′ (x→ mM)+ d(b,mM)

(
d(b,mM)

2
+ C′b

)
(15)

where d(b,mM) = dist(b, mM). Since m1 is actually linear
in terms of x with coefficient 1, (14) and (15) are linear
(and thus concave) in x.

Based on the above analysis and the fact that the sum of two
concave functions is also concave, we can draw the following
conclusions. If sink nj ∈ T ′(lj), then dT ′(nj) = dT ′(n0 →
lj) + dT ′(lj → nj) is linear (and thus concave) in terms of x.
Similarly, if sink nj ∈ T ′(a) ∪ T ′(q) ∪ T ′(mj) ∪T ′(hj) ∪ T ′(fj),
then dT ′(nj) has a negative coefficient for x2. Consequently,
dT ′(nj) is concave in x.

In summary, all sinks’ delay functions are concave functions
over the interval 0 ≤ x ≤ b. Any concave function defined
over an interval can be minimized at one of the two endpoints
of the interval. Consequently, the total delay can be minimized
when x = 0 (n0 is the parent of a) or x = b (b is the parent
of a).

Hence, Theorem 4 holds.

APPENDIX D
PROOF OF THEOREM 6

Proof: Since the DDES-S algorithm will preserve the
solutions with better delays, we have f2(T ′) < f2(T). First, we
prove that f1(T ′) ≤ f1(T).

In the DDES-S algorithm, the process of identifying can-
didate edges for each node via an R-tree is as follows. For
a target node vi, its immediate parent node is noted as v′i.
When searching with an R-tree, we construct a diamond-
shaped query box for the edge (v′i, vi), which is centered at vi,
with each diagonal of length 2 · dist(v′i, vi). If an edge (v′j, vj)

is identified as a candidate edge of node vi, then the query
box of the edge (v′i, vi) intersects with the bounding box of
the edge (v′j, vj), as in Fig. 5(a).

Subsequently, in DDES-S, vi is reconnected to v′′j [the
closest node to vi within the bounding box of the edge (vj, v′j),
as in Fig. 5(b)], which indicates that dist(v′i, vi) ≤ dist(v′′j , vi),
and dist(v′j, vj) = dist(v′j, v′′j )+dist(v′′j , vj). This ensures that the
WL is reduced after each reconnection, so that f1(T ′) ≤ f1(T).

The discussion above demonstrates that, for a given input
tree T , the DDES-S algorithm can return a new tree T ′
such that T ′ Pareto dominates T . By repeatedly applying the
DDES-S algorithm until that a tree T ′ Pareto dominating the
input tree T cannot be obtained through edge shifting, this
process can return a local Pareto optimal solution. Therefore,
Theorem 6 holds.
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