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Abstract—Gate sizing plays an important role in timing
optimization after physical design. Existing machine learning-
based gate sizing works cannot optimize timing on multiple
timing paths simultaneously and neglect the physical constraint
on layouts. They cause suboptimal sizing solutions and low-
efficiency issues when compared with commercial gate sizing
tools. In this work, we propose a learning-driven physically
aware gate sizing framework to optimize timing performance
on large-scale circuits efficiently. In our gradient descent
optimization-based work, for obtaining accurate gradients, a
multimodal gate sizing-aware timing model is achieved via learn-
ing timing information on multiple timing paths and physical
information on multiple-scaled layouts jointly. Then, gradient
generation based on the sizing-oriented estimator and adaptive
back-propagation are developed to update gate sizes. Our results
demonstrate that our work achieves higher-timing performance
improvements in a faster way compared with the commercial
gate sizing tool.

Index Terms—Deep learning, design automation, design for
quality.

I. INTRODUCTION

GATE sizing on post-routing circuits is fundamental for
timing optimization to achieve sign-off timing closure

with smaller the worst-negative slack (WNS) and total neg-
ative slack (TNS). The solution space scales exponentially
with respect to the size of circuits [1], [2]. Under advanced
technology, as illustrated in Fig. 1(a), physically aware timing
engineering change order (ECO) flow is proposed. The flow
can consider physical information and timing information
jointly to achieve timing closure [3]. However, poor con-
vergence forces engineers to perform many time-consuming
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iterations throughout the flow [4]. It makes an efficiency
bottleneck for gate sizing.

Existing gate sizing algorithms can be divided into two
kinds.

1) Analytical Methods [2], [5], [6], [7], [8], [9], [10]:
Discrete gate sizing is solved through gradient descent
optimization using Lagrangian relaxation-based algo-
rithms in these methods.

2) Machine-Learning Methods [4], [11], [12]: Machine
learning models are used to perform gate sizing
through modeling circuits. Although machine learning
has achieved many improvements in the gate-sizing
problem, the performance of previous works cannot
meet industry requirements when compared with com-
mercial EDA tools. In RL-sizer [11], the generalization
ability and runtime costs limit the application. In
TranSizer [4], optimization performance is sensitive to
the accuracy of the proposed gate sizing prediction
model. A small prediction error that happens on critical
paths always causes terrible optimization results, which
makes TranSizer difficult to achieve stable and really
optimal performance.

Recently, learning-driven gradient descent optimization works
have solved some EDA issues [13], [14], [15], [16], [17],
[18]. Fortunately, it is also a good idea for gate-sizing which
combines analytical and machine learning methods jointly.
However, totally different from other EDA problems, it is a
special task to achieve gate-sizing based on learning-driven
gradient descent optimization. There are two main challenges.

1) Achieving a gate sizing-aware timing model where
accurate optimization gradients are calculated based on
it.

2) Generating and back-propagating gradients w.r.t. dis-
crete gate sizes on large-scale circuits efficiently and
effectively.

For challenge (1), modeling gate sizing-induced timing
performance variations urgently needs timing information on
paths and physical information on layouts. For timing paths,
the path delay variations of multiple timing paths caused by
gate sizing on one single gate always are different [2]. As
shown in Fig. 1(b), Path 1 and Path 2 are critical paths that go
through gate U4. The setup timing performance of Path 1 can
be optimized through upsizing gate U4. However, the larger
effective capacitance of up-sized U4 loaded on gate U2 and U1
causes delay degradation on Path 2. The tradeoff between the
optimization and degradation on multiple critical paths should
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Fig. 1. Rich information 1) in optimization flow; 2) on timing paths; and
3) on design layouts. (a) Classical gate sizing flow where many iterations are
necessities. (b) Netlist with multiple paths. (c) Layout under multiple scales.

be achieved while gate sizing. On design layouts, gate sizing
might cause wire delay degradations after replacement and
rerouting. As shown in Fig. 1(c), when replacement happens
on gate U4 in the region with high-gate density, up-sized gate
U4 must be replaced to avoid overlapping on layouts. In the
rerouting stage, on the layout with high-wire congestion, the
wire length of wire A increases due to detoured routing. After
that, the delay of wire A degrades with the wire lengths.
For layouts under multiple scales, the results of replacement
and rerouting are different [1]. Thus, physical information on
multiple-scaled layouts is important to tradeoff wire delay
degradations. In addition, different from prediction works, the
target of the timing model used in our work is to achieve
optimal gate-sizing. The optimization information from the
commercial gate sizing tool can be considered to guide the
gradient. In summary, timing information on paths, physical
information on layouts and optimization information in the
industrial flow should be given full and joint consideration.

For challenge (2), the size of each gate is discrete rather
than continuous. It means round functions should be used
in timing models based on achievable gate sizes. However,
round functions are not differentiable. AGD [15] proposed
to use the Softmax functions to replace round functions for
approximating the gradients in discrete functions as categorical
variables. However, the gate size should be regarded as an
integer-valued variable to retain the relationships between
different sizes. Inspired by recent quantization-aware training
works, the straight-through estimator can help us to obtain
accurate gradients w.r.t. discrete gate sizes [19], [20], [21].
It is helpful to avoid discrepancies between the forward and
backward pass, leading to global optimal gate sizing results.
In addition, on large-scale circuits with numerous gates, there
is a high-dimensional issue during gradient back-propagation.
When numerous gates update sizes simultaneously, there are
interdependencies among them. Limited considerations about
the problem cause low-optimization efficacy.

In this work, we propose a learning-driven physically
aware gate sizing framework to achieve timing optimization
on large-scale circuits efficiently. Our work overcomes the
above challenges of achieving gate sizing via gradient descent

optimization. To obtain a gate sizing-aware timing model, we
learn optimization information, timing information on paths
and physical information on layouts jointly through multimodal
learning. The learned information helps to accurately model
timing optimization and degradation induced by gate sizing. To
update gate sizes based on gradients effectively, we generate
accurate timing performance gradients w.r.t. integer-valued gate
sizes and back-propagate them with different priorities on
different gates. We highlight our contributions.

1) For the first time, we propose a learning-driven frame-
work to achieve physically aware gate-sizing. It can
optimize timing performance effectively on large-scale
circuits.

2) We achieve multimodal gate sizing-aware timing
modeling via timing information aggregation on multiple
critical paths and physical information aggregation on
multiple scaled layouts. The optimization information
from Synopsys IC-Compiler II (ICC2) [3] is utilized in
training to guide the gradients of our timing model.

3) We perform gate sizing based on the size gradients of our
timing model. A sizing-oriented straight-through estima-
tor is developed to efficiently generate size gradients in
discrete functions. An adaptive gradient back-propagation
method is presented to update gate sizes effectively.

4) Our framework is evaluated with open-source designs in
TSMC 16-nm technology. The results demonstrate that
it can achieve 16.29%/18.61% TNS/WNS improvements
and 6.64× speedup on average compared with the
commercial gate sizing tool ICC2.

II. PRELIMINARIES

A. Timing Optimization

Timing optimization is important in the circuit design flow
to fix timing issues on timing paths. In circuits, timing paths
are composed of a startpoint and an endpoint. The startpoint is
a primary input or a register’s output pin, while the endpoint
is a primary output or a register’s input pin. And the path
slacks of all paths are computed based on path delays and the
target clock period. Two metrics is used to evaluate timing
performance, including 1) the TNS, which is the sum of
the negative slacks observed at the primary outputs of the
circuit and 2) the WNS, which is the WNS observed among
all primary outputs of the circuit. Timing optimization focus
on improving timing performance through bringing changes
to circuits. In our work, we look forward to achieving it
through gate sizing. It is a representative technique [1]. It
chooses a better size for each gate from the cell library to
optimize overall timing performance. Modern physically aware
gate sizing flows should not only consider timing information
but also physical information, e.g., gate density and wire
congestion, to avoid numerous iterations.

B. Important Definitions

We give some important definitions as follows.
Definition 1 (Gatewise Critical Path): The most critical

timing path through the target gate.
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Fig. 2. Overall flow of our framework.

Definition 2 (Gatewise Path Group): The path group that is
composed of critical timing paths through the target gate.

Definition 3 (Gatewise WNS): The negative slack of gate-
wise critical path for the target gate.

Definition 4 (Gatewise TNS): The TNS of paths in the
gatewise path group for the target gate.

Examples: As shown in Fig. 1(b), Path 1, Path 2 and Path
3 are the gatewise critical paths of gate U4, U7 and U3,
respectively. For the gate U4, Path 2 and Path 3 are included
in the gatewise path group for it. The gatewise WNS of gate
U4 equals to −120 ps. The gatewise TNS of gate U4 equals
to −285 ps.

C. Problem Formulation

Based on these definitions, the problem of gate sizing can
be formulated as follows.

Problem 1 (Gate Sizing): Given a post-routing netlist with
timing information on multiple critical timing paths and layout
with physical information under multiple scales, our target is
to achieve optimal gate sizes of all gates {gv, v ∈ V} based on
the information to obtain optimized timing performance with
smaller TNS and WNS, where V is the gate set.

III. OVERALL FLOW

As illustrated in Fig. 2, we first briefly introduce the
overall flow of our gate sizing framework. The proposed
framework can be divided into two steps: step 1 achieves
the gate sizing-aware timing modeling based on multimodal
learning (Section IV) and step 2 updates gate size based on
gradients (Section V). In step 1, we learn timing information
on multiple paths through timing feature aggregation and
physical information on multiple scaled layouts through phys-
ical feature aggregation jointly. Based on learned information,
we perform gatewise TNS τ(gv) and WNS ω(gv) prediction
where slack labels and gradient labels are used in the loss
function to ensure high accuracy. In step 2, we calculate the
timing target T(ω(gv), τ (gv)) based on our timing model. Then
we generate timing target gradients ∇gvT w.r.t., gate sizes
{gv, v ∈ V}. The sizing-oriented straight-through estimator

helps to solve discrete issues. Finally, we update the gate
size of each gate (gv − εv∇gvT) via the adaptive gradient
backward propagation. Our framework can optimize the timing
performance of circuits, including TNS and WNS. The details
are discussed as follows.

IV. GATE SIZING-AWARE TIMING MODELING

A. Date Representation

Timing Features on Netlists: As shown in Fig. 3(a), we
transfer the circuit netlist to a graph G = (V,E,P) consisting
of a node set (V), a edge set (E) and a subgraph set (P). Nodes
are gates and edges are wires. More importantly, subgraphs
are critical paths composed of gates and wires on paths. The
circuit graph G is represented with node feature matrix XT :
{xT

v , v ∈ V}, adjacency matrix J. The details of features in
feature vector xT

v includes the following.
1) Current gate size {gv, v ∈ V}: Extracted by the cell type

name, determining the driving strength of the gate.
2) Gate Type: For example, NAND, NOR, and embedded as

a one-hot vector.
3) Wire Capacitance and Resistance: Extracted from the

SPEF files generated by StarRC [22].
4) Pin Capacitance: Extracted from the timing library.
5) Original Gate Size: Extracted from the cell type name

of circuits before gate sizing.
Physical Features on Layouts: We divide the overall layout

into different scales with M × N grid cells. In previous timing
models [23], they work on layout under one scale. Thus,
the values of M and N are set to be constant, which equals
512. Achieving gate sizing based on physical information on
different scaled layouts can obtain different results [3]. Thus,
we collect physical features on multiple-scaled layouts where
M and N are set to be different values. Specifically, local
and global physical information is collected on large-scale
and small-scale layouts, respectively. The detailed considered
physical features should be closely correlated with gate sizing,
which include: 1) vertical wire congestion; 2) horizontal wire
congestion; and 3) gate density. Fig. 3(b) gives examples of
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Fig. 3. Data representation in our work. “Or. Gate” and “Op. Gate” represent the original gate size and optimized gate size. (a) Circuit netlist graph.
(b) Physical features of multiple scaled layouts. (c) Gatewise TNS labels and TNS gradient labels.

physical features XH : {xH
v , v ∈ V} on different scaled layouts

for one Opencore design NOVA.
Slack Labels and Gradient Labels: As shown in Fig. 3(c),

there are two kinds of labels used for training our timing
model, including slack labels and gradient labels. Slack labels
{stot

v , swst
v ; v ∈ V} are gatewise total slacks and gatewise WNSs

for all gates, which are generated via static timing analysis
based on Synopsys PrimeTime [24]; Different from previous
works, the gradient labels {dtot

v and dwst
v , v ∈ V} are the

gate sizing directions to optimize TNS and WNS, which are
generated based on gate sizing results of ICC2. For gate v,
given the original and ICC2 optimized gate sizes {gor.v, gop.v}
and gatewise TNS results {stot

or.v, stot
op.v}, dtot

v can be computed
as: dtot

v = (stot
op.v −stot

or.v)/(gop.v −gor.v). In the same way, dwst
v is

obtained. Our work focuses on achieving timing optimization
by gate sizing. The optimization direction of ICC2 is the best
possible after many explorations. Thus, the gradient labels can
help speed up the optimization process and avoid local optimal
problems.

B. Timing Feature Aggregation

Gate sizing for one target gate should consider all crit-
ical paths through it to achieve timing optimization and
degradation tradeoff. One example of the timing information
aggregation flow for gate U4, gate U7 and gate U3 is shown in
Fig. 4. Given original timing features XT : {xT

v , v ∈ V} as input,
the flow outputs path aggregated timing features T: {tv, v ∈ V}.
For one gate v, the gatewise critical path and path group of
gate v are pv and Pv, respectively. The detailed progress in
generating tv is discussed as follows.

Timing Feature Encoder: Given the input timing features
{xT

v , v ∈ V}, Transformers achieve timing feature encoding
path by path and output {tpv , v ∈ V, p ∈ P}. On path p, the tpv
is generated via

tpv = Transformer
({

xT
u , u ∈ Np

}
, xT

v

)
(1)

where Np is the gate set of path p. On gatewise critical path
pv, the results of timing feature encoding tpv

v is regarded as
the critical encoding of gate v. Here, Transformer proposed
in TransSizer [4] is used in our work. This part can collect
timing information in a path-by-path way.

Path-Based Timing Feature Fusion: In the timing feature
encoder, similar to TransSizer [4], the timing feature on
paths is learned path by path. However, for real optimal
gate sizing, timing performances on all critical timing paths
through one gate should be considered jointly to achieve
timing optimization and degradation tradeoff. In this work, we
focus on achieving timing information aggregation on multiple
timing paths. The final path aggregated timing feature tv of
gate v is composed of three parts, including critical encoding,
intrapath encoding, and interpath encoding.

1) In the critical encoding part, we obtain the timing feature
encoding result tpv

v of gate v on its gatewise critical
path pv. The slack of pv is gatewise WNS of v and is
dominant in gatewise TNS. The influence of gate-sizing
happened on gate v on path pv is modeled accurately in
this part. Thus, it helps improve the prediction accuracy
of gatewise WNS and TNS efficiently.

2) In the intrapath encoding part, we obtain the timing
feature encoding results of gatewise critical path pv via
pooling all gates’ timing feature encoding results on it.
It helps our timing model to capture the relationship
between gate v and other gates on pv for accurate
gatewise WNS and TNS predictions.

3) In the interpath encoding part, we combine the timing
feature encoding results of gate v on all critical paths in
gatewise path group Pv through average pooling. This
part captures the relationships between gate v and all
critical paths through it. It achieves accurately modeling
the timing variations on paths in Pv caused by gate sizing
on gate v.

It is helpful to achieve accurate gatewise TNS prediction. The
path aggregated timing feature tv is computed as

tv = (
tpv
v , pv is critical path

)

︸ ︷︷ ︸
Critical Encoding∥∥

∥∥∥∥∥
SUM

(
tpv
uv

, uv ∈ Npv

)

︸ ︷︷ ︸
Intra-path Encoding

∥∥
∥∥∥∥∥

AVE
(
tpv , p ∈ Pv

)

︸ ︷︷ ︸
Interpath Encoding

(2)

where pv is the gatewise critical path of gate v and Npv is the
gate set of path pv. Pv is the gatewise path group of gate v.
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Fig. 4. Example of timing information aggregation on multiple paths.

SUM and AVE represent sum pooling and average pooling
operations, respectively.

C. Physical Feature Aggregation

Aggregating the differentiated information on different
scales benefits capturing the circuit timing variation caused by
replacement and rerouting after gate sizing. One example of
the physical information aggregation flow for layouts under
4 × 4, 128 × 128 and 512 × 512 scales is illustrated in
the right part of Fig. 5. Given the input physical feature
XHM×N

, the flow outputs the scale aggregated physical feature
H through combining information on different-scaled layouts.
Since M equals to N in this example, XHM×N

and HM×N can
be represented with XHM

and HM . The flow is divided into two
modules: 1) the physical feature encoder module and 2) the
scale-based physical feature fusion module. The flow captures
global and local physical information jointly on layouts.

Physical Feature Encoder: We start by encoding physical
features under different scales independently and generate
HM×N . For the tradeoff between efficiency and effectiveness,
the ResNet [25] and ASPP [26] are used to extract and com-
press input physical features, respectively. Specially, ResNet
layer is constructed based on the feature extraction part of
ResNet-50 without all other necessary parts. The ASPP layer
is composed of five “Conv-BN-ReLU” branches. The kernel
sizes and dilation rates of them are 1; 3; 3; 3; 1 and 1;
2; 5; 7; 1. All convolution operations use the padding to
ensure that the input and output sizes are consistent. A global
average pooling operation and an up-sampling operation are
used before and after the second branch to capture the global
physical information and restore it to the original size. All
results of the five branches are concatenated along the channel
dimension and fused by a branch to obtain the output. Thus,
HM×N can be computed as

HM×N = ResNet-ASPP
(

XHM×N
)
. (3)

Next, these features are fed successively to the scale-based
physical feature fusion module for subsequent processing.

Fig. 5. Example of physical information aggregation on multiple scaled
layouts.

Scale-Based Physical Feature Fusion: We set one main
scale, which equals 512 × 512, the biggest scale we selected in
our work. For physical features on the small-scaled layout, we
directly up-sample them by the bi-linear interpolation. Based
on all encoded physical features from multiple scaled layouts
{H1×1, H2×2, . . . , H256×256, H512×512}, the scale attention A
corresponding to each scale can be obtained. The process is
formulated as

A = σ
(
�
{
U
(

H1×1
)
|| . . . ||H512×512

})
(4)

where � indicates the stacked “Conv-BN-ReLU” layers which
are commonly used in convolutional neural networks [25].
|| represents the concatenation operations. U(·) refers to the
bi-linear interpolation operations for up-sampling mentioned
above. σ is Softmax activation operation in our work. Based
on generated scale attention, we can obtain the final scale
aggregated physical feature H by combining the scale-specific
information jointly. Inspired by [23], gatewise masking can
help us to get scale aggregated physical feature for each gate
{hv, v ∈ V}. They can be computed as

H =
∑

all scales

AM×N × U
(
HM×N), hv = MvH (5)

where U(·) is unnecessary for the features on main scale
H512×512. Mv is the gatewise mask for gate v. These designs
can selectively aggregate the scale-specific physical features to
explore subtle but critical information among different scales.
It helps predict TNS and WNS improvements and degradations
induced by gate sizing after replacement and rerouting.

D. Gatewise TNS and WNS Prediction

Based on the path aggregated timing features T: {tv, v ∈ V}
and scale aggregated physical features H: {hv, v ∈ V}, we use
multilayer perceptron layers MLPτ and MLPω to predict the
gatewise TNSs and gatewise WNSs for all gates

τ
(
gv

) = MLPτ (tv||hv), ω
(
gv

) = MLPω(tv||hv) (6)
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Fig. 6. Example flow of generating gradients of gatewise TNS w.r.t. gate
sizes via the sizing-oriented straight-through estimator (STE).

where gv is the gate size of gate v. Both the slack labels
and gradient labels are used in loss functions of τ(gv) and
ω(gv). The slack labels play important and fundamental roles
in improving timing model accuracy. The gradient labels can
be regarded as constraints to guide optimization directions.
Combining these two labels, the loss functions used for
training are illustrated in

Lτ =
∑

v∈V

⎧
⎪⎨

⎪⎩

(
stot

v − τ(gv)
)2

︸ ︷︷ ︸
slack labels

+ (dtot
v − ∇gvτ

)2
︸ ︷︷ ︸

gradient labels

⎫
⎪⎬

⎪⎭

Lω =
∑

v∈V

⎧
⎪⎨

⎪⎩

(
swst

v − ω(gv)
)2

︸ ︷︷ ︸
slack labels

+ (dwst
v − ∇gvω

)2
︸ ︷︷ ︸

gradient labels

⎫
⎪⎬

⎪⎭
(7)

where stot
v and swst

v are gatewise total slacks and gatewise
WNSs generated via Synopsys PrimeTime; dtot

v and dwst
v

are gradients of gatewise total slacks and gatewise WNSs
generated after Synopsys ICC2 gate sizing; and ∇gvτ and
∇gvω are gradients of τ(gv) and ω(gv) w.r.t. gate size,
where the detailed flow to generate them is discussed in
Section V-B.

V. UPDATING GATE SIZE BASED ON GRADIENTS

A. Timing Target Calculation

After obtaining the well-trained τ(gv) and ω(gv), the timing
target T(gv) for gate sizing is calculated based on predicted
gatewise TNS and WNS results. Different from previous
work [15], we consider all critical paths in the timing target
T(gv) rather than the worst path on each point. This is because
focusing on optimizing the worst path on each point might
cause timing degradations on other critical paths on the same
point. It makes many time-consuming iterations and causes
local optimal problems in other works [4]. The timing target

T(gv) can computed as

T
({gv, v ∈ V}) = μτ

N

∑

v∈V
min

{
0, τ

(
gv

)}

︸ ︷︷ ︸
TNS Target

+μω min
v∈V

ω
(
gv

)

︸ ︷︷ ︸
WNS Target

(8)

where μτ and μω are weights for the TNS target and WNS
target, respectively. N is the number of gates with negative
gatewise TNSs. As the WNS target and TNS target contain
minimum operation, directly applying the timing target T for
backward propagation leads to a cut-off in some timing paths.
To overcome the drawback, we follow the method proposed
in [14] to smooth the minimum and maximum operations. In
details, these operations are replaced with the Log-Sum-Exp
function as follows:

LSE
(
ω
(
gv

)
, v ∈ V

) = γ log

(
∑

v∈V
exp

gv

γ

)

(9)

where γ is the critical parameter to adjust the degree of
smoothing where a larger γ causes smoother results with
lower-approximation accuracy. Similarly, the minimum oper-
ation is smoothed by the inverse values. Thus, the value of
γ plays an important role in our work to achieve efficient
timing optimization and is necessary to be selected carefully.
After that, we can get the smoothed T(gv). Based on smoothed
T(gv), the timing optimization gradients w.r.t. gate size (∇gvT)

can be computed automatically via backward propagation,
which can be used in our gate-sizing framework.

B. Gradient Generation

As shown in (8), the first and fundamental task is to
calculate gradients of our timing model w.r.t. gate sizes
(∇gvτ and ∇gvω) before generating gradients of timing target
∇gvT. Since gate size gv of each gate is discrete rather than
continuous, the round operation is a necessity in our timing
models τ(gv) and ω(gv) during forward pass. As illustrated in
Fig. 6, the continuous gate size gcon

v can be translated into real
achievable gate size gv after it. However, it makes our timing
models not differentiable w.r.t. gate sizes. Thus, the sizing-
oriented straight-through estimator is developed to solve the
issue and generate gradients (∇gvτ and ∇gvω) accurately for
gate sizing. Fig. 6 gives an example of generating ∇gvτ via the
sizing-oriented straight-through estimator. In it, the gradient
of the round operator is approximated as 1. Based on the
approximation, we can get the ∇gvτ as

∇gv
gcon

v = 1 → ∇gv
τ = ∇gcon

v
τ

∇gv
ω = ∇gcon

v
ω, v ∈ V. (10)

This simple approximation function works well in
quantization-aware training works. Fortunately, it is also a
good method to solve discrete issues in gate sizing-aware
timing models. We give an explanation for the efficiency
as follows: In quantization works, the float point variables
are quantized with bitwise variables. Similar to quantization
works, the gate size can be continuous while designing. It is
quantized while generating standard libraries to compact the
library size and improve design efficiency [1]. Thus, discrete
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TABLE I
BENCHMARK STATISTICS. THE UNITS OF “WNS” AND “TNS” ARE NS. AND THE UNIT OF “POW” IS MW

issues in gate-sizing work are the same as quantization works.
As shown in Fig. 6, the relationship between different sizes
can be retained in our work. Based on the generated ∇gvτ and
∇gvω, the timing targets gradients w.r.t. gate sizes ∇gvT can
be computed automatically and accurately before backward
propagation.

C. Adaptive Gradient Back-Propagation

After obtaining timing target gradients w.r.t. gate sizes ∇gvT,
the stochastic optimization algorithm proposed in Adam [27]
can be applied to optimize the timing target T via gradient
back-propagation. The gate size in our work can be updated
as

gv := gv − εv∇gv
T, v ∈ V (11)

where εv is the learning rate in Adam. However, if we directly
perform gradient descent following (11), it is difficult to
solve the gate sizing problem with high efficacy on large-
scale circuits with many gates. The problem is caused by
the high-dimensional issue. When multiple gate sizes change
simultaneously, there may be variations in gradient estimation.
This is because there are interdependencies among different
gates. In the experience of physical designers, it is a common
practice to fix some gates while performing gate sizing on
others for achieve timing optimization.

In our work, we incorporate the experience of physical
designers and use an adaptive learning rate εv to update
gate sizes based on gradients. If we employ an alternating
optimization scheme with sampling, it may result in unac-
ceptable runtime costs. Instead, we utilize the well-known
technique of Gumbel-Softmax [28] to achieve adaptive back-
propagation via sampling

εv = exp
((

log
(
ω
(
gv

))+ nv
)
/λ
)

∑
i∈V exp

((
log
(
ω
(
gi

))+ ni
)
/λ
) , v ∈ V (12)

where nv and ni are independent and identically distributed
samples drawn from Gumbel distribution. λ represents the
temperature parameter. Our intuition is that since timing issues
are determined by their worst-case scenario, we use the
normalized result of gatewise WNS ω(gv) as the probability
value for sampling. For gates with larger gatewise WNS
values, which are bottlenecks in timing, more probability is
allocated for gradient sampling and gradient back-propagation.
It means they should be solved with higher priority.

TABLE II
CHARACTERISTICS OF TSMC 16-NM CELL LIBRARY

TABLE III
IMPORTANT SETTINGS USED IN ICC2

VI. EXPERIMENTAL RESULTS

Our framework is implemented in Python with the Pytorch
library and in C++. The multimodal timing model is trained
on a Linux machine with 32 cores and 4 NVIDIA Tesla V100
GPUs. The training process takes about 4.5 h using the parallel
training method on 4 GPUs. The total memory used is 128 GB.
In timing target calculation, both the weights for TNS target
μτ and for WNS target μω are set to 0.5. And they can
be adjusted to meet different timing requirements. To smooth
the penalty function described in (9), we set γ as 10.0. The
temperature parameter λ used during adaptive gradient back-
propagation equals 5.0.

In this work, we train our timing model and evaluate our
framework using different open-source designs [30]. And our
work can be applied to unseen design without retraining.
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TABLE IV
GATEWISE TNS τ(gv) AND GATEWISE WNS ω(gv) PREDICTION ACCURACY. THE UNIT OF “MAE” IS PS

TABLE V
TIMING OPTIMIZATION RESULT COMPARISON BETWEEN OUR FRAMEWORK AND OTHER GATE SIZING WORKS

The benchmark circuits are synthesized with TSMC 16-nm
technology and details are shown in Table I The types and
sizes of different cells used in our work are shown in Table II.
The circuit benchmarks are split into training and testing sets.
The training and testing sets are determined by design scale
in order to make balance. The timing evaluation model is
trained on the training set with a learning rate of 0.0004.
#CPs represent the number of critical paths. WNS and TNS
represent the worst and TNS of circuits. NVE represents the
number of endpoints with timing violations. POW is the power
consumption. We compare our framework with the following
advanced baselines: 1) the commercial EDA tool ICC2; 2) RL-
sizer [11]; 3) TranSizer [4]; and 4) AGD [15]: Timing model
proposed in [29]+gradient descent optimization.

A. Baseline Details

For ICC2, there are different settings for achieving timing
optimization and meeting physical constraints. The detailed
settings are shown in Table III.

TransSizer [4] uses six encoder and decoder layers with
eight heads for attention. During training, the learning rate of
Adam optimizer is set to 0.0001, the batch size is set to 2048
and the number of epoch is set to 2000. In TransSizer, the
size of each gate is predicted path by path. Thus, when a gate
appears in more than one path during inference, it picks the
sizing solution with the smaller FO4 delay value.

For AGD [15], it runs the optimization process for 300
iterations for each circuit, and the first five iterations are used
for fine-tuning. The same training circuits are used to train
the timing model [29] used in AGD. The learning rate is set

to 0.1 and AdamW optimizer is used for timing optimization.
Furthermore, the greedy algorithm is applied on top of the
best-sizing solution found by AGD to boost the results further.

B. Timing Model Accuracy

The accuracy of our gate-sizing aware timing model to
achieve gatewise TNS and WNS prediction is illustrated in
Table IV. Specifically, the R2 score (the higher the better)
and maximum absolute error MAE (the lower the better) are
used to evaluate the performance. According to the results,
they demonstrate that our timing model can accurately predict
gatewise TNS and WNS. For the training designs, the average
R2 scores and MAE of gatewise TNS and WNS on all gates
are 0.95/6.50 and 0.97/4.04 ps. For the unseen testing designs,
the average R2 scores and MAE of gatewise TNS and WNS
on all gates are 0.94/4.77 and 0.95/3.14 ps. Our proposed
framework vastly outperforms all other baseline models on
all benchmark circuits for gatewise TNS and gatewise WNS
prediction. Compared with DAC22 [29] which collects timing
information on one single path, timing information on multiple
paths is considered jointly in our work. Compared with
DAC23 [23] which collects single-scale physical information,
physical information on multiscale layouts is collected in our
model. The utilized rich information makes our gate sizing-
aware timing model more accurate. The high accuracy helps
to improve the timing optimization performance of our work.

C. Timing Performance Improvements

Table V demonstrates the timing optimization results of our
work and other comparisons after replacement and rerouting.
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Fig. 7. Normalized TNS and WNS improvement achieved by RL sizer, AGD, and our work across different timing requirements. (a) WNS improvement of
TATE. (b) TNS improvement of TATE. (c) WNS improvement of ECG. (d) TNS improvement of ECG.

TABLE VI
RUNTIME COMPARISONS

In summary, our framework achieves an average of 16.29%
and 18.61% WNS and TNS improvements compared with
ICC2. And it also outperforms all other comparisons. After
analyzing the results, we summarize our findings below.

1) Our work can achieve gate sizing to optimize timing on
seen and unseen circuits. The results suggest that our
work can generalize across various designs with different
functions and scales without any retraining.

2) We achieve higher-timing performance improvements,
including TNS, WNS, and NVE, with ignorable power
consumption costs.

3) Compared with RL-sizer, our gradient-based work can
achieve more stable optimization.

4) Compared with TranSizer, our work achieves gradient
descent optimization. ICC2 results are used as gradient
labels rather than classification labels. It helps our work
outperform ICC2 rather than imitate it as TranSizer.

5) Compared with AGD, our work achieves better-
optimization performance benefiting from the
multimodal gate sizing-aware timing model and effective
gradient generation and back-propagation.

As described in Section V-A, our work can optimize
timing performance according to different requirements. It is
achieved by adjusting weights for the TNS target μτ and
WNS target μω. Fig. 7 gives results of timing optimization
on two Opencore design, including TATE and ECG. They are
achieved by RL-sizer [11], AGD [15] and our work when μτ

and μω are set to different values which ranges from 0.1 to
0.9. According to the results, we summarize some findings
below.

1) Our work outperforms the other two works based on all
settings. The results indicate that our work can achieve
more stable and efficient optimization across all design
spaces.
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Fig. 8. Runtime breakdown in one gate sizing flow of our work.

2) Larger μτ leads to generating circuits with better-
TNS optimization, while μω leads to better-WNS
optimization. It indicates that our work can meet
different timing requirements effectively for different
applications.

D. Runtime

The time-to-market pressure requires the gate sizing work
to be effective on large-scale circuits. The running time of
our framework and other comparisons are shown in Table VI.
Compared with timing-consuming ICC2 and RL-sizer [11],
our work achieves 6.64× and 11.25× speedup, respectively.
Compared with TransSizer [4], our work achieves much better-
optimization performance in a reasonable time. Compared with
other gradient descent optimization works AGD [15], our work
achieves acceleration benefiting from optimizing critical paths
globally and adaptive back-propagation.

In addition, as demonstrated in Fig. 8, the bulk of runtime
in one gate sizing flow—about 70%—is consumed by physical
and timing analysis for our work. Thus, the overall runtime
is predominantly influenced by the convergence speed of
the optimization algorithms. Our framework benefits from an
accelerated convergence speed, resulting in faster optimization
and more enhanced scalability, which is particularly advan-
tageous for large-scale circuits. This acceleration is achieved
through adaptive gradient back-propagation and the trained
model based on gradient labels.

E. Power Consumption

The power consumption costs caused by timing optimization
are very important for some low-power design. The power
consumption results after gate sizing are shown in Table VII.
According to the results, our work can achieve more tim-
ing performance improvements with less power consumption
increment comparing with RL-Sizer [11] and AGD [15]. For
TransSizer [4], the timing optimization performance is very
poor using similar power consumption costs with other works.
Compared with ICC2, the power consumption cost of our
work is just 0.06%. The power consumption-efficient timing
optimization is achieved based on our trained model using
gradient labels. The ignorable costs can be optimized easily
by power ECO works [31].

TABLE VII
POWER CONSUMPTION RESULT COMPARISONS

F. Ablation Study

In this section, we conduct ablation studies to demonstrate
the effectiveness of our proposed work. We compare the
following schemes.

1) W/o Timing Features: It can only utilize multiscale phys-
ical features via physical feature aggregation proposed
in Section IV-C. In the scheme, no timing feature is
modeled while achieving gate sizing by our work. Thus,
the scheme is very difficult to achieve efficient timing
optimization.

2) W/o Physical Features: It can only utilize multipath
timing features via timing feature aggregation proposed
in Section IV-B. Compared with our physically aware
work, no physical feature prevents the scheme from
capturing gate sizing-induced wire delay variation. Thus,
it can not achieve optimal timing performance.

3) W/o Slack Labels: It can only utilize gradient labels dur-
ing gate sizing-aware timing model training. In addition,
the predicted gradient labels are directly used during
gradient back propagation. In the scheme, no slack label
is applied in our loss function in (7). Thus, the scheme
can only achieve timing optimization to the same level
with ICC2 without further optimization.

4) W/o Gradient Labels: It can only utilize slack labels
during gate sizing-aware timing model training. In the
scheme, no gradient label is applied in our loss function
in (7). Thus, the scheme can achieve high-accurate
timing prediction without fast optimization gradients.

5) W/o Gumbel: It achieves gradient back-propagation
without Gumbel-Softmax sampling proposed in
Section V-C. Specifically, all size gradients are
back-propagated equally in the scheme. Thus, the
optimization always falls into local optimal solutions
due to gradient vanishing. In addition, more runtime
cost is a necessity.

6) W/o STE: It achieves gradient generation using the
method proposed in AGD [15]. No consideration of
relationships among different gate sizes causes inaccu-
racy during gradient generation. It leads to poor timing
optimization performance.

7) Ours: It can utilize multiscale layout features and
multipath timing features. It achieves gradient back-
propagation with Gumbel-Softmax sampling. This
scheme is the final implementation of our work.
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Fig. 9. Comparison among different schemes by (a) WNS optimization, (b) TNS optimization, (c) NVE optimization, and (d) speedup. All these values are
normalized by results generated via ICC2.

TABLE VIII
GATEWISE TNS τ(gv) AND GATEWISE WNS ω(gv) PREDICTION ACCURACY COMPARISON AMONG USING DIFFERENT KINDS OF LABELS.

THE UNIT OF “MAE” IS PS

Fig. 10. Comparison among different plans of applying our work by (a) WNS optimization, (b) TNS optimization, (c) NVE optimization, and (d) speedup.
All these values are normalized by results generated via ICC2.

As demonstrated in Fig. 9, our work are compared with
other works by WNS optimization [see Fig. 9(a)], TNS
optimization [see Fig. 9(b)], NVE optimization [see Fig. 9(c)]
and speedup [see Fig. 9(d)]. According to our results, the most
significant improvement is achieved by aggregating multipath
timing features, which is because the timing information on
critical paths always is the key to achieve timing optimization.
In addition, the multiscale physical aggregated features can
also help to enhance the optimization performance by captur-
ing the influence from layouts. Compared with the gradient
generation method proposed in AGD [15], the sizing-oriented
STE can help our work achieve more timing improvement
based on accurate gradient results. These results are generated

by capturing relationships between different sizes. As shown in
Fig. 9(d), our final work can achieve 6.64× speedup compared
with ICC2, which is similar to our work w/o physical features
and our work w/o timing features. However, the runtime
of our work w/o Gumbel scheme nearly equals the runtime
of ICC2. It suggests that adaptive gradient back-propagation
through Gumbel-Softmax sampling is efficient to accelerate
achieving timing optimization via our work. In summary, the
ablation study validates the benefits of using multiscale phys-
ical features, multipath timing features, the sizing-oriented
straight-through estimator and Gumbel-Softmax sampling.

As demonstrated in Table VIII, we compared our work
with its variants without slack labels and gradient labels by
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TABLE IX
DISPLACEMENT COMPARISONS. THE UNIT OF MAX DISPLACEMENT AND AVERAGE DISPLACEMENT IS μm

timing prediction accuracy. Slack labels play important roles
in achieving accurate gate sizing-aware timing prediction.
However, according to timing optimization results shown in
Fig. 9, gradient labels help to achieve faster optimization.
Thus, slack and gradient labels are necessities in our work to
achieve fast and efficient timing optimization.

As demonstrated in Table IX, we compared our work with
its variants without physical features by displacement results
after gate sizing. Physical features are critical in our work to
achieve timing optimization with less displacement cost. Thus,
less displacement-induced wire delay degradation is caused in
our work after considering multiscale physical features.

G. Application of Our Method in Different Plans

In this section, we conduct different applications of our
method. We compare the following plans.

1) Direct Application: It applies our work directly. The plan
achieves a good tradeoff between timing optimization
efficiency and performance.

2) Include Re-PnR: It applies our work with repeating the
replacement and rerouting in the flow. After timing-
consuming timing and physical analysis, related timing
and physical features used in timing optimization can
be updated in the plan. These accurate updated features
help the plan to obtain more timing improvements.

3) Ours+ICC2: It combines our work and ICC2 through
applying our work at first, then applying ICC2 to
achieve further optimization. For the traditional com-
putational optimization method used in ICC2, a good
initial solution is critical to achieve optimal timing
optimization. Thus, in this plan, we try to improve the
timing performance of ICC2 by using the generated
result of our learning-driven work as the initial solution.

As demonstrated in Fig. 10, our work is compared
with other works by WNS optimization [see Fig. 10(a)],
TNS optimization [see Fig. 10(b)], NVE optimization (see
Fig. 10(c) and speedup [see Fig. 10(d)]. According to our
results, the most significant improvements in different appli-
cations are achieved by our work. During the training process
of our gate-sizing aware timing model, we extract physical
features before replacement and rerouting to achieve timing
prediction after gate-sizing. The trained model can accurately
capture the gate sizing-induced delay optimization based on
original physical features. Thus, our work can obtain similar

timing performance improvements compared with repeating
the replacement and rerouting in the flow. However, as shown
in Fig. 10(d), the runtime cost of timing analysis and physical
analysis after repeating the replacement and rerouting limits
the optimization efficiency. In addition, the ICC2 can only
achieve an average 0.01% timing improvement after our work.

VII. CONCLUSION

This work proposes and implements a learning-driven
physically aware gate sizing framework to achieve timing
optimization on large-scale circuits efficiently. The powerful
and efficient optimization is from the following.

1) Modeling timing optimization and degradation caused
by gate-sizing accurately in a multimodal way via
learning timing information on multiple timing paths and
physical information on multiple scaled layouts.

2) Generating and back-propagating gradients efficiently
to update gate sizes via sizing-oriented straight-through
estimator and adaptive sampling. Experimental results
on open-source designs show that our work can achieve
16.29% and 18.61% TNS and WNS improvements on
average compared with the commercial gate sizing tool.
In addition, it obtains a 6.64× speedup.
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