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Abstract—Model-based optical proximity correction (OPC)
with subresolution assist feature (SRAF) generation is a critical
standard practice for compensating lithography distortions in
the fabrication of integrated circuits at advanced technology
nodes. Typical model-based OPC and SRAF algorithms involve
the selection of user-controlled rule parameters. Conventionally,
these rules are heuristically determined and applied globally
throughout the correction regions, which can be time consuming
and require expert knowledge of the tool. Additionally, the
correlations of rule parameters to the objectives are highly non-
linear. All these factors make designing a high-performance OPC
engine for complex metal designs a nontrivial task. This arti-
cle proposes RuleLearner, a comprehensive mask optimization
system designed for SRAF generation and model-based OPC in
real industrial scenarios. The proposed framework learns from
the guidance of an information-augmented inverse lithography
technique engine, which, although expressive for complex designs,
is expensive to generate refined masks for a whole set of design
clips. Considering the nonlinearity and the tradeoff between local
and global performance, the extracted rule value distributions are
further optimized with customized natural gradients. The sophis-
ticated SRAF generation, the edge segmentation and movements
are then guided by the rule parameter. Experimental results
show that RuleLearner can be applied across different complex
design patterns and achieve the best lithographic performance
and computational efficiency.

Index Terms—Design automation, design for manufacture,
optical proximity correction.

I. INTRODUCTION

IN THE past decades, advances in semiconductor manufac-
turing technology have continuously pushed the boundaries

of chip design, driving the need for more sophisticated
computational lithography techniques. Applying resolution
enhancement techniques (RETs), such as subresolution assist
feature (SRAF) insertion and optical proximity correction
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(OPC), to adjust layout patterns has therefore become critical
for acquiring high pattern fidelity and mask manufacturability.

OPC as a key RET, addresses unwanted wafer image
distortions by predistorting lithography masks. Nowadays fast-
developed OPC methods are mainly the model-based OPC [1],
[2], [3], [4], inverse lithography technique (ILT) [5], [6], [7], [8]
and deep learning-based OPC [9], [10], [11], [12]. Model-based
OPC methods are grounded in sophisticated simulations, and
meticulously adjust mask layouts through the edge segmentation
and movement, augmented by the strategic placement of
SRAFs [13], [14], [15], [16] to optimize the photolithographic
process. Later on, ILT treats mask optimization as a pixel-based
inverse imaging problem and iteratively refines the mask layout
until the simulated wafer image closely aligns with the target. It
has proven to be invaluable, particularly for its ability to handle
intricate design patterns and generation of masks that account
for optical and process effects. Finally, deep learning-based
OPC accelerates the mask optimization process by predicting
initial mask solutions using deep learning models, followed by
post-refinement through the ILT engine.

These techniques, however, face challenges in complicated
large-scale industrial patterns. ILT’s complex nature demands
significant computational resources, resulting in extended run-
time (RT) unsuitable for large-scale designs. Besides the ILT
masks are hard to manufacture in practice owing to pixel-based
behaviors. For deep learning-based OPC, the accuracy of the
generative model heavily depends on the quantity and quality
of training data. These models may not generalize well across
different pattern regions, and their opaque nature can lead to
difficulties in understanding and diagnosing OPC results.

Currently, model-based OPC methods, which involve mask
edge segmentation and fragment movement, are mainstream in
real industry [17], [18], primarily due to their ability to handle
complex pattern geometries and adapt to advanced lithography
technologies. Key to these methods is the optimization of mask
edge segmentation and fragments movement rules [1]. The
rules mainly control how to segment the edge into different
kinds of fragments and the displacement of fragments in every
OPC iteration. For the SRAF insertion process, the rules can
be categorized mainly into two groups: 1) the distance between
SRAF and main features and 2) the size of SRAF. Optimizing
these rule parameters is crucial for achieving the desired OPC
solution, characterized by superior lithographic performance
and high efficiency. In the industrial context, the prevalent
approach mainly relies on OPC engineer manually configuring
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Fig. 1. Flow of RuleLearner: ① the considered rule set is predefined, ② the
value is initialized from CTM, using enhanced lithography information, and
③ the rule candidates are sampled and the rule value distribution is updated
through the natural gradient. ④ After that, the optimized rule is applied to
guide the SRAF insertion and model-based OPC.

rule values, necessitating both sufficient domain knowledge
and a significant amount of human labor. However, fine-
tuning these parameters in high-dimension space is intricate
and challenging, mainly due to their indirect and nonana-
lytical impact on lithographic performance and the delicate
tradeoff between local and global performance. The genetic
algorithm has been explored for tuning the parameters in
SRAF generation rules [19], [20] and OPC recipe parameter
tuning [21], revealing potential solutions that are difficult
to achieve with simply hand-tuned recipes. These methods
model the rule parameter tuning as a total opaque optimization
problem and do not consider the information contained in
lithography process. The flow could potentially undergo drastic
changes in the gene composition of a generation, making
it likely for the search algorithm to get stuck in local
minima.

Recognizing these challenges, we assert it necessary to com-
bine the information obtained from ILT engine to optimize rule
values for complex 2-D metal design. In this work, we propose
RuleLearner, a comprehensive mask optimization system aim-
ing to optimize rule values for better lithography performance
across various mask clips. We developed a customized ILT
engine that leverages enhanced information in a hierarchical
manner to quickly generate quasi-optimized continuous trans-
mission mask (CTM) in only a few iterations for a small
subset of design clips, from which the expressive intensity map
could guide initial rule value distributions. Contrasting with
binary masks that use binary values to indicate blockage or
transparency at each grid site, CTM [22], [23], [24] allocate a
floating intensity value to each site, providing a spectrum from
complete blockage (value 0) to full transparency (value 1). The
gradient of intensity values in CTM enables a more refined
representation than traditional binary encoding. To address
the lack of a direct and analytical relationship between the
rule values and the resultant lithography performance, and
achieve better tradeoff between local and global performance,
we incorporate the exponential extension of lithography-aware
natural gradient [25], [26]. Instead of employing plain gradient
search algorithms, this approach maintains and iteratively
updates the search distribution toward enhanced expected
pattern fidelity, guided by natural gradients. We utilize this

TABLE I
GENERAL RULE PARAMETERS IN THIS ARTICLE

parameterized search distribution to generate batches of rule
parameters for pattern clips. Subsequently, SRAFs are created,
and model-based OPC is applied to these clips based on
the sampled rule parameters. The lithographic performance of
each pattern clip is then evaluated as the fitness, and the natural
gradient is estimated to update the rule parameter distribution
accordingly. By identifying reusable lithography-aware mask
updating and SRAF generation guidelines, we can reduce the
complexity of mask generation to the application of these
rules. This enables efficient, scalable, and manufacturable OPC
correction without compromising accuracy.

The major contributions are summarized as follows.
1) We propose a comprehensive modern mask optimization

framework for both SRAF generation and model-based
OPC.

2) We develop an information-augmented hierarchical ILT
engine to better extract latent lithography knowledge
during the optimization process.

3) We customize a lithography-aware natural gradient
method to optimize the distribution of industrial-like
mask optimization rules.

4) We enhance precision and generalizability in rule
optimization through clip overlapping and adaptive sam-
pling.

5) We conduct experiments on complex first metal layer
clips, the performance shows the learned rules can
generalize well on complex industrial-like designs.

The remainder of this article is organized as follows.
Section II briefly reviews the basic concepts and formulates the
rule learning problem. Section III provides a detailed discus-
sion of the RuleLearner framework. Section IV demonstrates
the effectiveness of our method, followed by the conclusion
in Section V.

II. PRELIMINARIES

A. Compact Rule Set

In this work, we focus on a compact rule set suitable
for industrial-like SRAF generation and model-based OPC.
The considered rule parameters and descriptions are listed in
Table I. It is worth mentioning that this framework can be
extended to consider other rule parameters without much more
effort.

SRAF Generation Rule: The SRAFs are strategically
placed adjacent to isolated target patterns, enhancing spatial
frequency components of the main features without being

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on April 24,2025 at 01:25:18 UTC from IEEE Xplore.  Restrictions apply. 



YU et al.: RULELEARNER: OPC RULE EXTRACTION FROM ILT ENGINE 1917

Fig. 2. Illustration of Considered rule cases. (a) Left part depicts three SRAF rule cases considered: ① no SRAF insertion, ② one level SRAF insertion, and
③ two levels of SRAF insertion. (b) Right part illustrates the two fundamental stages of model-based OPC: ④ edge segmentation and ⑤ fragments moving.

physically printed on the wafer. This technique significantly
improves the imaging fidelity of target patterns. According
to the left part of Fig. 2, this article follows an industrial
procedure for SRAF generation [27], the deployment of
SRAFs for an edge of length L is conditional as follows.

1) SRAFs are not inserted if a main pattern lies within a
perpendicular distance r0, which constitutes the SRAF
insertion forbidden region.

2) Otherwise, if a main pattern is within distance r1, a
rectangular SRAF with dimensions w0 in width and
lSRAF1× L in length is placed in the center between the
nearest opposite edges.

3) In the absence of other main patterns within r2, two
SRAFs, each of width w1 and w2 and length lSRAF2×L
and lSRAF3 × L are positioned at distances d1 and d2,
respectively.

The rule parameter for SRAF generation is thus defined as
a vector containing above-mentioned parameters: mSRAF =
[r0, r1, r2, w0, w1, w2, lSRAF1, lSRAF2, lSRAF3, d1, d2].

Model-Based OPC Rule: The considered model-based OPC
consists of two steps: 1) edge segmentation and 2) fragments
moving, as can be seen in the right part of Fig. 2.

1) During the segmentation phase, projection segments are
created if another main pattern is present within the
projection region with perpendicular threshold distance
dp. Subsequently, if the edge length L exceeds the thresh-
old Ltr, corner fragments of length Lc are generated
for precise control around corners, while the remainder
of the edge is evenly divided into uniform fragments,
each of length Lu. Conversely, for L <= Ltr, the edge
is segmented into equal parts without considering the
corner case. After the segmentation phase, fragment
lengths are fixed.

2) In the subsequent movement stage, each iteration
involves fragment adjustments either inward or outward
to correct distortions in the printed wafer image. If the
printed contour fits well with the target, the correspond-
ing segment remains unchanged. The movement step
sizes for projection, corner, and uniform fragments are
denoted as sp, sc, and su, respectively.

Thus, the rule set defining the OPC process is encapsulated
as mOPC = [dp, Ltr, Lc, Lu, sp, sc, su].

The complete rule set is a composite of the SRAF and OPC
rules, and the rule vector is represented as a concatenation of
two parts: m = [m�SRAF, m�OPC]�.

B. Search Gradient Method

The general idea of the search gradient method is utilizing
the sampled gradient of expected loss as the search gradient for
updating search distribution parameters [28]. Without loss of
generality, we assume a multinormal distribution for the search
process of rule parameters. Let θ denote the parameters of the
probability density function P(m|θ), and use l(m) represent
lithography cost of sampled rule vector m, which will be
illustrated in detailed in Section III-A. The expected cost under
the search distribution is

L(θ) = Eθ [l(m)] =
∫

l(m)P(m|θ)dm. (1)

To update distribution density parameter θ toward lower
expected cost, the direct derivative of expected loss L(θ) with
respect to the distribution parameter can be derived using the
log-likelihood trick

∇θ L(θ) = ∇θEθ [l(m)] = ∇θ

∫
l(m)P(m|θ)dm

= Eθ

[
l(m)∇θ log P(m|θ)

]

≈ 1

N

N∑
n=1

l(mn)∇θ log P(mn|θ). (2)

In the final step, the search gradient is estimated through
the Monte Carlo sampling strategy with sample size n. This
gradient of expected cost enables a direct gradient descent
approach for iterative search distribution updates

θ ← θ − η∇θL(θ) (3)

where η is the learning rate.
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Fig. 3. (a) Measurement of EPE, EPESum is the summation of EPE over
all measurement points and EPEMax is the EPEMax. (b) Measurement of
PVBand.

C. Problem Formulation

In this work, we build a comprehensive mask optimization
system focusing on extracting and optimizing rule values to
improve the lithography performance of SRAF and model-
based OPC. To evaluate the quality of the final lithographic
simulation results, we employ the edge placement error and
process variation band (PVBand) as criteria.

Definition 1 (Edge Placement Error): Edge Placement
Error refers to the vertical or horizontal misalignment between
the lithography contour under nominal condition and the
desired contour of the target pattern, measured as the
Manhattan distance between these two contours, as is shown
in Fig. 3(a). The measurement points are evenly distributed
along the contours of the target shape. We adopt two metrics
for comprehensive pattern fidelity evaluation as follows.

1) Total EPE Lengths (EPESum): The sum of EPE
distances over all measurement points, offering a com-
prehensive quantification of overall mask fidelity.

2) Maximum EPE (EPEMax): The largest EPE value
among all measurement points, serving as a critical
indicator of the most severe pattern distortions.

Definition 2 (PVBand): In practical lithography, process
variations can induce deviations in the printed images, risking
printing failures. The PVBand is delineated by the XOR region
among multiple contours under variant process conditions, as
can be seen in Fig. 3(b).
Given the above lithography performance evaluation metrics,
we can formulate our SRAF and the model-based OPC rule
optimization problem.

Problem 1 (Rule Learning-Based Mask Optimization
Problem): Given a small set of metal layer clips from large-
scale design patterns and specific rule patterns, the objective
is to design a mask optimization system that can extract and
optimize rule values m = [m�SRAF, m�OPC]� and applied to
other unseen metal clips, with the EPESum, EPEMax, and
PVBand area minimized, and OPC RT as short as possible.

III. RULELEARNER FRAMEWORK

The workflow of our RuleLearner framework is illustrated
in Fig. 1. After the considered rule set is predecided, the
sampled subset of metal layer clips are processed through
the customized ILT engine and quasi-optimized into CTM
for rule value initialization. The rules are then evaluated
based on the quality of corrected masks, and rule distribution

Fig. 4. (a) Target pattern of a complex metal design, (b) corresponding
optimized binary mask, and (c) information-enhanced CTM. (d) Comparisons
in blue circles indicate that transmissivity information is lost in the binary
mask, while comparisons in red circles show that SRAFs generated in the
binary mask are unstructured.

Fig. 5. Illustration of hierarchical information-enhanced CTM generation
flow.

is optimized using the lithography-aware exponential natural
evolution strategy. Finally, the optimized rule can be applied
to guide the SRAF and model-based OPC on other test pattern
clips.

A. Latent Information Extraction

As can be seen in Fig. 4, compared with commonly seen
binary mask which has either total blockage or transparency
at each grid site, the information-enhanced CTM provides
a more sophisticated spatial frequency indication, allowing
higher frequency diffraction components to be involved in
the imaging process [24]. Additionally, it preserves the latent
information for otherwise unstructured SRAFs [23]. In our
framework, the generation of CTM depends on a customized
ILT engine.

Forward lithography simulation models the transformation
of a mask M(x, y) into a wafer image R(x, y), where the light
passing through the mask creates aerial intensity I(x, y) on the
wafer. The aerial image I(x, y) is then transformed into the
wafer image R(x, y) through the resist model by comparing
the aerial intensity to the photo-resist intensity threshold

R(x, y) =
{

1, if I(x, y) ≥ Ith
0, if I(x, y) < Ith

(4)

where Ith is the intensity threshold controls the binary image
on the wafer plane. This forward lithography process can be
generally expressed with

R = �(M) (5)

where � is the lithography engine. ILT then takes into account
the desired pattern on the wafer and the lithography system
parameters to compute the optimal transmission values for
each mask site. The objective considers minimizing both the
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Fig. 6. Illustration of rule distribution update flow.

deviation between the wafer image under nominal condition
and the target image R∗(M), and the PVBand area. The loss
function l(·) in the right hand side of (1) for a fixed rule vector
m is also a function of the binary mask M

l(M) = ∥∥R(M)− R∗(M)
∥∥2 + β‖Rout(M)− Rin(M)‖2 (6)

where Rout(M) denotes the outermost contour, Rin(M) is the
innermost contour, and β is the weighting coefficient. For
binary mask updating using gradient descent, an unconstrained
intermediate variable M′ is utilized

M = sig
(
M′

) = 1

1+ exp
[−αM′ ∗M′

] . (7)

Due to foundry manufacturing constraints, only binary masks
are producible. Previous works [6], [29] used a large steepness
for a distinct binary transition. Flattening the transition with
smaller αM′ enhances the light transmissivity distribution
expression and enriches the gradient detail.

The information-enhanced CTM is optimized with M′
iteratively updated to minimize the cost function

M′ ← M′ −�t
∂l(M)

∂M′
. (8)

To facilitate the backpropagation of loss gradients, in this
section we adopt the accurate deep lithography simulator
(DLS) [30] as the forward lithography simulator to update the
CTM.

To better balance accuracy and efficiency in spatial trans-
missivity calculations, updates to the information-enhanced
CTM are conducted hierarchically, as can be seen in Fig. 5.
The target design initially undergoes downscaling with 8 × 8
average pooling for fast optimization at low resolution rL,
followed by a twofold upscaling for detailed optimization at a
higher resolution rH . We denote the optimization at resolution
r (r ∈ {rL, rH}) as M∗r = min l(Mr). The initial mask is
represented by Mt=0

r . Optimization at the lower resolution rL
enables rapid exploration, setting initial parameters for higher
resolution rH refinement. And the information-enhanced CTM
M∗C is acquired by a fourfold upscaling to restore the original
size. This approach is encapsulated in the ILT methodology
as

M∗C = Upscale
(
M∗rH

, 4
)

s.t. Mt=0
rH
= Upscale

(
M∗rL

, 2
)
. (9)

In the above equation, M∗rL
and M∗rH

are the CTM optimized
at lower and high resolution using (8), respectively. Function
Upscale(M, k) upscale the mask M using nearest neighbor
interpolation with scale factor k.

The optimized CTM reveals significantly enhanced latent
information. The transmissivity distribution pattern near the
main pattern’s edge demonstrates dynamic shrinking and
expansion, aligning closely with fragment-level changes. The
parameter mOPC on the ith clip is initialized to approach the
shape of generated CTM on the ith clip. Accordingly, The
SRAF parameter mSRAF is initially tailored to match iso-
lated highly transmissive regions in the respective CTM. The
transmissivity distribution guides the rule value initialization,
greatly improving the efficiency of the optimization process.

B. Lithography-Aware Natural Evolution Strategy for Rule
Parameter Optimization

The generated CTM is a quasi-optimized mask, yet the
latent information it yields might be implicit and poten-
tially nongeneralizable across different pattern clips, which
needs further consideration. Another primary challenge is the
absence of a direct analytical relationship between rule param-
eters and final lithographic performance. The effects of rule
parameter values, characterized by their nondifferentiability,
discontinuity, and high stochasticity, preclude the direct use
of gradient descent-based algorithms for direct updates on the
individual rule vector m.

However, direct implementation of the plain search gradient,
as discussed in Section II-B, leads to unstable and unsat-
isfactory performance, even in simple quadratic cases [25].
It seeks the steepest descent direction in the space of rule
parameters θ , and treats the parameter space as a Euclidean
space, using the Euclidean metric to measure the distance
between parameter vectors. This metric’s dependence on
the parameterization implies divergent gradients and updates
under reparameterization for the complex rule optimization
problem.

In addressing this, the natural gradient method [25] offers
a robust alternative, optimizing the distribution parameters of
rule values instead to address these challenges effectively. To
this end, this section describes how to incorporate lithography
performance guidance into rule parameter updating process,
to further improve the efficiency of mask optimization task.
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Lithography-Aware Natural Gradient: The key idea is to
remove the dependence on the parameterization by relying
on a more “natural” measure of distance D(θ ′||θ) between
probability distributions P(m|θ) and P(m|θ ′). The update of θ

is expected to be in a direction that maximally decreases the
expected lithography cost, while imposing the constraints on
the information gain at each step. The natural gradient can then
be formalized as the solution to the constrained lithography
rule value optimization problem

min
δθ

L(θ − δθ) ≈ L(θ)− δθ�∇θ L(θ)

s.t. D(θ − δθ ||θ) = ε (10)

where L(θ) is the expected lithography cost for rule distribu-
tion parameter θ . One such natural distance measure between
two probability distributions is the Kullback–Leibler (KL)
divergence. Since we have lim δθ → 0, the nature measure of
distance is

DKL(θ − δθ ||θ) = 1

2
δθ�F(θ)δθ . (11)

In the above equation, F(θ) is Fisher information matrix of
the given parametric family of search distributions, which is
represented as

F(θ) =
∫

P(m|θ)∇θ log P(m|θ)∇θ log P(m|θ)�dm

= E

[
∇θ log P(m|θ)∇θ log P(m|θ)�

]
. (12)

The solution to the constrained optimization problem in (10)
can be found using a Lagrangian multiplier λ, and generate
the necessary condition

F(θ)δθ = γ∇θL. (13)

The natural gradient can be determined to be the same
direction with δθ calculated

∇̃θL = F−1∇θ L(θ). (14)

The parameter can thus be updated with the learning rate η

θ ← θ − η · F−1∇θL(θ). (15)

By combing (15), (12), and (2), the lithography performance
can be utilized to update the rule parameter distribution, which
would otherwise be prohibited due to the absence of an
analytical relationship between lithography performance and
rule parameters.

Rank-Based Fitness Shaping: Mask optimization problem
is a highly nonconvex problem, the optimization path for
different rule vectors θ on the same mask clip could
be different. Additionally, different design pattern clips
have varying geometrical complexities, leading to dis-
tinct final lithography performance after mask optimization
across pattern clips. These variabilities in mask optimization
can distort the gradient due to fluctuating lithography
costs.

To mitigate this issue, our RuleLearner transforms lithogra-
phy costs into utility values u1 ≥ · · · ≥ uN , ranking individuals
by cost, where mi is the ith highest-ranking individual in the
population when sorted by ascending cost, m1 is the rule

Fig. 7. Rule distribution iteratively optimizes toward a lower expected cost.
Rule vectors sampled from the updated rule distribution will lead to better
lithography performance.

parameter with the lowest cost, and mN is the one with the
highest. This approach revises the gradient estimate in (2) for
scale invariance and rank preservation among diverse pattern
clips

∇θL(θ) ≈ 1

N

N∑
n=1

un∇θ log P(mn|θ). (16)

The selection of ui s based on insights from the
previous covariance matrix adaptation evolution strategy
(CMA-ES) [31]

un = max(0, log(N/2+ 1)− log n)∑N
m=1 max(0, log(N/2+ 1)− log m)

− 1

N
. (17)

Natural Exponential Extension: In d-dimensional multi-
variate Gaussian distribution θ = (μ,�), the updated �

should keep positive definite, which is not guaranteed a priori.
Besides, the distribution parameter θ = (μ,�) has d +
d(d + 1)/2 ∈ O(d2) components, the Fisher information
matrix in (12) consists of O(d4), and its inversion requires
O(d6) operations. To mitigate these challenges, we adopt
an exponential map of the covariance matrix and update
the distribution vector using natural coordinates. Instead of
calculating new (μ′,�′) directly, we factorize � = Q�Q and
represent the updated search distribution using the tangent
space of the parameter manifold

(δ, W) 
→ (
μ′, Q′

) =
(

μ+ Qδ, Q exp

(
1

2
W

))
. (18)

This coordinate system is natural in the sense that the Fisher
matrix F(θ) w.r.t. an orthonormal basis of (δ, W) is the identity
matrix. The current search distribution N (μ, QQ�) is encoded
as (δ, W) = (0, 0). In the new coordinate system, the log
density becomes

log P(m|δ, W) = −d

2
− tr(Q)− 1

2

∥∥∥∥exp

(
W
2

)
Q−1 · (m− μ)

∥∥∥∥
2

.

(19)

Consider a sample mn = μ + Q · tn with tn ∼ N (0, I), the
gradient on the current distribution with respect to the δ is
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Algorithm 1 Rule Value Optimization via Exponential NES

Input: Lithography cost l, initial parameter μ0, �0 = Q�Q.
Output: The optimized distribution parameter θ∗ = (μ∗,�).
1: Initialize σ ← d√| det(Q), W← det(Q)/σ ;
2: repeat
3: for n in 1, . . . , N do
4: Draw sample tn ∼ N (0, I) and pattern clips;
5: Rule vector mn ← μ+ σB�tn;
6: Conduct mask optimization with rule mn on clips;
7: Evaluate average lithography cost l(mn);
8: end for
9: Sort (tn, mn) with respect to l(mn);

10: Calculate un � (17);
11: ∇δL←∑N

n=1 un · tn;
12: ∇WL← 1

2
∑N

n=1 un · (tnt�n − I);
13: ∇σ L← tr(∇WL)/d;
14: ∇UL← ∇WL−∇σ L;
15: μ← μ+ ημ · σU · ∇δL;
16: σ ← σ · exp(ησ )/2 · ∇σ L;
17: U← U · (ηU/2·)∇U;
18: until Stopping criterion is met

∇δL(0, 0) =
N∑

n=1

un · ∇δ|δ=0 log P(mn|δ, W = 0)

=
N∑

n=1

un · ∇δ|δ=0

[
−1

2

∥∥∥Q−1 · (mn − (μ+ δ))

∥∥∥2
]

=
N∑

n=1

un · Q−1 · (mn − μ) =
N∑

n=1

un · tn. (20)

Similarly, the gradient with respect to W can be derived

∇WL(0, 0) =
N∑

n=1

un · ∇W |W=0 log P(mn|δ = 0, W)

= 1

2

N∑
n=1

un ·
(

tnt�n − I
)
. (21)

To further improve the efficiency, the transformation matrix
Q = σ · U is decomposed into the step size σ ∈ R

+ and the
normalized matrix U with det(U) = 1. The gradient for σ and
U are

∇σ L(0, 0) = tr(∇WL(0, 0))/d (22)

∇UL(0, 0) = ∇WL(0, 0)− ∇σ L(0, 0). (23)

Consequently, the natural gradient can be computed in
O(d3). The learning rate for μ, σ , and U are set to ημ = 1
and ησ = ηU = ([3 · (3+ log(d))]/[5d1.5]), respectively, as
adopted in CMA-ES. Given the above discussion, the general
algorithm is shown in Algorithm 1.

C. Adaptive Sampling on Unseen Clips

The sampling-based rule distribution update, considering
geometric properties, aims to boost performance in com-
plex metal patterns. Yet, due to computational limits, mask
optimization with this rule is clip-based, and optimizing a full
mask for complex very large scale integration (VLSI) designs
on a single system is unfeasible.

In lithography, the optical projection system’s capabili-
ties, dictated by factors like light wavelength and numerical
aperture, set limits on linewidth and depth of focus. As
design nodes shrink, diffraction effects become more signifi-
cant [32], [33]. Consequently, mask optimization for a layout
tile also involves considering the influence of adjacent tiles.
Accordingly, we partition our layout into overlapping tiles as
considered in [34] and [35], calculating each tile’s width and
height based on these considerations

kw, kh ←
⌊


w − sw

λw − sw

⌋
,

⌊

h − sh

λh − sh

⌋
(24)

where 
w and 
h represent the width and height of the full
layout, while λw and λh represent the width and height of the
clipped tiles. The term sw and sh represent the stride in the
width and height directions, which are predefined constants.
kw × kh denotes the number of tiles, respectively.

The rule distribution is updated following lithography
engine simulation and natural evolution optimization. To effec-
tively generalize across a wide range of pattern complexities,
pattern clip sampling must adapt to the distribution properties.
If the rule favors denser SRAFs and coarser segmentation with
more aggressive fragment movements, the resulting sampled
clips may be sparse and simple. Consequently, the next
iteration’s sampling should prefer more complex clips with a
higher metal area ratio. Conversely, if the rule involves smaller
SRAFs and a more sophisticated model-based OPC process,
the subsequent sampling should focus on sparser and simpler
clips to maintain balance.

D. General Mask Optimization Flow

In this article we apply the rule into the real industrial-
like mask optimization flow consists of the rule-based SRAF
insertion and the model-based OPC.

The key components for SRAF generation is the position
and the size information. Compared with simple one level rule-
based SRAF insertion [1], the considered rules are capable of
adapting to the intricate geometrical relationships inherent in
complex main patterns. Since assist features are essential for
isolated patterns, within our rule set, the degree of sparsity
proximal to each boundary of the main pattern is examined.
The optimized r1–r3 characterize this isolation and decide
whether we could add SRAF and how many levels of SRAF
should be added. Depending on the unique circumstances of
each case, positional rule parameters, d1 and d2 are employed
to define the SRAFs’ proximity to the edges of the main
pattern. Subsequently, the configuration of the SRAFs is
delineated by shape rule parameters w1–w3 and lSRAF1–lSRAF3.
The generated SRAFs are fixed in the following model-based
OPC process. Notably, the RuleLearner can be seamlessly
extended to accommodate more elaborate rules without much
effort.

After SRAF generation, model-based OPC modifies com-
plex main patterns to compensate for imaging distortions.
Within a new complex clip, the edge of main pattern is
segmented in a adaptive manner: the proximal effect from
neighboring main patterns may have influence on the lithogra-
phy result, Lithographic outcomes are significantly influenced
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by proximity effects from adjacent patterns within a threshold
distance dp, necessitating distinct treatment of segmented
projection fragments. If the length is smaller than ltr we
neglect the corner case, otherwise two corner fragments with
length lc are segmented, and the remaining part is segmented
in equal length lu. In every iteration, wafer image deviations
from the target edge guide fragment offsetting: if the wafer
image shrinks, fragments expand by fixed step sizes sp, sc,
and su, respectively, based on fragment type. If protrusion
occurs, fragments shrink accordingly. It is worth mentioning
that, in addition to our mask optimization process design, the
lithography-aware natural evolution strategy in RuleLearner
can be extended to consider other lithography-related rule
parameters in specific mask optimization processes.

This iterative process will stop if the cost is smaller than a
predefined threshold or maximum iteration number is met.

IV. EXPERIMENTS

A. Experimental Setup

Our RuleLearner is implemented in PyTorch, all the exper-
iments are conducted on Linux system with an Nvidia
GeForce RTX 3090 GPU. The Calibre-compatible lithography
simulator is adopted to conduct the lithography process,
which consists of an optical plus a compact resist model
from the industry, the reference threshold is 0.25. The
corresponding Calibre OPC scripts are from an industry
partner. Following state-of-the-art works on OPC, such as
AdaOPC [36] and LithoBench [37], we crop abundant layout
tiles from the 45-nm designs synthesized by the IC design
tool, OpenROAD [38]. Given a GDS-II layout file, we crop
the layout into 1024 nm × 1024 nm tiles with a stride of 256
nm × 256 nm using KLayout [39] and extract the first metal
layer. Each clip contains part of the entire design pattern, the
local geometrical properties could be either simple (metal area
ratio < 0.25) or complex (metal area ratio > 0.35). We select
five simple clips and five complex clips to test the performance
of the optimized rules. The detailed pattern area in nm2 and
area ratio of each benchmark are listed in Table II.

Following previous work, the performance is evaluated
based on the final printed wafer image using the process
variation band area (PVB) in square nanometers (nm2), the
summation of edge placement errors (EPESum) and maximum
edge placement errors (EPEMax) are in nanometer (nm), and
RT in seconds (s) as evaluation metrics. The EPE probe points
are set evenly along every target edge with the distance of
40 nm, following the conventional strategy illustrated in [40].
The total number of probe points on every test case is listed
in the final column in Table II. The PVB is the XOR region
of wafer contours among different process conditions. The
defocus values are chosen from the set {−10, 0, 10 nm} where
the nominal focus corresponds to 0 nm, and exposure dose
values are chosen from the set {0.95, 1.0, 1.05} with the
nominal dose value set as 1.0.

B. Compare With Different Model-Based OPC Methods

In the first experiment, we evaluate the optimized
mask qualities of RuleLearner in comparison with other
model-based OPC methods. We compare our results with
the industrial tool Calibre [18] and two state-of-the-art

TABLE II
BENCHMARK STATISTICS

model-based OPC methods that can adapt to metal layer
patterns. AccOPC [2] conducts mask optimization through the
insertion of single-layer SRAFs, along with length-adaptive
edge fragmentation and segment movements. CAMO [4] is
a reinforcement learning-based OPC method that employs
graph-based mask encoding to consider geometric correlations
and RNN-based sequential segment movements.

As illustrated in Table III, RuleLearner demonstrates supe-
rior mask optimization performance. Benefiting from more
sophisticated SRAF insertion decisions and segment control
mechanisms, our results outperform AccOPC with an 8%
drop in PVB area, a significant 18% reduction in aggregate
EPE lengths, and a 15% reduction in EPEMax. Compared
with CAMO, which employs a reinforcement learning strategy,
RuleLearner exhibits enhanced scalability for intricate 2-D
patterns, yielding reductions of 6% in average PVB area, 8% in
EPE summation, and 21% in EPEMax length. Even compared
with the commercial tool, RuleLearner achieves improvements
of 6%, 3%, and 7% in PVB area, EPE summation, and
EPEMax, respectively.

The mask optimization is a complex iterative process in
a highly nonconvex space, and different methods require
various numbers of iterations to reach the optimal results.
Beyond mask quality metrics, the adaptive flexibility inher-
ent in RuleLearner facilitates expedited mask optimization
convergence. RuleLearner attains speedups of 1.55×, 2.23×,
and 1.51× compared with Calibre, AccOPC, and CAMO,
respectively.

We also evaluated the mask shots number of different
methods, which represents the average number of rectangular
shots needed to accurately replicate the optimized mask for the
test cases. The result is shown in Fig. 8. Compared to other
model-based OPC engines, our method results in more mask
fracturing shots. This is because RuleLearner incorporates
more sophisticated edge segmentation and SRAF insertion
processes to achieve better wafer image quality.

C. Compare With Different Rule Optimization Methods

In the second experiment, we evaluate the quality of
rules generated from RuleLearner from the quality of final
optimized masks.
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TABLE III
COMPARISON WITH DIFFERENT OPC ENGINES

TABLE IV
COMPARISON WITH DIFFERENT RULE OPTIMIZATION METHODS

To the best of our knowledge, this is the first model-based
OPC framework that considers rule optimization of both the
SRAF generation stage and OPC stages. Considering this, we
compare the developed RuleLearner with different parameter
optimization methods, and test the generated rules using the
same rule-based SRAF and model-based OPC. Experts sample
different possible rule value candidates manually based on the
parameter tuning experience and heuristically keep the best-
performing one. This method is set to mimic the expert’s
behavior when selecting the proper rule value. CMA-ES [31]
focuses on adapting the covariance matrix of the sampling
distribution, allowing the algorithm to learn the shape of the
objective function’s landscape. GA-Rule [19] adopts a genetic
algorithm to optimize only the SRAF insertion rule. For a more
fair comparison, we reimplement the algorithm and optimize
both SRAF and OPC rules. The update iterations for the above-
mentioned methods are set to 50.

As shown in Table IV, RuleLearner achieves the best mask
quality, optimizing the rules for superior performance across
these ten cases. Our RuleLearner outperforms the expert tuning
with 9% less PVB area, 17% less EPESum, and 11% less
EPEMax. Compared with CMA-ES, the use of natural gradient
and fitness shaping in RuleLearner led to more efficient
updates on the rule value, which reduced PVB area by 7%
with 12% less total EPE lengths and 10% less EPEMaxs.
Besides, our RuleLearner utilizes the customized ILT engine
to guide the optimization process, and the result is better than
the previous GA-rule with 13%, 24% improvements in PVB
area and EPESum lengths, together with 19% less EPEMax.

Fig. 8. Shot numbers comparison on normal layouts.

The rule generated with RuleLearner could also lead to the
fastest mask optimization convergence time. Compared with
the listed methods, our mask optimization RT could achieve
58%, 43%, and 47% speedup, respectively. This advantage
could be more substantial when implementing in large set of
mask clips.

The mask shot numbers of different rule optimization
methods are comparable, as shown in Fig. 8. The difference
mainly arise from the selected segment lengths and SRAF
insertion decisions.

D. Visualization of Lithography Performance

Fig. 9 displays examples of SRAF insertion and mask
optimization for two simple cases (S3 and S4) and two
complex cases (C1 and C5) formulated using RuleLearner,
alongside the resultant wafer images and PVB. An exam-
ination of the figure reveals that the mask produced by

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on April 24,2025 at 01:25:18 UTC from IEEE Xplore.  Restrictions apply. 



1924 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 5, MAY 2025

Fig. 9. Mask optimization results for four test cases with different
complexities. (a) Target. (b) Optimized masks. (c) Wafer images. (d) Process
variational bands.

the RuleLearner algorithm closely aligns with conventional
industrial mask design principles, particularly evident in the
gradation of SRAFs; those proximal to the main pattern
are notably larger than their distal counterparts. During our
optimization process, we prioritize minimizing distortions of
wafer images with reduced EPE and clear hotspots under nom-
inal conditions, and reducing the differences between different
contours under varying process conditions. The printed wafer
image under nominal condition could avoid critical hotspots,
such as disruptive parts or unintended connection, even in
complex cases.

E. Ablation Study on CTM Engine Guidance and Fitness
Shaping

An ablation study was conducted to evaluate the impact of
CTM engine guidance on optimization efficacy, with results
presented in Table V. In the first row, the rule values are
randomly initialized, followed by the same natural evolution
optimization process. The result clearly demonstrates that rules
initialized using the customized CTM engine outperform those
with random initialization, as evidenced by improvements
in PVB area, EPE summation length, EPEMax length, and
optimization time.

The effectiveness of fitness shaping within the RuleLearner
framework was also validated, with results displayed in the
second row of Table V. Incorporating fitness shaping in
RuleLearner effectively prevents premature convergence and
numerical instability during the rule optimization process,
which finally leads to better mask optimization results.

F. Comparison on Larger Layouts

To further validate the scalability of the proposed
RuleLearner, we evaluated it on larger layouts. We selected
L1–L5 as five large clips, each sized 2048 nm × 2048

TABLE V
ABLATION STUDY

Fig. 10. Mask optimization results for large layout example. (a) Target.
(b) Optimized masks. (c) Wafer images. (d) Process variational bands.

Fig. 11. Shot numbers comparison on large layouts.

nm with a stride of 512 nm × 512 nm, cropped from the
45-nm designs. Each clip contains a part of the original
design that is four times larger and exhibits more complex
geometrical properties with additional patterns. An example
of L3 can be seen in Fig. 10. The detailed pattern area in
nm2, the area ratio and the number of EPE probe points are
listed in the bottom part of Table II. The rule optimization
process in RuleLearner involves optimizing rule parameters
across different pattern clips, enabling it to effectively consider
various local geometrical features. As shown in Table VI,
RuleLearner exhibits superior mask optimization performance
compared with various model-based OPC engines, in terms
of PVB area, EPE summation, EPEMax length, and
RT. The optimized rules achieves the best mask quality
among different rule optimization methods, as shown in
Table VII.

The average shot numbers of different methods are also
displayed in Fig. 11. Compared to layouts of normal size 1024
nm × 1024 nm, the shot numbers are larger due to increased
pattern area and geometrical complexities. Similar to normal
size results, the shot numbers of RuleLearner are slightly
higher than those for Calibre, AccOPC [2], and CAMO [4],
yet comparable with other rule optimization methods, such as
Expert, CMA-ES [31], and GA-Rule [19].

V. CONCLUSION

We concentrate on optimizing rule values for intricate SRAF
generation and model-based OPC processes. In this article,
we propose RuleLearner, an innovative automated framework
leveraging the ILT engine for the extraction of latent features
and the optimization of rule values utilizing a natural evolution
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TABLE VI
LARGE LAYOUT COMPARISON WITH DIFFERENT OPC ENGINES

TABLE VII
LARGE LAYOUT COMPARISON WITH DIFFERENT RULE OPTIMIZATION METHODS

strategy. To the best of our knowledge, this is the first work to
enable rule extraction from small sections of complex designs
and generalize it to other parts. Experimental results, drawn
from more complex metal layer, demonstrate the practical
superiority of our methods compared with other methods. We
believe that the strategic extraction of rules, as realized in
RuleLearner, will play a crucial role in the evolution of modern
lithographic mask optimization.
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